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ABSTRACT Big Data has gained interests in effectively capturing, storing, analysis and visualisation
from wide range of scientific, economic and business communities and is frequently communicated over
internet for various purposes among government and enterprise sectors sited at different locations. Several
experiments and analyses have shown that currently employed applications and transport protocols in
internet are not suitable for transferring such voluminous data because of not addressing requirements of
low-access latency. This paper presents issues associated with the basic mechanism of legacy protocols
in the context of high speed networks for transferring Big Data e.g. conservative TCP congestion control
mechanism may result in minute utilisation of high bandwidth provisioning networks. We present state-
of-art alternatives proposed in the literature to solve these problems in high speed networks. We compare
several underlying emerging alternatives of TCP, UDP and multi-TCP-streams protocols over a number
of comparison criteria e.g. protocol convergence, responsiveness etc., to handle communication of huge
data. We note that these protocol alternatives have significant importance over fulfilling requirements of
emerging data-intensive applications in high-speed networks. In addition, we discuss open research issues
and challenges that can be explored as a source of motivation towards development and deployment of
data-intensive applications in emerging networking technologies.

INDEX TERMS TCP variants, UDP variants, High speed networks, Long delay networks, Congestion
control, Big data transfer protocols.

I. INTRODUCTION

The evolution of the Internet has made it possible for the
deployment of high speed networks with the increasing use
of data-intensive and high-performance applications, such
as those used in scientific fields e.g. astronomy [1], me-
teorology [2], social computing [3], bioinformatics [4] [5]
and computational biology [6] [7] [8]. The data from these
resource-intensive applications is referred to as ‘Big Data’
that is typically stored (up to several petabytes i.e. 1015 to
exabytes 1018) at remote geographic sites and is frequently
communicated (up to 100Gbps) [9] by the science commu-
nity for visualising and scientific analysis where it requires
predictable and low-latency access to this data. One such

example of storing and communicating this data at remote
geographic sites is among large Cloud data centres consisting
of large volumes of data of various types, such as real time
data, images, and videos captured from different sources etc.

We note that the computer science research community
has made several efforts for transporting such large volume
of data by proposing applications and transport layer pro-
tocols. The transport layer protocols can be broadly cat-
egorised into two categories [10] i.e. connection-oriented,
reliable protocols e.g. Transmission Control Protocol (TCP)
and connectionless, unreliable protocols e.g. User Datagram
Protocol (UDP). During the design of network applica-
tions for enabling high-data rate communication, the design-
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ers/application developers must satisfy requirements of either
of the two transport protocols. These protocols have been
widely adopted for end-to-end communication of data over
the Internet. We note that UDP is an effective protocol for
communicating data over reliable medium e.g. optical fibre,
nodes connected via wired networks etc., however, being
unreliable protocol it is not sensitive to data loss [11] [12]
[13] [14] [15]. The unreliable nature of UDP protocols in
multiple streams within the wireless mesh network has also
been analysed for transmission failures in [16]. The TCP, on
the other hand, achieves reliable delivery of data segments
by flow control, congestion control, and error control, which
ensures that the data segments are received uncorrupted at
the received side. However, it significantly under-utilises the
network bandwidth over high-speed connections with long
round trip times (RTT) [17] [18] [19] [20], when there are
multiple TCP streams [21], or in the presences of DCCP1

protocols during vertical handover [23] for multimedia ap-
plications. In addition, the performance of web applications
that run on TCP over the passively collected data has also
been analysed from an operational network based on wireless
infrastructure [24].

In particular, the ineffectiveness of TCP has made it an un-
suitable transport layer protocol for high-speed connections
with longer RTT networks due to its slow start and basic
congestion control mechanism. For example, considering the
basic slow start and congestion control mechanisms, TCP
increases its congestion window by one packet and reduces
it by half during a loss event. For example, over 10Gbps
link, 100ms RTT, and 1500-byte packets, TCP would require
83,333/2 RTTs to increase its window from half utilisation
to full utilisation and it would require that there should be
no loss event for approximately 1hr. This suggests that TCP
can achieve theoretical limit of network’s bit error rate of no
more than one loss event per 2.6 × 109 packets transfer [17]
[18]. Furthermore, following are few difficulties that lead
to poor TCP performance in large bandwidth-delay product
networks: First, the linear increase in TCP by one packet per
RTT is too slow while multiplicative decrease for each loss
event is too severe. Second, in order to maintain large average
congestion window for good throughput, TCP requires to
experience extremely low loss rates. Third, since the basic
TCP mechanism considers a loss event as a packet loss,
hence it is difficult to avoid congestion window oscillation
since it would always reduce the congestion window to half.
Furthermore, these congestion window oscillations require
an accurate estimation of packet loss probability, which is
missing in the current deployment of basic TCP.

Several works have modified the basic working mecha-
nisms of these transport layer protocols i.e. UDP and TCP,

1Datagram Congestion Control Protocol (DCCP) is a feedback scheme
that gathers context for change in transmission state (e.g. during vertical
handover); implemented via explicit handover notifications and exchange of
link parameters using Link Characteristic Information (LCI) option for Mo-
bile IP [22], and timely negotiates and determines transmission parameters
for reusing transmission between the end nodes during the handover process.

introducing their different variants for efficient high-speed
data transfer communication. These enhancements for en-
abling high-speed communication can be grouped into three
categories: The TCP variants, such as, Scalable TCP [19],
Binary Increase Congestion Control (BIC)-TCP [25], CU-
BIC [26], High Speed TCP (HSTCP) [18], FAST-TCP [9],
TCP Westwood (TCPW) [27] and eXplicit Control Protocol
(XCP) [28]. The UDP protocols, such as, Reliable Blast
UDP (RB-UDP) [29], UDP based Data Transfer Protocol
(UDT) [30] [14], Performance-Adaptive UDP (PA-UDP)
[31], in addition to, the two application layer protocols
that use UDP as transport layer protocols are Tsunami [32]
and Fast and Secure Protocol (FASP). In addition, there
are several data transfer application layer protocols that use
multiple simultaneous TCP streams, such as GridFTP [33],
Fast Data Transfer (FDT) and BaBar Copy (BBCP).

In this article we highlight the background theory and
implementation of each of above enhancements to transport
protocols, in particular, how these protocols improve the flow
control and congestion control mechanisms to enable speedy
transfer of data over high-speed connections with long RTT
networks. We discuss the under-utilisation of the network’s
resources in high-bandwidth delay networks due to the slow
growth of TCP congestion window, slow-start that creates
network congestion and the effect of congestion avoidance
phase and the harsh penalty over loss events. Furthermore,
we present a comprehensive comparison of the performance
of different variants of transports protocols that have been
evaluated in the literature. We believe that this article is
the first that conducts a comprehensive survey of protocols
proposed for bulk data transfer in the light of literature work
demonstrated so far. In addition, this work will provide de-
tailed discussions and new research directions over emerging
TCP alternatives that try to solve problems associated with
large round trip times due to its slow-start mechanism in the
context of very high speed networks for high performance
networking applications.

We analyse various transport layer protocols for the fol-
lowing performance parameters: the Congestion control i.e.
used to adjust the data transmission rate as a response to
segment loss, RTT unfairness (i.e. identifying multiple flows
with different RTTs that consume unfair bandwidth share);
the Inter-protocol fairness requires that, between two dif-
ferent protocols, one protocol’s flow does not receive larger
share of the network bandwidth than a comparable flow of
another protocol; the Intra-protocol fairness i.e. requires that
two flows of the same protocol equally share the available
network bandwidth, TCP friendliness i.e. requires that a new
protocol equally shares the network than a comparable TCP
flow. We further evaluate these protocols for the following
performance metrics: Throughput i.e. the rate of successful
data delivery over a communication channel, End-to-end
delay i.e. the time taken for a packet to be transmitted
across a network from source to destination, Packet loss and
Jitter i.e. variations in latency in the variability over time of
packet latency across a network. Furthermore, we compare
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various protocols for their capabilities over how are these
protocols are Easy to deploy, Stability i.e. the convergence
of a protocol to its equilibrium, Bandwidth scalability i.e.
maximum utilisation of bandwidth of high-speed networks,
Responsiveness i.e. ability to complete tasks within given
time, and Protocol convergence i.e. the ability of a protocol
to gather information about the link state in which it operates.
In addition, we evaluate these protocols for their commercial
usage.

This paper provides the following main contributions:
• To present an outline of research conducted thus far

for various transport layer protocols designed for high-
speed connections with long RTT

• To investigate issues associated with basic mechanism
of TCP specific to its operation in high-speed networks

• To present detailed reviews and classification of various
transport layer protocols used for transferring bulk data
in high speed networks

• To provide detailed comparison of transport layer proto-
cols with their application to data transfer in high speed
networks

• To summarise key findings by various works in litera-
ture using different evaluation criteria for various TCP
and UDP variants and for protocols with multiple TCP
streams

• To discuss open issues in requirements of new variants
of transport layer protocols specific to their application
for multimedia applications and high-speed wireless
access networks

The rest of the paper is organised as follows: Section II
presents various mechanisms necessary for reliable end-to-
end communication. Section III discusses issues related to
fast data transmission using TCP in high-speed networks
i.e. issues associated with slow-start, congestion avoidance
phase and the harsh penalty over loss event. Various solutions
to these issues using TCP are discussed in Section IV. The
application layer protocols that use multiple simultaneous
TCP streams for enabling high data transmission are dis-
cussed in Section V. Section VI presents the reliable UDP-
based data transport protocols that have been proposed as an
alternative for enabling reliable data transmission based on
UDP protocols. Section VII presents comprehensive analysis
of different variants of TCP, protocols that use multiple
simultaneous TCP streams and UDP-based reliable protocols
in the light of critical investigations by previous research
works. Future research directions are discussed in Section
VIII. Finally conclusion is presented in Section IX.

II. BACKGROUND
TCP is a connection-oriented transport layer protocol that
assures end-to-end reliable communication of data segments
with the help of its various mechanisms. These basic mech-
anisms include the flow control, congestion control, and
error control that work closely to facilitate reliable delivery
of data segments. TCP is used for non-real delay tolerant
applications, such as file transfer, accessing a website etc.

Our focus is to review and compare the performance of newer
versions of TCP i.e. TCP Reno that is by far most widely
deployed, in conjunction with the modifications suggested
to basic mechanism of TCP for bulk data transfer in high-
bandwidth networks.

A. FLOW CONTROL
To implement flow control i.e. to ensure smooth data trans-
mission rate by not overwhelming a slow receiver, TCP uses
a sliding window protocol that uses three sliding windows;
specifically they are advertised window, congestion window,
and transmission window. These window slides are adjusted
based on mutual coordination between the sender and re-
ceiver for the number of segments sent to the receiver, e.g.
receiver notifies the sender in the advertised window for the
number of segments that receiver can receive in the next
transmission cycle. The advertised window helps receivers
to avoid buffer overflow that the receivers calculate, which
is based on the available buffer size to accept subsequent
data segments. The sender decides the congestion window
i.e. maximum number of data segments that the sender can
send without causing congestion in the network, based on the
feedback from the network. Similarly, transmission window
is the minimum of advertised window and congestion win-
dow in order to respectively avoid receiver buffer overflow
and the network congestion.

B. CONGESTION CONTROL
The TCP congestion control algorithm was proposed in [34]
and standardised in RFC 5681. To implement congestion
control i.e. to adjust the data transmission rate as a re-
sponse to segment loss, TCP uses slow-start, congestion
avoidance and fast recovery mechanisms. During the slow-
start phase, TCP-sender sets the initial size of congestion
window (i.e. cwnd) to one maximum segment size (MSS)
and exponentially increases this window size upon reception
of the corresponding ACKs i.e. congestion window extends
in 1, 2, 4, 8, ... data segments, also illustrated in Figure 1
(a) [10]. It undergoes the congestion avoidance phase after
the cwnd reaches the slow-start threshold (i.e. ssthresh)
where it linearly increases the size of the congestion window.
During the timeout it restarts the slow-start mechanism where
the TCP-sender sets the ssthresh to half of the current
transmission window size and the congestion window to
1MSS. This mechanism is called the Additive Increase and
Multiplicative Decrease (AIMD) algorithm [34]. Similarly,
it enters the fast recovery mode after every duplicate ACK
is received where the cwnd is increased by 1MSS. Further-
more, TCP enters the congestion avoidance phase when it
receives an ACK for the missing segment or it transits to
slow-start state if a timeout occurs. During these transitions,
TCP sets the cwnd to ssthresh for congestion avoidance
and ssthresh to half of cwnd for slow-start phase. The
description of TCP congestion control algorithm is illustrated
in detail using FSM (Finite State Machine), shown in Figure
1 (b) [10].
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MSS, and thus, the value of the congestion window will have increased by one MSS
after ACKs when all 10 segments have been received.

But when should congestion avoidance’s linear increase (of 1 MSS per RTT)
end? TCP’s congestion-avoidance algorithm behaves the same when a timeout
occurs. As in the case of slow start: The value of cwnd is set to 1 MSS, and the
value of ssthresh is updated to half the value of cwnd when the loss event
occurred. Recall, however, that a loss event also can be triggered by a triple dupli-
cate ACK event. In this case, the network is continuing to deliver segments from
sender to receiver (as indicated by the receipt of duplicate ACKs). So TCP’s behav-
ior to this type of loss event should be less drastic than with a timeout-indicated loss:
TCP halves the value of cwnd (adding in 3 MSS for good measure to account for
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FIGURE 1: TCP slow-start (a) and FSM description of TCP congestion control (b) [10].

Figure 2 illustrates comparative analysis of two versions
of TCP’s congestion window i.e. TCP Tahoe and TCP Reno,
in this example, the ssthres is 8MSS. In the beginning of
transmission, both TCP Tahoe and TCP Reno exponentially
increase the congestion window during the slow-start until
they hit the threshold at the forth round of transmission. The
congestion window is linearly increased until three duplicate
ACKs are observed by the TCP-sender, during the 8th trans-
mission round (note that the congestion window at this stage
is 12MSS). At this stage, the ssthresh is set to half of
cwnd i.e. 6MSS. Now, TCP Reno sets the cwnd = 6MSS
and grows linearly, alternatively, TCP Tahoe sets the cwnd
= 1MSS and starts growing exponentially until it reaches the
ssthresh, at which point it starts growing linearly.
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FIGURE 2: Evolution of TCP’s congestion window (Tahoe
and Reno) [10].

The authors in [35] divide the existing congestion con-
trol algorithms in three groups i.e. loss-based algorithms

(e.g. TCP Reno [36], NewReno [37], High Speed-TCP [18],
Hamilton-TCP [38], Scalable TCP [19], TCP Westwood
(TCPW) [39] [27], TCP Westwood+ (TCPW+) [40], TCPW-
A [41], and LogWestwood+ [42]), delay-based algorithms
(such as TIMELY [43] or LoLa [44]), and hybrid algorithms
(e.g. Bottleneck Bandwidth and Round-trip time (BBR) [45])
and study their interactions. The authors find various fairness
issues among the flows with diverse RTTs during shar-
ing bottleneck links, more specifically, the delay-based and
hybrid algorithms result in lower performance when com-
peting for flows compared to loss-based algorithm. Hence,
the selection of delay-based and hybrid will result in low
network performance (i.e. un-fair share of the available band-
width, longer delays, and packet loss) when majority of the
flows rely on the selection of loss-based congestion control
algorithm. In addition, the authors notice that the hybrid
algorithms, such as BBR, result in lower queueing delay with
flows of higher RTT.

Classification of various congestion control algorithms,
i.e. loss-based, delay-based, and hybrid, is shown in Figure
3. The conservative nature of majority of the loss-based
algorithms to loss detection events and packet loss has greatly
improved the TCP-fairness issues e.g. Binary Increase Con-
gestion Control (BIC) [25] TCP Hybla [46]. Such protocols
guarantee fair share of the bottleneck link for flows with
smaller RTTs due to introducing the congestion window size
function; detailed discussion is given in Section IV-B.

Other examples: Random Early Detection (RED) [47] and
Explicit Congestion Notification (ECN) [48] are the two
other types of congestion control mechanisms:
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when buffers are full, the network node has to drop packets.

Increasing buffer size will not improve the performance of the

network and instead will lead to bufferbloat, i.e., the formation

of queues in the network devices that unnecessarily add delay

to every packet passing through [4].

Inflight data [bits]

RTT [ms]

maximum
queueing
delay

Queuing in the node(s)

no
queueing

RTTp.

Inflight data [bits]

Delivery rate [Mbps]

BwBtl.

Maximum delivery rate

Optimal point

Optimal point

Fig. 2: Effect of the amount of packets sent on the RTT (top)

and delivery rate (bottom). Based on [1], [38].

Congestion control algorithms exploit the fact that packets

arrive at the receiver at a rate the bottleneck can support

(maximum delivery rate). Upon reception of a packet, the re-

ceiver informs the sender by sending an ACK. The congestion

control algorithm of the sender based on the spacing and/or

the reception of these ACKs, estimates the current state of the

network. If the algorithm detects that the network is congested,

it will back-off, and switch to a more conservative approach.

Otherwise, if a congestion-free state is detected, the algorithm

will increase the sending rate to probe for more resources.

III. BACKGROUND

Since the original TCP specification (RFC 793 [5]), nu-

merous congestion control algorithms have been developed.

In this paper, we focus mostly on the algorithms designed

for wired networks. They can be used by both QUIC and

TCP and they can be divided into three main groups (see Fig.

3): (1) loss-based algorithms detect congestion when buffers

are already full and packets are dropped, (2) delay-based

algorithms rely on Round Trip Time (RTT) measurements and

detect congestion by an increase in RTT, indicating buffering,

and (3) hybrid algorithms use some combination of the other

two methods.

A. Loss-based algorithms

The original congestion control algorithms from [5] were

loss-based algorithms. TCP Reno was the first that was widely

deployed. With the increase in network speeds, Reno’s con-

servative approach of halving the congestion window became

an issue. TCP connections were unable to fully utilize the

available bandwidth, so that other loss-based algorithms were

proposed, such as NewReno [6], Highspeed-TCP (HS-TCP

[7]), Hamilton-TCP (H-TCP [8]), Scalable TCP (STCP [9]),
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Fig. 3: Classification of different congestion control algo-

rithms. Dotted arrows indicate that one was based on the other.

Westwood (TCPW [10]), TCPW+ (TCP Westwood+ [11]),

TCPW-A [12], and LogWestwood+ [13]. They all improved

upon Reno by including additional mechanisms to probe

for network resources more aggressively. They also react

more conservatively to loss detection events, and discriminate

between different causes of packet loss.

However, these improvements also came with RTT-fairness

issues [14], [15]. Indeed, when two flows with different RTTs

share the same bottleneck link, the flow with the smaller RTT

is likely to obtain more resources than other flows. This is due

to the algorithm used to discover resources, i.e., the congestion

window size function. If it depends on RTT, flows with smaller

RTTs probe for resources more often, and thus claim more

resources. For example, calculations showed that an HS-TCP

flow with x times smaller RTT will get a network share that
is x4.56 times larger than the network share received by the
flow with a higher RTT [16], [14].

To address this issue, BIC [14] and Hybla [15] were pro-

posed. Hybla modified NewReno’s Slow Start and Congestion

Avoidance phases and made them semi-independent of RTT.

However, the achieved RTT-fairness meant that flows with

higher RTTs behaved more aggressively. As loss detection

time is proportional to RTT, these aggressive flows congested

2

FIGURE 3: Classification of different congestion control
algorithms. Dotted arrows indicate that one was based on the
other [35].

1) Random Early Detection (RED)
The RED [47] is a gateway-based congestion control mecha-
nism that detects congestion at initial stage of data transmis-
sion and notifies the TCP sender by computing the gateway’s
average queue size. The congestion notification is caused
by either dropping or marking the arriving segments at the
gateway (router). The router, with certain probability, sets
the mark on the segment or drops it after router’s average
queue exceeds the preset threshold. The TCP sender in re-
sponse reduces the transmission rate. This mechanism works
as follows: Let the avg and q respectively be the router’s
average and current queue size, then avg = (1− wq) ∗
avg + wq ∗ q, where wq is the queue weight. The avg queue
size is compared with two queue thresholds i.e. minimum
minth and maximum maxth thresholds. A data segment is
marked if the avg queue size is greater than the maximum
threshold; otherwise, no packets are marked. Note that the
data segments are dropped only if the TCP-sender is not
cooperative. This process ensures that the average queue size
does not exceed the maximum threshold. Furthermore, if the
avg queue size is between the minth and maxth thresholds

then each arriving segment is marked with probability pa.
The data segment-marking probability pb is calculated as
pb ←

(
maxp (avg −minth)/(maxth −minth)

)
when the

avg varies between the minth and maxth, where maxp is
the maximum value for pb. The final segment-marking prob-
ability pa is calculated as pa ← pb/(1− count · pb), count
is the number of segments arrived since the last segment
marking/dropping. Consequently, if pa = 1 then each newly
arriving packets are dropped. Hence, RED prevents conges-
tion at the gateway and improves fairness by controlling the
average queue size before the queue overflows. This work is
further extended by a number of researchers [49] [50] [51]
[52] to improve the basic functionality of RED.

2) Explicit Congestion Notification (ECN)
The Active Queue Management (AQM) mechanisms, such
as RED [47], detect congestion before the queue overflows at
the router, thus avoiding the global synchronisation problem
and heavy network congestion. However, the only choice
with these queue management systems is to drop the data
segments that might cause higher end-to-end delay and bad
user experience. The ECN [48] presents an alternative by
allowing both the TCP-senders and TCP-receivers of the con-
gested network participate in avoiding network congestion;
requiring changes both at the IP and TCP headers. To enable
ECN, it uses ECN field with two bits in the IP layer header.
The ECN-enabled router can send congestion indication to
the end systems. Similarly, it introduces two flags in the
TCP header that both the TCP-sender and TCP-receiver
negotiate to enable congestion indications via ECN, during
the connection establishment. Hence, the TCP-receiver can
also inform the TCP-sender of the network congestion if it
has received congestion notifications from the intermediate
routers.

C. ERROR CONTROL
To implement error control i.e. enabling reliable communi-
cation over unreliable channel, TCP uses acknowledgement
mechanism implemented via sequence number to achieve
reliable data delivery. On receiving the ACK segment, the
sender confirms that the previously sent segments have
been successfully received by the receiver. For example, if
segments up to n − 1 have reached the receiver then the
ACK would indicate the successful arrival of n sequenced
data segments. TCP uses duplicate ACK if an out-of-order
segment arrives at the receiver. The out-of-order segment is
considered as segment loss; however, the sender retransmits
the same segment after it receives three duplicate ACKs. In
addition, the sender assumes segment loss if ACK for a partic-
ular segment is not received with the Retransmission Timeout
(RTO) interval. The TCP-sender dynamically calculates the
RTO as the estimated Round Trip Time (RTT).

There are several representative works to implement error
control, such as Fast Transmissions and Fast Recovery [53],
and Selective Acknowledgements [54].
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1) Fast Retransmission and Fast Recovery
This scheme [53] offers a fast retransmission of the lost
segment after the TCP-sender receives three duplicate ACKs
that allows TCP to avoid long timeouts. During the fast
retransmission, it sets the ssthresh to half of the cwnd
and the cwnd is set to ssthresh with additional three
segments. Furthermore, it undergoes fast recovery when an
ACK is received approximately one RTT after the missing
segment is retransmitted. During this phase, it sets the cwnd
to ssthresh instead of setting up the cwnd to one segment.
The TCP-sender then undergoes the congestion avoidance
phase. Note that during the fast retransmission and fast
recovery only one segment can be recovered, however, it may
require that RTT expires before retransmission for additional
segment losses in the same window.

2) Selective acknowledgment
The Fast Retransmission and Fast Recovery [53] might ex-
perience low performance due to its limitation of recovering
multiple segments that are lost in one window, hence, to
overcome this limitation the Selective Acknowledgement
(SACK) [54] has been proposed that recommends the use of
SACK option as an addition to the basic TCP. The use of
SACK option is decided between the TCP-sender and TCP-
receiver during the connection establishment process. The
SACK option contains four or three blocks that specify the
adjacent segments of received data. In multiple segments loss
occurrences in a particular window, the SACK-enabled TCP
sender can evaluate and retransmit the lost segments with the
information provided in SACK blocks.

In the following section, we present various issues specif-
ically associated with the basic mechanism of TCP in high-
speed networks that restrains it to achieve better performance
in terms of high throughput, low loss rate, and low end-to-end
delay.

III. TCP ISSUES IN HIGH SPEED NETWORKS
The congestion control mechanism of TCP creates severe
problems when transferring huge data in high-speed data
communicating environments. Some of these problems are
discussed below.

A. TCP SLOW START PHASE PROBLEMS
Following are the two problems associated with the TCP
slow-start:

a: Initial Value of Slow Start is too small
In the beginning of every connection, TCP utilises slow-start
phase in which the initial congestion window size of 1MSS is
doubled for every ACK received. This small initial value of
congestion window results in TCP to slowly probe for more
throughput and increases time for TCP to utilise the large
bandwidth that is available to it [10]. This works fine for
controlling the congestion in regular networks, however in
high-speed data communicating environments, it slows down

the connection and is inefficient for transferring huge data at
high speed.

b: Slow Start creates Network Congestion and results in
packet loss
At the start of a new TCP connection, the sender does not
know the proper congestion window for the path. It starts
with 1MSS (as mentioned above) and exponentially increases
the window size. It keeps on doubling the window size until
the congestion window reaches a threshold ssthresh, at
which point TCP converts to a linear increase of the con-
gestion window (i.e. congestion avoidance phase), or when
packet loss occurs. The performance of Slow Start is sensitive
to the initial value of ssthresh. If ssthresh is too low,
TCP may need a very long time to reach the proper window
size, while a high ssthresh can cause significant packet
losses, resulting in a timeout that results in very low effective
throughput [55] [56] [57].

B. PROBLEM WITH AIMD PHASE (CONGESTION
AVOIDANCE PHASE)
The AIMD phase is inefficient to sustain data transfer be-
tween cloud data centres. It is considerably slow in linearly
increasing the congestion window size compared to the ex-
ponentially increasing Slow Start. This was implemented to
tame the aggressive nature of traditional TCP when conges-
tion occurs [58] however, this slow increase to high window
size is not suitable for fast bulk data transfer in a cloud
computing.

C. PENALTY OF PACKET LOSS IS HARSH
Another issue with TCP is that it reduces congestion window
size by half or resets the congestion window to 1MSS after
detecting a packet loss (depending on the packet loss event).
This reduction is required for congestion control however,
it results in small window size which reduces the effective
throughput and is inefficient for fast bulk data transfer [58].

We note that these various issues with basic TCP are
among various motivating factors that researchers have pro-
posed various variants of transport layer protocols. We argue
that these issues should be addressed during the design of
protocols used for transporting data-intensive applications in
high-speed networks, in order to achieve better performance
in terms of throughput, end-to-end delay etc.

IV. SOLUTIONS TO IMPROVE TCP PERFORMANCE IN
HIGH-SPEED NETWORKS
We now classify various solutions proposed in literature
for enhanced communication of voluminous data over high-
speed communicating network i.e. TCP variants, multiple
simultaneous TCP streams and UDP variants. We first start
with various variants enhancements to basic TCP.

A. SCALABLE TCP (STCP)
The STCP is a sender side modification to the congestion
avoidance phase of the TCP congestion control mechanism
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[59] [60] [19]. It uses Multiplicative Increase and Multi-
plicative Decrease (MIMD) algorithm instead of Additive
Increase and Multiplicative Decrease (AIMD) used by TCP.
The increase in congestion window can be calculated as
cwnd = cwnd + a ∗ cwnd where a = 0.01. Similarly
the decrease in congestion window is given as cwnd =
cwnd − b ∗ cwnd where b = 0.01. Figure 4 illustrates and
compares the congestion window of a single connection using
traditional TCP and STCP over a link of capacity c [19].
Note that the recovery time form the packet loss event for
STCP connection is proportional to the connection’s window
and RTT, which allows the STCP to perform better than the
traditional TCP in high speed networks.

During the event of a segment loss, the cwnd is reduced to
half of its previous value instead of reducing it to 1MSS. This
results in higher throughput compared to basic TCP. It has
been shown, using extensive experimentations, that STCP
outperforms the basic TCP during the events of segment
loss. For example, STCP, during the segment loss event,
over a 10Gbps link with 200ms delay and the packet size
of 1500bytes [61] takes only 2.7sec to recover the segment
loss. Alternatively, basic TCP experiences extensive delay
of 4hrs 43min to recover the segment loss and resumes
communication.

In addition, we note that STCP, due to multiplicative
increase, effectively performs with the higher sizes of con-
gestion windows i.e. cwnd of more than 100MSS, since
a = 1/100. Hence, although it has solved the issue of
linearly increasing the congestion window during the con-
gestion avoidance phase of AIMD, it does not solve the slow
start issue associated with basic TCP, as discussed in Section
III-A.

B. BINARY INCREASE CONGESTION CONTROL
(BIC)-TCP

TCP, due to its recovery from the congestion events, might
not utilise the full bandwidth of a high-speed network. The
BIC-TCP [25] takes into consideration two properties: TCP
friendliness i.e. avoids taking too much bandwidth from TCP
flows, and bandwidth scalability i.e. maximum utilisation of
bandwidth of high-speed networks. This BIC-TCP prevents
the RTT unfairness by identifying multiple flows with differ-
ent RTTs that consume unfair bandwidth share. It introduces
a new congestion control mechanism that consists of two
schemes i.e. additive increase and binary search increase.
This mechanism provides RTT fairness, scalability and TCP-
friendliness among multiple TCP flows.

The result of the binary search increase is the true/false
feedback to implement the congestion control, which deter-
mines whether the current sending rate is according to the
network capacity. It calculates the minimum window wmin

(i.e. current sending rate) as the window size before any
packet loss occurs, while the maximum window wmax is the
window size during when the packet loss occurs. The target
window wt arg et, after a congestion event, is calculated using

the binary search as the midpoint of wmin and wmax i.e.

wt arg et = (wmin + wmax)/2 (1)

The BIC-TCP promises faster convergence and RTT fair-
ness, in the event of network congestion, by combing the
binary search increase with the additive increase strategy.
The combination of these two strategies works in the fol-
lowing conditions: If the distance of wtarget from wmin is
too large then directly setting up the wt arg et to the midpoint
might still have no effect over controlling the congestion
and the network might still experience congestion. Hence,
it introduces another predetermined increment, called the
‘maximum increment’ Smax, and sets the ‘current window’
to Smax. Thus, subsequent to a large window reduction, this
strategy first increases the window linearly and then increases
logarithmically.

It has been reported [62] that BIC-TCP provides good
performance in terms of throughput than the basic TCP.
Furthermore, it solves the slow start issue with the high-
speed network by setting up the current window to Smax

instead of 1MSS, as is the standard operation in the basic
TCP.

Another study, CUBIC-TCP [26], provides an enhance-
ment to BIC’s window growth function, which is too aggres-
sive for TCP in the current high speed networking environ-
ment and because of its complexity due to several different
phases of window control. Hence, it makes BIC window
control simpler and enhances its TCP friendliness and RTT
fairness by use of a function evaluated for time elapsed since
the most recent occurrence of a loss event. It determines the
congestion window as:

wcubic = C(t−K)
3
+ wmax (2)

Here C is a scaling factor, t is time elapsed since the
last loss event, wmax is the window size at t, and K =
3

√
wmaxβ/C, here β is a decrease factor applied for window

reduction at t.
Figure 5 shows the window growth function of BIC (up-

per) and CUBIC (lower). It can be observed in Figure 5
(lower part) that the growth function grows fast until it
reaches wmax where it slows down its growth and the incre-
ment approaches almost zero. At this stage, CUBIC starts
probing for additional bandwidth, starts growing window
and accelerates its growth and moves away from wmax.
Alternatively, in Figure 5 (upper part), BIC carries out a
binary search over wmin and wmax and calculates midpoint,
which could be too much within an RTT and would affect
other TCP flows.

C. HIGH SPEED TCP (HSTCP)
HSTCP [18] presents optimisation over the basic TCP for
high data rate networks. It maintains two congestion win-
dows i.e. minimum congestion window Lwin and maximum
congestion windowsHwin. It dynamically calculates the new
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where a is a constant with 0 < a < 1. Further, on the first detection of congestion in a given
round trip time, the congestion window is altered by

cwndr �→ cwndr − �b ∗ cwndr� (6)

where b is a constant with 0 < b < 1. Figures 1 and 2 illustrate the congestion window dynamics
of a single connection using traditional TCP or Scalable TCP over a dedicated link of capacity c
or C (c < C). Packet loss recovery times for a traditional TCP connection are proportional to
the connection’s window size and round trip time. A Scalable TCP connection has packet loss
recovery times that are proportional to the connection’s round trip time only; this invariance to link
sizes allows Scalable TCP to outperform traditional TCP in highspeed wide area networks. The
scaling property applies for any choice of the constants a and b; implementation and deployment
constraints determine these constants. The use of a = 0.01 and b = 0.125 will be motivated by
considering Scalable TCP’s impact on legacy traffic, bandwidth allocation properties, flow rate
variance, convergence properties, and control theoretic stability.

3.1 Response curve and bandwidth allocation

A congestion window update algorithm relates the congestion window size to the end-to-end
signaling rate through a response curve. The generalized Scalable TCP algorithm has a response
curve that can be approximated for small end-to-end drop rates by2

cwndr ≈ a
b

1
Pr

(7)

The traditional TCP response curve [14] can be approximated for small end-to-end drop rates by

cwndr ≈ 1.5
Pr

(8)

2This can be derived by considering the congestion window size at equilibrium through a differential equation
model of cwnd or the expectation of a stochastic model of cwnd.

4

FIGURE 4: Traditional TCP scaling properties (left) Vs. Scalable TCP scaling properties [19].
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FIGURE 5: The Window Growth Function of BIC and CU-
BIC [26].

cwnd during each RTT. When the congestion window is less
than the Lwin then it calculates the response function W for
the new congestion windows as:

W =
(
p/plow

)S
∗ Lwin (3)

Here p is the packet drop rate, plow is the drop rate
corresponding to Lwin and S is calculated as:

S = (log (Hwin)− log (Lwin))/(log (phigh)− log (plow))
(4)

We note that the HSTCP (i.e. High Speed TCP) is proposed
for large congestion windows, since the response function
W can only work when the congestion window increases
to certain high value. It has also been evident [18] [63] that
HSTCP works similar to the basic TCP in a high packet loss
networks. Furthermore, it does not utilise the full bandwidth
of high speed networks during its slow start mode.

D. FAST-TCP
FAST-TCP [9] introduces another criterion for reporting the
congestion event i.e. based on queuing delay instead of
packet loss. The congestion control mechanism of FAST
TCP consists of the following four components that work
independently and can be upgraded asynchronously: The
data control component that determines packets in the queue
to be transmitted, the window control that determines the
number of packets to be transmitted, the burstiness control
that determines the time at which these packets are sched-
uled for sending to the receiver and finally, the estimation
component that provides information for carrying out above
decisions. It calculates the number of packets inside the
queue by measuring the difference between the current RTT
and the exponential weighted average RTT.

Experiments [20] [9] have shown that FAST-TCP achieves
higher throughput compared to basic TCP. The limitation,
however, with the FAST-TCP is due to re-routing. Since
FAST-TCP uses an estimated RTT to adjust its window size,
hence during the re-routing, it is very important for a FAST-
TCP connection to be able to have an accurate estimation of
the RTT. We note that re-routing may change the RTT esti-
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mation and the new rate may result in decreased throughput
and longer delays. Such issues of re-routing is also presented
in the other delay based TCP variants e.g. TCP Vegas [64].

E. TCP WESTWOOD (TCPW)
TCPW [27] is an improved version of TCP Reno that is
a sender-side modification of the TCP congestion control
mechanism with improved performance in high loss envi-
ronment. It constantly evaluates the sender TCP bandwidth
consumption by monitoring the ACKs reception rate. It then
uses this estimation in calculating the cwnd and the slow
start threshold in the congestion events i.e. either after the
occurrence of three duplicate ACKs or a timeout, that helps
in determining the data to be delivered to the destination; the
authors call this mechanism the fast recovery. The experi-
mental evaluations discussed in [27] have shown that TCPW
can effectively coexist with TCP Reno and provides better
TCP fairness and friendliness. Such an example of improved
performance of gaining higher throughput of TCPW over
TCP Reno in different geographical regions is shown in Table
1.

Destination Italy Taiwan Brazil
RTT 170ms 250ms 450ms

Protocol TCPW Reno TCPW Reno TCPW Reno
Throughput (KB/s) 78.66 73.93 167.38 152 22.16 15.4

TABLE 1: Internet throughput measurements [27].

F. EXPLICIT CONTROL PROTOCOL (XCP)
XCP [28] is an enhancement to TCP’s basic congestion
control mechanism in the environment of high bandwidth-
delay e.g. fulfilling communication requirements of high
bandwidth optical links, and large delay satellite links. It
outperforms TCP and further remains fair and stable as
the bandwidth-delay product increases. XCP generalises the
Explicit Congestion Notification proposal (ECN) [65], which
uses one bit congestion indication for informing routers about
the congestion, conversely, the XCP-enabled routers inform
the senders about the degree of congestion at the bottleneck.

The XCP protocol works as follows: The XCP-sender
maintains and sends the cwnd and RTT to the XCP-routers
via congestion header in every packet. The congestion
header maintains information about the current congestion
window Hcwnd, the sender’s current estimated RTT HRTT

and feedback Hfeedback that takes positive or negative value
and is initialised by the XCP-sender. The Hcwnd and HRTT ,
are filled by the senders and are never modified during the
communication, the Hfeedback, on the other hand, can be
modified by the router. The Hfeedback is calculated based on
theHcwnd andHRTT so that the system converges to achieve
fairness. Hence, the packet will contain the Hfeedback from
the bottleneck router along the path, which is then returned
to the XCP-sender. The cwnd is increased or decreased and
is calculated based on the Hfeedback i.e.

cwnd = max (cwnd+Hfeedback, s) (5)

Here s is the packet size. Furthermore, the XCP-receiver
has the same functionality as TCP-receiver, except that it
attaches the congestion header to the ACK of a received data
packet.

Table 2 summarises various aspects of six different TCP
variants discussed above. In particular, this table highlights
the protocols capabilities of providing TCP friendliness,
intra-protocol fairness and their usage. It also highlights is-
sues associated with each protocol that may lead to inefficient
performance resulting in lower throughput, high end-to-end
delay and severe packet loss.

V. DATA TRANSFER APPLICATION LAYER PROTOCOLS
USING MULTIPLE SIMULTANEOUS TCP STREAMS
Intensive data transferring applications e.g. distributed sci-
entific and engineering applications, require access to and
transfers of large amounts of data (in terabytes or petabytes)
between storage systems that are geographically distributed
for processing, such as analysis, visualisation etc. There are
several application layer protocols proposed, which utilise
multiple simultaneous TCP streams, for overcoming the basic
problem of TCP (i.e. due to slow-start mechanism) with
transferring huge amount of data e.g. GridFTP [33], FDT
[68], BBCP [69] etc. In this section, we discuss the basic
mechanism of these data transfer application layer protocols.

A. GRIDFTP
GridFTP is an open-source software implementation, which
provides extensions to FTP for a grid computing environ-
ment. GridFTP supports automatic negotiation of TCP buffer
sizes both for large files and large sets of small files. GridFTP
achieves better use of bandwidth by using multiple simul-
taneous TCP streams. It helps to download either pieces
of files simultaneously from multiple sources or even in
separate parallel streams from the same source. It provides
other enhancements in FTP, such as, data striping and TCP
socket buffer optimisation. To enable reliability, the GridFTP
server automatically sends restart markers (checkpoints) to
the client. If the transfer has a fault, the client may restart
the transfer and provide the markers received. The server
will restart the transfer, picking up where it left off based
on the markers [70] [33]. GridFTP has shown to provide
better throughput than FTP [71]. Experiments carried out in
[71] show that GridFTP provides much higher throughput
than FTP. Similarly, results in [72] show higher throughput
is obtained by GridFTP when TCP Cubic is used at the
transport layer. GridFTP uses TCP at the transport layer and
suffers from the problems in TCP mentioned in the section
above. However, it has shown reasonable improvement with
the use of other TCP variants like TCP Cubic [72]. Also,
UDT (discussed later), a UDP based protocol is used with
GridFTP to improve the transmission rate [73] [74].

B. FAST DATA TRANSFER (FDT)
FDT is based on an asynchronous, flexible multi-threaded
system and is written in Java programming language. It
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TCP Intra
Issues UsageProtocol

Friendliness Fairness
STCP Yes Yes Only effective with cwnd ≥ 100MSS Open Source, No Commercial Use
BIC-TCP Yes Yes Growth function is too aggressive for

TCP and high complexity due to several
different phases of congestion window
control

Used by default in Linux kernels 2.6.8

CUBIC Yes Yes CUBIC is optimised for high speed
networks with high latency

Used by default in Linux kernels from
2.6.19 to 3.1

HSTCP Yes Yes HSTCP has the same slow start/timeout
behavior as basic TCP

No Commercial Use

FAST No Yes Re-routing may result in decreased
throughput and longer delays due to RTT
estimation

Commercialised by FastSoft. FastSoft
was acquired by Akamai Technologies in
2012 [66].

TCPW Yes Yes TCPW bandwidth estimation algorithm
does not work in the presence of reverse
traffic due to ACK compression

Open Source, Implemented in the Linux
kernel

XCP Yes Yes XCP requires a specific knowledge of the
link speed a priori

Integrated into ns-2.28 at USC/ISI [67].

TABLE 2: Comparison of different TCP variants: STCP, BIC-TCP, CUBIC, HSTCP, FAST, TCPW and XCP for various
aspects.

transfers data in parallel with multiple simultaneous TCP
streams. It has the capability to resume file transfer sessions
without any loss, if needed. The number of streams that can
be used by FDT are 4 by default, however, this number
with other protocols e.g., BBCP (i.e. BaBar Copy) can be
modified by the user. FDT can be used to transfer a list of file
continuously without the network transfer restarting between
files [68]. FDT uses TCP and suffers from the basic problems
in TCP, as mentioned in Section III.

C. BABAR COPY (BBCP)
BBCP is a Peer to Peer (P2P) network application that is
capable of high speed data transmission by breaking up
data transfer into multiple simultaneously transferring TCP
streams [69] [75]. BBCP provides the users with the ability to
tune different parameters e.g. congestion window size, num-
ber of streams etc. BBCP uses four TCP streams by default,
which can be increased if needed. BBCP also keeps track of
copy operations so that an operation can be restarted from
the point of failure at a later time. This helps in minimising
the amount of network traffic in the event of a copy failure
[69]. BBCP transfers data much faster than single-streaming
protocols [69]. However, it suffers from the issues associated
with TCP. It may also be blocked by the firewalls as it is a
P2P application.

We note that the main objective of proposing above pro-
tocols is to provide a reliable and high performance file
transfer consisting of very large files. These protocols are
extensively used in large science projects, such as Large
Hadron Collider2, for transferring data across geographically
dispersed locations.

VI. UDP BASED DATA TRANSFER PROTOCOLS
We now discuss mechanisms of various UDP variants pro-
posed for bulk data transfer along with various other works

2http://home.cern/topics/large-hadron-collider

that evaluate the performance of these various UDP variants.

A. RELIABLE BLAST UDP (RB-UDP)
The RB-UDP [29] is an aggressive bulk data transfer scheme
that uses both the UDP to transfer bulk data and the TCP
for transferring control information. The motivation behind
this protocol is to keep use of majority of the available
bandwidth over the entire bulk data transfer and is to avoid
extra overhead generated by TCP for acknowledging each
received packets. Hence, the aggregated acknowledgements
are transmitted at the end of a transmission phase. The sender
RB-UDP sends the entire payload at the rate specified by the
receiver RB-UDP using UDP. Furthermore, the sender RB-
UDP sends a DONE message in order to indicate the end of
transmission. Alternatively, the receiver RB-UDP reports the
missing packets by sending an acknowledgment, where the
sender RB-UDP re-sends the missing packets.

The RB-UDP predicts the achievable bandwidth as:

Bachievable = Stotal/Ttotal (6)

Here Stotal is the total payload size and Ttotal is the
predicted send time. The Ttotal can be estimated as:

Ttotal = (Tprop + TudpSend0
)+(

Nresend∑
i=1

(Tprop + TudpSendi
)

)

+((Nresend + 1) ∗ (Tack + Tprop)) (7)

The Tprop is the propagation delay, TudpSendi
is the time to

send an ith iteration, Nresend number of times to resend and
Tack is time to acknowledge a blast. Furthermore, it evaluates
the best achievable performance to:

Bbest

Bsend
= 1
/
1 + RTT∗Bsend

Stotal

(8)
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This shows that the throughput can be maximised by
minimising the 1 + RTT∗Bsend

Stotal
ratio. Furthermore, the num-

ber of retransmitted packets, given the loss rate L, can be
evaluated as [29]:

Nresend =
⌊
logL

(
Spacket/Stotal

)⌋
(9)

Performance analysis of RB-UDP carried out in [15]
shows that it can achieve higher throughput than the basic
TCP. Furthermore, the experimental analysis in [29] shows
that RB-UDP can achieve a high link utilisation of 70%
when a large file is transferred on a 1Gbps link between
Chicago, US and Amsterdam, Netherland. However, we note
that RB-UDP has no congestion control mechanism in order
not to overwhelm the receiver RB-UDP, hence, the receiver
machine has to be powerful enough in order to accept the
bulk data transfer sent by the sender RB-UDP. Furthermore,
it is important that RB-UDP has to effectively calculate the
sending rate so that the sending rate should not be higher
than the available bandwidth of the bottleneck link in the end-
to-end path. Similarly, the sending RB-UDP has to keep all
the sending packets in its memory if it requires to retransmit
the missing packets, which consequently requires bigger
memory buffers. The RB-UDP is hence suitable for use in
private or dedicated networks.

B. TSUNAMI UDP PROTOCOL
Tsunami [32] is an application layer protocol that uses UDP
for transferring data blocks while it transfers the control
information via TCP. It is a reliable transfer protocol; how-
ever, it evaluates the transmission rate using inter-packet
delay rather than a sliding window mechanism as a basic
procedure e.g. being performed in the basic TCP. Tsunami
is mainly implemented on both client and server sides. The
client maintains two threads i.e. the network thread that
communicates data and control information with the server,
maintains retransmission queue and places the fetched blocks
from server for storage into a buffer, alternatively, the disk
thread moves the fetched blocks from buffer to the storage
disk. The server maintains only one thread i.e. service thread
that is responsible for fetching data blocks from the disk and
sending those data blocks to the client.

At the start of communication, both the client and server
carry out authentication by evaluating the MD5 checksum
over random data that has already been XORed with a shared
secret. Both the client and server negotiate various param-
eters of UDP buffer size, tolerated error rate, sending rate
etc., before transmitting the actual data packets. A study [76]
suggests that, for a data rate of 1000Mbps, Tsunami UDP
is tolerable to the loss rate of up to 7.5%. The client sends
the request for retrieving desired data blocks from the server.
Afterwards, if the desired block is available, the client sends
the index of the desired block, the file transfer rate, error
threshold and scaling factor for inter-packet delay. Similarly,
the server responds with the file size, data block size, total
number of blocks and a timestamp. The client then sends

the UDP port to the server and it starts downloading file
form the server. Tsunami is used by Amazon Web Services
(AWS) that offers reliable, scalable and inexpensive cloud
computing services.

Several studies compare the performance of Tsunami [32]
protocols for efficient data transfer with other transport layer
protocols, such as TCP, Secure Copy Protocol (SCP) etc.
For instance, [77] compares the Tsunami UDP and SCP3 for
transferring bulk data between two Amazon EC2 instances
located in two different regions (i.e. in USA-East and Sin-
gapore). This analysis shows that Tsunami UDP can transfer
50GB of file in 19min, 33sec while SCP takes a total of 1hr,
50min. Another study [78] investigates that Tsunami UDP
can achieve a throughput of 651Mbps when data transferring
takes place between two AWS EC2 instances located in
Tokyo, Japan and Virginia, USA. Furthermore, [79] con-
cludes that Tsunami UDP is suitable for transferring files of
moderate to large databases e.g. database of sizes 100GB to
5TB.

C. UDP BASED DATA TRANSFER PROTOCOL (UDT)
UDT [30] [14] is a connection-oriented duplex protocol built
on the top of UDP and is specifically designed for high-speed
wide area optical networks. It has its own reliability and
congestion control mechanism for achieving high bandwidth
utilisation. The UDT architecture is the same on both the
sender and receiver devices i.e. it implements two modules
of UDT-sender and UDT-receiver at both sending
and receiving entities. The data is sent from UDT-sender
to UDT-sender while the control information is passed
between UDT-receiver and UDT-receiver of the two
user devices. It implements a fixed interval timer-based se-
lective acknowledgment for faster data transfer rather than
acknowledgments for every packet, which results in extra
bandwidth consumptions and transmission delays. These se-
lective ACKs are sent if there are new continuously received
data packets. Hence, the control packets consume less band-
width in the faster data transfer and more bandwidth if there
are less number of data packets, in which case, it acts like
basic TCP due to frequently sending ACKs.

Furthermore, it implements the DAIMD (Additive In-
crease Multiplicative Decrease (AIMD) with decreasing in-
creases) as the congestion control algorithm, as described
in [14]. It is called DAIMD because the additive parameter
decreases as the data sending rate is increased. For example,
it increases the data rate x by a factor of α (x), which is a
non-increasing factor and it approaches 0 with the increase
of sending data rate i.e. limx→∞α (x) = 0. This increase is
added to the new data rate if the sender receives a positive
feedback from the receiver (e.g. no loss).

UDT has several applications, for instance, it is widely
used in Grid Computing e.g. GridFTP [33] uses UDT for data
transfer [73] [74] that is an extension of the File Transfer

3Secure Copy or SCP uses TCP as a transport layer protocol and is used
for securely transferring data files between a local host and a remote host or
between two remote hosts.
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Protocol (FTP) for grid computing. UDT is an open source
and its implementation can be found on SourceForge4. Liter-
ature works reveal enhanced performance of UDT compared
to other protocols e.g. [80] carries out comparative analysis
of UDT and TCP with different link capacities ranging from
100Mbps to 1Gbps in various loss rates and link delays.
For instance, with zero loss rate and 50ms delay, UDT can
maintain bandwidth consumption over 60% and 90% band-
width for 500Mbps and 1Gbps links, respectively, while TCP
maintains link consumption of less than 10Mbps for both link
capacities of 500Mbps and 1Gbps. Similarly, experiments
in [30] reveal that UDT can reach up to 950Mbps over
1Gbps link with 110ms delay from Chicago to Amsterdam.
Other studies [14] [15] [81] show that UDT is TCP friendly
and demonstrate the intra protocol fairness. However, in
high packet loss environment, UDT performs as poorly as
TCP [82] [83]. This is due to the fact that UDT also uses
the congestion window mechanism, as TCP, for evaluating
the transmission rate. Furthermore, we note that UDT uses
packet pair technique for capacity estimation, however, it
may result in underestimation of capacity due to the cross
traffic present in WAN links, which consequently might
result in low throughput.

D. PERFORMANCE-ADAPTIVE UDP (PA-UDP)
PA-UDP [31] is a high-performance protocol for high speed
and high latency networks with reduced configurations re-
quired at the user level. It is an open source and is used by
VMware vCloud Connector 2.55. The vCloud Connector is
an enterprise product that allows to connect multiple clouds,
both internal and external, in a single user interface. The
single user interface oversees multiple public and private
clouds and for transferring cloud content from one cloud to
another. The PA-UDP maximises the performance of various
entities of a communication system by taking into account
the CPU latency in accessing data from the disk, the effect of
disk throughput, the receiving application’s buffer, receiver’s
Kernel buffer and the sending application’s data sending rate
since these entities may restrain the overall capacity of the
network.

The PA-UDP sender sends the initial data rate by three-
way handshake. The PA-UDP receiver resets the sending rate
by periodically calculating packet losses, receiving rate, disk
processing rate and buffer size and then sends feedback with
new sending rate to the sender. The sender then adjusts the
sending rate sent by the receiver through change in the inter-
packet delay. In particular, let r (recv) be the receiver data
rate in bits/sec at which it can receive packets without any
packet loss and r (disk) be the rate at which data is read from
the disk, then PA-DUP tries to keep the ratio of the two rates
α = r(recv)

r(disk) constant. Hence, the disk’s and the network’s

4The C++ library containing the UDT API implementation and program-
ming examples can be found here: http://udt.sourceforge.net/software.html.

5complete documentation can be found here: http://pubs.vmware.com/
hybridcloud-25/index.jsp.

activity remains constant and the sender does not overwhelm
a slow receiver.

The experimental analysis given in [84] [15] shows that
PA-UDP achieves high throughput and high channel utilisa-
tion by taking into account the system hardware i.e. buffer
size, disk processing rate, for transferring bulk data. How-
ever, we note that PA-UPD handles only one client at a
particular time instance while it puts all the rest data trans-
ferring nodes into Silent mode in a wait queue. Hence,
PA-UDP is suitable for a private network where individual
users can achieve higher data rates. Furthermore, PA-UDP
is vulnerable to high packet losses since it uses the packet
loss to calculate the sending rate, as is done by TCP, which
may result in reduced throughput. It is also evident [85] that
TCP achieves less throughput in the presence of PA-DUP,
however, it can achieve good intra-protocol fairness [85]
[15].

E. FAST AND SECURE PROTOCOL (FASP)
FASP is an application layer protocol acquired by Aspera6,
7. It uses UDP at the transport layer and provides reliable
transport for applications that do not require ‘byte stream in-
order’ delivery. FASP, unlike TCP, utilises an adaptive rate
control that uses packet delay i.e. RTT, as a congestion signal.
The packet delay for congestion control enables FASP to
decouple reliability and congestion control and it retransmits
lost packets without impacting the transmission rate. It intro-
duces a separate sending queue for transmitting the incoming
packets. FASP sends probe packets into the network to obtain
measure of queuing delay along the path. FASP reduces its
transmission rate, proportional to the difference between tar-
geted and current queuing delay, on detecting higher queuing
delay. Similarly, it increases the transmission rate, propor-
tional to the targeted queuing delay, when queuing delay is
reduced that indicates less congestion [86]. Using queuing
delay as congestion indicator can cause issues with rerouting
of path (explained above). However, Aspera claims their al-
gorithm estimates RTT accurately. Moreover, FASP provides
an automatic checksum and bandwidth dialling capabilities
in order to ensure reliable completion of data transfer with
minimal interruptions. More details on their algorithm are not
publicly available, however, Aspera states that this algorithm
follows Van Jacobson theory explained in [34].

There are several works that utilises FASP for bulk data
transfer. For example, the results in [86] show that FASP
takes approximately 10sec to complete transferring the file of
1GB, irrespective of the network configuration, which shows
that FASP can transport data very quickly. Another study
[87] analyses that, using Aspera Enterprise Client and Aspera
Enterprise Server, FASP can achieve a speed of 10Mpbs over
a 100Mbps network link while transferring a file of 10GB,
when adding 300ms of latency to the network. Furthermore,

6http://asperasoft.com/
7The Aspera FASP utility is publically available at http://downloads.

asperasoft.com/downloads
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TABLE 3: Comparison of different TCP variants RB-UDP, Tsunami, PA-UDP, UDT, and FASP for various aspects.

Congestion Rate TCP Intra
Issues UsageProtocol

Detection Control Friendliness Fairness
RB-UDP No Congestion Control No Rate Control No No Very aggressive protocol with no TCP

friendliness. Sending rate may not be
accurate and may result in large packet
loss.

Open Source, No Commercial
Use

Tsunami Based on Packet Loss Control Sending rate is reduced when
loss rate is more than a threshold.

Yes Yes Default values of different parameters
may not be suitable for all environments.
This can result in under estimation or
over estimation of the sending rate which
may result in less throughput.

Open Source, Used by AWS

PA-UDP Based on Packet Loss, Buffer
size and Disk Processing rate

Sending rate is adjusted through change
in the inter-packet delay based on
information (packet loss, buffer size and
disk processing rate) from receiver.

No Yes Transmission rate is coupled with packet
loss. This results in less throughput in
presence of high packet loss.

Open Source, No Commercial
Use

UDT Based on Packet Loss Sending rate is increased on positive ACK
receipt as shown in equation. Sending
rate is decreased on ACK receipt.

Yes Yes Transmission rate is coupled with packet
loss. This results in less throughput in the
presence of high packet loss.

Open Source, Used by
VMware vCloud Connector 2.5

FASP Based on Queuing Delay
(RTT)

Sending rate is increased when queuing
delay is reduced. Sending rate is
decreased when queuing delay is
increased.

Not studied in
literature

Not studied in
literature

Transmission rate is based on queuing
delay which may not be accurate because
of path rerouting. This may result in less
throughput.

Proprietary Protocol of Aspera,
Used by AWS

the ConnectomeDB8 [88] uses Aspera FASP to enable high
speed downloads for distributing human medical data to
the public over a web-based user interface. We note that,
since Aspera claims that FASP achieves TCP fairness, FASP
needs further analysis for its TCP friendliness as there is no
literature available.

Table 3 summarises various aspects of five different UDP
variants. In particular, we summarise the potentials of these
protocols for solving various issues in relation to detecting
the network congestion, how these protocols achieves smooth
data rate and whether these protocols provide the TCP friend-
liness and intra-protocol fairness. In addition, we discuss the
commercial viability of these protocols.

VII. COMPARISON OF DIFFERENT PROTOCOLS
We have discussed basic mechanism of various transport
layer protocols designed for high speed networks, specifi-
cally, for TCP variants i.e. Section IV, application layer pro-
tocols using multiple simultaneous TCP streams in Section
V and various UDP based data transfer protocols i.e. Section
VI. We now discuss the performance of these protocols
investigated in several research works.

A. COMPARISON OF TCP VARIANTS
Recall that a variety of TCP variants [19] [25] [26] [18]
[9] [27] [28] [38] [89] [90] [91], among several others have
been discussed in Section IV, address the under utilisation of
network’s resources in high-bandwidth delay networks due
to the slow growth of TCP congestion window. Majority of
these protocols manage to achieve TCP friendliness i.e. co-
existence of TCP flows with other communicating flows, and
fairness i.e. bandwidth sharing with other competing flows
or flows with different RTTs, by modifying the congestion
window growth of TCP.

An example evaluation of TCP friendliness is presented in
[26] for long and short RTT networks in terms of throughput
ratio for different link speeds (in Mbps). In this particular

8ConnectomeDB is a database for housing and disseminating data about
human brain structure, function, and connectivity, along with associated
behavioral and demographic data [88].

scenario [26], the authors set the RTT to 10ms and 100ms
with bottleneck bandwidth ranging from 20Mbps to 1Gbps,
these results are shown in Figure 6 (a) and (b) respectively
for short and long RTT networks. It can be observed, Figure 6
(a), that as the bottleneck bandwidth increases, from 20Mbps
to 1Gbps, the CUBIC and HTCP9 [38] consistently performs
better for TCP friendliness and both effectively coexist with
the basic TCP flows. Alternatively, the TCP throughput ratio
for BIC, HSTCP and STCP consistently decreases with the
increase of bottleneck bandwidth, indicating unfair use of
bandwidth with respect to TCP. Similarly, Figure 6 (b) for
long RTT (e.g. 100ms in this example) network, all the
TCP variants over 20Mbps show reasonable TCP friend-
liness. However, as the bottleneck bandwidth is increased
from 20Mbps to 1Gbps, all the tested TCP variants perform
less TCP friendliness and takes majority of the bandwidth.
Among various TCP variants, CUBIC shows better TCP
friendliness, followed by HTCP and HSTCP.

This study [26] further investigates the stability of these
TCP variants. Stability is defined in different terms in the
literature e.g. the smoothness in transmission rate variations
(less oscillations) [26] or a protocol that converges to equi-
librium (defined by the Control theory). The stability of TCP
variants is evaluated for four high-speed TCP flows over long
(220ms) and short (20ms) RTT network links of 10Gbps
connected via the bottleneck bandwidth link of 2.5Gbps. In
order to evaluate the stability of various protocols, the authors
vary the buffer of the bottleneck router from 200% to 20%
of the bottleneck link. Figure 7 (a) – (e) show the results
from simulations with 20% of the bottleneck buffer (results
for 200% are not shown, although it shows same behavior
as with 20% of the bottleneck buffer). It can be observed
that the throughput achieved with STCP and HTCP highly
fluctuate and hence cannot maintain communication stability.
Conversely, CUBIC, BIC-TCP and HSTCP perform better
with good stability than the former two TCP variants.

9HTCP is another implementation of TCP for Long Fat Networks (LFN)
i.e. it provides an optimised congestion control algorithm for high speed
networks with high latency. It was created by researchers at the Hamilton
Institute in Ireland. http://www.hamilton.ie/.
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III. PERFORMANCE EVALUATION 
In this section, we present some performance results 

regarding the TCP friendliness and stability of CUBIC and 
other high-speed TCP variants. For CUBIC, we set β to 0.8, C 
to 0.4, and Smax to 160. We use NS-2 for simulation. The 
network topology is dumbbell. For each simulation run, we run 
four flows of a high-speed protocol and four flows of regular 
long-term TCP SACK over the same end-to-end paths for the 
entire duration of the simulation; their starting times and RTTs 
are slightly varied to reduce the phase effect. About 10% of 
background traffic is added in both forward and backward 
directions of the dumbbell setup. For all the experiments unless 
notes explicitly, the buffer size of Drop Tail routers is set to 
100% of BDP.  
 
Experiment 1: TCP Friendliness in Short-RTT Networks 
(Simulation script available in the BIC web site): 

 
We test five high speed TCP variants: CUBIC, BIC, HSTCP, 

Scalable TCP, and HTCP. We set RTT of the flows to be 
around 10 ms and vary the bottleneck bandwidth from 20 Mbps 
to 1 Gbps. Fig. 5 shows the throughput ratio of the long-term 
TCP flows over the high-speed flows (or TCP friendly ratio) 
measured from these runs.  

The surprising result is that BIC and STCP even show worse 
TCP friendliness over 20Mbps than over 100Mbps. However, 
we are still not sure the exact reason for this result. Over 100 
Mbps, all the high speed protocols show reasonable 
friendliness to TCP. As the bottleneck bandwidth increases 
from 100Mbps to 1Gbps, the ratios for BIC, HSTCP and STCP 
drop dramatically indicating unfair use of bandwidth with 
respect to TCP. Under all these environments, regular TCP can 
still use the full bandwidth. Scalable TCP shows the worst TCP 
friendliness in these tests followed by BIC and HSTCP.  
CUBIC and HTCP consistently give good TCP friendliness.  

 
Experiment 2: TCP Friendliness in Long-RTT Networks 
(Simulation script available in the BIC web site) 

 
Although the TCP mode improves the TCP friendliness of 

the protocol, it does so mostly for short RTT situations. When 
the BDP is very large with long RTT, the aggressiveness of the 
window growth function (more specifically, the congestion 
epoch length) has more decisive effect on the TCP friendliness. 
As the epoch gets longer, it gives more time for TCP flows to 
grow their windows.  

An important feature of BIC and CUBIC is that it keeps the 
epoch fairly long without losing scalability and network 
utilization. Generally, in AIMD, a longer congestion epoch 
means slower increase (or a smaller additive factor). However, 
this would reduce the scalability of the protocol, and also the 
network would be underutilized for a long time until the 
window becomes fully open (Note that it is true only if the 
multiplicative decrease factor is large; but we cannot keep the 
multiplicative factor too small since that implies much slower 
convergence to the equilibrium). Unlike AIMD, CUBIC 
increases the window to (or its vicinity of) Wmax very quickly 
and then holds the window there for a long time. This keeps the 
scalability of the protocol high, while keeping the epoch long 
and utilization high. This feature is unique both in BIC and 
CUBIC.  

In this experiment, we vary the bottleneck bandwidth from 
20Mbps to 1Gbps, and set RTT to 100ms. Fig. 6 shows the 
throughput ratio of long-term TCP over high-speed TCP 
variants. Over 20 Mbps, all the high speed protocols show 
reasonable friendliness to TCP. As the bandwidth gets larger 
than 20 Mbps, the ratio drops quite rapidly. Overall, CUBIC 
shows a better friendly ratio than the other protocols.  

 

 

 
Experiment 3: Stability (Simulation script available in the 

Fig. 5: TCP-Friendly Ratio in Short-RTT Networks 
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BIC web site) 
 

We run four flows of a high-speed TCP variant over a 
long-RTT network path (~220ms) and four flows of long-term 
TCP-SACK flows over a short-RTT path (~20ms). These two 
paths share a bottleneck link of 2.5Gbps. In this experiment, to 
see how stable different protocols become as the buffer space 
of the bottleneck router varied, we vary the buffer space of the 
bottleneck router from 200% to 20% of the BDP of the 
bottleneck. The background TCP traffic is added to the 
bottleneck link. Fig. 7 illustrates our simulation setup (slightly 
modified for clarity). The actual simulation setup can be found 
in the script above. 

Below, we show the throughput graphs from experiments 
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By 
inspecting the raw data, we can tell that STCP and HTCP have 
some stability issues (this needs to be confirmed with the 
original authors of HTCP). The high oscillation occurs over 
various time scales. 

There is no well-defined metric of stability. Existing 
literature on congestion control often uses the smoothness in 
transmission rate variations (or smaller oscillations) to mean 
stability.  Control theory defines it somewhat differently: a 
stable protocol eventually converges to equilibrium (not 
necessarily a fair bandwidth share) regardless of the current 
state of the protocol. These two notions are somewhat 
connected since a protocol would have a very small oscillation 
once it converges to equilibrium, and they are not necessarily 
the same. Often the coefficients of variation (CoV) of 
transmission rates are used to depict stability as some artificial 
perturbations to the traffic are added to the network. However, 
since network environments constantly change, the 
transmission rate of a protocol always fluctuates at a short-term 
scale. Then, what would be an appropriate time scale to 
determine its stability? We are currently investigating 
techniques to measure the average fairness index (by Jain) at 
various time scales and compare those of various protocols. For 
a less satisfactory measure, we plotted the coefficients of 
variance (CoV) of throughput. This metric is also used in 
[9,10,11]. The results with 20% buffer are shown in Fig 10, and 
the results with 200% buffer are shown in Fig 11. We observe 
that CUBIC shows a good stability. 

 

 

 
Fig. 8: Throughput various protocols in stability test with 20% buffer 
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TCP-SACK flows over a short-RTT path (~20ms). These two 
paths share a bottleneck link of 2.5Gbps. In this experiment, to 
see how stable different protocols become as the buffer space 
of the bottleneck router varied, we vary the buffer space of the 
bottleneck router from 200% to 20% of the BDP of the 
bottleneck. The background TCP traffic is added to the 
bottleneck link. Fig. 7 illustrates our simulation setup (slightly 
modified for clarity). The actual simulation setup can be found 
in the script above. 

Below, we show the throughput graphs from experiments 
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By 
inspecting the raw data, we can tell that STCP and HTCP have 
some stability issues (this needs to be confirmed with the 
original authors of HTCP). The high oscillation occurs over 
various time scales. 

There is no well-defined metric of stability. Existing 
literature on congestion control often uses the smoothness in 
transmission rate variations (or smaller oscillations) to mean 
stability.  Control theory defines it somewhat differently: a 
stable protocol eventually converges to equilibrium (not 
necessarily a fair bandwidth share) regardless of the current 
state of the protocol. These two notions are somewhat 
connected since a protocol would have a very small oscillation 
once it converges to equilibrium, and they are not necessarily 
the same. Often the coefficients of variation (CoV) of 
transmission rates are used to depict stability as some artificial 
perturbations to the traffic are added to the network. However, 
since network environments constantly change, the 
transmission rate of a protocol always fluctuates at a short-term 
scale. Then, what would be an appropriate time scale to 
determine its stability? We are currently investigating 
techniques to measure the average fairness index (by Jain) at 
various time scales and compare those of various protocols. For 
a less satisfactory measure, we plotted the coefficients of 
variance (CoV) of throughput. This metric is also used in 
[9,10,11]. The results with 20% buffer are shown in Fig 10, and 
the results with 200% buffer are shown in Fig 11. We observe 
that CUBIC shows a good stability. 

 

 

 
Fig. 8: Throughput various protocols in stability test with 20% buffer 

CUBIC

BIC

HSTCP

STCP

HTCP

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500

Th
ro

ug
hp

ut
 (M

bp
s)

Simulation Time (Seconds)

High-Speed Flow 1
High-Speed Flow 2
High-Speed Flow 3
High-Speed Flow 4

High-speed  
protocol flows 

High-speed 
protocol flows 

Regular 
TCP flows 

Regular 
TCP flows 

2.5Gbps/10ms  
Drop Tail/bottleneck 10 Gbps/100ms 

RTT 10Gbps/2ms

Fig.  7: Simulation setup for stability test. 

(b) BIC

 
 

BIC web site) 
 

We run four flows of a high-speed TCP variant over a 
long-RTT network path (~220ms) and four flows of long-term 
TCP-SACK flows over a short-RTT path (~20ms). These two 
paths share a bottleneck link of 2.5Gbps. In this experiment, to 
see how stable different protocols become as the buffer space 
of the bottleneck router varied, we vary the buffer space of the 
bottleneck router from 200% to 20% of the BDP of the 
bottleneck. The background TCP traffic is added to the 
bottleneck link. Fig. 7 illustrates our simulation setup (slightly 
modified for clarity). The actual simulation setup can be found 
in the script above. 

Below, we show the throughput graphs from experiments 
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By 
inspecting the raw data, we can tell that STCP and HTCP have 
some stability issues (this needs to be confirmed with the 
original authors of HTCP). The high oscillation occurs over 
various time scales. 

There is no well-defined metric of stability. Existing 
literature on congestion control often uses the smoothness in 
transmission rate variations (or smaller oscillations) to mean 
stability.  Control theory defines it somewhat differently: a 
stable protocol eventually converges to equilibrium (not 
necessarily a fair bandwidth share) regardless of the current 
state of the protocol. These two notions are somewhat 
connected since a protocol would have a very small oscillation 
once it converges to equilibrium, and they are not necessarily 
the same. Often the coefficients of variation (CoV) of 
transmission rates are used to depict stability as some artificial 
perturbations to the traffic are added to the network. However, 
since network environments constantly change, the 
transmission rate of a protocol always fluctuates at a short-term 
scale. Then, what would be an appropriate time scale to 
determine its stability? We are currently investigating 
techniques to measure the average fairness index (by Jain) at 
various time scales and compare those of various protocols. For 
a less satisfactory measure, we plotted the coefficients of 
variance (CoV) of throughput. This metric is also used in 
[9,10,11]. The results with 20% buffer are shown in Fig 10, and 
the results with 200% buffer are shown in Fig 11. We observe 
that CUBIC shows a good stability. 
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We run four flows of a high-speed TCP variant over a 
long-RTT network path (~220ms) and four flows of long-term 
TCP-SACK flows over a short-RTT path (~20ms). These two 
paths share a bottleneck link of 2.5Gbps. In this experiment, to 
see how stable different protocols become as the buffer space 
of the bottleneck router varied, we vary the buffer space of the 
bottleneck router from 200% to 20% of the BDP of the 
bottleneck. The background TCP traffic is added to the 
bottleneck link. Fig. 7 illustrates our simulation setup (slightly 
modified for clarity). The actual simulation setup can be found 
in the script above. 

Below, we show the throughput graphs from experiments 
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By 
inspecting the raw data, we can tell that STCP and HTCP have 
some stability issues (this needs to be confirmed with the 
original authors of HTCP). The high oscillation occurs over 
various time scales. 

There is no well-defined metric of stability. Existing 
literature on congestion control often uses the smoothness in 
transmission rate variations (or smaller oscillations) to mean 
stability.  Control theory defines it somewhat differently: a 
stable protocol eventually converges to equilibrium (not 
necessarily a fair bandwidth share) regardless of the current 
state of the protocol. These two notions are somewhat 
connected since a protocol would have a very small oscillation 
once it converges to equilibrium, and they are not necessarily 
the same. Often the coefficients of variation (CoV) of 
transmission rates are used to depict stability as some artificial 
perturbations to the traffic are added to the network. However, 
since network environments constantly change, the 
transmission rate of a protocol always fluctuates at a short-term 
scale. Then, what would be an appropriate time scale to 
determine its stability? We are currently investigating 
techniques to measure the average fairness index (by Jain) at 
various time scales and compare those of various protocols. For 
a less satisfactory measure, we plotted the coefficients of 
variance (CoV) of throughput. This metric is also used in 
[9,10,11]. The results with 20% buffer are shown in Fig 10, and 
the results with 200% buffer are shown in Fig 11. We observe 
that CUBIC shows a good stability. 
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We run four flows of a high-speed TCP variant over a 
long-RTT network path (~220ms) and four flows of long-term 
TCP-SACK flows over a short-RTT path (~20ms). These two 
paths share a bottleneck link of 2.5Gbps. In this experiment, to 
see how stable different protocols become as the buffer space 
of the bottleneck router varied, we vary the buffer space of the 
bottleneck router from 200% to 20% of the BDP of the 
bottleneck. The background TCP traffic is added to the 
bottleneck link. Fig. 7 illustrates our simulation setup (slightly 
modified for clarity). The actual simulation setup can be found 
in the script above. 

Below, we show the throughput graphs from experiments 
with 20% buffer in Fig. 8, and with 200% buffer in Fig. 9. By 
inspecting the raw data, we can tell that STCP and HTCP have 
some stability issues (this needs to be confirmed with the 
original authors of HTCP). The high oscillation occurs over 
various time scales. 

There is no well-defined metric of stability. Existing 
literature on congestion control often uses the smoothness in 
transmission rate variations (or smaller oscillations) to mean 
stability.  Control theory defines it somewhat differently: a 
stable protocol eventually converges to equilibrium (not 
necessarily a fair bandwidth share) regardless of the current 
state of the protocol. These two notions are somewhat 
connected since a protocol would have a very small oscillation 
once it converges to equilibrium, and they are not necessarily 
the same. Often the coefficients of variation (CoV) of 
transmission rates are used to depict stability as some artificial 
perturbations to the traffic are added to the network. However, 
since network environments constantly change, the 
transmission rate of a protocol always fluctuates at a short-term 
scale. Then, what would be an appropriate time scale to 
determine its stability? We are currently investigating 
techniques to measure the average fairness index (by Jain) at 
various time scales and compare those of various protocols. For 
a less satisfactory measure, we plotted the coefficients of 
variance (CoV) of throughput. This metric is also used in 
[9,10,11]. The results with 20% buffer are shown in Fig 10, and 
the results with 200% buffer are shown in Fig 11. We observe 
that CUBIC shows a good stability. 
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(e) HTCP

FIGURE 7: Throughput of various protocols in stability test with 20% (a) – (e) buffer [26].

Furthermore, there are several other works where re-
searchers evaluate the performance of various TCP variants
(specifically those discussed in Section IV e.g. STCP, BIC-
TCP, HSTCP etc.) via analytical evaluation, using simula-
tions and via experimentations, from different perspective.
For example, the authors in [92] perform a comparative
analysis of FAST TCP with TCP Reno, HSTCP, STCP,
and BIC-TCP for throughput, intra-protocol fairness, stabil-
ity, and responsiveness. The authors determine that FAST
TCP outperforms the other tested protocols for the three
evaluation criteria i.e. fairness, stability and responsiveness,
while it achieves second best overall throughput after the
BIC-TCP. In addition, authors investigate that HSTCP and
STCP achieves higher throughput and improved respon-
siveness compared to the TCP Reno. The STCP attains
worse intra-protocol fairness than TCP Reno, while BIC-
TCP and HSTCP accomplish similar intra-protocol fairness
to Reno. Similarly, [93] carries out a comparative analy-
sis TCP Westwood, TCP Reno, and TCP SACK (Selective
ACK) for multi-path routes and finds that TCP Westwood

is robust to packet reordering introduced by the network.
They realise that TCP Westwood is capable of obtaining
better aggregated throughput than Reno and SACK when the
network layer uses multiple paths, however, the authors do
not discuss their performance in the presence of bottleneck
[94]. Another study [95] shows that XCP converges more
slowly and unnecessarily prolongs the flows due to increasing
the window size of new flows and reducing the window sizes
of the existing flows.

B. COMPARISON OF PROTOCOLS OF MULTIPLE TCP
STREAMS

Several works have evaluate the performance of these various
protocols that utilise multiple TCP connections i.e. GridFTP
[33], FDT [68], BBCP [69]. The authors in [96] evaluate
the GridFTP for throughput, fairness and CPU usage in
comparison with GridCopy [97] and UDT [14] protocols
for bulk data transfer. This analysis is carried out in a wide
area campus network and is restricted to 2Gbps bandwidth
connectivity. They investigate that GridFTP can achieve close
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to 95% throughput compared to GridCopy 82% and UDT
94.4%, similarly, they respectively achieve protocol fairness
of 92.3%, 92% and 93.4%. However, GridFTP’s throughput
reduces with small file transfers and when it uses less than
4 connections for data transfer, in which case, it creates
excessive control overhead. Another work [74] evaluates
the performance of GridFTP over TCP and GridFTP over
UDT in terms of throughput on four different geographical
locations. They suggest UDT as an alternative protocol to
GridFTP due to high throughput achieved on the entire set
of testbeds [74].

There are numerous studies that investigate comparative
analyses of FDT with other multiple TCP sessions enabled
protocols, such as GridFTP. The authors in [98] present
comparative analysis of GridFTP and FDT for long fat net-
works and evaluate their effectiveness in terms of through-
put for various RTTs and the level of congestion induced
by concurrent TCP or UDP flows. They also compare two
well-known UDP variants for high-speed data transfer pro-
tocols i.e. UDT and Tsunami. This comparative analysis
for throughput with various protocols is shown in Figure 8
with an increasing order of RTT in Figure 8 (a), number of
TCP flows in Figure 8 (b) and background traffic rate i.e.
Figure 8 (c); various parametric settings are also presented.
It can be observed in Figure 8 (a) that FDT outperforms
all the other protocols for less than 100ms RTT with the
throughput of 2.34Gbps. However, its throughput rapidly
decreases compared to GridFTP with TCP for greater than
100ms RTT. GridFTP with TCP performs better for greater
than 100ms RTT. Overall, GridFTP and FDT with TCP
outperform GridFTP with UDP or Tsunami in this setting.
Furthermore, it can be observed in Figure 8 (b) that TCP-
based protocols become unreliable with multiple TCP flows,
e.g. FDT becomes inoperative due to induced congestion. In
addition, throughput of GridFTP with TCP decrease quickly
as compared to GridFTP with UDT while introducing mul-
tiple TCP flows during communication. Similarly, as shown
in Figure 8 (c), throughput of GridFTP with TCP and FDT
decreases with the increase of congestion induced by UDP
background traffic. Alternatively, throughput of GridFTP
with UDT and Tsunami is less affected by the UDP back-
ground traffic. Similar study [72] also evaluates the perfor-
mance of GridFTP, FDT and UDT in terms of goodput and
fairness in the presence of multiple traffic flows over a real
network deployed in different geographical locations. Some
other works e.g. [99] uses BaBar Copy Program BBCP10 [69]
to transfer hundreds of Tbytes of cosmological data between
different geographic locations as well as to efficiently copy
data between local systems.

C. COMPARISON OF UDP BASED PROTOCOLS
The motivation behind various modifications suggested to
UDP is to achieve high performance for transferring bulk

10BBCP is an excellent representative of peer-to-peer computing used to
securely copy data from one location to another location.

amount of data (usually in Tbytes or higher in size) around
the globe e.g. across different countries or continents. This
data is usually transferred over high-speed links of 10Gbps
or more to researchers for storage and research and analysis.
Such an example is the cosmological data generated by Dark
Sky Simulations project [99] to make accessible model of the
evolution of large-scale Universe and to transfer this data to
research laboratories at different locations, such as, LANL11,
SLAC12, LHC13, SKA14 etc. It is critical to summarise and to
accomplish comparative analyses of findings for humungous
amount of data transferred with these protocols that have
been carried out in the literature thus far for the benefit of
the researchers.

Several works evaluate the performance of these proto-
cols in the presence of other traffic e.g. TCP traffic, for
various performance metrics, such as effect of RTT, loss
rate, fairness over throughput, CPU utilization, inter/intra-
protocol fairness etc. The authors in [15] evaluate the effect
of data file size, RTT and loss rate over throughput and
inter/intra-protocol fairness of different UDP variants of RB-
UDP, Tsunami, UDT, and PA-UDP. They find that increasing
the transmitting file size (e.g. from 100MB to 4GB in this
experiment) has direct impact over the achieved throughput,
where PA-UDP achieves overall highest throughput of up to
916Mbps followed by RB-UDP and Tsunami. The UDT, due
to complex congestion control mechanism, achieves the least
throughput. The throughput of RB-UDP declines with the
files size of 2GB and higher due to the cache limitation of
the end systems. They also find the same observations with
varying RTTs (i.e. from 2ms to 320ms) and packet loss ratio
(from 0% to 1%); they noted that, among all, the PA-UDP
outperforms over others.

TABLE 4: TCP-friendliness of four protocols over 1Gbps
with 160ms RTT [15].

UDP Variants
Inter-Protocol Fairness (Mbps) Throughput (Mbps)

30ms 60ms 30ms 60ms
UDP STCP UDP STCP UDP STCP UDP STCP

Tsunami 469.52

90.96

460.40

90.96

474.42

90.96

470.97

90.96UDT 329.04 259.94 335.33 268.14
PA-UDP 866.64 907.71 915.34 912.71
RB-UDP 697 568 717 585

Further analysis [15] shows the intra-protocol fairness of
two and four parallel flows, each UDP/STCP flow transfers
a file of 3GB over 1Gbps link with 160ms RTT and 0.01%
loss ratio. They examine that all the four UDP variants have
similar intra-protocol fairness, except for PA-UDP in the
existence of four parallel flows where it shows less intra-
protocol fairness compared to two parallel flows. They fur-
ther evaluate the performance of these UDP variants in the
presence of TCP flows to simulate real-world networking
scenario since the backhaul communication links share the
bandwidth among different transport protocols. In particular,

11http://www.lanl.gov/
12https://www6.slac.stanford.edu/
13http://home.cern/topics/large-hadron-collider
14http://www.ska.gov.au/
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Fig. 1: Throughput of the protocols with
varying RTT, with no background traffic
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We suspect this effect is due to its implementation rather than
the protocol itself.

2) Result Implications: From our results, using TCP-based
protocols for transferring big data would be beneficial espe-
cially when the links used have relatively short RTTs and where
there is no significant background traffic. On the other hand,
with significant background traffic, TCP-based protocols may
not perform well due to the lack of stability. Using GridFTP
with UDT may give better performance with smaller RTT links.
Tsunami is only recommended for a high-RTT link, and when
there is significant background traffic on the link.

VII. CONCLUSIONS

We presented a comparative performance analysis of four
well-known transfer protocols for big data, namely, GridFTP,
FDT, UDT, and Tsunami. Our results show that using GridFTP
with TCP or FDT gives higher throughput over a 10 Gb/s
network link. Unless there is a significant background traffic
inducing congestion, using GridFTP with TCP may be the
best choice for data transfer between distant hosts. On the
other hand, with significant level of congestion on the link,
the TCP-based protocols show a tendency to be unstable, hence
using GridFTP with UDT may give more stable throughput. We
recommd using Tsunami only if there is significant background
traffic and the RTT between hosts is high.

In contrast, using a UDP-based protocol over links with
high background traffic is preferable, since it can provide more
reliable and efficient data transfer. The TCP-based protocols
were not stable, or efficient enough to compete against high
levels of TCP background traffic. Also, they took longer to
increase their initial throughput at the start of the transfer
compared to UDP based protocols.

VIII. FUTURE WORK

We plan to extend our testbed to test transfer protocols over
long Internet paths, such as between Auckland and Sydney.
Using this extended testbed, we will be able to understand how
the high-speed data transfer protocols behave on a longer-haul
link where there is realistic congestion causing variable round-
trip times. We are also looking into using software defined
networking concepts to improve performance of high-speed

data transfer. Using OpenFlow [14], we believe we can bypass
firewall and other obstructions between sender and receiver.
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We suspect this effect is due to its implementation rather than
the protocol itself.

2) Result Implications: From our results, using TCP-based
protocols for transferring big data would be beneficial espe-
cially when the links used have relatively short RTTs and where
there is no significant background traffic. On the other hand,
with significant background traffic, TCP-based protocols may
not perform well due to the lack of stability. Using GridFTP
with UDT may give better performance with smaller RTT links.
Tsunami is only recommended for a high-RTT link, and when
there is significant background traffic on the link.

VII. CONCLUSIONS

We presented a comparative performance analysis of four
well-known transfer protocols for big data, namely, GridFTP,
FDT, UDT, and Tsunami. Our results show that using GridFTP
with TCP or FDT gives higher throughput over a 10 Gb/s
network link. Unless there is a significant background traffic
inducing congestion, using GridFTP with TCP may be the
best choice for data transfer between distant hosts. On the
other hand, with significant level of congestion on the link,
the TCP-based protocols show a tendency to be unstable, hence
using GridFTP with UDT may give more stable throughput. We
recommd using Tsunami only if there is significant background
traffic and the RTT between hosts is high.

In contrast, using a UDP-based protocol over links with
high background traffic is preferable, since it can provide more
reliable and efficient data transfer. The TCP-based protocols
were not stable, or efficient enough to compete against high
levels of TCP background traffic. Also, they took longer to
increase their initial throughput at the start of the transfer
compared to UDP based protocols.

VIII. FUTURE WORK

We plan to extend our testbed to test transfer protocols over
long Internet paths, such as between Auckland and Sydney.
Using this extended testbed, we will be able to understand how
the high-speed data transfer protocols behave on a longer-haul
link where there is realistic congestion causing variable round-
trip times. We are also looking into using software defined
networking concepts to improve performance of high-speed

data transfer. Using OpenFlow [14], we believe we can bypass
firewall and other obstructions between sender and receiver.
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We suspect this effect is due to its implementation rather than
the protocol itself.

2) Result Implications: From our results, using TCP-based
protocols for transferring big data would be beneficial espe-
cially when the links used have relatively short RTTs and where
there is no significant background traffic. On the other hand,
with significant background traffic, TCP-based protocols may
not perform well due to the lack of stability. Using GridFTP
with UDT may give better performance with smaller RTT links.
Tsunami is only recommended for a high-RTT link, and when
there is significant background traffic on the link.

VII. CONCLUSIONS

We presented a comparative performance analysis of four
well-known transfer protocols for big data, namely, GridFTP,
FDT, UDT, and Tsunami. Our results show that using GridFTP
with TCP or FDT gives higher throughput over a 10 Gb/s
network link. Unless there is a significant background traffic
inducing congestion, using GridFTP with TCP may be the
best choice for data transfer between distant hosts. On the
other hand, with significant level of congestion on the link,
the TCP-based protocols show a tendency to be unstable, hence
using GridFTP with UDT may give more stable throughput. We
recommd using Tsunami only if there is significant background
traffic and the RTT between hosts is high.

In contrast, using a UDP-based protocol over links with
high background traffic is preferable, since it can provide more
reliable and efficient data transfer. The TCP-based protocols
were not stable, or efficient enough to compete against high
levels of TCP background traffic. Also, they took longer to
increase their initial throughput at the start of the transfer
compared to UDP based protocols.

VIII. FUTURE WORK

We plan to extend our testbed to test transfer protocols over
long Internet paths, such as between Auckland and Sydney.
Using this extended testbed, we will be able to understand how
the high-speed data transfer protocols behave on a longer-haul
link where there is realistic congestion causing variable round-
trip times. We are also looking into using software defined
networking concepts to improve performance of high-speed

data transfer. Using OpenFlow [14], we believe we can bypass
firewall and other obstructions between sender and receiver.
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(c) UDP background traffic, RTT 75ms

FIGURE 8: Throughput of the protocols [98].

to evaluate the inter-protocol fairness, they use one UDP-
based flow from each of the four UDP variants and one
STCP flow while transferring 3GB files over 1Gbps link with
30ms and 60ms RTT along with 0.01% loss ratio. The inter-
protocol fairness together with the achieved throughput are
shown in Table 4. They determine that all the tested UDP
variants provide good TCP friendliness where the TCP flows
achieve reasonable throughput of up to 91Mbps over two
different communication links.

Another study [100] examines the throughput and packet
loss of PA-UDP and Tsunami over a Gigabit Ethernet switch
on a Local Area Network (LAN) with the buffer size of
750MB, while files ranging from 100MB to 5GB are be-
ing transferred using the two protocols. The authors find
that PA-UDP results in better throughput and virtually zero
packet loss compared to Tsunami, e.g. PA-UDP results in
the throughput of 934Mbps and zero packet loss for the
file transfer of 1GB, while Tsunami only achieves 295Mbps
throughput and 41.5% packet loss, which in addition, results
in timeout for a file transfer of 3GB and 5GB. The authors
in [100] conclude that the Tsunami protocol cannot be set
with optimal settings since its performance is not predictable
and is not suitable for congested networks [31]. Similarly,
another study [101] evaluates the performance of UDT, RB-
UDP, Tsunami along with the basic UDP in terms of packet
delay, jitter, packet loss and throughput. The authors observe
that the basic UDP, UDT and Tsunami experience higher
packet delay and jitter compared to RB-UDP. Furthermore,
UDT experiences higher packet loss compared to other UDP
variants, with RB-UPD experiencing the least packet loss
while higher throughput than the other UDP variants. Hence,
the aggressive bulk data transfer RB-UDP protocol has been
designed for extremely high bandwidth networks and for
achieving high Quality-of-Service (QoS) [102].

There are several other works [87] [88] [103] [104] that
utilise FASP for downloading massive files of several gi-
gabytes, such as medical imaging data of several thousand
objects collected over several years. An example of data
transfer between the universities in US and UK, the FASP
achieves a rate of 70–85Mbps while basic File Transfer
Protocol (FTP) can only obtain a transfer speed of 4–12Mbps

[103]. Hence, downloading a typical file of 10GB between
these two locations would take less than 15min over FASP
compared to almost 3hrs over FTP. The authors in [104]
examine that FASP manages to transfer at the rate of 6Gbps
over a 10Gbps of link bandwidth when using an MTU
of 1500byes. They further evaluate the FASP’s utilisation
during the handover between a lower bandwidth and higher
delay networks. The analysis [104] shows that the packet
loss rate highly fluctuates and increases with the increase of
available bandwidth of 100, 400, and 1000Mbps. However,
they do not provide any firm justifications for this behaviour
of FASP, additionally; they do not provide analysis of FASP
along with other transport protocols during the handover
process for communicating data among heterogenous access
networks.

Table VII-C presents summary of key findings from liter-
ature using different evaluation criteria for various TCP and
UDP variants and protocols with multiple TCP streams.
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VIII. FUTURE RESEARCH DIRECTIONS
We note that various multimedia real-time applications utilise
connectionless transport protocols, such as UDP and its
variants, across the internet community. We further, to the
best of our knowledge, note that researchers have evaluated
the performance of different UDP variants for static data file
transfers. However, it requires investigating the performance
of real-time multimedia applications, such as VoIP, live
video/voice streaming etc., for maintaining the QoS of these
applications for various performance metrics such as packet
loss, jitter, end-to-end delay etc. Furthermore, it is also criti-
cal to evaluate their performance, in addition to, comparative
analysis of various transport protocols, for various real-time
multimedia applications during the vertical handover among
heterogeneous wireless access networks (e.g. 5G/6G, LTE,
WiMAX, WiFi, GPRS etc.) where mobile users are supposed
to access these networks with various link/connectivity band-
widths. Additionally, the inter-protocol fairness of FASP also
needs to be investigated with other transport layer protocols
since it makes use of majority of the capacity of a communi-
cation link. Furthermore, the TCP friendliness of FASP also
needs to be studied.

The smart devices i.e. smartphones, tablets, notebooks, are
used for a variety of purposes and it is evident [105] that they
would exceed the world’s population and the average mobile
cellular connection speed will reach 43.9Mbps by 2023; 5G
connection speed will reach 575Mbps by 2023. Moreover,
majority of mobile applications and information sharing is
via video on demand. Hence, it is vital to evaluate various
transport layer protocols for user experience while accessing
high bandwidth demanding applications. One of the possible
directions is to evaluate the extra processing that occurs in
the user device’s processor for accessing these applications
via various UDP variants. Similarly, it also needs to evaluate
the effect over battery power required to transfer data with
different transport layer protocols, since some transport pro-
tocols (e.g. basic TCP vs. basic UDP) add more overheads
compared to others e.g. extra computation, communication
overhead. In addition, the extra communication overhead will
also affect users with fixed 5G/6G data plan.

IX. CONCLUSION
In this survey, a review of several innovative transport layer
protocols replacing the legacy transport protocols along with
their comparison in terms of several operational perfor-
mance metrics of throughput, packet loss, inter/intra protocol
fairness etc. and non-operational criteria e.g. deployment,
is presented. Additionally, we classify these protocols into
three categories of reliable, unreliable and protocols that
use multiple protocol’s streams. We demonstrate the working
mechanism of these protocols and further investigate their
performance for transporting huge volumes of data in high-
speed and low-latency networks that have been carried out in
recent research literature. In summary, recent research works
on innovative transport protocols and their comparative in-
vestigations have significant importance over fulfilling the

requirements of emerging data-intensive applications in the
presence of high-speed networks. We summarise and analyse
them together into single article and we truly believe this
research to be a source of motivation towards development
and deployment of data-intensive applications in high-speed
networks.
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