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Abstract— Pattern recognition techniques leveraging the use
of electromyography signals have become a popular approach
to provide intuitive control of myoelectric devices. Performance
of these control interfaces is commonly quantified using offline
classification accuracy, despite studies having shown that this
metric is a poor indicator of usability. Researchers have iden-
tified alternative offline metrics that better correlate with online
performance; however, the relationship has yet to be fully defined
in the literature. This has necessitated the continued trial-and-
error-style online testing of algorithms developed using offline
approaches. To bridge this information divide, we conducted an
exploratory study where thirty-two different metrics from the of-
fline training data were extracted. A correlation analysis and an
ordinary least squares regression were implemented to investigate
the relationship between the offline metrics and six aspects online
use. The results indicate that the current offline standard, classi-
fication accuracy, is a poor indicator of usability and that other
metrics may hold predictive power. The metrics identified in this
work also may constitute more representative evaluation criteria
when designing and reporting new control schemes. Furthermore,
linear combinations of offline training metrics generate substan-
tially more accurate predictions than using individual metrics. We
found that the offline metric feature efficiency generated the best
predictions for the usability metric throughput. A combination of
two offline metrics (mean semi-principal axes and mean absolute
value) significantly outperformed feature efficiency alone, with a
166% increase in the predicted R2 value (i.e., VEcv). These findings
suggest that combinations of metrics could provide a more robust
framework for predicting usability.

Index Terms— electromyography, myoelectric control, of-
fline training, online performance, pattern recognition

I. INTRODUCTION

Mobility impairments are the leading cause of disability in the
United States, affecting one in seven adults [1], and are the third
highest cause of disability in Canada, affecting one in fourteen adults
[2]. These impairments can be caused by disease, injury, or congenital
defects and can often have significant implications on an individual’s
ability to perform activities of daily living (ADLs). An inability to
perform ADLs can hinder a person’s independence and potentially
diminish their quality of life.

Consequently, assistive and rehabilitation technologies are com-
monly used to increase the physical capabilities of impaired indi-
viduals. An essential component of these technologies is the ability
for the user to intuitively interact with and control the device. Both
assistive and rehabilitation technologies, therefore, have leveraged
pattern recognition approaches to decipher user intent. One such
method is through the use of electromyography (EMG) signals from
residual functioning muscles [3]–[5]. The patterns generated during
muscular contractions can be decoded and used as input for a human
computer interface (HCI), prosthesis, or orthosis, by mapping intent
to control multiple degrees of freedom (DOFs).

For decades, the performance of pattern recognition-based myo-
electric control has predominantly been assessed using offline classi-
fication accuracy. Increasingly, however, studies have found that this
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measure has little to no correlation with online usability [6]–[8]. A
recent study claimed that global offline accuracy was highly corre-
lated with the completion rate of an online usability test (r = 0.90, p
< 0.05) [9]; but, most studies suggest a more complex relationship
between offline classification accuracy and online usability. Hargrove
et al. observed that including transient contractions in the training
data set decreases offline classification accuracy but increases online
usability during a virtual clothespin task [7]. Similar findings demon-
strated that a multiple binary classifier with a statistically higher
classification error rate than a linear discriminant analysis (LDA)
classifier produced a more controllable system with faster clothespin
placement times and a higher completion rate [10]. Although there
is some evidence suggesting offline classification accuracy provides
meaningful information with regard to online performance, the exact
relationship between this metric and real-time control has yet to be
fully defined in the literature.

Researchers also have investigated the use of other offline train-
ing metrics as indicators of usability, such as separability- and
repeatability-based metrics. A correlation analysis between the us-
ability metric completion time and the separability metrics modified
separability index and Bhattacharyya distance yielded correlation
coefficients of r = 0.54 and r = 0.45, respectively [11]. This same
study identified no meaningful relationship between completion time
and the repeatability index (r = 0.018) [11]. Another study yielded
a correlation coefficient of r = 0.53 between the separability index
and testing error [12]. Although these results suggest a moderate re-
lationship between pattern separability and online performance, there
remains little consensus in the literature; for example, a more recent
study demonstrated no significant correlation between separability
and online accuracy [13].

Because offline training metrics fail to provide the necessary
information to evaluate online myoelectric control, the most accurate
performance assessments remain those that incorporate the use of the
end device. This is necessary because implementing the physical de-
vice’s control system introduces many challenges associated with the
stability of the EMG recordings, the interference from non-targeted
muscle groups, the effects of tissue loading and arm dynamics, and
the fit of a socket [14]. Prostheses and orthoses, however, can be
quite expensive and often require a clinical population group to test
on, making them impractical for use in some experiments.

In an attempt to bypass the need for a physical myoelectric device,
researchers have proposed and implemented alternative usability
assessments that leverage virtual testing environments [7], [14]–[17].
Recently, Hargrove et al. justified the continued use of virtual testing
environments by demonstrating a significant correlation between
virtual and physical outcome measures [18]. Virtual testing environ-
ments also allow researchers to evaluate their control scheme without
the influence of all the physical factors that come with implementing
a device. The following three virtual assessments incorporate the user
in the control loop and are among the more commonly cited tests in
the literature: the motion test [14], the Target Achievement Control
(TAC) test [16], and the Fitts’ Law usability test [17].

It is generally agreed upon in the literature that the motion
test is an oversimplified version of real-time use. This is because
misclassifications and unintended movements are not registered in the
testing environment. The TAC test and the widely accepted Fitts’ Law
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test are more challenging virtual assessments compared to the motion
test. Both assessments provide users with the ability to modulate
muscle activity, contraction intensity, and the output of the test in real-
time. Although the Fitts’ Law and TAC tests have much in common,
they cannot be considered interchangeable [19]. A study comparing
the two methods suggests significantly higher user error and reported
confusion for the TAC test, concluding that the Fitts’ Law test may
be a more reliable tool for performance evaluation [19].

While researchers have established the link between virtual and
physical device usability [18], the literature still lacks an established
link between offline training metrics and virtual outcome measures.
Performing usability testing in a clinical environment, whether it be
virtual or physical assessments, takes time and resources. It is often
impractical to evaluate online performance for every individual fitted
with a myoelectric device. Therefore, when patients use their devices
at home, they may experience erroneous motions and limitations in
the dexterity of control, which have been cited as common attributing
factors for the abandonment of myoelectric devices [3], [20]–[23]. If
users knew that the outcome of their training protocols might result
in poor practical use, they could retrain the system immediately
to avoid unnecessary frustration during activities of daily living.
Furthermore, training protocols could be targeted toward improving
training data characteristics known to be valuable predictors of
online performance. This would help users better understand what
is necessary for successful myoelectric control. Establishing more
representative metrics may also help to improve the design for the
actual use case rather than for classification accuracy, which does
not translate well to real-time myoelectric control. More reliable use
may in turn lead to higher user satisfaction and acceptance of these
devices.

To the best of our knowledge, there has been no prior work
investigating a multi-variate relationship between users’ training data
and their online usability. Past attempts to quantify this relationship
only consider a small set of offline metrics and their individual
correlations with online performance. Influenced by the feature
analysis presented by Phinyomark et al. [24], this paper presents
an exploratory and unconstrained analysis using 32 offline metrics
and six online usability metrics to draw out and identify uni- and
multi-variate relationships.

II. METHODS

A. Participants
Twelve able-bodied subjects (9 male/3 female, age range: 22-63

yrs., mean and standard deviation of age: 33±15.2 yrs., median age:
25.5 yrs.) took part in this study. Ten participants reported right hand
dominance and two reported left hand dominance. The procedures
were approved by the University of New Brunswick’s research ethics
board (REB #2020-016), and subjects provided written informed
consent prior to participating in the experiment.

B. Experimental Setup
EMG signals were recorded using a standard, non-invasive, wire-

less EMG collection system (TrignoTM Wireless system, Delsys Inc.,
USA). The signals were sampled at 2000 Hz and filtered to remove
power-line and digital interference with 2nd-order Butterworth band-
stop filters at 60, 180, 250, and 300 Hz. A 3rd-order Butterworth high-
pass filter with a cutoff frequency of 20 Hz was also implemented to
remove motion artifact. Prior to positioning the electrodes, the skin
was cleansed with an alcohol swab to remove excess skin oil and
debris. Six electrodes were uniformly spaced around the proximal
third of the dominant forearm. Participants sat in a chair with their
dominant arm held unsupported, but comfortably, at a 90-degree angle
by their side and with their forearm parallel to the floor.

C. Experimental Protocol
The experiment consisted of one 20-30 minute session involving

a training phase and a testing phase.
1) Training: EMG signals for five motion classes were collected:

no movement, wrist flexion, wrist extension, power grip, and hand
open. Each cycle through these five movements constituted a trial. In
total, eight trials were conducted over the user training period.

A screen guided training approach was implemented to guide
users through the training process [25]. An image of a hand gesture
prompted the user to perform a given movement, and a progress
bar informed the user how long to hold their contraction. Subjects
began movements at rest, transitioned into the desired movement,
and then maintained the contraction for the duration of the repetition.
Users were given minimal instruction with regards to their contraction
intensity. They were told to perform contractions at an intensity for
which they felt comfortable and would not fatigue over the course of
the experiment. The system recorded four seconds of EMG data for
each prompt followed by a two-second delay period during which no
data were recorded. The delay allowed users to return to a resting
position before the next prompted movement.

This experiment employed adaptive LDA classifier training based
on the maximum likelihood output of the classifier [26]. An initial
classifier was trained following the completion of the first trial. The
data from this trial were segmented into 160 ms windows with a
64 ms overlap [27]. The four commonly-used time domain features
described by Hudgins [28] were extracted at each of the six electrode
channels for a total of 24 features. These features were then used to
train the LDA classifier.

The data collected in the next trial were classified to determine
the windows of data that would be used to adapt the classifier.
Bayesian classification theory was used to provide a score based on
the likelihood outputs of the classifier [29], [30]. A data window was
concatenated to the existing classifier data set if the class with the
maximum likelihood matched that of the training class. The classifier
was retrained after each trial.

This process of appending data to the classifier data set continued
for subsequent trials, with a forgetting factor of four trials to limit
the amount of data being used to train the classifier. Following this
approach, only data from the four most recent trials were included
in the classifier training set, as shown in Figure 1. We adopted this
adaptive procedure in place of a classical static data collection to
reduce the potential impact of user learning. Adaptive algorithms have
been shown to significantly reduce classification error, reinforce good
decisions, account for slow drifts in the boundaries of the classifier,
and ultimately reflect changes in user behavior [26].

2) Testing: The classifier generated during training was tested
in a Fitts’ Law environment to determine its usability during a
virtual target acquisition task. Fitts’ Law was introduced in 1954
by Paul Fitts and uses principles derived from Shannon’s work
in communication theory to demonstrate that any human motor
task exhibits a trade-off between speed and accuracy [31]. Fitts’
Law-style testing has become an international standard (ISO9341–9)
for validating human-computer interfaces, including mice, joysticks,
touchpads, and human motion. A Fitts’ Law usability test maps
specific motions to control the movement of a cursor in a virtual
environment during a target acquisition task. The user must respond
and correct for system misclassifications to successfully acquire the
target. Over the last decade, researchers have verified the use of EMG
as a control input using Fitts’ Law, making this a popular approach
in the literature for evaluating myoelectric control [17], [19], [32].

The four active motion classes collected during training were
mapped to control the movement of the cursor on the computer
screen. In one DOF, hand open moved the cursor up and power grip
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Fig. 1: Adaptive classifier procedure.

moved the cursor down. In the horizontal DOF, the direction of wrist
extension and wrist flexion was mapped to match that of the subject’s
reported hand dominance. Proportional control was implemented
using the procedures outlined in [33] and [34]. Class-specific gains
that map the average class-specific amplitudes to 50% of full speed
were calculated during training. This allowed the strength of the
user’s muscle contraction to regulate the speed of the cursor.

The Fitts’ Law test positioned targets at varying target distances
and in locations that required activation of one or both DOFs.
The user successfully completed a trial by acquiring the target and
maintaining the cursor within the target boundaries for one second.
The allotted time to reach each target was ten seconds, after which
the trial timed out, and the test automatically moved to the next target.

The testing phase included 32 single DOF targets (e.g. right or
down) and 32 dual DOF targets (e.g., left AND up) for a total of 64
targets. The incoming test data were segmented into 160 ms windows
from which features were extracted and classifications were made.
This window length is within the optimal range found by Smith et
al. for myoelectric control [35] and is the preferred setting for the
software package used in this study [25]. To ensure sufficient time to
process the data, a conservative update interval of 16 ms was selected
[34], [36].

D. Offline Training Metrics

Several offline training metrics proposed in the literature were
assembled into one expansive set and were designated as potential
predictors of usability. Currently, there is no accepted means of
determining how different types of offline metrics relate to online
performance. A total of 32 offline training metrics were calculated
using the 24-dimensional feature space (i.e., four features x six elec-
trode channels) obtained from the training data outlined in Section
II-C.1. Collectively, these metrics provide a comprehensive view of
the feature space populated during training. Of the 32 metrics, seven
were variability measures, eleven were separability measures, nine
were complexity measures, three were classification measures, and
two were neighborhood measures. The analysis of these measures
leveraged the full training repetitions rather than only the portions
applied to the adaptive classifier to fully evaluate the user’s behavior
throughout training.
• The variability metrics quantified intra-class characteristics. A full

list of these metrics and formulations can be found in Section VI.

• The separability metrics assessed inter-class attributes. A full list
of these metrics and formulations can be found in Section VII.

• The complexity metrics leveraged feature space partitioning algo-
rithms to examine regional class discriminability. A full list of these
metrics and formulations can be found in Section VIII.

• The classification metrics were based on classification performance
using an LDA classifier. A full list of these metrics and formula-
tions can be found in Section IX.

• The neighborhood metrics considered nearest neighbor relation-
ships. A full list of these metrics and formulations can be found
in Section X.

E. Online Usability Metrics
Fitts’ Law has been widely adopted to describe the information

bandwidth of a control scheme, such as the movement of a pointer
or cursor in a virtual environment.

The following usability metrics (i.e., virtual outcomes) were ex-
tracted in the present study to evaluate online myoelectric control:
• Throughput (TP, bits/sec) is the Fitts’ Law summary metric and

is considered to be the rate of information transfer [17], [31], [37].
It is characterized by the target’s index of difficulty (ID) and the
movement time (MT) of the cursor averaged across N trials.

TP =
1

N

N∑
i=1

IDi

MTi
(1)

The index of difficulty, defined as a function of the target’s width
(W) and distance (D), was calculated using Shannon’s formulation
[38]. The distance (D) was measured as the distance between the
starting point of the cursor and the center of the target.

ID = log2

(
D

W
+ 1

)
(2)

• Effective Throughput (eTP, bits/sec) is a modified version of
throughput where the distance to the target during the calculation
of ID is adjusted based on the actual distance the cursor travels
(De). If a user consistently stops the cursor on the inner edge
of the target, the effective distance to the target becomes smaller.
Likewise, if a user stops the cursor on the outer edge of the target,
the effective distance increases.

IDe = log2

(
De

W
+ 1

)
(3)
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• Path Efficiency (PE, %) describes the system’s quality of control
and is calculated as the ratio between the shortest path to the target
and the actual path traveled [17], [37].

• Overshoot (OS) measures a user’s ability to stop on a target by
counting the number of times per task the user acquired then lost
the target before the dwell time was reached [17], [37].

• Average Speed (AS, pixels/sec) highlights a user’s gross ability to
control the cursor and is computed as the average non-zero speed
of the cursor for each task [17], [37].

• Stopping Distance (SD, pixels) evaluates a user’s ability to
maintain no motion to stop within a target. It is calculated as the
total distance traveled by the cursor during the dwell time [17].

F. Linear Regression

Linear regression models were generated using sets of one, two,
and three predictor variables on a given response variable. An
ordinary least squares regression was used rather than a higher
order polynomial regression to reduce the potential of overtuning
and to encourage generalizability. Overfitting concerns were further
addressed by restricting the number of predictors to three or less.
The relationship between offline and online myoelectric control was
evaluated using the offline training metrics as predictors and the
online usability metrics as response variables. Both predictors and
responses were normalized to be between zero and one prior to
training the models. Normalization allows for the interpretation of
the coefficient weights in the regression models. These weights can
be used to determine the relative contributions of the predictors on
the prediction. The relative coefficient weightings in this study were
calculated by dividing the absolute value of each individual predictor
weight by the sum of the absolute values of all the assigned predictor
weights. Multicollinearity was assessed using the variance inflation
factor (VIF). While there is no universal agreement for the VIF cut-
off value that should be used to detect multicollinearity, a VIF greater
than 5 is often considered to be problematic [39].

1) Predictor Selection: We implemented a predictor selection
approach similar to the consensus nested cross-validation technique
recently proposed by Parvandeh et al. for feature selection [40].
This approach finds consistent and stable features, with the goal of
providing a more generalizable model [40]. The technique also has
been shown to be effective for small sample sizes [40].

Following this selection procedure, we performed a 12-choose-11
subject calculation to establish twelve subsets with eleven subjects
each. Predictor selection was then performed using a leave-one-
subject-out (LOSO) cross-validation technique within each subset.
The minimization criterion was the average mean squared error
(MSE) between the model’s outputs and the true validation values.

The number of predictor sets that were evaluated varied depending
on the number of predictors used in the model. The one-predictor
models assessed 32 predictor sets, equalling the total number of
offline metrics. The two-predictor models considered 496 predictor
combinations, which encompassed all possible combinations of 32-
choose-2 predictors. Finally, the three-predictor models assessed 4960
predictor combinations, based on 32-choose-3 predictors.

For the two- and three-predictor models, we identified the top 50
combinations of offline metrics with the lowest average MSE across
the LOSO cross validations for each subset. A consensus in the top
predictor combinations was then required across at least six of the
twelve subsets. The predictor combinations that met the consensus
requirements were selected for further evaluation.

2) Performance Evaluation: The predictive performance of each
selected offline metric combination was determined using a LOSO
cross validation across all twelve subjects. This was repeated to assess

predictor sensitivity for the one-, two-, and three-predictor models
against each of the response variables. The predictor set demonstrat-
ing the lowest predictive MSE was selected as having the ”best”
performance. Therefore, each response variable had a corresponding
model with one, two, and three predictors. The goodness of fit and
predictive accuracy of these final models were evaluated using the
following metrics.

a) Measures of Goodness of Fit: Goodness of fit, also known
as the training error, refers to a model’s ability to predict the samples
used during parameter estimation. The list below describes each of
the measures of goodness of fit used in assessing the performance of
the trained prediction models.

• Mean Absolute Error (MAE): The MAE is an interpretable
metric that provides information about the average magnitude of
error between the true and predicted values [41]. All errors are
equally weighted, and the units match that of the response variable.

• Mean Squared Error (MSE): The MSE measures the average
squared error between the true and predicted values [41]. MSE
assigns higher weights to larger errors, and consequently, is more
sensitive to outliers. MSE has units equalling the square of the
response variable, making it arguably less interpretable than MAE.

• Root Mean Squared Error (RMSE): The RMSE provides an
estimate for the standard deviation of the associated error distribu-
tion. It is the square root of the MSE and has the same units as
the response variable [41].

• Adjusted Coefficient of Determination (R2
adj): The R2

adj is a
recommended measure of goodness of fit when multiple predictors
are used in model development. It accounts for the number of
predictors by increasing in value only when the addition of a
predictor significantly improves the fit of the model [42]. The R2

adj
decreases when the model improvements are not greater than what
would be expected by chance.

• Corrected Akaike Information Criterion (AICc): AICc mea-
sures the relative quality of a model by balancing the tradeoff
between goodness of fit and number of predictors [43]. AICc is
recommended for small sample sizes and incorporates a correction
or penalty to address overfitting [43].

Smaller values of MAE, MSE, RMSE, and AICc imply that the
generated model more closely resembles the “true model”. Higher ad-
justed coefficient of determination values suggest that the parameters
of the model better fit the observations.

b) Measures of Predictive Accuracy: Predictive accuracy is con-
cerned with the model’s ability to predict new instances, previously
unseen by the model. The following list provides descriptions of
each measure of predictive accuracy used to evaluate how well the
developed models predicted usability.

• Normalized (n) MAE, MSE, and RMSE: Unit- and scale-
independent versions of MAE, MSE, and RMSE were obtained
by dividing the metrics by their corresponding range of true
response values observed in the trained model. Normalization
allows comparisons to be made across datasets.

• Mean Absolute Percent Error (MAPE): MAPE is an inter-
pretable and scale-independent metric commonly used to measure
forecasting accuracy [44]. It is calculated as the average of the
absolute percentage errors. It is important to note that MAPE
becomes undefined as the true values approach zero.

• Variance Explained (VEcv): The VEcv metric, sometimes re-
ferred to as the predicted R2, is based on cross-validation and
allows direct comparisons between accuracies of predictive models
for data with different units, scale, and variation [41], [45].
Negative VEcv values indicate that the predictions generated by
the model are less accurate than using the mean of the validation
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data as predictions [45]. Positive VEcv values demonstrate that the
predictions generated by the corresponding model are more accu-
rate than using the validation mean [45]. The maximum obtainable
VEcv value is 100% and occurs when the model predictions are
equal to their corresponding validation values. According to Li, the
performance of predictive models based on VEcv measures can be
divided into the following five categories: very poor: VEcv ≤ 10%,
poor: 10% < VEcv ≤ 30%, average: 30 < VEcv ≤ 50%, good:
50 < VEcv ≤ 80%, excellent: VEcv > 80%.

Increases in VEcv and reductions in nMAE, nMSE, nRMSE, and
MAPE indicate better predictive accuracy.

III. RESULTS

A. Offline Classification Performance

Table I displays the average leave-one-trial-out cross-validation
classification accuracy (CA) and active classification accuracy (ACA)
across the eight training trials for each subject. Because ramp con-
tractions were collected during training, the movement data contained
trace amounts of the no motion class. The ACA metric removes
misclassifications due to no motion from the accuracy calculation.
Subject 4 obtained the highest average CA at 96.4% ± 2.8% and
subject 12 demonstrated the lowest average CA at 78.5%± 12.4%.
Subject 4 also exhibited the highest average ACA at 100.0%±0.1%
while subject 2 displayed the lowest average ACA at 98.3%±3.5%.

TABLE I: Subject-wise breakdown of classification accuracy (CA)
and active classification accuracy (ACA) results. A ceiling effect is
observed for the active classification accuracy metric.

Metric S1 S2 S3 S4 S5 S6
CA 90.6 89.8 99.0 96.4 91.2 86.7

ACA 99.1 98.3 99.8 100.0 99.8 99.9
Metric S7 S8 S9 S10 S11 S12

CA 92.2 91.4 90.5 92.0 79.8 78.5
ACA 100.0 99.8 99.4 99.7 99.7 99.6

B. Online Performance

The range of the average usability metrics across subjects is shown
in Table II. Subject 7 achieved the highest average throughput,
effective throughput, path efficiency, and average speed with values of
2.0±0.7, 4.1±1.1, 95.4%±8.5%, 65.2±15.9, respectively. Subject
12 obtained the lowest average throughput, effective throughput,
average speed, and stopping distance with values of 0.9± 0.3, 1.8±
0.8, 24.0 ± 9.2, 3.9 ± 2.2, respectively. The lowest average path
efficiency (79.3%±23.6%) and the highest average stopping distance
(7.3 ± 3.4) were achieved by subject 2. Subject 6 had the highest
average overshoot (0.7± 2.0) and subject 1 had the lowest average
overshoot (0.05± 0.2).

TABLE II: The minimum and maximum average values across
subjects for each usability metric.

Metric Min Max

Throughput (TP) 0.9± 0.3 2.0± 0.7

Effective Throughput (eTP) 1.8± 0.8 4.1± 1.1
Path Efficiency (PE) 79.3± 23.6 95.4± 8.5

Overshoot (OS) 0.05± 0.2 0.7± 2.0
Average Speed (AS) 24.0± 9.2 65.2± 15.9

Stopping Distance (SD) 3.9± 2.2 7.3± 3.4

C. Correlation Analysis

Shapiro-Wilk tests were performed on each offline and online
metric to evaluate whether they obeyed a normal distribution. When
the assumption of normality was not violated, the Pearson correlation
coefficient was calculated between the corresponding offline and
online metrics. When the assumption of normality was rejected,
Kendall’s coefficient of rank correlation was implemented [46]. The
resulting significant correlations are summarized in Table III.

TABLE III: Significant correlations between the offline training
metrics and the online usability metrics. Bold text indicates sig-
nificant correlations at the 95% confidence level. Metrics followed
by an asterisk violated the assumption of normality.

Metric Type Offline Metrics Sig. Correlation

Separability

Bhattacharrya Distance (BD) PE (-0.60)
Squared Hellinger Distance (HD)* PE (-0.55)
Fisher’s Discriminant Ratio (FDR) AS (0.61), SD (0.71)
Feature Efficiency (FE)* TP (0.52), eTP (0.49)

Complexity Rescaled Purity (rPU) AS (0.62), SD (0.62)
Neighborhood Intra-Inter Fraction (IIF)* TP (-0.46)

Of the 32 offline training metrics investigated in this work, at most
two correlations for each online metric were significant. Feature effi-
ciency (FE) and intra-inter fraction (IIF) both demonstrated moderate
correlations with throughput, (r = 0.52, p = 0.02) and (r = -0.46, p
= 0.04), respectively. FE also exhibited a moderate association with
effective throughput, (r = 0.49, p = 0.03). Bhattacharrya distance
(BD), (r = -0.60, p = 0.04), and Hellinger Distance (HD), (r = -0.55,
p = 0.01), were significantly correlated with path efficiency. Fisher’s
discriminant ratio (FDR) and the rescaled purity metric (rPU) had
significant correlations with average speed, (r = 0.61, p = 0.03) and
(r = 0.62, p = 0.03), respectively, and stopping distance, (r = 0.71,
p = 0.01) and (r = 0.62, p = 0.03), respectively. While there is no
consensus as to how the strength of the correlation coefficient should
be interpreted, Akoglu presents three commonly used scales in [47].
The highest correlation coefficient observed in Table III is 0.71 which
may be considered very strong, strong, or moderate depending on the
scale. The lowest correlation coefficient observed in Table III is 0.46
which may be considered strong, moderate, or fair.

D. Predictive Modeling

Table IV shows the results of the measures of goodness of fit and
the measures of predictive accuracy for the six response variables.
The models highlighted in Table IV are the baseline model using
classification accuracy (CA) alone and the previously selected one-,
two-, and three-predictor models for each response variable. Table
IV also displays the relative coefficient weightings for each predictor
in the selected models, indicating how important each metric was in
generating predictions. The measures of goodness of fit in the table
generally support the idea that the three-predictor models provide
the best fit. The general consensus across the measures of predictive
accuracy is also that the selected three-predictor models generate the
best predictive performance. A graphical representation of the VEcv
metric for the CA-predictor model along with the selected one-, two-,
and three-predictor models is illustrated in Figure 2.

a) Throughput: The model using CA as a single predictor
for throughput demonstrated lower predictive accuracy across all
measures than the selected one-, two-, and three-predictor models.
The best performing individual predictor was feature efficiency (FE).
This metric rendered a significant correlation with throughput (r
= 0.52, p = 0.02). Although the positive VEcv value of 17.4%
indicates that this metric generates predictions with lower errors than
predicting using the mean of the data, the predictive performance is
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TABLE IV: Measures of goodness of fit and predictive accuracy for each response variable using the selected models. The relative coefficient
weightings for each predictor are shown in parenthesis. Positive and negative signs indicate a direct and indirect relationship, respectively,
with the response variable. Predictors with a variance inflation factor above 5 are indicated with an asterisk (*).

Model Specifications Goodness of Fit Predictive Accuracy
Response Predictors MAE MSE RMSE R2

adj AICc nMAE nMSE nRMSE MAPE VEcv

Throughput

CA (+100%) 0.29 0.11 0.32 -0.04 11.86 0.35 0.19 0.40 34.67 -50.13

FE (+100%) 0.25 0.08 0.27 0.27 7.89 0.27 0.10 0.30 26.96 17.41
MSA* (-58%), MAV* (+42%) 0.16 0.03 0.18 0.62 3.27 0.21 0.07 0.24 21.12 46.31
MSA* (-51%), MAV* (+36%), C* (+13%) 0.12 0.02 0.15 0.72 3.60 0.17 0.04 0.19 16.64 64.67

Effective
Throughput

CA (+100%) 0.29 0.11 0.32 -0.03 11.89 0.36 0.38 0.40 34.28 -49.52

FE (+100%) 0.25 0.08 0.28 0.26 8.16 0.28 0.21 0.30 27.15 15.54
MSA* (-59%), MAV* (+41%) 0.16 0.03 0.18 0.63 3.28 0.21 0.13 0.24 20.35 47.42
MSA* (-52%), MAV* (+35%), C* (+13%) 0.12 0.02 0.15 0.72 3.86 0.16 0.09 0.19 15.12 65.63

Path
Efficiency

CA (-100%) 0.24 0.08 0.29 0.00 9.45 0.27 1.60 0.32 4.89 -14.95

BD (-100%) 0.19 0.06 0.24 0.29 5.58 0.21 1.19 0.27 3.80 15.02
mwRI (+50%), IIF (+50%) 0.16 0.04 0.19 0.51 4.00 0.19 0.82 0.23 3.49 41.16
mwRI* (+37%), CD* (-23%), CDM (+40%) 0.12 0.02 0.14 0.70 2.18 0.15 0.50 0.18 2.67 64.39

Overshoot

CA (+100%) 0.29 0.11 0.33 -0.09 12.58 0.35 0.10 0.39 172.9 -33.35

BD (+100%) 0.23 0.09 0.30 0.11 10.32 0.26 0.08 0.34 134.2 -3.04
FE (-49%), IIF (-51%) 0.23 0.09 0.30 0.02 14.09 0.28 0.08 0.34 121.0 -3.25
BD* (+16%), NS* (+39%), rCE* (-45%) 0.12 0.03 0.18 0.58 8.25 0.17 0.04 0.24 76.50 50.55

Average
Speed

CA (+100%) 0.28 0.09 0.31 0.05 10.70 0.34 5.70 0.37 36.85 -29.68

rPU (+100%) 0.22 0.07 0.26 0.32 6.92 0.25 3.50 0.29 25.17 20.29
FDR (+53%), RI (+47%) 0.14 0.03 0.17 0.66 2.03 0.20 2.47 0.25 20.05 43.72
FDR (+40%), FE* (+25%), RI* (+35%) 0.10 0.01 0.12 0.81 -0.82 0.18 1.77 0.21 16.95 59.77

Stopping
Distance

CA (+100%) 0.17 0.05 0.23 0.13 4.57 0.19 0.22 0.26 12.32 -3.53

rPU (+100%) 0.15 0.04 0.20 0.32 1.74 0.17 0.17 0.23 10.52 18.66
mwRI (-47%), CDM (-53%) 0.12 0.02 0.15 0.60 -1.52 0.16 0.13 0.20 10.04 38.96
mwRI* (-14%), PU* (+50%), rCE* (-36%) 0.09 0.01 0.12 0.72 -1.40 0.14 0.10 0.17 8.21 52.59

Predictors Abbrv. BD: Bhattacharyya Distance, C: Compactness, CA: Classification Accuracy, CD: Centroid Drift, CDM: Class Discriminability Measure, FDR: Fisher’s
Discriminant Ratio, FE: Feature Efficiency, IIF: Intra-Inter Fraction, MAV: Mean Absolute Value, MSA: Mean Semi-principal Axes, mwRI: mean within-repetition Repeatability
Index, NS: Neighborhood Separability, PU: Purity, rCE: rescaled Collective Entropy , RI: Repeatability Index, rPU: rescaled Purity

still considered to be poor according to Li [45]. The two-predictor
model selected mean semi-principal axes (MSA) and mean absolute
value (MAV) as predictors. Both metrics obtained non-significant
individual correlation coefficients with throughput, (rMSA = −0.51,
p = 0.09; rMAV = −0.03, p = 0.92). Using these two predictors
separately in single-predictor models yielded very poor VEcv values
of 3.7% and -56.3% for MSA and MAV, respectively. However,
pairing these predictors in a multiple regression generated a model
with a VEcv value of 46.3%. This is a 166% increase in VEcv
compared to the FE-predictor model and suggests average predictive
accuracy according to Li [45]. Similarly, even though the compactness
measure (C) had a correlation of (r = 0.20, p = 0.54) with throughput
and an individual predictive VEcv of -67.1%, adding it to the two-
predictor model increased the VEcv from 46.3% to 64.7% — a 39.6%
increase.

b) Effective Throughput: The models generated for effective
throughput exhibited similar predictive behavior and goodness of fit
as those for throughput. Furthermore, the same offline metrics were
chosen for the selected models with near equal coefficient weightings.
The three-predictor VEcv value for effective throughput was 65.6%,
which is slightly higher than that for throughput (VEcv = 64.7%).

c) Path Efficiency: The selected one-, two-, and three-predictor
models for path efficiency all exhibited higher predictive accuracy
than when using CA as a single predictor. The Bhattacharyya
distance (BD) was the preferred offline metric for the individual-
predictor model. Although it rendered a significant correlation with
path efficiency (r = -0.60, p = 0.04), the predictive accuracy of
the model based on the measures in Table IV was categorized as
poor (VEcv = 15.0%). The two-predictor model specified the mean
within-repetition repeatability index (mwRI) and intra-inter fraction
(IIF) as predictors, both of which demonstrated low and insignificant
correlations with path efficiency, (r = 0.31, p = 0.33) and (r = 0.12,

p = 0.64), respectively. The individual predictive performance of
the corresponding single-predictor models generated very poor VEcv
values of -46.1% for mwRI and -19.3% for IIF. Similar to the effects
seen for throughput and effective throughput, the combination of
two predictors led to a substantial 175% increase in VEcv compared
to the BD-predictor model. This same trend was also observed for
the offline metrics in the three-predictor model, which exhibited the
highest predictive performance and goodness of fit.

d) Overshoot: The CA-predictor model, single-predictor model,
and two-predictor model were each unable to reliably predict over-
shoot. However, a combination of three predictors generated a model
with good predictive capacity (VEcv = 50.6%). This model selected
Bhattacharrya distance (BD), neighborhood separability (NS), and
rescaled collective entropy (rCE) as its predictors. Their individual
correlations with overshoot were (r = 0.44, p = 0.15), (r = 0.22, p =
0.49), and (r = 0.14, p = 0.67) for BD, NS, and rCE, respectively.
Even though the offline metrics had limited predictability on their
own, combining these metrics led to a functional predictive model.

e) Average Speed: The selected one-, two-, and three-predictor
models exhibited higher predictive accuracy compared to the CA-
predictor model. The best performing single predictor was rescaled
purity (rPU), leading to a VEcv of 20.3%. A 115% increase in
VEcv was observed when Fisher’s discriminant ratio (FDR) and
repeatability index (RI) were combined in a two-predictor model.
The three-predictor model generated the highest VEcv with a score
of 59.8% — a 195% increase compared to the rPU-predictor model.

f) Stopping Distance: The stopping distance predictions also
improved as the number of selected predictors increased from one
to three. The CA-predictor model exhibited a VEcv score of -3.5%,
indicating worse predictability than simply using the mean of the
validation data. The rescaled purity (rPU) metric led to a performance
increase with a VEcv of 18.7%. The two-predictor model, which used
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Fig. 2: Model predictive performance based on VEcv (%).

the mean within-repetition repeatability index (mwRI) and the class
discriminability metric (CDM), further generated a 109% increase
in VEcv from the single-predictor model. Both metrics had low
individual predictive capacity, as was observed from their low and
insignificant correlations with stopping distance as well as from their
insufficient VEcv scores (mwRI: r = -0.28, p = 0.38, VEcv = -
45.2; CDM: r = -0.30, p = 0.23, VEcv = 3.7%) Similar results
were obtained for the three-predictor model using mwRI, purity
(PU), and rescaled collective entropy (rCE). Although the individual
predictability of these offline metrics was limited, the interaction of
the predictors produced a good VEcv score of 52.6%.

E. Predictor Sensitivity
The best predictor set identified during the selection procedure for

each response variable (as shown in Table IV) was further investigated
to determine the degree to which it outperformed other offline metric
combinations that satisfied the consensus requirement as described
in Section II-F.1. A representative analysis for the response variable
throughput is shown in Figure 3, where the top predictor combina-

tions are plotted against their corresponding predictive nMSE values.
A dotted line indicating the nMSE of the CA-predictor model is
superimposed onto the graphs to highlight the relative improvement
in the model’s predictive capacity when appropriate offline metrics
are chosen for evaluation. It is important to note that many of the top
two-predictor combinations in Figure 3b contain MSA while many
of the top three-predictor combinations in Figure 3c contain MSA
and MAV. This suggests that, although different combinations of two
and three predictors may yield similar predictive error, certain metrics
appear to be more important than others in predicting the response
variable. Figure 3 also displays a narrowing tendency of the 95%
confidence interval as the number of predictors increases from one
to three and as the predictor combinations become more indicative
of the response variable. The additional five usability metrics follow
similar trends as those seen in Figure 3.

IV. DISCUSSION

This study investigated the ability to use offline classification
accuracy and alternative training metrics to predict online usability.
The relationship between usability and user satisfaction has been
established [48], and so these predicative measures may directly
inform user experience in the real-world. Customized protocols
targeting improvements of informative metrics could be implemented
to ensure efficient and effective training sessions. A “training score”
could be assigned to a training session based on the offline training
metrics, providing an indication of future online performance.

In addition, the findings of this research could be used to improve
the use of offline data in the design of algorithms. For example, rather
than using offline classification accuracy as an objective function for
feature selection, other metrics that were shown here to be more
valuable indicators of usability could be used instead. This may
allow for more representative EMG features to be selected, a more
predictable and usable myoelectric control system, and a reduction
in the gap between research and clinical results.

A. Offline accuracy as a predictor of online usability
Under the conditions of this study, offline classification accuracy

fails to accurately predict online usability. For each response variable,
the CA-predictor model produced greater error than simply predicting
the mean of the validation data for each subject. This is illustrated
in Figure 2 by the negative VEcv values. The same can be said for
a highly related metric, active classification accuracy (ACA), which
removes misclassifications due to no movement.

The poor predictive performance given by these two metrics could
be the result of an observed ceiling effect. This effect is especially
prominent for ACA in Table I. All twelve subjects produced minimal
error with average active accuracies ranging from 98.3% to 100.0%.
Since subjects obtained accuracies close to 100%, the accuracy values
may not offer a complete domain representation. Although these
results are representative of real-world use, the ceiling effect likely
limited the influence of accuracy on the usability metrics. Because
several studies have shown that both long-term and short-term user
practice results in increased classification performance [4], [12], [49],
ceiling effects may be common when testing experienced users. This
supports the need to identify alternative metrics that provide the
necessary information to predict usability.

A recent study by Lv et al. investigating the correlation between
offline classification accuracy and online usability found that offline
accuracy had a strong and significant correlation with completion rate
[9]. This same study failed to find a significant correlation between
classification accuracy and completion time and between classifica-
tion accuracy and path efficiency [9]. We avoided the usability metric
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Fig. 3: Predictive normalized mean squared error (nMSE) for the top
feature combinations for the throughput response variable. Shaded
regions indicate a 95% confidence interval.

completion rate in our study because almost all users were able to
acquire every target; therefore, minimal information about online use
could be extracted from this metric. Additionally, completion rate
is highly dependent on the nature of the task and on the adopted
completion rules (such as the chosen timeout), making completion
time and path efficiency arguably more informative usability metrics.
Completion time was not directly used in our study; however we
implemented the throughput metric which is a function of both
completion time and the difficulty rating of the task. Our results
support the findings of Lv et al. by demonstrating no significant
correlations between offline classification accuracy and the usability
metrics throughput and path efficiency.

B. Alternative metrics as predictors of online usability

The correlation analysis outlined in Table III differs slightly
compared to other evaluations presented in the literature [11], [12].
For example, the separability index and modified separability index
have yielded significant or near significant correlations in previous
works [11], [12]; however, the results of this study do not support
these observations. Similar to the study conducted by Kristofferson et
al., we found no significant correlations between interpretations of the
separability index and usability [13]. In addition, online performance
in other studies has been evaluated by counting correctly classified
movements while ignoring the effects of incorrect decisions [11]–
[13]. In the present study, however, online testing was evaluated
in a Fitts’ Law environment where users were actively involved
and required to correct for misclassifications made by the control
system. Similar environments also have been shown to correlate with
functional prosthesis use [18]. Consequently, the user behavior is
reflected in the online usability metrics and may be a cause for the
observed differences in some correlation results.

The offline metrics showing significant correlations with online
usability in Table III are characterized as either separability, neigh-
borhood, or complexity measures. These categories of offline metrics
provide similar information by examining the relationship between
clusters in feature space. The separability measures in this work
present a global analysis of feature space while the complexity
measures present a local analysis through the use of feature space
partitioning algorithms. Neighborhood measures differ slightly by
considering samples located along the class boundaries.

Bhattacharyya distance (BD) and Hellinger distance (HD) both
demonstrated significant correlations with the online metric path
efficiency. BD and HD were also significantly correlated with each
other (r = 0.70, p< 0.001). Similarly, Fisher’s discriminant ratio
(FDR) and rescaled purity (rPU), both of which were significantly
correlated with average speed and stopping distance, demonstrated a
significant correlation with each other (r = 0.67, p = 0.02). The two
final offline metrics in Table III, feature efficiency (FE) and intra-
inter fraction (IIF), both of which were significantly correlated with
throughput, also rendered significant correlations with each other (r =
-0.7, p<0.001). These results indicate that the pairs of offline metrics
described above are not independent.

Although only six offline metrics were significantly correlated
with online usability, other metrics exhibited moderate correlations,
including the mean semi-principal axes (MSA), collective entropy
(CE) and its rescaled version (rCE), neighborhood separability (NS)
and its rescaled version (rNS), and inter-class fraction (ICF). Sample
size plays a key role in determining whether a result is significant
[50]. As sample size increases, both random error and variability
decrease, resulting in more precise measurements [50]. Therefore,
studies with larger sample sizes are more likely than those with
smaller sample sizes to find a significant relationship given one exists
[50]. Because of the limited sample size in the current experiment (n
= 12), additional significant results may have gone undetected.

C. Combinations of metrics as predictors of online usability

In this study, the individual offline metrics did not possess enough
information to effectively represent the online use case. A more robust
outlook on usability was established when combinations of offline
metrics were used as predictors. Importantly, the metrics chosen as
part of these predictor sets did not necessarily show significant indi-
vidual relationships with the response variable. Measures with poor
individual correlations were often combined in ways to provide mean-
ingful predictive information, suggesting a more complex relationship
between offline performance and online usability. Additionally, the
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predictor chosen in a single-predictor model was not necessarily
favored in corresponding two- or three-predictor models. Likewise,
the predictors in the two-predictor models may not have been selected
for the three-predictor models. This indicates that the interaction
between the predictors may be just as important as the predictors
themselves. One way to determine the relative importance of the
predictors is to examine the coefficient weightings assigned to each
offline metric. The coefficients for the two-predictor models in Table
IV convey relatively equal weightings, implying that both predictors
have comparable importance in the linear model. The coefficients for
the three-predictor models display a more varied weighting profile;
however, any one predictor contributes at least 10%. It should also
be noted that the variance inflation factor (VIF) is greater than 5
for many of the predictors in Table IV,indicating correlation between
predictors. Models with correlated predictors should be interpreted
by looking at how well the combination of predictors predicts the
outcome variable, not by looking at any individual predictor and its
contribution to the model [39].

The relationship between the offline training metrics and the
response variable for a given model differed depending on the total
number of predictors. In the single-predictor models, the subjects that
demonstrated the highest and lowest online performance generally
produced the best and worst scores, respectively, for the correspond-
ing offline predictor; for example, subject 7 achieved the highest
throughput and effective throughput while also yielding the highest
feature efficiency (FE). Subject 12 exhibited the lowest throughput
and effective throughput while generating the lowest FE. These
results support the direct relationship between the offline metric in
the single-predictor model and the online usability metric.

The relationship between the predictor variables and the response
variable became more involved when multiple offline metrics were
used to predict usability; for example, subject 7, who yielded the
best throughput and effective throughput, produced high MAV val-
ues but average MSA compared to the other subjects. Subject 12,
who demonstrated the lowest throughput and effective throughput,
produced high MAV and high MSA. These findings potentially
indicate an interaction between the two predictor variables. Given the
evidence of multicollinearity between the MSA and MAV predictors,
it is difficult to interpret the individual effects of the predictors on
the response variable. However, even though the individual effects
cannot necessarily be determined, the fact that similar models were
generated for throughput and effective throughput (which are highly
related online metrics) support the idea that the chosen predictors are
representative of online performance.

To the best of our knowledge, no other studies have assessed the
relationship between offline training metrics and online performance
using multiple linear regression. Based on the results of this exper-
iment, grouping offline metrics together may be a more instructive
approach than trying to discover a singular metric that encompasses
all of the variability of online use. This could be due, in part, to
the required coordination of pattern generation, proportional control,
and target acquisition during online use. The best performing single
predictors outlined in Table IV generated models that were classified
as having poor predictive accuracy as measured by VEcv [45]. It is
important to note, however, that although the predictive behavior was
classified as poor, the selected single predictors generally produced
better predictions than simply predicting using the mean of the
data. Furthermore, our selected predictor resulted in a substantial
increase in performance compared to the current offline standard,
classification accuracy. The two-predictor models generally displayed
average predictive performance while the selected three-predictor
models exhibited good predictive behavior [45]. This improving trend
was also present for the measures of goodness of fit, indicating that

both the model parameters and the predictive capacity improve as the
number of predictors increased from one to three.

The models generated for the response variable overshoot were the
only models that deviated from this improving trend. It may be that
overshoot is more difficult to predict compared to the other online
metrics and requires information about the separability between
motion classes (from BD), knowledge of the class boundaries (from
NS), and details about the uncertainty and disorder of the dataset
(from rCE) for accurate predictions. Furthermore, overshoot reflects
aspects of the user’s task planning and reaction time, which may not
be sufficiently reflected within the SGT training approach.

The results of this study did not identify a common set of predictors
across all usability metrics. This suggests that the online metrics are
providing unique information regarding the usability of the system.
As we have presented our results, users would likely have to prioritize
one aspect of usability and target the offline metrics associated with
the corresponding model.

Although models outlined in Table IV produced the lowest error,
they were not the only acceptable predictor combinations Figures 3b
and 3c show a gradual increase in nMSE as additional predictors were
evaluated. The gradual increase is evidence that other sets of offline
metrics can produce predictions comparable to those rendered by the
top selected combination. Furthermore, the results in Figures 3b and
3c, suggest that the top performing predictor set was not assembled by
chance. Many of the predictor combinations along the x-axis contain
similar metrics (i.e, MSA for the two-predictor sets and MSA and
MAV for the three-predictor sets). It is also important to note that
the predictor combinations plotted in Figures 3b and 3c are the best
performing sets out of 496 combinations for two predictors and 4960
combinations for three predictors. Not all predictor combinations led
to acceptable performance. The worst combination of two metrics
for predicting throughput was Hellinger distance (HD) and volume
of overlap region (VOR), leading to a nMSE of 5757.

D. Limitations and Future Work
As with any experiment with a limited sample size, overfitting

poses a major concern. Training of the different regression model
folds was performed with eleven subjects and only one subject was
included in the test set. Although studies have demonstrated that
accurate regression models can be formed with as little as two [51]
and five [52] samples per predictor, it is more accepted to have
at least ten samples per predictor [53]. The basis for limiting the
number of predictors in the linear models stemmed from concerns
about overfitting. When evaluating models with four predictors during
pilot testing, we observed a general drop in the AICc generalization
performance as compared to the two- and three- predictor models.
Consequently, because these models were more likely to be overfit,
we limited the input space to three.

Our results demonstrated that the two- and three-predictor models
generated average and good prediction accuracy, respectively. How-
ever, cross-validation was based on the prediction of only one subject.
Therefore, the reported absolute predictive performance may be an
inflated view of the true model behavior. For the best generalizability,
an additional study with more subjects should be conducted with
a proper training, validation, and test set. Additionally, because
our main focus was on predicting usability, we did not attempt
to solve multicollinearity among the predictors in the regression
models. Multicollinearity makes it difficult to accurately investigate
associations among the predictor variables, but it does not impact the
fit of the model or the model’s predictions [39]. For these reasons,
we refrain from making model specific recommendations, but rather
suggest that researchers move toward predicting usability using a
variety of offline training metrics.
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This study also did not take into account additional variables that
could potentially have an influence on predicting usability, such as
the user’s experience level, age, and gender. Further expansion of the
types of feedback and number of offline metrics may also be ben-
eficial to the research community to provide a more comprehensive
evaluation of predictive performance. Other areas of work could focus
on extending the subject population group to those with neurological
disorders or physical disabilities.

V. CONCLUSIONS

This work provides a foundation for using offline training metrics
as predictors of online usability. Currently, classification accuracy is
the most reported offline metric for describing myoelectric control
performance [3], [5], [54]. The results of this work support many
previous studies by showing that offline classification accuracy is
a poor indicator of usability [6]–[8]. Unfortunately, there is little
consensus in the literature about the use of alternative offline metrics
to indicate online performance. This work identified metrics that,
under the conditions of this study, were shown to be more powerful
predictors than what has previously been used in the literature. To the
best of our knowledge, no work has investigated a combination of
offline metrics that embody the ability to predict usability. Our find-
ings suggest that a combination of two and three offline metrics may
provide a more robust framework for predicting online performance.
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VI. APPENDIX: VARIABILITY METRICS

Repeatability Index (RI): A measure of the reproducibility of EMG patterns between repetitions [12].

RI =
1

N

N∑
j=1

1

R

R∑
r=1

1

2

√
(µTRj

− µr,j)′S−1TRj
(µTRj

− µr,j)

where µTRj
is the centroid of the class j training ellipsoid, µr,j is the centroid of a testing ellipsoid of the same class j from repetition r, STRj

is the covariance matrix of the class j training ellipsoid, R is the total number of repetitions, and N is the total number of active motion classes.

mean within-repetition Repeatability Index (mwRI): An interpretation of Bunderson and Kuiken’s repeatability index [12]

mwRI =
1

R

R∑
r=1

1

N

N∑
j=1

1

P

P∑
p=1

1

2
×
√

(µTRr,j
− xTRp,r,j

)′S−1TRj
(µTRr,j

− xTRp,r,j
)

where µTRr,j
is the centroid of class j from a given repetition r, xTRp,r,j

is a data point in r, STRj
is the covariance matrix of the class j

training ellipsoid, R is the total number of receptions, P is the total number of data points in R, and N is the total number of active motion
classes.

standard deviation within-repetition Repeatability Index (swRI): A measure of the variation of the within-repetition repeatability across
repetitions.

swRI =

√√√√√ 1

R− 1

R∑
r=1

 1

N

N∑
j=1

1
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)

−mwRI
2

where µTRr,j
is the centroid of class j from a given repetition r, xTRp,r,j

is a data point within that repetition, STRj
is the covariance

matrix of the class j training ellipsoid, mwRI is the offline metric described above, R is the total number of receptions, P is the total number
of data points in R, and N is the total number of active motion classes.

standard deviation within-trial Separability Index (swSI): A measure of the variability of the distinguishability of EMG patterns across
trials.

swSI =

√√√√√ 1

T − 1

T∑
t=1

 1

N

N∑
j=1

min
i=1,..,j−1,j+1,..,N
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×
√
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− µTRi,t

)′S−1TRj,t
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− µTRi,t
)

−mwSI)2
where µTRj,t

is the centroid of class j from trial t, µTRi,t
is the centroid of the nearest training ellipsoid of a different class i from trial t,

STRj ,t is the covariance matrix of the class j training ellipsoid from trial t, mwSI is the offline metric defined in Appendix VII, T is the
total number of trials, and N is the total number of active motion classes.

Mean Semi-principal Axes (MSA): A measure that quantifies the size of a training ellipsoid. [12].

MSA =
1

N

N∑
j=1

( D∏
k=1

aj,k

)1/D
where ak is the geometric mean of each semi-principal axis (calculated using Principal Component Analysis (PCA)) in dimension k [55],
D is the total dimensionality of the feature space, and N is the total number of active motion classes.

Centroid Drift (CD): A measure that quantifies the variation in centroid location of a training ellipsoid across subsequent repetitions.

CD =
1

N

N∑
j=1

(
R−1∑
r=1

||µr,j − µr+1,j ||

)
where µr,j is the centroid of a training ellipsoid of class j in repetition r, (µr+1,j ) is the centroid from the next repetition of class j, R is
the total number of repetitions, and N is the total number of active motion classes.

Mean Absolute Value (MAV): A measure that specifies the average amplitude of the EMG signal.

MAV =
1

N

N∑
j=1

(
1

E

E∑
ch=1

(
1

n

n∑
i=1

|xi,ch,j |

))
where x is the raw EMG signal in the ith data frame, n is the total number of data frames, E is the total number of electrode channels, and
N is the total number of active motion classes.
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VII. APPENDIX: SEPARABILITY METRICS

Separability Index (SI): A measure of interclass distance [12].

SI =
1

N

N∑
j=1

min
i=1,..,j−1,j+1,..,N

1

2
×
√

(µTRj
− µTRi

)′S−1TRj
(µTRj

− µTRi
)

where µTRj
is the centroid of the class j training ellipsoid (includes all repetitions), µTRi

is the centroid of the nearest training ellipsoid
of a different class i, STRj

is the covariance matrix of the class j training ellipsoid, and N is the total number of active motion classes.

modified Separability Index (SI): A measure similar to the separability index, except that it accounts for the covariance matrix of both
distributions being compared [11].

mSI =
1

N

N∑
j=1

min
i=1,..,j−1,j+1,..N

1

2
×
√

(µTRj
− µTRi

)′S−1(µTRj
− µTRi

)

where µTRj
is the centroid of the class j training ellipsoid (includes all repetitions), µTRi

is the centroid of the nearest training ellipsoid
of a different class i, S is the average covariance matrix of the class j covariance STRj

and the class i covariance STRi
, and N is the total

number of active motion classes.

mean within-trial Separability Index (mwSI): A measure of the distinguishability of EMG patterns within a trial.

mwSI =
1

T

T∑
t=1

1

N

N∑
j=1

min
i=1,..,j−1,j+1,..,N

1

2
×
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(µTRj,t
− µTRi,t

)′S−1TRj,t
(µTRj,t

− µTRi,t
)

where µTRj,t
is the centroid of the class j training ellipsoid from trial t, µTRi,t

is the centroid of the nearest training ellipsoid of a different
class i from trial t, STRj ,t is the covariance matrix of the class j training ellipsoid from trial t, T is the total number of trials, and N is the
total number of active motion classes.

Bhattacharyya Distance (BD): A measure of the statistical similarity between two distributions [56].

BD =
1

N

N∑
j=1

min
i=1,...,j−1,j+1,...N

1

8
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− µTRi
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2
ln
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|
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where µTRj

is the centroid of the class j training ellipsoid, µTRi
is the centroid of the nearest training ellipsoid of a different class i, S is

the average covariance matrix of the class j covariance STRj
and the class i covariance STRi

, and N is the total number of active classes.

Kullback-Leibler Divergence (KLD): A measure of how well a distribution can be approximated by a reference distribution [11].

KLD =
1

N

N∑
j=1

min
i=1,...,j−1,j+1,...N

1

2

(
Tr
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S−1TRj
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)
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)−D + ln

(
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|
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|
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where µTRj

is the centroid of the class j training ellipsoid, µTRi
is the centroid of the nearest training ellipsoid of a different class i, STRj

is the covariance matrix of class j, STRi
is the covariance matrix of class i, D is the dimensionality of feature space, and N is the total

number of active classes.

Hellinger Distance (HD): A measure that quantifies the similarity between two probability distributions. The square of the Hellinger distance
avoids the presence of complex numbers when the assumption of normality fails.

HD =
1

N

N∑
j=1

min
i=1,...,j−1,j+1,...N

1−
(|STRi

|)1/4(|STRj
|)1/4

(|S|)1/2
× exp

{
− 1

8
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)
}

where µTRj
is the centroid of the class j training ellipsoid, µTRi

is the centroid of the nearest training ellipsoid of a different class i, S is
the average covariance matrix of the class j covariance STRj

and the class i covariance STRi
, and N is the total number of active classes.

Volume of Overlap Region (VOR): A measure of the degree of overlap between the tails of two class conditional distributions [57].

V OR =
1

N

N∑
j=1

max
i=1,...,j−1,j+1,...N

∏
k

min
(
max(fk|cj),max(fk|ci)

)
−max

(
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)
max

(
max(fk|cj),max(fk|ci)

)
−min

(
min(fk|cj),min(fk|ci)

)
where max(fk|cj) is the maximum value of feature f in dimension k for class label j, max(fk|ci) is the maximum value of feature f in
dimension k for class label i, min(fk|cj) is the minimum value of feature f in dimension k for class label j, min(fk|ci) is the minimum
value of feature f in dimension k for class label i, and N is the total number of active motion classes.
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Feature Efficiency (FE): A measure of the fraction of points separable by a particular feature [57].

FE =
1

N

N∑
j=1

max
i=1,...,j−1,j+1,...N

(
max

k=1,...,D

n(Ci) + n(Cj)− n(Sk)
n(Ci) + n(Cj)

)

Sk = p|p ∈ Ci ∪ Cj ,min
(
max(fk|cj),max(fk|ci)

)
≥ p ≥ max

(
min(fk|cj),min(fk|ci)

)
where Sk is the set of points not separable along feature dimension k, p is a D dimensional data point in class i or class j, max(fk|cj) is
the maximum value of feature f in dimension k for class label j, max(fk|ci) is the maximum value of feature f in dimension k for class
label i, min(fk|cj) is the minimum value of feature f in dimension k for class label j, min(fk|ci) is the minimum value of feature f in
dimension k for class label i,n(Sk) is the cardinality of the overlap set Sk, n(Ci) is the cardinality of the set of points in class i, Ci, and
n(Cj) is the cardinality of the set of points in class j, Cj , and N is the total number of active classes.

Trace of the within-class and between-class Scatter Matrices (TSM): A measure of class discriminability [58].

TSM = Tr
(
S−1w Sb

)
Sw =

1

N

N∑
j=1

(
n∑

i=1

(xi − µj)(xi − µj)′
)

Sb =
1

C

C∑
j=1

(
nj(µj − µ)(µj − µ)′

)
where (Sw) is the within-class scatter matrix, (Sb) is the between class scatter matrix, N is the total number of motion classes, n is the
total number of data frames, x is a data point in class j, (µj ) is the centroid of the class j training ellipsoid, (µ) is the mean of the entire
data set, and nj is the number of data frames in class j.

Desirability Score (DS): A function of the separability index, the mean semi-principal axes, and the repeatability index [55].

DS =
(SI)

(RI)(MSA)

where SI is the separability index defined above, RI is the repeatability index defined in Appendix VI, and MSA is the mean semi-principal
axes defined in Appendix VI.

VIII. APPENDIX: COMPLEXITY METRICS

Class Discriminability Measure (CDM): A measure derived from the adaptive partitioning algorithm in [58] that provides information
about the relationship between clusters in feature space.

CDM =
1

n

M∑
i=1

h(i)−max
j
h(j|i)

where M is the total number of nonhomogeneous and not linearly separable cells, h(i) is the number of samples in the ith analysis cell,
h(j|i) is the number of samples from class j in the ith analysis cell, and n is the total number of samples in feature space.

Purity (PU): A measure derived from the PRISM framework in [59] that assess the homogeneity of the training data. Detailed formulations
and implementation procedures are found in [59].

Neighborhood Separability (NS): A measure derived from the PRISM framework in [59] that focuses on the class decision boundaries by
quantifying the relationship between nearest neighbors. Detailed formulations and implementation procedures are found in [59].

Collective Entropy (CE): A measure derived from the PRISM framework in [59] that represents the accumulated uncertainty in the data
across different resolutions. Detailed formulations and implementation procedures are found in [59].

Compactness (C): A measure derived from the PRISM framework in [59] that provides an estimate of the spread of the data. Detailed
formulations and implementation procedures are found in [59].

Weighted/rescaled versions of PU, NS, CE, and C were calculated by dividing by the maximum possible area under the weighted metric
vs. normalized resolution curve, as described in [59].
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IX. APPENDIX: CLASSIFICATION METRICS

Classification Accuracy (CA): A measure describing the fraction of predictions the classifier labelled correctly calculated using a leave-
one-trial-out cross validation technique [60].

CA =
1

T

T∑
t=1

(
1

n

n∑
i=1

ŷi,t == yi,t

)

Active Classification Accuracy (ACA): A measure describing the fraction of predictions the classifier labelled correctly excluding
misclassifications due to no motion [60].

ACA =
1

T

T∑
t=1

(
1

n

n∑
i=1

(
(ŷi,t == yi,t) OR (ŷi,t == yNM )

))
where where ”==” generates a Boolean value (0 or 1), n is the total number of data frames, T is the total number of trials, ŷi,t is the
predicted class label for data point i, yNM is the no movement class label, and yi,t is the true class label for data point i. where ”==”
generates a Boolean value (0 or 1), n is the total number of data frames, T is the total number of trials, ŷi,t is the predicted class label for
data point i, and yi,t is the true class label for data point i.

Usable Data (UD): A measure describing the percentage of correctly classified decisions over the entire user training period using the
adaptive classifier procedure outlined in Figure 1.

UD =
1

n

n∑
i=1

(
ŷi,t == yi,t

)
where ”==” generates a Boolean value (0 or 1), n is the total number of data frames, ŷi,t is the predicted class label for data point i, and
yi,t is the true class label for data point i.

X. APPENDIX: NEIGHBORHOOD METRICS

Inter-Class Fraction (ICF): A measure describing the ratio of the number of inter-class nearest neighbors to the total number of samples
in the data set [57].

ICF =
1

n

n∑
t=1

(yt 6= ye)

where ”6=” generates a Boolean value (0 or 1), xe is the nearest neighbor calculated using the Euclidean distance to data point xt, ye is the
class label associated with data point xe, yt is the class label associated with data point xt, and n is the total number of data samples.

Intra-Inter Fraction (ICF): A measure describing the ratio of the average euclidean distance of intra-class nearest neighbors to the average
euclidean distance of inter-class nearest neighbors [57].

IIF =

∑n
t=1

(
d(xt,xe) × (yt == ye)

)
∑n

t=1

(
d(xt,xe) × (yt 6= ye)

)
where ”==” and ”6=” both generate Boolean values (0 or 1), d(xt,xe) is the euclidean distance between a data point xt with class label yt
and its nearest neighbor xe with class label ye.


