
Chapter 9

SLD-Resolution And
Logic Programming

(PROLOG)

9.1 Introduction

We have seen in Chapter 8 that the resolution method is a complete procedure
for showing unsatisfiability. However, finding refutations by resolution can be
a very expensive process in the general case. If subclasses of formulae are
considered, more efficient procedures for producing resolution refutations can
be found. This is the case for the class of Horn clauses. A Horn clause is a
disjunction of literals containing at most one positive literal. For sets of Horn
clauses, there is a variant of resolution called SLD-resolution, which enjoys
many nice properties. SLD-resolution is a special case of a refinement of
the resolution method due to Kowalski and Kuehner known as SL-resolution
(Kowalski and Kuehner, 1970), a variant of Model Elimination (Loveland,
1978), and applies to special kinds of Horn clauses called definite clauses. We
shall present SLD-resolution and show its completeness for Horn clauses.

SLD-resolution is also interesting because it is the main computation
procedure used in PROLOG. PROLOG is a programming language based on
logic, in which a computation is in fact a refutation. The idea to define a
program as a logic formula and view a refutation as a computation is a very
fruitful one, because it reduces the complexity of proving the correctness of
programs. In fact, it is often claimed that logic programs are obviously cor-
rect, because these programs “express” the assertions that they should satisfy.
However, this is not quite so, because the notion of correctness is relative, and

410

9.2 GCNF
′-Proofs in SLD-Form 411

one still needs to define the semantics of logic programs in some independent
fashion. This will be done in Subsection 9.5.4, using a model-theoretic seman-
tics. Then, the correctness of SLD-resolution (as a computation procedure)
with respect to the model-theoretic semantics will be proved.

In this chapter, as in Chapter 8, we begin by studying SLD-resolution
in the propositional case, and then use the lifting technique to extend the
results obtained in the propositional case to the first-order case. Fortunately,
the lifting process goes very smoothly.

As in Chapter 4, in order to prove the completeness of SLD-resolution
for propositional Horn clauses, we first show that Horn clauses have GCNF ′-
proofs of a certain kind, that we shall call GCNF ′-proofs in SLD-form. Then,
we show that every GCNF ′-proof in SLD-form can be mapped into a linear
SLD-refutation. Hence, the completeness proof for SLD-resolution is con-
structive.

The arguments used for showing that every unsatisfiable Horn clause
has a GCNF ′-proof in SLD-form are quite basic and combinatorial in nature.
Once again, the central concept is that of proof transformation.

We conclude this chapter by discussing the notion of logic program and
the idea of viewing SLD-resolution as a computation procedure. We pro-
vide a rigorous semantics for logic programs, and show the correctness and
completeness of SLD-resolution with respect to this semantics.

The contents of Section 9.5 can be viewed as the theoretical foundations
of logic programming, and PROLOG in particular.

9.2 GCNF ′-Proofs in SLD-Form

First, we shall prove that every unsatisfiable propositional Horn clause has
a GCNF ′-proof of a certain type, called a proof in SLD-form. In order to
explain the method for converting a GCNF ′-proof into an SLD-resolution
proof, it is convenient to consider the special case of sets of Horn clauses,
containing exactly one clause containing no positive literals (clause of the
form {¬P1, ...,¬Pm}). Other Horn clauses will be called definite clauses.

9.2.1 The Case of Definite Clauses

These concepts are defined as follows.

Definition 9.2.1 A Horn clause is a disjunction of literals containing at
most one positive literal. A Horn clause is a definite clause iff it contains a
(single) positive literal. Hence, a definite clause is either of the form

{Q}, or {¬P1, ...,¬Pm, Q}.

412 9/SLD-Resolution And Logic Programming (PROLOG)

A Horn clause of the form
{¬P1, ...,¬Pm}

is called a negative clause or goal clause.

For simplicity of notation, a clause {Q} will also be denoted by Q. In
the rest of this section, we restrict our attention to sets S of clauses consisting
of definite clauses except for one goal clause. Our goal is to show that for
a set S consisting of definite clauses and of a single goal B, if S is GCNF ′-
provable, then there is a proof having the property that whenever a ∨ : left
rule is applied to a definite clause {¬P1, ...,¬Pm, Q}, the rule splits it into
{¬P1, ...,¬Pm} and {Q}, the sequent containing {Q} is an axiom, and the
sequent containing {¬P1, ...,¬Pm} does not contain ¬Q.

EXAMPLE 9.2.1

Consider the set S of Horn clauses with goal {¬P1,¬P2} given by:

S = {{P3}, {P4}, {¬P1,¬P2}, {¬P3,¬P4, P1}, {¬P3, P2}}.

The following is a GCNF ′-proof:

P3,¬P3 → P4,¬P4 →

P3, P4, {¬P3,¬P4} →

¬P1, P1 →

¬P2, P2 → P3,¬P3 →

P3,¬P2, {¬P3, P2} →

P3, {¬P1,¬P2}, P1, {¬P3, P2} →

P3, P4, {¬P1,¬P2}, {¬P3,¬P4, P1}, {¬P3, P2} →

Another proof having the properties mentioned above is

¬P1, P1 →

P3,¬P3 → P4,¬P4 →

P3, P4, {¬P3,¬P4} →

P3, P4,¬P1, {¬P3,¬P4, P1} →

¬P2, P2 → P3,¬P3 →

P3,¬P2, {¬P3, P2} →

P3, P4, {¬P1,¬P2}, {¬P3,¬P4, P1}, {¬P3, P2} →

Observe that in the above proof, the ∨ : left rule is first applied to the
goal clause {¬P1,¬P2}, and then it is applied to split each definite clause
{¬Q1, ...,¬Qm, Q} into {¬Q1, ...,¬Qm} and {Q}, in such a way that the se-
quent containing {Q} is the axiom Q,¬Q →. Note also that each clause
{¬Q1, ...,¬Qm} resulting from splitting a definite clause as indicated above is
the only goal clause in the sequent containing it.

9.2 GCNF
′-Proofs in SLD-Form 413

9.2.2 GCNF ′-Proofs in SLD-Form

The above example suggests that if a set of definite clauses with goal B is
GCNF ′-provable, it has a proof obtained by following rules described below,
starting with a one-node tree containing the goal B = {¬P1, ...,¬Pm}:

(1) If no leaf of the tree obtained so far contains a clause consisting of a
single negative literal ¬Q then,

As long as the tree is not a GCNF ′-proof tree, apply the ∨ : left rule
to each goal clause B of the form {¬Q1, ...,¬Qm} (m > 1) in order to form
m immediate descendants of B, else

(2) For every goal clause consisting of a single negative literal ¬Q, find a
definite clause {¬P1, ...,¬Pk, Q} (or Q when k = 0), and split {¬P1, ...,¬Pk,
Q} using the ∨ : left rule in order to get the axiom ¬Q,Q → in one node,
{¬P1, ...,¬Pm} in the other, and drop ¬Q from that second node.

Go back to (1).

In is not clear that such a method works, and that in step (2), the
existence of a definite clause {¬P1, ...,¬Pk, Q} such that Q cancels ¬Q is
guaranteed. However, we are going to prove that this is always the case.
First, we define the type of proofs arising in the procedure described above.

Definition 9.2.2 Given a set S of clauses consisting of definite clauses and
of a single goal B, a GCNF ′-proof is in SLD-form iff the conditions below
are satisfied:

For every node B in the tree that is not an axiom:

(1) If the set of clauses labeling that node does not contain any clause
consisting of a single negative literal ¬Q, then it contains a single goal clause
of the form {¬Q1, ...,¬Qm} (m > 1), and the ∨ : left rule is applied to this
goal clause in order to form m immediate descendants of B.

(2) If the set of clauses labeling that node contains some single negative
literal, for such a clause ¬Q, there is some definite clause

{¬P1, ...,¬Pk, Q},

(k > 0), such that the ∨ : left rule is applied to

{¬P1, ...,¬Pk, Q}

in order to get the axiom ¬Q,Q → and a sequent containing the single goal
clause {¬P1, ...,¬Pk}.

We are now going to prove that if a set of clauses consisting of definite
clauses and of a single goal clause if provable in GCNF ′, then it has a proof
in SLD-form. For this, we are going to perform proof transformations, and
use simple combinatorial properties.

414 9/SLD-Resolution And Logic Programming (PROLOG)

9.2.3 Completeness of Proofs in SLD-Form

First, we need to show that every GCNF ′-provable set of clauses has a proof
in which no weakenings takes place. This is defined as follows.

Definition 9.2.3 A GCNF ′-proof is without weakenings iff every applica-
tion of the ∨ : left rule is of the form:

Γ, A1, ..., Am → Γ, B →

Γ, (A1 ∨ B), ..., (Am ∨ B) →

We have the following normal form lemma.

Lemma 9.2.1 If a set S of clauses is GCNF ′-provable, then a GCNF ′-
proof without weakenings and in which all the axioms contain only literals
can be constructed.

Proof : Since G′ is complete, S → has a G′-proof T . By lemma 6.3.1
restricted to propositions, S → has a G′-proof T ′ in which all axioms are
atomic. Using lemma 4.2.2, S → has a G′-proof T ′′ in which all axioms
are atomic, and in which all applications of the ∨ : left rule precede all
applications of the ¬ : left rule. The tree obtained from T ′′ by retaining
the portion of the proof tree that does not contain ¬ : left inferences is the
desired GCNF ′-proof.

The following permutation lemma is the key to the conversion to SLD-
form.

Lemma 9.2.2 Let S be a set of clauses that has a GCNF ′-proof T . Then,
for any clause C in S having more than one literal, for any partition of the
literals in C into two disjunctions A and B such C = (A ∨ B), there is a
GCNF ′-proof T ′ in which the ∨ : left rule is applied to (A ∨ B) at the root.
Furthermore, if the proof T of S is without weakenings and all axioms contain
only literals, the proof T ′ has the same depth as T .

Proof : Observe that representing disjunctions of literals as unordered
sets of literals is really a convenience afforded by the associativity, commuta-
tivity and idempotence of ∨, but that this convenience does not affect the com-
pleteness of G′. Hence, no matter how C is split into a disjunction (A∨B), the
sequent Γ, (A∨B) → is G′-provable. By converting a G′-proof of Γ, (A∨B) →
given by lemma 9.2.1 into a GCNF ′-proof, we obtain a GCNF ′-proof with-
out weakenings, and in which the ∨ : left rule is applied to A and B only
after it is applied to (A∨B). If the ∨ : left rule applied at the root does not
apply to (A ∨ B), it must apply to some other disjunction (C ∨ D). Such a
proof T must be of the following form:

9.2 GCNF
′-Proofs in SLD-Form 415

Tree T

Π1 Π2

Γ, (A ∨ B), (C ∨ D) →

where Π1 is the tree

T1

Γ1, A →

S1

Γ1, B →

Γ1, (A ∨ B) →

Tm

Γm, A →

Sm

Γm, B →

Γm, (A ∨ B) →

R

Γ, (A ∨ B), C →

and where Π2 is the tree

T ′

1

∆1, A →

S′

1

∆1, B →

∆1, (A ∨ B) →

T ′

n

∆n, A →

S′

n

∆n, B →

∆n, (A ∨ B) →

S

Γ, (A ∨ B),D →

In the above proof, we have indicated the nodes to which the ∨ : left
rule is applied, nodes that must exist since all axioms consist of literals. The
inferences above Γ, (A ∨ B), C and below applications of the ∨ : left rule to
(A∨B) are denoted by R, and the similar inferences above Γ, (A∨B),D are
denoted by S. We can transform T into T ′ by applying the ∨ : left rule at
the root as shown below:

Tree T ′

Π′

1 Π′

2

Γ, (A ∨ B), (C ∨ D) →

416 9/SLD-Resolution And Logic Programming (PROLOG)

where Π′

1 is the tree

T1

Γ1, A →

Tm

Γm, A →

T ′

1

∆1, A →

T ′

n

∆n, A →

R S

Γ, A,C → Γ, A,D →

Γ, A, (C ∨ D) →

and where Π′

2 is the tree

S1

Γ1, B →

Sm

Γm, B →

S′

1

∆1, B →

S′

n

∆n, B →

R S

Γ, B,C → Γ, B,D →

Γ, B, (C ∨ D) →

Clearly, depth(T ′) = depth(T).

Note that T ′ is obtained from T by permutation of inferences. We need
another crucial combinatorial property shown in the following lemma.

Lemma 9.2.3 Let S be an arbitrary set of clauses such that the subset
of clauses containing more than one literal is the nonempty set {C1, ..., Cn}
and the subset consisting of the one-literal clauses is J . Assume that S is
GCNF ′-provable, and that we have a proof T without weakenings such that
all axioms consist of literals. Then, every axiom is labeled with a set of literals
of the form {L1, ..., Ln} ∪ J , where each literal Li is in Ci, i = 1, ..., n.

Proof : We proceed by induction on proof trees. Since S contains at
least one clause with at least two literals and the axioms only contain literals,
depth(T) ≥ 1. If T has depth 1, then there is exactly one application of the
∨ : rule and the proof is of the following form:

J, L1 → J, L2 →

J, (L1 ∨ L2) →

9.2 GCNF
′-Proofs in SLD-Form 417

Clearly, the lemma holds.

If T is a tree of depth k + 1, it is of the following form,

T1

Γ, A →

T2

Γ, B →

Γ, (A ∨ B) →

where we can assume without loss of generality that Cn = (A ∨ B). By the
induction hypothesis, each axiom of T1 is labeled with a set of clauses of the
form {L1, ..., Ln} ∪ J , where each literal Li is in Ci for i = 1, ..., n − 1, and
either Ln = A if A consists of a single literal, or Ln belongs to A. Similarly,
each axiom of T2 is labeled with a set of clauses of the form {L1, ..., Ln} ∪ J ,
where each literal Li is in Ci for i = 1, ..., n−1, and either Ln = B if B consists
of a single literal, or Ln belongs to B. Since the union of A and B is Cn,
every axiom of T is labeled with a set of clauses of the form {L1, ..., Ln} ∪ J ,
where each literal Li is in Ci, i = 1, ..., n. Hence, the lemma holds.

As a consequence, we obtain the following useful corollary.

Lemma 9.2.4 Let S be a set of Horn clauses. If S is GCNF ′-provable,
then S contains at least one clause consisting of a single positive literal, and
at least one goal (negative) clause.

Proof : It S is an axiom, this is obvious. Otherwise, by lemma 9.2.3, if
S is GCNF ′-provable, then it has a proof T without weakenings such that
every axiom is labeled with a set of literals of the form {L1, ..., Ln}∪J , where
each literal Li is in Ci, i = 1, ..., n, and J is the set of clauses in S consisting
of a single literal. If J does not contain any positive literals, since every
Horn clause Ci contains a negative literal say ¬Ai, the set {¬A1, ...,¬An}∪J
contains only negative literals, and so cannot be an axiom. If every clause in
J is positive and every clause Ci contains some positive literal say Ai, then
{A1, ..., An} ∪ J contains only positive literals and cannot be an axiom.

In order to prove the main theorem of this section, we will need to
show that the provability of a set of Horn clauses with several goals (negative
clauses) reduces to the case of a set of Horn clauses with a single goal.

Lemma 9.2.5 Let S be a set of Horn clauses consisting of a set J of single
positive literals, goal clauses N1,...,Nk, and definite clauses C1,...,Cm contain-
ing at least two literals.

If S is GCNF ′-provable, then there is some i, 1 ≤ i ≤ k, such that

J ∪ {C1, ..., Cm} ∪ {Ni}

is GCNF ′-provable. Furthermore, if T is a GCNF ′-proof of S without weak-
enings and such that the axioms contain only literals, J ∪ {C1, ..., Cm}∪ {Ni}
has a proof of depth less than or equal to the depth of T .

418 9/SLD-Resolution And Logic Programming (PROLOG)

Proof : We proceed by induction on proof trees. Let T be a GCNF ′-
proof of S without weakenings and such that all axioms contain only literals.

Case 1: J ∪ {C1, ..., Cm} ∪ {N1, ..., Nk} is an axiom. Then, one of the
positive literals in J must be the conjugate of some negative clause Ni, and
the lemma holds.

Case 2: The bottom ∨ : left rule is applied to one of the Ni. Without
loss of generality, we can assume that it is N1 = {¬Q1, ...,¬Qj ,¬P}.

Letting C = C1, ..., Cm, the proof is of the form

T1

J, C, N2, ..., Nk, {¬Q1, ...,¬Qj} →

T2

J, C, N2, ..., Nk,¬P →

J, C, N1, ..., Nk →

Observe that the bottom sequents of T1 and T2 satisfy the conditions of
the induction hypothesis. There are two subcases. If both

J,C1, ..., Cm, {¬Q1, ...,¬Qj} → and

J,C1, ..., Cm,¬P →

are provable, then

J,C1, ..., Cm, {¬Q1, ...,¬Qj ,¬P} →

is provable by application of the ∨ : rule, and the lemma holds. If

J,C1, ..., Cm, Ni →

is provable for some i, 2 ≤ i ≤ k, then the lemma also holds.

Case 3: The bottom ∨ : rule is applied to one of the Ci. Without loss
of generality, we can assume that it is C1 = {¬Q1, ...,¬Qj , P}. There are two
subcases:

Case 3.1: Letting N = N1, ..., Nk, the proof is of the form

T1

J,C2, ..., Cm,N , {¬Q1, ...,¬Qj} →

T2

J, P,C2, ..., Cm,N →

J,C1, ..., Cm,N →

Again the induction hypothesis applies to both T1 and T2. If

J,C2, ..., Cm, {¬Q1, ...,¬Qj} → is provable and

J, P,C2, ..., Cm, Ni → is provable

9.2 GCNF
′-Proofs in SLD-Form 419

for some i, 1 ≤ i ≤ k, then by the ∨ : rule,

J,C1, ..., Cm, Ni →

is also provable, and the lemma holds. If

J,C2, ..., Cm, Ni →

is provable for some i, 1 ≤ i ≤ k, then

J,C1, ..., Cm, Ni →

is also provable (using weakening in the last ∨ : rule).

Case 3.2: Letting N = N1, ..., Nk, the proof is of the form

T1

J,C2, ..., Cm,N , {¬Q2, ...,¬Qj , P} →

T2

J,C2, ..., Cm,¬Q1,N →

J,C1, ..., Cm,N →

Applying the induction hypothesis, either

J,C2, ..., Cm, Ni, {¬Q2, ...,¬Qj , P}

is provable for some i, 1 ≤ i ≤ k, and

J,C2, ..., Cm,¬Q1 →

is provable, and by the ∨ : rule, J,C1, ..., Cm, Ni is provable and the lemma
holds. Otherwise,

J,C2, ..., Cm, Ni

is provable for some i, 1 ≤ i ≤ k, and so J,C1, ..., Cm, Ni is also provable
using weakening in the last ∨ : rule. This concludes the proof.

We are now ready to prove the main theorem of this section.

Theorem 9.2.1 (Completeness of proofs in SLD-form) If a set S consisting
of definite clauses and of a single goal B = {¬P1, ...,¬Pn} is GCNF ′-provable,
then it has a GCNF ′-proof in SLD-form.

Proof : Assume that S is not an axiom. By lemma 9.2.1, there is a
GCNF ′-proof T without weakenings, and such that all axioms consist of
literals. We proceed by induction on the depth of proof trees. If depth(T) = 1,
the proof is already in SLD-form (this is the base case of lemma 9.2.3). If
depth(T) > 1, by n applications of lemma 9.2.2, we obtain a proof tree T ′

having the same depth as T , such that the i-th inference using the ∨ : left
rule is applied to {¬Pi, ...,¬Pn}. Hence, letting C = C1, ..., Cm, the tree T ′ is
of the form:

420 9/SLD-Resolution And Logic Programming (PROLOG)

Tn−1

J, C,¬Pn−1 →

Tn

J, C,¬Pn →

J, C, {¬Pn−1,¬Pn} →

...

T1

J, C,¬P1 →

T2

J, C,¬P2 → J, C, {¬P3, ...,¬Pn} →

J, C, {¬P2, ...,¬Pn} →

J, C, {¬P1, ...,¬Pn} →

where J is the set of clauses consisting of a single positive literal, and each
clause Ci has more than one literal. For every subproof rooted with J,C1, ...,
Cm,¬Pi →, by lemma 9.2.3, each axiom is labeled with a set of literals

{L1, ..., Lm} ∪ {¬Pi} ∪ J,

where each Lj is in Cj , 1 ≤ j ≤ m. In particular, since each clause Cj contains
a single positive literal Aj , for every i, 1 ≤ i ≤ n, {A1, ..., Am} ∪ {¬Pi} ∪ J
must be an axiom. Clearly, either some literal in J is of the form Pi, or there
is some definite clause C = {¬Q1, ...,¬Qp, Aj} among C1,...,Cm, with positive
literal Aj = Pi. In the first case, J,C1, ..., Cm,¬Pi → is an axiom and the
tree Ti is not present. Otherwise, let C ′ = {C1, ..., Cm}− {C}. Using lemma
9.2.2 again, we obtain a proof Ri of

J,C1, ..., Cm,¬Pi →

(of depth equal to the previous one) such that the the ∨ : left rule is applied
to C:

Pi,¬Pi →

T ′

i

J, {¬Q1, ...,¬Qp}, C ′,¬Pi →

J, {¬Q1, ...,¬Qp, Pi}, C ′,¬Pi →

Note that
J, {¬Q1, ...,¬Qp}, C

′,¬Pi →

has two goal clauses. By lemma 9.2.5, either

J, {¬Q1, ...,¬Qp}, C
′ →

PROBLEMS 421

has a proof Ui, or
J,C ′,¬Pi →

has a proof Vi, and the depth of each proof is no greater than the depth
of the proof Ri of J, {¬Q1, ...,¬Qp, Pi}, C ′,¬Pi →. In the second case, by
performing a weakening in the last inference of Vi, we obtain a proof for
J,C1..., Cm,¬Pi → of smaller depth than the original, and the induction
hypothesis applies, yielding a proof in SLD-form for J,C1, ..., Cm,¬Pi → . In
the first case, ¬Pi is dropped and, by the induction hypothesis, we also have
a proof in SLD-form of the form:

Pi,¬Pi →

T ′′

i

J, {¬Q1, ...,¬Qp}, C ′ →

J, {¬Q1, ...,¬Qp, Pi}, C ′,¬Pi →

Hence, by combining these proofs in SLD-form, we obtain a proof in
SLD-form for S.

Combining theorem 9.2.1 and lemma 9.2.5, we also have the following
theorem.

Theorem 9.2.2 Let S be a set of Horn clauses, consisting of a set J of
single positive literals, goal clauses N1,...,Nk, and definite clauses C1,...,Cm

containing at least two literals. If S is GCNF ′-provable, then there is some
i, 1 ≤ i ≤ k, such that

J ∪ {C1, ..., Cm} ∪ {Ni}

has a GCNF ′-proof in SLD-form.

Proof : Obvious by theorem 9.2.1 and lemma 9.2.5.

In the next section, we shall show how proofs in SLD-form can be con-
verted into resolution refutations of a certain type.

PROBLEMS

9.2.1. Give a GCNF ′-proof in SLD-form for each of the following sequents:

{¬P3,¬P4, P5}, {¬P1, P2}, {¬P2, P1}, {¬P3, P4}, {P3},

{¬P1,¬P2}, {¬P5, P2} →

{P1}, {P2}, {P3}, {P4}, {¬P1,¬P2, P6}, {¬P3,¬P4, P7},

{¬P6,¬P7, P8}, {¬P8} →

422 9/SLD-Resolution And Logic Programming (PROLOG)

{¬P2, P3}, {¬P3, P4}, {¬P4, P5}, {P3}, {P1}, {P2}, {¬P1},

{¬P3, P6}, {¬P3, P7}, {¬P3, P8} →

9.2.2. Complete the missing details in the proof of lemma 9.2.5.

9.2.3. Write a computer program for building proof trees in SLD-form for
Horn clauses.

∗ 9.2.4. Given a set S of Horn clauses, we define an H-tree for S as a tree
labeled with propositional letters and satisfying the following proper-
ties:

(i) The root of T is labeled with F (false);

(ii) The immediate descendants of F are nodes labeled with proposi-
tional letters P1,...,Pn such that {¬P1, ...,¬Pn} is some goal clause in
S;

(iii) For every nonroot node in the tree labeled with some letter Q,
either the immediate descendants of that node are nodes labeled with
letters P1,...,Pk such that {¬P1, ...,¬Pk, Q} is some clause in S, or
this node is a leaf if {Q} is a clause in S.

Prove that S is unsatisfiable iff it has an H-tree.

9.3 SLD-Resolution in Propositional Logic

SLD-refutations for sets of Horn clauses can be viewed as linearizations of
GCNF ′-proofs in SLD-form.

9.3.1 SLD-Derivations and SLD-Refutations

First, we show how to linearize SLD-proofs.

Definition 9.3.1 The linearization procedure is a recursive algorithm that
converts a GCNF ′-proof in SLD-form into a sequence of negative clauses
according to the following rules:

(1) Every axiom ¬P,P → is converted to the sequence < {¬P}, >.

(2) For a sequent R → containing a goal clause N = {¬P1, ...,¬Pn}, with
n > 1, if Ci is the sequence of clauses that is the linearization of the subtree
with root the i-th descendant of the sequent R →, construct the sequence
obtained as follows:

Concatenate the sequences C ′

1,...,C
′

n−1, Cn, where, for each i, 1 ≤ i ≤
n− 1, letting ni be the number of clauses in the sequence Ci, the sequence C′

i

has ni − 1 clauses such that, for every j, 1 ≤ j ≤ ni − 1, if the j-th clause of
Ci is

{B1, ..., Bm},

9.3 SLD-Resolution in Propositional Logic 423

then the j-th clause of C′

i is

{B1, ..., Bm,¬Pi+1, ...,¬Pn}.

(3) For every nonaxiom sequent Γ,¬P → containing some negative lit-
eral ¬P , if the definite clause used in the inference is {¬P1, ...,¬Pm, P}, letting
∆ = Γ − {¬P1, ...,¬Pm, P}, then if the sequence of clauses for the sequent
∆, {¬P1, ...,¬Pm} → is C, form the sequence obtained by concatenating ¬P
and the sequence C.

Note that by (1), (2), and (3), in (2), the first clause of each C ′

i, (1 ≤
i ≤ n − 1), is

{¬Pi,¬Pi+1, ...,¬Pn},

and the first clause of Cn is {¬Pn}.

The following example shows how such a linearization is done.

EXAMPLE 9.3.1

Recall the proof tree in SLD-form given in example 9.2.1:

¬P1, P1 →

P3,¬P3 → P4,¬P4 →

P3, P4, {¬P3,¬P4} →

P3, P4,¬P1, {¬P3,¬P4, P1} →

¬P2, P2 → P3,¬P3 →

P3,¬P2, {¬P3, P2} →

P3, P4, {¬P1,¬P2}, {¬P3,¬P4, P1}, {¬P3, P2} →

The sequence corresponding to the left subtree is

< {¬P1}, {¬P3,¬P4}, {¬P4}, } >

and the sequence corresponding to the right subtree is

< {¬P2}, {¬P3}, >

Hence, the sequence corresponding to the proof tree is

< {¬P1,¬P2}, {¬P3,¬P4,¬P2},

{¬P4,¬P2}, {¬P2}, {¬P3}, > .

This last sequence is an SLD-refutation, as defined below.

Definition 9.3.2 Let S be a set of Horn clauses consisting of a set D of
definite clauses and a set {G1, ..., Gq} of goals. An SLD-derivation for S
is a sequence < N0, N1, ..., Np > of negative clauses satisfying the following
properties:

424 9/SLD-Resolution And Logic Programming (PROLOG)

(1) N0 = Gj , where Gj is one of the goals;

(2) For every Ni in the sequence, 0 ≤ i < p, if

Ni = {¬A1, ...,¬Ak−1,¬Ak,¬Ak+1, ...,¬An},

then there is some definite clause

Ci = {¬B1, ...,¬Bm, Ak}

in D such that, if m > 0, then

Ni+1 = {¬A1, ...,¬Ak−1,¬B1, ...,¬Bm,¬Ak+1, ...,¬An}

else if m = 0 then

Ni+1 = {¬A1, ...,¬Ak−1,¬Ak+1, ...,¬An}.

An SLD-derivation is an SLD-refutation iff Np = . The SLD-resolution
method is the method in which a set of of Horn clauses is shown to be unsat-
isfiable by finding an SLD-refutation.

Note that an SLD-derivation is a linear representation of a resolution
DAG of the following special form:

Cp · · · Ci · · · C2 C1 N0 = Gj

N1

N2

Ni

Np =

At each step, the clauses

{¬A1, ...,¬Ak−1,¬Ak,¬Ak+1, ...,¬An} and

{¬B1, ...,¬Bm, Ak}

are resolved, the literals Ak and ¬Ak being canceled. The literal Ak is called
the selected atom of Ni, and the clauses N0, C1, ..., Cp are the input clauses.

9.3 SLD-Resolution in Propositional Logic 425

Such a resolution method is a form of linear input resolution, because it
resolves the current clause Nk with some clause in the input set D.

By the soundness of the resolution method (lemma 4.3.2), the SLD-
resolution method is sound.

EXAMPLE 9.3.2

The sequence

< {¬P1,¬P2}, {¬P3,¬P4,¬P2},

{¬P4,¬P2}, {¬P2}, {¬P3}, >

of example 9.3.1 is an SLD-refutation.

9.3.2 Completeness of SLD-Resolution for Horn Clauses

In order to show that SLD-resolution is complete for Horn clauses, since by
theorem 9.2.2 every set of Horn clauses has a GCNF ′-proof in SLD-form, it is
sufficient to prove that the linearization algorithm of definition 9.3.1 converts
a proof in SLD-form to an SLD-refutation.

Lemma 9.3.1 (Correctness of the linearization process) Given any GCNF ′-
proof T in SLD-form, the linearization procedure outputs an SLD-refutation.

Proof : We proceed by induction on proofs. If T consists of an axiom,
then the set S of Horn clauses contains a goal ¬Q and a positive literal Q,
and we have the SLD-refutation < {¬Q}, >.

Otherwise, because it is in SLD-form, letting C = C1, ..., Cm, the tree T
has the following structure:

Tn−1

J, C,¬Pn−1 →

Tn

J, C,¬Pn →

J, C, {¬Pn−1,¬Pn} →

...

T1

J, C,¬P1 →

T2

J, C,¬P2 → J, C, {¬P3, ...,¬Pn} →

J, C, {¬P2, ...,¬Pn} →

J, C, {¬P1, ...,¬Pn} →

Each tree Ti that is not an axiom is also in SLD-form and has the
following shape:

426 9/SLD-Resolution And Logic Programming (PROLOG)

Pi,¬Pi →

T ′

i

J, {¬Q1, ...,¬Qp}, C ′ →

J, {¬Q1, ...,¬Qp, Pi}, C ′,¬Pi →

where C ′ = {C1, ..., Cm} − {C}, for some definite clause C = {¬Q1, ...,¬Qp,
Pi}.

By the induction hypothesis, each tree T ′

i is converted to an SLD-
refutation

Yi =< {¬Q1, ...,¬Qp}, N2, ..., Nq > .

By rule (3), the proof tree Ti is converted to the SLD-refutation Xi obtained
by concatenating {¬Pi} and Yi. But then,

Xi =< {¬Pi}, {¬Q1, ...,¬Qp}, N2, ..., Nq >

is an SLD-refutation obtained by resolving {¬Pi} with {¬Q1, ...,¬Qp, Pi}.

If Ti is an axiom then by rule (1) it is converted to < {¬Pi}, >, which
is an SLD-refutation.

Finally, rule (2) combines the SLD-refutations X1,...,Xn in such a way
that the resulting sequence is an SLD-refutation. Indeed, for every i,
1 ≤ i ≤ n − 1, Xi becomes the SLD-derivation X ′

i, where

X ′

i =< {¬Pi,¬Pi+1...,¬Pn}, {¬Q1, ...,¬Qp,¬Pi+1...,¬Pn},

N2 ∪ {¬Pi+1...,¬Pn}, ..., Nq−1 ∪ {¬Pi+1...,¬Pn} >,

and so the entire sequence X ′

1,...,X
′

n−1,Xn is an SLD-refutation starting from
the goal {¬P1, ...,¬Pn}.

As a corollary, we have the completeness of SLD-resolution for Horn
clauses.

Theorem 9.3.1 (Completeness of SLD-resolution for Horn clauses) The
SLD-resolution method is complete for Horn clauses. Furthermore, if the
first negative clause is {¬P1, ...,¬Pn}, for every literal ¬Pi in this goal, there
is an SLD-resolution whose first selected atom is Pi.

Proof : Completeness is a consequence of lemma 9.3.1 and theorem 9.2.2.
It is easy to see that in the linearization procedure, the order in which the
subsequences are concatenated does not matter. This implies the second part
of the lemma.

Actually, since SLD-refutations are the result of linearizing proof trees
in SLD-form, it is easy to show that any atom Pi such that ¬Pi belongs to a
negative clause Nk in an SLD-refutation can be chosen as the selected atom.

PROBLEMS 427

By theorem 9.2.2, if a set S of Horn clauses with several goals N1, ..., Nk

is GCNF ′-provable, then there is some goal Ni such that S − {N1, ..., Ni−1,
Ni+1, ..., Nk} is GCNF ′-provable. This does not mean that there is a unique
such Ni, as shown by the following example.

EXAMPLE 9.3.2

Consider the set S of clauses:

{P}, {Q}, {¬S,R}, {¬R,¬P}, {¬R,¬Q}, {S}.

We have two SLD-refutations:

< {¬R,¬P}, {¬R}, {¬S}, >

and
< {¬R,¬Q}, {¬R}, {¬S}, > .

In the next section, we generalize SLD-resolution to first-order languages
without equality, using the lifting technique of Section 8.5.

PROBLEMS

9.3.1. Apply the linearization procedure to the proof trees in SLD-form
obtained in problem 9.2.1.

9.3.2. Give different SLD-resolution refutations for the following sets of
clauses:

{P1}, {P2}, {P3}, {P4}, {¬P1,¬P2, P6}, {¬P3,¬P4, P7},

{¬P6,¬P7, P8}, {¬P8}.

{¬P2, P3}, {¬P3, P4}, {¬P4, P5}, {P3}, {P1}, {P2}, {¬P1},

{¬P3, P6}, {¬P3, P7}, {¬P3, P8}.

9.3.3. Write a computer program implementing the linearization procedure.

9.4 SLD-Resolution in First-Order Logic

In this section we shall generalize SLD-resolution to first-order languages with-
out equality. Fortunately, it is relatively painless to generalize results about

428 9/SLD-Resolution And Logic Programming (PROLOG)

propositional SLD-resolution to the first-order case, using the lifting technique
of Section 8.5.

9.4.1 Definition of SLD-Refutations

Since the main application of SLD-resolution is to PROLOG, we shall also
revise our notation to conform to the PROLOG notation.

Definition 9.4.1 A Horn clause (in PROLOG notation) is one of the fol-
lowing expressions:

(i) B : −A1, ..., Am

(ii) B

(iii) : −A1, ..., Am

In the above, B, A1,...,Am are atomic formulae of the form Pt1...tk,
where P is a predicate symbol of rank k, and t1,...,tk are terms.

A clause of the form (i) or (ii) is called a definite clause, and a clause of
the form (iii) is called a goal clause (or negative clause).

The translation into the standard logic notation is the following:

The clause B : −A1, ..., Am corresponds to the formula

(¬A1 ∨ ... ∨ ¬Am ∨ B);

The clause B corresponds to the atomic formula B;

The clause : −A1, ..., Am corresponds to the formula

(¬A1 ∨ ... ∨ ¬Am).

Actually, as in definition 8.2.1, it is assumed that a Horn clause is the
universal closure of a formula as above (that is, of the form ∀x1...∀xnC, where
FV (C) = {x1, ..., xn}). The universal quantifiers are dropped for simplicity
of notation, but it is important to remember that they are implicitly present.

The definition of SLD-derivations and SLD-refutations is extended by
combining definition 9.3.2 and the definition of a resolvent given in definition
8.5.2.

Definition 9.4.2 Let S be a set of Horn clauses consisting of a set D of
definite clauses and a set {G1, ..., Gq} of goals. An SLD-derivation for S
is a sequence < N0, N1, ..., Np > of negative clauses satisfying the following
properties:

(1) N0 = Gj , where Gj is one of the goals;

9.4 SLD-Resolution in First-Order Logic 429

(2) For every Ni in the sequence, 0 ≤ i < p, if

Ni =: −A1, ..., Ak−1, Ak, Ak+1, ..., An,

then there is some definite clause Ci = A : −B1, ..., Bm in D such that Ak

and A are unifiable, and for some most general unifier σi of Ak and ρi(A),
where (Id, ρi) is a separating substitution pair, if m > 0, then

Ni+1 =: −σi(A1, ..., Ak−1, ρi(B1), ..., ρi(Bm), Ak+1, ..., An)

else if m = 0 then

Ni+1 =: −σi(A1, ..., Ak−1, Ak+1, ..., An).

An SLD-derivation is an SLD-refutation iff Np = .

Note that an SLD-derivation is a linear representation of a resolution
DAG of the following special form:

Cp · · · Ci · · · C2 C1 N0 = Gj

N1

N2

Ni

Np =

σ1

σ2

σi

σp

At each step, the clauses

: −A1, ..., Ak−1, Ak, Ak+1, ..., An

and
A : −B1, ..., Bm

are resolved, the atoms Ak and ρi(A) being canceled, since they are unified
by the most general unifier σi. The literal Ak is called the selected atom of
Ni, and the clauses N0, C1, ..., Cp are the input clauses.

When the derivation is a refutation, the substitution

σ = (ρ1 ◦ σ1) ◦ ... ◦ (ρp ◦ σp)

430 9/SLD-Resolution And Logic Programming (PROLOG)

obtained by composing the substitutions occurring in the refutation is called
the result substitution or answer substitution. It is used in PROLOG to ex-
tract the output of an SLD-computation.

Since an SLD-derivation is a special kind of resolution DAG, (a linear
input resolution), its soundness is a consequence of lemma 8.5.2.

Lemma 9.4.1 (Soundness of SLD-resolution) If a set of Horn clauses has
an SLD-refutation, then it is unsatisfiable.

Proof : Immediate from lemma 8.5.2.

Let us give an example of an SLD-refutation in the first-order case.

EXAMPLE 9.4.1

Consider the following set of definite clauses, axiomatizing addition of
natural numbers:

C1 : add(X, 0,X).

C2 : add(X, succ(Y), succ(Z)) : −add(X,Y,Z).

Consider the goal

B : −add(succ(0), V, succ(succ(0))).

We wish to show that the above set is unsatisfiable. We have the fol-
lowing SLD-refutation:

Goal clause Input clause Substitution

: −add(succ(0), V, succ(succ(0))) C2

: −add(succ(0), Y2, succ(0)) C1 σ1

σ2

where
σ1 = (succ(0)/X1, succ(0)/Z1, succ(Y2)/V),

σ2 = (succ(0)/X2, 0/Y2)

The variables X1, Z1, Y2, X2 were introduced by separating substitu-
tions in computing resolvents. The result substitution is

(succ(0)/V, succ(0)/X1, succ(0)/Z1, succ(0)/X2).

The interesting component is succ(0)/V . Indeed, there is a computa-
tional interpretation of the unsatisfiability of the set {C1, C2, B}. For
this, it is necessary to write quantifiers explicitly and remember that
goal clauses are negative. Observe that

∀XC1 ∧ ∀X∀Y ∀ZC2 ∧ ∀V B

9.4 SLD-Resolution in First-Order Logic 431

is unsatisfiable, iff

¬(∀XC1 ∧ ∀X∀Y ∀ZC2 ∧ ∀V B)

is valid, iff
(∀XC1 ∧ ∀X∀Y ∀ZC2) ⊃ ∃V ¬B

is valid. But ∃V ¬B is actually

∃V add(succ(0), V, succ(0)).

Since (∀XC1 ∧ ∀X∀Y ∀ZC2) defines addition in the intuitive sense that
any X, Y , Z satisfying the above sentence are such that Z = X +Y , we
are trying to find some V such that succ(0) + V = succ(succ(0)), or in
other words, compute the difference of succ(succ(0)) and succ(0), which
is indeed succ(0)!

This interpretation of a refutation showing that a set of Horn clauses is
unsatisfiable as a computation of the answer to a query, such as

(∀XC1 ∧ ∀X∀Y ∀ZC2) ⊃ ∃V ¬B,

“find some V satisfying ¬B and such that some conditional

axioms ∀XC1 and ∀X∀Y ∀ZC2 hold,”

is the essense of PROLOG. The set of clauses {C1, C2} can be viewed as a
logic program.

We will come back to the idea of refutations as computations in the next
section.

9.4.2 Completeness of SLD-Resolution for Horn Clauses

The completeness of SLD-resolution for Horn clauses is shown in the following
theorem.

Theorem 9.4.1 (Completeness of SLD-Resolution for Horn Clauses) Let L
be any first-order language without equality. Given any finite set S of Horn
clauses, if S is unsatisfiable, then there is an SLD-refutation with first clause
some negative clause : −B1, ..., Bn in S.

Proof : We shall use the lifting technique provided by lemma 8.5.4. First,
by the Skolem-Herbrand-Gödel theorem, if S is unsatisfiable, there is a set Sg

of ground instances of clauses in S which is unsatisfiable. Since substitution
instances of Horn clauses are Horn clauses, by theorem 9.3.1, there is an
SLD-refutation for Sg, starting from some negative clause in Sg. Finally, we
conclude by observing that if we apply the lifting technique of lemma 8.5.4,
we obtain an SLD-refutation. This is because we always resolve a negative
clause (Ni) against an input clause (Ci). Hence, the result is proved.

432 9/SLD-Resolution And Logic Programming (PROLOG)

From theorem 9.3.1, it is also true that if the first negative clause is
: −B1, ..., Bn, for every atom Bi in this goal, there is an SLD-resolution whose
first selected atom is Bi. As a matter of fact, this property holds for any clause
Ni in the refutation.

Even though SLD-resolution is complete for Horn clauses, there is still
the problem of choosing among many possible SLD-derivations. The above
shows that the choice of the selected atom is irrelevant. However, we still have
the problem of choosing a definite clause A : −B1, ..., Bm such that A unifies
with one of the atoms in the current goal clause : −A1, ..., Ak−1, Ak, Ak+1, ...,
An.

Such problems are important and are the object of current research in
programming logic, but we do not have the space to address them here. The
interested reader is referred to Kowalski, 1979, or Campbell, 1983, for an
introduction to the methods and problems in programming logic.

In the next section, we discuss the use of SLD-resolution as a computa-
tion procedure for PROLOG.

PROBLEMS

9.4.1. Prove using SLD-resolution that the following set of clauses is unsat-
isfiable:

add(X, 0,X)

add(X, succ(Y), succ(Z)) : −add(X,Y,Z)

: −add(succ(succ(0)), succ(succ(0)), U).

9.4.2. Prove using SLD-resolution that the following set of clauses is unsat-
isfiable:

add(X, 0,X)

add(X, succ(Y), succ(Z)) : −add(X,Y,Z)

: −add(U, V, succ(succ(succ(0)))).

Find all possible SLD-refutations.

9.4.3. Using SLD-resolution, show that the following set of Horn clauses is
unsatisfiable:

hanoi(N,Output) : −move(a, b, c,N,Output).
move(A,B,C, succ(M), Output) : −move(A,C,B,M,Out1),

move(C,B,A,M,Out2),
append(Out1, cons(to(A,B), Out2), Output).

move(A,B,C, 0, nil).
append(cons(A,L1), L2, cons(A,L3)) : −append(L1, L2, L3).
append(nil, L1, L1).
: −hanoi(succ(succ(0)), Z)

9.5 SLD-Resolution, Logic Programming (PROLOG) 433

9.5 SLD-Resolution, Logic Programming (PROLOG)

We have seen in example 9.4.1 that an SLD-refutation for a set of Horn clauses
can be viewed as a computation. This illustrates an extremely interesting use
of logic as a programming language.

9.5.1 Refutations as Computations

In the past few years, Horn logic has been the basis of a new type of program-
ming language due to Colmerauer named PROLOG. It is not the purpose of
this book to give a complete treatment of PROLOG, and we refer the inter-
ested reader to Kowalski, 1979, or Clocksin and Mellish, 1981, for details. In
this section, we shall lay the foundations of the programming logic PROLOG.
It will be shown how SLD-resolution can be used as a computational proce-
dure to solve certain problems, and the correctness and completeness of this
approach will be proved.

In a logic programming language like PROLOG, one writes programs
as sets of assertions in the form of Horn clauses, or more accurately, definite
clauses, except for the goal. A set P of definite clauses is a logic program. As
we said in Section 9.4, it is assumed that distinct Horn clauses are universally
quantified.

Roughly speaking, a logic program consists of facts and assertions. Given
such a logic program, one is usually interested in extracting facts that are
consequences of the logic program P . Typically, one has a certain “query” (or
goal) G containing some free variables z1,...,zq, and one wants to find term
instances t1, ..., tq for the variables z1, ..., zq, such that the formula

P ⊃ G[t1/z1, ..., tq/zq]

is valid.

For simplicity, it will be assumed that the query is a positive atomic
formula G. More complicated formulae can be handled (anti-Horn clauses),
but we will consider this case later. In PROLOG, a goal statement G is
denoted by ? − G.

From a logical point of view, the problem is to determine whether the
sentence

P ⊃ (∃z1...∃zqG)

is valid.

From a computational point of view, the problem is to find term values
t1,...,tq for the variables z1,...,zq that make the formula

P ⊃ G[t1/z1, ..., tq/zq]

valid, and perhaps all such assignments.

434 9/SLD-Resolution And Logic Programming (PROLOG)

Remarkably, SLD-resolution can be used not only as a proof procedure,
but also a a computational procedure, because it returns a result substitution.
The reason is as follows:

The formula P ⊃ (∃z1...∃zqG) is valid iff

¬(P ⊃ (∃z1...∃zqG)) is unsatisfiable iff

P ∧ (∀z1...∀zq¬G) is unsatisfiable.

But since G is an atomic formula, ¬G is a goal clause : −G, and P ∧
(∀z1...∀zq¬G) is a conjuction of Horn clauses!

Hence, SLD-resolution can be used to test for unsatisfiability, and if
it succeeds, it returns a result substitution σ. The crucial fact is that the
components of the substitution σ corresponding to the variables z1,...,zq are
answers to the query G. However, this fact is not obvious. A proof will be
given in the next section. As a preliminary task, we give a rigorous definition
of the semantics of a logic program.

9.5.2 Model-Theoretic Semantics of Logic Programs

We begin by defining what kind of formula can appear as a goal.

Definition 9.5.1 An anti-Horn clause is a formula of the form

∃x1...∃xmB,

where B is a conjunctions of literals L1 ∧ ... ∧ Lp, with at most one negative
literal and FV (B) = {x1, ..., xm}.

A logic program is a pair (P,G), where the program P is a set of (uni-
versal) Horn clauses, and the query G is a disjunction

(G1 ∨ ... ∨ Gn)

of anti-Horn clauses Gi = ∃y1...∃zmi
Bi.

It is also assumed that for all i -= j, 1 ≤ i, j ≤ n, the sets of variables
FV (Bi) and FV (Bj) are disjoint. The union {z1, ..., zq} of the sets of free
variables occurring in each Bi is called the set of output variables associated
with G .

Note that an anti-Horn clause is not a clause. However, the terminology
is justified by the fact that the negation of an anti-Horn clause is a (universal)
Horn clause, and that ¬G is equivalent to a conjunction of universal Horn
clauses.

Remark : This definition is more general than the usual definition used
in PROLOG. In (standard) PROLOG, P is a set of definite clauses (that is,

9.5 SLD-Resolution, Logic Programming (PROLOG) 435

P does not contain negative clauses), and G is a formula that is a conjunction
of atomic formulae. It is shown in the sequel that more general queries can
be handled, but that the semantics is a bit more subtle. Indeed, indefinite
answers may arise.

EXAMPLE 9.5.1

The following is a logic program, where P consists of the following
clauses:

rocksinger(jackson).

teacher(jean).

teacher(susan).

rich(X) : −rocksinger(X).

: −teacher(X), rich(X).

The query is the following disjunction:

? − ¬rocksinger(Y) ∨ rich(Z)

EXAMPLE 9.5.2

The following is the program of a logic program:

hanoi(N,Output) : −move(a, b, c,N,Output).
move(A,B,C, succ(M), Output) : −move(A,C,B,M,Out1),

move(C,B,A,M,Out2),
append(Out1, cons(to(A,B), Out2), Output).

move(A,B,C, 0, nil).
append(cons(A,L1), L2, cons(A,L3)) : −append(L1, L2, L3).
append(nil, L1, L1).

The query is:

? − hanoi(succ(succ(succ(0))), Output).

The above program is a logical version of the well known problem known
as the tower of Hanoi (see Clocksin and Mellish, 1981).

In order to give a rigorous definition of the semantics of a logic program,
it is convenient to define the concept of a free structure. Recall that we
are only dealing with first-order languages without equality, and that if the
language has no constants, the special constant # is added to it.

Definition 9.5.2 Given a first-order language L without equality and with
at least one constant, a free structure (or Herbrand structure) H is an L-
structure with domain the set HL of all closed L-terms, and whose interpre-
tation function satisfies the following property:

436 9/SLD-Resolution And Logic Programming (PROLOG)

(i) For every function symbol f of rank n, for all t1,...,tn ∈ HL,

fH(t1, ..., tn) = ft1...tn and

(ii) For every constant symbol c,

cH = c.

The set of terms HL is called the Herbrand universe of L. For simplicity
of notation, the set HL is denoted as H when L is understood. The following
lemma shows that free structures are universal. This lemma is actually not
necessary for giving the semantics of Horn clauses, but it is of independent
interest.

Lemma 9.5.1 A sentence X in NNF containing only universal quantifiers
is satisfiable in some model iff it is satisfiable in some free structure.

Proof : Clearly, if X is satisfied in a free structure, it is satisfiable in some
model. For the converse, assume that X has some model A. We show how a
free structure can be constructed from A. We define the function h : H → A
as follows:

For every constant c, h(c) = cA;

For every function symbol f of rank n > 0, for any n terms t1,...,tn ∈ H,

h(ft1...tn) = fA(h(t1), ..., h(tn)).

Define the interpretation of the free structure H such that, for any pred-
icate symbol P of rank n, for any n terms t1,...,tn ∈ H,

H |= P (t1, ..., tn) iff A |= P (h(t1), ..., h(tn)). (∗)

We now prove by induction on formulae that, for every assignment s : V → H,
if A |= X[s ◦ h], then H |= X[s].

(i) If X is a literal, this amounts to the definition (∗).

(ii) If X is of the form (B ∧ C), then A |= X[s ◦ h] implies that

A |= B[s ◦ h] and A |= C[s ◦ h].

By the induction hypothesis,

H |= B[s] and H |= C[s],

that is, H |= X[s].

9.5 SLD-Resolution, Logic Programming (PROLOG) 437

(iii) If X is of the form (B ∨ C), then A |= X[s ◦ h] implies that

A |= B[s ◦ h] or A |= C[s ◦ h].

By the induction hypothesis,

H |= B[s] or H |= C[s],

that is, H |= X[s].

(iv) X is of the form ∃xB. This case is not possible since X does not
contain existential quantifiers.

(v) X is of the form ∀xB. If A |= X[s ◦ h], then for every a ∈ A,

A |= B[(s ◦ h)[x := a]].

Now, since h : H → A, for every t ∈ H, h(t) = a for some a ∈ A, and so, for
every t in H,

A |= B[(s ◦ h)[x := h(t)]], that is, A |= B[(s[x := t]) ◦ h].

By the induction hypothesis, H |= B[s[x := t]] for all t ∈ H, that is, H |= X[s].

It is obvious that lemma 9.5.1 also applies to sets of sentences. Also,
since a formula is unsatisfiable iff it has no model, we have the following
corollary:

Corollary Given a first-order language without equality and with some
constant, a set of sentences in NNF and only containing universal quantifiers
is unsatisfiable iff it is unsatisfiable in every free (Herbrand) structure.

We now provide a rigorous semantics of logic programs.

Given a logic program (P,G), the question of interest is to determine
whether the formula P ⊃ G is valid. Actually, we really want more. If
{z1, ..., zq} is the the set of output variables occurring in G, we would like to
find some (or all) tuple(s) (t1, ..., tq) of ground terms such that

|= P ⊃ (B1 ∨ ... ∨ Bn)[t1/z1, ..., tq/zq].

As we shall see, such tuples do not always exist. However, indefinite (or
disjunctive) answers always exist, and if some conditions are imposed on P
and G, definite answers (tuples of ground terms) exist.

Assume that P ⊃ G is valid. This is equivalent to ¬(P ⊃ G) being
unsatisfiable. But ¬(P ⊃ G) is equivalent to P ∧ ¬G, which is equivalent
to a conjunction of universal Horn clauses. By the Skolem-Herbrand-Gödel

438 9/SLD-Resolution And Logic Programming (PROLOG)

theorem (theorem 7.6.1), if {x1, ..., xm} is the set of all universally quantified
variables in P ∧ ¬G, there is some set

{(t11, ..., t
1
m), ..., (tk1 , ..., tkm)}

of m-tuples of ground terms such that the conjunction

(P ∧ ¬G)[t11/x1, ..., t
1
m/xm] ∧ ... ∧ (P ∧ ¬G)[tk1/x1, ..., t

k
m/xm]

is unsatisfiable (for some k ≥ 1). From this, it is not difficult to prove that

|= P ⊃ G[t11/x1, ..., t
1
m/xm] ∨ ... ∨ G[tk1/x1, ..., t

k
m/xm].

However, we cannot claim that k = 1, as shown by the following example.

EXAMPLE 9.5.3

Let P = ¬Q(a) ∨ ¬Q(b), and G = ∃x¬Q(x). P ⊃ G is valid, but there
is no term t such that

¬Q(a) ∨ ¬Q(b) ⊃ ¬Q(t)

is valid.

As a consequence, the answer to a query may be indefinite, in the sense
that it is a disjunction of substitution instances of the goal. However, definite
answers can be ensured if certain restrictions are met.

Lemma 9.5.2 (Definite answer lemma) If P is a (finite) set of definite
clauses and G is a query of the form

∃z1...∃zq(B1 ∧ ... ∧ Bl),

where each Bi is an atomic formula, if

|= P ⊃ ∃z1...∃zq(B1 ∧ ... ∧ Bl),

then there is some tuple (t1, ..., tq) of ground terms such that

|= P ⊃ (B1 ∧ ... ∧ Bl)[t1/z1, ..., tq/zq].

Proof :

|= P ⊃ ∃z1...zq(B1 ∧ ... ∧ Bl) iff

P ∧ ∀z1...∀zq(¬B1 ∨ ... ∨ ¬Bl) is unsatisfiable.

By the Skolem-Herbrand-Gödel theorem, there is a set C of ground substitu-
tion instances of the clauses in P ∪ {¬B1, ...,¬Bl} that is unsatisfiable. Since

9.5 SLD-Resolution, Logic Programming (PROLOG) 439

the only negative clauses in C come from {¬B1, ...,¬Bl}, by lemma 9.2.5,
there is some substitution instance

(¬B1 ∨ ... ∨ ¬Bl)[t1/z1, ..., tq/zq]

such that
P ′ ∪ {(¬B1 ∨ ... ∨ ¬Bl)[t1/z1, ..., tq/zq]}

is unsatisfiable, where P ′ is the subset of C consisting of substitution instances
of clauses in P . But then, it is not difficult to show that

|= P ⊃ (B1 ∧ ... ∧ Bl)[t1/z1, ..., tq/zq].

The result of lemma 9.5.2 justifies the reason that in PROLOG only
programs consisting of definite clauses and queries consisting of conjunctions
of atomic formulae are considered. With such restrictions, definite answers
are guaranteed. The above discussion leads to the following definition.

Definition 9.5.3 Given a logic program (P,G) with query G = ∃z1...∃zqB
and with B = (B1 ∨ ...∨Bn), the semantics (or meaning) of (P,G) is the set

M(P,G) =
⋃

{{(t11, ..., t
1
q), ..., (t

k
1 , ..., tkq)}, k ≥ 1, (tk1 , ..., tkq) ∈ Hq |

|= P ⊃ B[t11/z1, ..., t
1
q/zq] ∨ ... ∨ B[tk1/z1, ..., t

k
q/zq]}

of sets q-tuples of terms in the Herbrand universe H that make the formula

P ⊃ B[t11/z1, ..., t
1
q/zq] ∨ ... ∨ B[tk1/z1, ..., t

k
q/zq]

valid (in every free structure).

If P is a set of definite clauses and B is a conjunction of atomic formulae,
k = 1.

9.5.3 Correctness of SLD-Resolution as a Computation
Procedure

We now prove that for every SLD-refutation of the conjunction of clauses in
P ∧ ¬G, the components of the result substitution σ restricted to the output
variables belong to the semantics M(P,G) of (P,G). We prove the following
slightly more general lemma, which implies the fact mentioned above.

Lemma 9.5.3 Given a set P of Horn clauses, let R be an SLD-refutation

440 9/SLD-Resolution And Logic Programming (PROLOG)

Cp · · · Ci · · · C2 C1 N0 = Gj

N1

N2

Ni

Np =

σ1

σ2

σi

σp

with result substitution σ (not necessarily ground). Let θp = ρp ◦ σp, and for
every i, 1 ≤ i ≤ p − 1, let

θi = (ρi ◦ σi) ◦ θi+1.

(Note that σ = θ1, the result substitution.) The substitutions θi are also
called result substitutions.) Then the set of quantifier-free clauses

{θ1(N0), θ1(C1), ..., θp(Cp)}

is unsatisfiable (using the slight abuse of notation in which the matrix D of a
clause C = ∀x1...∀xkD is also denoted by C).

Proof : We proceed by induction on the length of the derivation.

(i) If p = 1, N0 must be a negative formula : −B and C1 a positive literal
A such that A and B are unifiable, and it is clear that {¬θ1(B), θ1(C1)} is
unsatisfiable.

(ii) If p > 1, then by the induction hypothesis, taking N1 as the goal of
an SLD-refutation of length p − 1 the set

{θ2(N1), θ2(C2), ..., θp(Cp)}

is unsatisfiable. But N0 is some goal clause

: −A1, ..., Ak−1, Ak, Ak+1, ..., An,

and C1 is some definite clause

A : −B1, ..., Bm,

such that A and Ak are unifiable. Furthermore, the resolvent is given by

N1 =: −σ1(A1, ..., Ak−1, ρ1(B1), ..., ρ1(Bm), Ak+1, ..., An),

9.5 SLD-Resolution, Logic Programming (PROLOG) 441

where σ1 is a most general unifier, and we know that

σ1(N0) ∧ (ρ1 ◦ σ1)(C1) ⊃ N1

is valid (by lemma 8.5.1). Since ρ1 is a renaming substitution, it is the identity
on N0, and by the definition of θ1, we have

{θ2(σ1(N0)), θ2(ρ1 ◦ σ1(C1)), θ2(C2), ..., θp(Cp)}

= {θ1(N0), θ1(C1), θ2(C2), ..., θp(Cp)}.

If {θ1(N0), θ1(C1), ..., θp(Cp)} was satisfiable, since

σ1(N0) ∧ (ρ1 ◦ σ1)(C1) ⊃ N1

is valid,
{θ2(N1), θ2(C2), ..., θp(Cp)}

would also be satisfiable, a contradiction. Hence,

{θ1(N0), θ1(C1), ..., θp(Cp)}

is unsatisfiable.

Theorem 9.5.1 (Correctness of SLD-resolution as a computational pro-
cedure) Let (P,G) be a logic program with query G = ∃z1...∃zqB, with
B = (B1 ∨ ... ∨ Bn). For every SLD-refutation R =< N0, N1, ..., Np >
for the set of Horn clauses in P ∧ ¬G, if R uses (as in lemma 9.5.3) the
list of definite clauses < C1, ..., Cp >, the list of result substitutions (not
necessarily ground) < θ1, ..., θp >, and if < ¬Ci1 , ...,¬Cik

> is the subse-
quence of < N0, C1, ..., Cp > consisting of the clauses in {¬B1, ...,¬Bn} (with
¬C0 = N0), then

|= P ⊃ θi1(Ci1) ∨ ... ∨ θik
(Cik

).

Proof : Let P ′ be the set of formulae obtained by deleting the universal
quantifiers from the clauses in P . By lemma 9.5.3, there is a sequence of
clauses < N0, C1, ..., Cp > from the set P ′ ∪ {¬B1, ...,¬Bn} such that

{θ1(N0), θ1(C1), ..., θp(Cp)}

is unsatisfiable. But then, it is easy to construct a proof of

P ⊃ θi1(Ci1) ∨ ... ∨ θik
(Cik

)

(using ∀ : right rules as in lemma 8.5.4), and this yields the result.

Note: The formulae Ci1 ,...,Cik
are not necessarily distinct, but the sub-

stitutions θi1 ,...,θik
might be.

442 9/SLD-Resolution And Logic Programming (PROLOG)

Corollary Let (P,G) be a logic program such that P is a set of definite
clauses and G is a formula of the form ∃z1...∃zqB, where B is a conjunction of
atomic formulae. For every SLD-refutation of the set of Horn clauses P ∧¬G,
if σ is the result substitution and (t1/z1, ..., tq/zq) is any ground substitution
such that for every variable zi in the support of σ, ti is some ground instance
of σ(zi) and otherwise ti is any arbitrary term in H, then

|= P ⊃ B[t1/z1, ..., tq/zq].

Proof : First, observe that ¬B must be the goal clause N0. Also, if some
output variable zi does not occur in the support of the output substitution
σ, this means that σ(zi) = zi. But then, it is immediate by lemma 9.5.3 that
the result of substituting arbitrary terms in H for these variables in

{θ1(N0), θ1(C1), ..., θp(Cp)}

is also unsatisfiable.

Theorem 9.5.1 shows that SLD-resolution is a correct method for com-
puting elements of M(P,G), since every set {(t11, ..., t

1
q), ..., (t

k
1 , ..., tkq)} of tuples

of terms in H returned by an SLD-refutation (corresponding to the output
variables) makes

P ⊃ B[t11/z1, ..., t
1
q/zq] ∨ ... ∨ B[tk1/z1, ..., t

k
q/zq]

valid.

Remark : Normally, we are interested in tuples of terms in H, because
we want the answers to be interpretable as definite elements of the Herbrand
universe. However, by lemma 9.5.3, indefinite answers (sets of tuples of terms
containing variables) have to be considered. This is illustrated in the next
example.

EXAMPLE 9.5.4

Consider the logic program of example 9.5.1. The set of clauses corre-
sponding to P ∧ ¬G is the following:

rocksinger(jackson).

teacher(jean).

teacher(susan).

rich(X) : −rocksinger(X).

: −teacher(X), rich(X).

rocksinger(Y).

: −rich(Z)

9.5 SLD-Resolution, Logic Programming (PROLOG) 443

Note the two negative clauses. There are four SLD-refutations, two with
goal : −teacher(X), rich(X), and two with goal : −rich(Z).

(i) SLD-refutation with output (jean/Y):

Goal clause Input clause Substitution

: −teacher(X), rich(X) teacher(jean)
: −rich(jean) rich(X) : −rocksinger(X) (jean/X)

: −rocksinger(jean) rocksinger(Y) (jean/X1)
(jean/Y1)

The result substitution is (jean/Y, jean/X). Also, Z is any element of
the Herbrand universe.

(ii) SLD-refutation with output (susan/Y): Similar to the above.

(iii) SLD-refutation with output (jackson/Z):

Goal clause Input clause Substitution

: −rich(Z) rich(X) : −rocksinger(X)
: −rocksinger(X1) rocksinger(jackson) (X1/Z)

(jackson/X1)

Y is any element of the Herbrand universe.

(iv) SLD-refutation with output (Y1/Y, Y1/Z):

Goal clause Input clause Substitution

: −rich(Z) rich(X) : −rocksinger(X)
: −rocksinger(X1) rocksinger(Y) (X1/Z)

(Y1/X1)

In this last refutation, we have an indefinite answer that says that for
any Y1 in the Herbrand universe, Y = Y1, Z = Y1 is an answer. This is
indeed correct, since the clause rich(X) : −rocksinger(X) is equivalent
to ¬rocksinger(X) ∨ rich(X), and so

|= P ⊃ (¬rocksinger(Y1) ∨ rich(Y1)).

We now turn to the completeness of SLD-resolution as a computation
procedure.

444 9/SLD-Resolution And Logic Programming (PROLOG)

9.5.4 Completeness of SLD-Resolution as a Computa-
tional Procedure

The correctness of SLD-resolution as a computational procedure brings up im-
mediately the question of its completeness. For any set of tuples in M(P,G),
is there an SLD-refutation with that answer? This is indeed the case, as
shown below. We state and prove the following theorem for the special case
of definite clauses, leaving the general case as an exercise.

Theorem 9.5.2 Let (P,G) be a logic program such that P is a set of definite
clauses and G is a goal of the form ∃z1...∃zqB, where B is a conjunction
B1 ∧ ... ∧Bn of atomic formulae. For every tuple (t1, ..., tq) ∈ M(P,G), there
is an SLD-refutation with result substitution σ and a (ground) substitution η
such that the restriction of σ ◦ η to z1,...,zq is (t1/z1, ..., tq/zq).

Proof : By definition, (t1, ..., tq) ∈ M(P,G) iff

|= P ⊃ (B1 ∧ ... ∧ Bn)[t1/z1, ..., tq/zq] iff

P ∧ (¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq] is unsatisfiable.

By theorem 9.5.1, there is an SLD-refutation with output substitution θ1.
Since

(¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq]

is the only negative clause, by lemma 9.5.3, for some sequence of clauses
< C1, ..., Cp > such that the universal closure of each clause Ci is in P ,

{θ1((¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq]), θ1(C1), ..., θp(Cp)}

is also unsatisfiable. If θ1 is not a ground substitution, we can substitute
ground terms for the variables and form other ground substitutions θ′

1,...,θ
′

p

such that,

{θ′1((¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq]), θ
′

1(C1), ..., θ
′

p(Cp)}

is still unsatisfiable. Since the terms t1,...,tq are ground terms,

θ′1((¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq]) = (¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq].

By theorem 9.3.1, there is a ground SLD-refutation Rg with sequence of input
clauses

< {(¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq], C
′

1, ..., C
′

r > for

{(¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq], θ
′

1(C1), ..., θ
′

p(Cp)}.

By the lifting lemma (lemma 8.5.4), there is an SLD-refutation R with se-
quence of input clauses

< {¬B1, ...,¬Bn}, C
′′

1 , ..., C ′′

r > for

{{¬B1, ...,¬Bn}, C1, ..., Cp},

PROBLEMS 445

such that for every pair of clauses N ′′

i in R and N ′

i in Rg, N ′

i = ηi(N ′′

i), for
some ground substitution ηi. Let η = ηr, and let σ be the result substitution
of the SLD-refutation R. It can be shown that

(¬B1 ∨ ... ∨ ¬Bn)[t1/z1, ..., tq/zq] = (σ ◦ η)(¬B1 ∨ ... ∨ ¬Bn),

which shows that (t1/z1, ..., tq/zq) is equal to the restriction of σ◦η to z1, ..., zq.

9.5.5 Limitations of PROLOG

Theorem 9.5.1 and theorem 9.5.2 show that SLD-Resolution is a correct and
complete procedure for computing the sets of tuples belonging to the meaning
of a logic program. From a theoretical point of view, this is very satisfactory.
However, from a practical point of view, there is still something missing. In-
deed, we still need a procedure for producing SLD-refutations, and if possible,
efficiently. It is possible to organize the set all SLD-refutations into a kind of
tree (the search space), and the problem is then reduced to a tree traversal.
If one wants to retain completeness, the kind of tree traversal chosen must be
a breadth-first search, which can be very inefficient. Most implementations of
PROLOG sacrifice completeness for efficiency, and adopt a depth-first traver-
sal strategy.

Unfortunately, we do not have the space to consider these interesting
issues, but we refer the interested reader to Kowalski, 1979, and to Apt and
Van Emden, 1982, where the semantics of logic programming is investigated
in terms of fixedpoints.

Another point worth noting is that not all first-order formulae (in Skolem
form) can be expressed as Horn clauses. The main limitation is that negative
premises are not allowed, in the sense that a formula of the form

B : −A1, ..., Ai−1,¬A,Ai+1, ..., An.

is not equivalent to any Horn clause (see problem 3.5.9).

This restriction can be somewhat overcome by the negation by failure
strategy, but one has to be careful in defining the semantics of such programs
(see Kowalski, 1979, or Apt and Van Emden, 1982).

PROBLEMS

9.5.1. (a) Give an SLD-resolution and the result substitution for the follow-
ing set of clauses:

446 9/SLD-Resolution And Logic Programming (PROLOG)

French(Jean).

F rench(Jacques).

British(Peter).

likewine(X,Y) : −French(X), wine(Y).

likewine(X,Bordeaux) : −British(X).

wine(Burgundy).

wine(Bordeaux).

: −likewine(U, V).

(b) Derive all possible answers to the query likewine(U, V).

9.5.2. Give an SLD-resolution and the result substitution for the following
set of clauses:

append(cons(A,L1), L2, cons(A,L3)) : −append(L1, L2, L3).

append(nil, L1, L1).

: −append(cons(a, cons(b, nil)), cons(b, cons(c, nil)), Z)

9.5.3. Give an SLD-resolution and the result substitution for the following
set of clauses:

hanoi(N,Output) : −move(a, b, c,N,Output).
move(A,B,C, succ(M), Output) : −move(A,C,B,M,Out1),

move(C,B,A,M,Out2),
append(Out1, cons(to(A,B), Out2), Output).

move(A,B,C, 0, nil).
append(cons(A,L1), L2, cons(A,L3)) : −append(L1, L2, L3).
append(nil, L1, L1).
: −hanoi(succ(succ(succ(0))), Z)

9.5.4. Complete the proof of theorem 9.5.1 by filling in the missing details.

9.5.5. State and prove a generalization of theorem 9.5.2 for the case of ar-
bitrary logic programs.

∗ 9.5.6 Given a set S of Horn clauses, an H-tree for S is a tree labeled with
substitution instances of atomic formulae in S defined inductively as
follows:

(i) A tree whose root is labeled with F (false), and having n im-
mediate successors labeled with atomic formulae B1, ..., Bn, where
: −B1, ..., Bn is some goal clause in S, is an H-tree.

(ii) If T is an H-tree, for every leaf node u labeled with some atomic
formulae X that is not a substitution instance of some atomic formula

Notes and Suggestions for Further Reading 447

B in S (a definite clause consisting of a single atomic formula), if X
is unifiable with the lefthand side of any clause A : −B1, ..., Bk in
S, if σ is a most general unifier of X and A, the tree T ′ obtained
by applying the substitution σ to all nodes in T and adding the k
(k > 0) immediate successors σ(B1),...,σ(Bk) to the node u labeled
with σ(X) = σ(A) is an H-tree (if k = 0, the tree T becomes the tree
T ′ obtained by applying the substitution σ to all nodes in T . In this
case, σ(X) is a substitution instance of an axiom.)

An H-tree for S is a proof tree iff all its leaves are labeled with substi-
tution instances of axioms in S (definite clauses consisting of a single
atomic formula).

Prove that S is unsatisfiable iff there is some H-tree for S which is a
proof tree.

Hint : Use problem 9.2.4 and adapt the lifting lemma.

∗ 9.5.7 Complete the proof of theorem 9.5.2 by proving that the substitution
ϕ = (t1/z1, . . . , tq/zq) is equal to the restriction of σ ◦ η to z1, . . . , zq.

Hint : Let R =< N ′′

0 , . . . , N ′′

r > be the nonground SLD-refutation
obtained by lifting the ground SLD-refutation Rg =< N ′

0, . . . , N
′

r >,
and let < σ′′

1 , . . . ,σ′′

r > be the sequence of unifiers associated with
R. Note that σ = σ′′

1 ◦ . . . ◦ σ′′

r . Prove that there exists a sequence
< η0, . . . , ηr > of ground substitutions, such that, η0 = ϕ, and for
every i, 1 ≤ i ≤ r, ηi−1 = λi ◦ ηi, where λi denotes the restriction of
σ′′

i to the support of ηi−1. Conclude that ϕ = λ1 ◦ . . . ◦ λr ◦ ηr.

Notes and Suggestions for Further Reading

The method of SLD-resolution is a special case of the SL-resolution of Kowal-
ski and Kuehner (see Siekman and Wrightson, 1983), itself a derivative of
Model Elimination (Loveland, 1978).

To the best of our knowledge, the method used in Sections 9.2 and 9.3 for
proving the completeness of SLD-resolution for (propositional) Horn clauses
by linearizing a Gentzen proof in SLD-form to an SLD-refutation is original.

For an introduction to logic as a problem-solving tool, the reader is re-
ferred to Kowalski, 1979, or Bundy, 1983. Issues about the implementation
of PROLOG are discussed in Campbell, 1983. So far, there are only a few
articles and texts on the semantic foundations of PROLOG, including Kowal-
ski and Van Emden, 1976; Apt and Van Emden, 1982; and Lloyd, 1984. The
results of Section 9.5 for disjunctive goals appear to be original.

