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I. INTRODUCTION

One of the main challenges in Artificial Intelligence is the

problem of abstracting high-level models directly leveraging

the interaction between the agent and the environment, where

such interaction is typically performed at low-level through the

agent’s sensing and actuating capabilities. Such information

abstraction process indeed reveals invaluable for high-level

planning, as it allows to make explicit the causal relations ex-

isting at the high-level which would otherwise remain hidden

at low-level. In this respect, some interesting work has been

done in the recent literature. For instance, in [3] an algorithm

is presented for automatically producing symbolic domains

based on the Planning Domain Definition Language (PDDL,

see [2]), starting from a set of low-level skills represented in

the form of abstract subgoal options.

The contribution of this work is the following. First, we

extend the scope of the information abstraction procedure

proposed in [3] by directly linking it to a robotic architec-

ture (GRAIL – Goal-Discovering Robotic Architecture for

Intrinsically-Motivated Learning; [6]) able to autonomously

discover goals and learn skills based on intrinsically motivated
learning algorithms [1]. Such skills are then used as input for

the subsequent abstraction process, thus creating an automated

information processing pipeline from the low-level direct inter-

action of the agent with the environment, to the corresponding

high-level PDDL domain representation of the environment.

Second, given a set of low-level domains in which GRAIL op-

erates, we carry out an analysis on the features of the produced

abstract PDDL representations depending on the categorization

capabilities of the classifiers used for the production of the

symbolic vocabulary, thus shedding some light on a number

of interesting correlations between low-level generalization

capabilities of the abstraction procedure and the quality of

the produced PDDL high-level representations. Third, we have

tested the overall system within the context of an ESA project

called IMPACT (see the acknowledgement footnote for more

details), in particular within two different space exploration

scenarios, demonstrating the advantages of enhancing the well-
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known Sense-Plan-Act (SPA) paradigm for controlling robotic

systems [4] with autonomous skill-learning capabilities in the

general context of space exploration.

II. THE GRAIL SKILL LEARNING SYSTEM

We applied the abstraction procedure on the options found

by M-GRAIL [7], an advancement of GRAIL [6]. GRAIL is

an open-ended learning system that discovers new interesting

events while interacting with the environment and stores

them as “goals”. GRAIL then automatically learns through

intrinsic motivation to achieve those goals from different

starting conditions. For each goal, GRAIL builds a separate

”skill” that achieves that goal. By using competence-based

intrinsic motivation, GRAIL focuses its learning to achieve

the highest overall competence (i.e. reliability) on all skills as

fast as possible. M-GRAIL also keeps a series of predictors

that predict the percentage of success of the skill depending on

the starting condition, thus enabling M-GRAIL to recognize

when the skill can be successfully initiated.

III. THE INFORMATION ABSTRACTION PROCEDURE

The information abstraction procedure (called PDDL-Gen in

this work) has the objective of transforming the environmental

low-level knowledge learned by M-GRAIL in a PDDL-based

representation of the operational domain suitable for high-

level planning. The fully detailed description of the domain

abstraction procedure can be found in [3].

The procedure accepts in input an option-based [8] rep-

resentation for each skill previously learned by M-GRAIL,

expressed in the form of two classifiers for each option (a.k.a.

the option’s characterizing set), namely the Initiation Set
classifier, Cl(I), and the Effect Set classifier, Cl(E).

The generated model is a set-theoretic high-level domain

specification using the Planning and Domain Definition Lan-

guage (PDDL) formalization [2], which is the most widely

used input format for most off-the-shelf automated planners.

A set-theoretic specification is expressed in terms of a set

of propositional symbols P = {σ1, ..., σn}, each associated

to a grounding classifier Cl(σi), and a set of operators

A = {op1, ..., opm}. Each operator opi is described by the

tuple opi = 〈prei, eff+i , eff−i 〉, where prei contains all the

propositional symbols that must be true in a state s for

opti to be executed from s, while eff+i and eff−i contain

the propositional symbols that are respectively set to true
or false after opi’s execution. All the other propositional
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symbols remain unaffected by the execution of the operator. In

order to produce a correct PDDL representation, it is therefore

necessary to populate the three sets (prei, eff+i and eff−i ) for
each option oi by properly selecting which symbols, among

those contained in P , will fall in any of such sets.

A. Building the datasets for PDDL-Gen

To build the datasets needed for the classifiers and the

set representations of the initiation and effects set, we chose

to use data from each skill only after that skill becomes

fully reliable (i.e. it no longer fails); this assumes a non-

stochastic environment where it is possible to learn skills

with guaranteed success. To build the Cl(I) classifier training

dataset, we considered as positive cases all the low-level

variable values before the successful execution of the skill, and

as negative cases all the low-level variable values in conditions

where GRAIL tried to execute the skill but the predictor was

always zero. To build the Cl(E) classifier training dataset, we

considered as positive cases all the low-level variable values

after the skill was successfully executed. As negative effect

cases, we used all the low-level variable values before the

execution of that skill, whether it succeeded or not (since we

know that GRAIL will not execute the skill if its goal/effect

is already achieved). As for the masks dataset, a collection of

all successful executions of the skill was used to compare the

variables before and after the execution and see which ones

were affected by each skill.

B. Choosing a classifier

PDDL-Gen requires that the so-called projection operator

is applied to the initiation and effect sets. So it is important

that the initiation and effect sets are represented with a data

structure that lends itself to be “projected”. However, PDDL-

Gen does not explicitly state the representation method on

which this operator can be applied, thus leaving such choice

as an implementation decision. Classifiers that build a decision

tree, such as C4.5 (used in [3]), can be easily converted

into a “projectable” set representation. However, building

such a representation from a C4.5 decision tree, does not

always yield optimal results. We hence developed a method

to derive a projectable set representation that compactly de-

scribes the initiation and effect set. We will call this method

“Intersection+Mask” (IntM), and compare it to the simpler

representation obtained through C4.5.

IV. EMPIRICAL ANALYSIS AND CONCLUSION

We have carried on an empirical analysis on a number

of interesting correlations between low-level generalization

capabilities of the abstraction procedure and the complete-

ness/quality of the produced high-level symbolic domains. In

particular, we analyze a number of relevant features in the

representations obtained using the C4.5, and IntM classifiers,

testing them in the so-called bulbs domain [5] on three

different cases: (i) a circular scenario referred to as Reset
scenario, (ii) a scenario where the addition of some negative

effects to the output PDDL representation depends on the

kind of classifier used (Negative scenario), and (iii) a scenario

where some states cannot be reached by the robot actions

(Unreachable scenario). Lastly, we have tested the overall

system within the context of the above cited IMPACT project,

demonstrating its capabilities in the following two simulated

space scenarios.

1) the Rover Scenario, where we demonstrate how the

system can discover new ways to reach an already

known effect by applying the PDDL-Gen procedure. We

propose a situation where the orientation mechanism of a

planetary rover antenna has been damaged and the rover

can no longer use it to point the antenna and establish

stable communication. Our technology can be used to

demonstrate how the rover is capable of enriching its

planning domain with the necessary knowledge to orient

the antenna merely using the locomotion capabilities, for

example moving around the entire body in order to reach

the correct attitude to gain and maintain communication,

possibly exploiting terrain slopes and/or small rocks.

2) the Robot Arm scenario is designed to demonstrate the

ability of the our system to acquire new ways to interact

with the environment and integrate them in its planning

domain. In this scenario, a robot equipped with a gripper

actuator attached to a manoeuvrable arm tries to grasp

a vase-shaped rock whose diameter exceeds the max

opening span of the gripper. The robot is thus not able to

pick-up the rock with its basic grasping skill - however,

upon failure, the system will automatically trigger the

learning of a new skill and the robot will at the end be

able to pick-up the vase-shaped rock by grasping it from

its edge.

Among the possible directions of future work we consider the

integration of symbolic planning and open-ended learning to

increase the ability on one agent to autonomously acquire new

skills.
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