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We analyze the possibility of experimental investigation of new low-energy relations between the
values of resonance masses in the meson form factors and the differential rate of radiative kaon decay
K+ → π+e+e−(μ+μ−) at the current level of the experimental precision. A set of arguments is listed
in favour of that these relations can be a consequence of weak static interactions in the Standard Model.
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INTRODUCTION

The radiative kaon decay amplitudes K+ → π+e+e−(μ+μ−) are of great interest of
the chiral perturbation theory (ChPT) [1Ä3] because in the lowest order of ChPT the decay
amplitudes are equal to zero [4Ä8]. There are two opinions about the next order of ChPT.

The ˇrst opinion is that in the next order of ChPT the baryon (or quark) loops
dominate [4, 6]. As these fermion loops also determine meson form factors in the low
energy region [1], in this case, one can supposes that ChPT calculation [1Ä4] points out pos-
sible relations between the low energy parameters of meson form factors and the differential
rates of the radiative kaon decays. These relations can arise if we keep in the ChPT diagrams
the real vector meson propagators and take into account the quantum numbers of the nearest
resonances in possible vertices [9, 10].

1The results were presented at the 5th NA48 Mini-Workshop on Kaon Physics, CERN, Dec. 12, 2006.
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The second opinion is that in ChPT the meson loops dominate. It was shown [5,7, 8], in
the framework of the accepted approach to the Standard Model [11Ä13] with the point-like
approximation of weak interactions, that these meson loops can completely destruct the meson
form factor structure of the radiative kaon decay amplitudes in the low energy region.

In this paper, we show that the situation with ChPT for radiative kaon decay amplitudes
is more complicated. There are two types of the meson loops. The ˇrst of them are provided
by the normal ordering of the weak static interactions, and the second are retarded ones.

Recall that static interactions arise in the Hamiltonian approach to the Standard Model
(SM) of electroweak (EW) interactions [14, 15] in contrast to the conventional one [11,
12] based on heuristic Lorentz gauge formulation [13, 16], where the static interactions are
absent. These static interactions suppress any retarded meson loop contributions [5, 7, 8]
that can destruct the meson form factor structure of the decay amplitudes. The meson loop
contributions can be only the tadpole loop diagrams following from the normal ordering of the
static interaction. This ordering results in an effective action with �T = 1/2 rule [17,18] with
one unknown parameter g8 that can be ˇxed from other decays as g8 = 5.1. The dominance of
weak static interactions justiˇes the application of low-energy chiral perturbation theory [1Ä3]
as an efˇcient method of description of kaon decay processes [4Ä6,18].

In this paper we study the possibility of extracting information about the meson form
factors from the K+ → π+e(μ)+e(μ)− processes at the current level of the experimental
precision.

The structure of the paper is as follows. In Sec. 1 we present the explicit expressions
for amplitudes of the processes K+ → π+l+l− in terms of meson form factors. In Sec. 2
we discuss possibilities of the corresponding experimental tests. Manifestations of the static
interactions in decay rates in SM are discussed in Sec. 3.

1. RELATIONS BETWEEN FORM FACTORS AND RADIATIVE K DECAY
AMPLITUDE IN ChPT

1.1. Chiral Bosonization of EW Interaction. It is conventional to describe weak decays
in the framework of electroweak (EW) theory at the quark QCD level including current vector
boson weak interactions [11,12]:

L(J) = −(J−
μ W+

μ + J+
μ W−

μ ) = − e

2
√

2 sin θW

(J−
μ W+

μ + J+
μ W−

μ ), (1)

where J+
μ = d̄′γμ(1 − γ5)u, d̄′ = d cos θC + s sin θC , and θC is the Cabibbo angle (sin θC =

0.223).
However, a consistent theory of QCD at large distances has not been constructed yet.

Therefore, the most efˇcient method of analysis in kaon decay physics [4Ä6, 18] is the

ChPT [2, 3]. The quark content of π+ and K+ mesons π+ = (d̄, u), K+ = (s̄, u), K
0

= (s̄, d)
leads to the effective chiral hadron currents J±

μ in the Lagrangian (1):

J±
μ = [J1

μ±iJ2
μ] cos θC + [J4

μ±iJ5
μ] sin θC , (2)

where using the Gell-Mann matrices λk one can deˇne the meson current as [2]

i
∑

λkJk
μ = iλk(V k

μ − Ak
μ)k = F 2

π eiξ∂μe−iξ, (3)
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ξ = F−1
π

8∑
k=1

Mkλk = F−1
π

⎛⎜⎜⎜⎜⎝
π0 +

η√
3

π+
√

2 K+
√

2

π−√2 −π0 +
η√
3

K0
√

2

K−√2 K
0√

2 − 2η√
3

⎞⎟⎟⎟⎟⎠ . (4)

In the ˇrst orders in mesons one can write

V −
μ =

√
2 [ sin θC (K−∂μπ0 − π0∂μK−) + cos θC (π−∂μπ0 − π0∂μπ−) ] + . . . (5)

and
A−

μ =
√

2Fπ (∂μK− sin θC + ∂μπ− cos θC) + . . . , (6)

here Fπ � 92.4 MeV. The right form of the chiral Lagrangian of the electromagnetic
interaction of mesons can be constructed by the covariant derivative ∂μχ± → Dμχ± ≡
(∂μ ± ieAμ)χ±, where χ± = K±, π±.

We suppose also that the quark content of the mesons determines hadronization of QCD
[19,20] conserving its chiral and gauge symmetries.

1.2. The K+ → π+l+l− Amplitude. The result of calculation of the amplitude of the
process K+ → π+l+l− (l = e; μ) in the framework of the chiral Lagrangian (1)Ä(6), including
phenomenological meson form factors denoted by fat dots in Fig. 1, takes the form

T(K+→π+l+l−) = 2g8eGEWLνDγ(rad)
μν (q)(kμ + pμ) T (q2, k2, p2), (7)

where g8 = 5.1 is the effective enhancement coefˇcient [5, 17],

GEW =
sin θC cos θC

8M2
W

e2

sin2 θW

≡ sin θC cos θC
GF√

2
(8)

is the coupling constant, Lμ = l̄γμl is leptonic current,

T (q2, k2, p2) = F 2
π

[
fV

π (q2)k2

m2
π − k2 − iε

+
fV

K (q2)p2

M2
K − p2 − iε

+
fA

K(q2) + fA
π (q2)

2

]
, (9)

and f
(A,V )
π,K (q2) are meson form factors.

On the mass shell the sum (9) takes the form

T (q2, M2
K , m2

π) = T (q2) =

= F 2
π

[
fA

K(q2) + fA
π (q2)

2
− fV

π (q2) +
[
fV

K (q2) − fV
π (q2)

] m2
π

M2
K − m2

π

]
. (10)

The K+ → π+l+l− amplitude vanishes at tree level [4,5], where the form factors are equal
to unity: T (q2)|fV =fA=1 = 0.

In terms of the two standard Dalitz plot variables q2 and t2 representing the squares
of invariant masses of l+l− and π+l+ pairs, respectively, the amplitude (10) leads to the
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Fig. 1. K+ → π+γ∗ diagrams for effective Lagrangian

following decay rate for the transition K+ → π+l+l−:

Γ(q2, t2) = C

(MK−mπ)2∫
4m2

l

dq2|F (q2)|2
t2max(q2)∫

t2min(q2)

dt2η(q2, t2), (11)

where

η(q2, t2) = (2t2 + q2 − 2m2
π − 2m2

l )(2M2
K + 2m2

l − 2t2 − q2)+

+ q2(q2 − 2M2
K − 2m2

π) (12)

and

F (q2) =
(4π)2T (q2)

q2
=

=
(4πFπ)2

q2

[
fA

K(q2) + fA
π (q2)

2
− fV

π (q2) +
[
fV

K (q2) − fV
π (q2)

] m2
π

M2
K − m2

π

]
. (13)

The t2-dependence does not contain information about the combination of the form factors
F (q2), which is of our interest. Integration of (11) over t2 yields

Γ(q2) = C

(MK−mπ)2∫
4m2

l

dq2

M2
K

ρ(q2)|F (q2)|2. (14)

Here (see [5])

C =
(s1c1c3)2g2

8G
2
F

(4π)4
α2M5

K

24π

∣∣∣∣∣
g8=5.1

= 1.37 · 10−22 GeV,

ρ(q2) =
(

1 − 4m2
l

q2

)1/2 (
1 +

2m2
l

q2

)
λ3/2

(
1,

q2

M2
K

,
m2

π

M2
K

)
, (15)

λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca),

and s1c1c3 is the product of CabibboÄKobayashiÄMaskawa matrix elements VudVus.
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2. PARAMETERIZATION OF F (q2)

2.1. Parameterization with Meson Loops. It follows from (13), taking into account
fV

π (q2) � fV
K (q2) and fA

π (q2) � fA
K(q2), that

F (q2) =
(4πFπ)2

q2

[
fA(q2) − fV (q2)

]
. (16)

We discuss the differential K+ → π+l+l− decay rate (11), (14) in the ChPT [1,2] with pion
and baryon loop contributions leading to meson form factors [1, 4]:

fV (q2) = 1 + M−2
ρ q2 + α0Ππ(q2) + . . . ;

fA(q2) = 1 + M−2
a q2 + . . .

(17)

We parameterize the terms linear in q2 (determined by the baryon and meson loops [1, 4, 6, 18])
by the values of resonance masses [22] Mρ = 775.8 MeV, IG(JPC) = 1+(1−−) and
Ma = 984.7 MeV, IG(JPC) = 1−(0++),

α0 =
4
3

m2
π

(4πFπ)2
= 0.01926, (18)

and the nonlinear term of the pion loop contribution [1,2] is given by

Ππ(t) = (1 − t̄)
(

1
t̄
− 1

)1/2

arctan
(

t̄1/2

(1 − t̄)1/2

)
− 1, t̄ =

t

(2mπ)2
< 1;

Ππ(t) =
t̄ − 1

2

(
1 − 1

t̄

)1/2 {
iπ − log

t̄1/2 + (t̄ − 1)1/2

t̄1/2 − (t̄ − 1)1/2

}
− 1, t̄ � 1.

(19)

In order to introduce the resonant behavior of the form factors, the following Pad	e-type
approximations [21] to the expressions (17) are considered:

fV
1 (q2) = γ

[
1 − {M−2

ρ q2 + α0Ππ(q2)}/γ
]−1

+ (1 − γ),

fA
1 (q2) =

(
1 − M−2

a q2
)−1

.
(20)

Here the parameter γ = 0.85 effectively accounts for higher order loops, and is chosen in
such a way as to put the position of maximum of fV

1 (q2) to q2 = M2
ρ .

2.2. Predictions for Integrated and Differential Decay Rates. The form factors (20)
lead to the following decay branching ratios and muon/electron ratio R = Br(K+ →
π+μ+μ−)/Br(K+ → π+e+e−):

Br(K+ → π+e+e−) = 3.88 · 10−7, Br(K+ → π+μ+μ−) = 1.23 · 10−7, R = 0.318.

These branching fractions are highly sensitive to the values of Ma and Mρ used in the
parameterization:

ΔBr(ee)
Br(ee)

≈ 12
(

ΔMa

Ma

)
,

ΔBr(μμ)
Br(μμ)

≈ 10
(

ΔMa

Ma

)
,

ΔBr(ee)
Br(ee)

≈ −20
(

ΔMρ

Mρ

)
,

ΔBr(μμ)
Br(μμ)

≈ −17
(

ΔMρ

Mρ

)
.

(21)



146 Dubni�ckov�a A. Z. et al.

However, this sensitivity largely cancels in the muon/electron ratio:

ΔR

R
≈ −2

(
ΔMa

Ma

)
,

ΔR

R
≈ 2

(
ΔMρ

Mρ

)
.

The sensitivity to the parameter γ is smaller than that to the resonance masses:

ΔBr(ee)
Br(ee)

≈ −0.5
(

Δγ

γ

)
,

ΔBr(μμ)
Br(μμ)

≈ −0.9
(

Δγ

γ

)
,

ΔR

R
≈ −0.4

(
Δγ

γ

)
.

Taking into account that the relative uncertainties of resonance masses Ma and Mρ, which
are about 1%, our predictions can be roughly quantiˇed as follows:

Br(K+ → π+e+e−) = (3.9 ± 0.8) · 10−7,

Br(K+ → π+μ+μ−) = (1.2 ± 0.3) · 10−7,

R = 0.32 ± 0.01.

Differential rates of K± → π±e+e− and K± → π±μ+μ− decays corresponding to the
parameterization (20) are presented in Fig. 2 along with the rates calculated extrapolating the
available experimental data on K± → π±e+e− decay [23] using a model [8]. Note that
the experimentally accessible kinematic region of the K+ → π+e+e− decay is limited by
a condition z = q2/M2

K � (Mπ0/MK)2 ≈ 0.08, while for the K± → π±μ+μ− decay the
whole kinematic range is accessible.

Fig. 2. Differential rates (dΓ/dz, see Eq. (40)) of K+ → π+e+e− (a) and K+ → π+μ+μ− (b) decays
as functions of z = q2/M2

K . Solid lines Å F (q2) parameterization (20); dotted lines Å differential

distribution measured for K+ → π+e+e−, z > 0.1 by [23] and extrapolated for z < 0.1 and for

K+ → π+μ+μ− using a model [8]. Given the large sensitivity of our calculation to values of Mρ and
Ma, the calculation agrees with the experimental data

The function |F (q2)| determined by the relations (16) and (20) is presented in Fig. 3. Its
shape, being approximated in terms of a linear form factor F (q2) = F0(1 + λq2/M2

K), leads
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Fig. 3. The function |F (q2)| determined by the

relations (16) and (20)

to a form factor varying from a minimum of
λ = 1.4 for z = q2/M2

K = 0 to a maximum of
λ = 4.9 for a point z = q2/M2

K = 0.32 cor-
responding to q2 ≈ M2

π . An effective average
form factor slope of the K± → π±e+e− decay
as would be measured by an experiment in the
accessible kinematic region q2 > M2

π0 is esti-
mated to be λ ≈ 2.3. This value should be sub-
ject to variation among different experiments,
depending, in particular, on the experimental
acceptance as a function of q2.

2.3. Prospects for Experimental Tests. The
experimental data for branching fractions, their
ratio, and the form factor slope (not considering
a slope measurement in the K± → π±μ+μ−

channel which is subject to large uncertainties)
are [22]

Br(K+ → π+e+e−) = (2.88 ± 0.13) · 10−7,

Br(K+ → π+μ+μ−) = (0.81 ± 0.14) · 10−7,

R = 0.281± 0.050, λ = 2.14 ± 0.20.

The experimental precision of Br(K+ → π+e+e−) is mainly determined by a single
measurement [23]. The experimental uncertainty of Br(K+ → π+μ+μ−) is dominated by
a PDG error scale factor [22] emerging from inconsistency of three measurements [24Ä26].
Signiˇcant experimental improvements are expected in the near future, when the data sample
collected by the NA48/2 experiment at CERN is analyzed.

Our predictions for branching fractions of the two decays, their ratio R, and the effective
form factor slope are in agreement with the experimental data. On the contrary, meson
dominance models [27] fail to describe the effective form factor slope, predicting substantially
lower slope values.

Monte Carlo simulations involving realistic estimations of experimental conditions show
that a deviation of K± → π±e+e− event distribution predicted by (20) from a distribution
corresponding to a linear form factor F (q2) (i.e., the predicted dependence of the effective
form factor slope λ on q2) can be experimentally detected with a sample of ∼ 2 · 104

reconstructed decays, which is not far from the capabilities of the present experiments in
terms of kaon 
ux.

3. WEAK STATIC INTERACTION AS THE ORIGIN OF ENHANCEMENT

We listed the set of experimental arguments in favour of that a relation between the form
factors and radiative K decay amplitude takes place. In the following part of the paper we
would like to show that this relation is not occasional from theoretical point of view.

In any case, we are trying to address the questions: What are contributions of other loop
diagrams? What is the origin of the enhancement coefˇcient g8 in the amplitude (7)? What
is the origin of the coincidence of the resonance parameters with the kaon decay ones?
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We show below that a reply to all these questions can be the weak static interaction as a
consequence of Dirac-like radiation variables in SM.

3.1. The Radiation Variables in Standard Model. As was shown by Dirac in QED [28],
the static interactions in gauge theories are an inevitable consequence of the general principles
of QFT, including the vacuum postulate. In order to obtain a physical vacuum as a state with
minimal energy, Dirac eliminated all zero momentum ˇelds (with their possible negative
contributions to the energy of the system) by solving the Gauss constraint and dressing
charged ˇelds by the phase factors (see also [29Ä31]). This elimination leads to the radiation
variables and the static interactions in both QED and the massive vector boson theory [14].

In particular, in QED the radiation gauge-invariant variables A
(R)
μ (A) = Aμ−∂μ

1
� (∂kAk)

have propagators J̃+
μ DR

μν(q)J̃−
ν =

J̃+
0 J̃−

0

q2
+

(
δij −

qiqj

q2

)
J̃+

i J̃−
j

q2
, while

the Lorentz ones A
(L)
μ (A) = Aμ − ∂μ

1
� (∂νAν) [13] have propagators

J̃+
μ DL

μν(q)J̃−
ν = −J̃+

μ

1
q2

(
gμν − qμqν

�
)

J̃−
ν .

In order to demonstrate the inequivalence between the radiation variables and the Lorentz
ones, let us consider the electronÄpositron scattering amplitude T R = 〈e+, e−|Ŝ|e+, e−〉.
One can see that the Feynman rules in the radiation gauge give the amplitude in terms of the
current jν = ēγνe

T R =
J2

0

q2
+

(
δik − qiqk

q2

)
JiJk

q2 + iε
≡ −J2

q2 + iε
+

(q0J0)2 − (q · j)2
q2[q2 + iε]

. (22)

This amplitude coincides with the Lorentz gauge one,

T L = − 1
q2 + iε

[
J2 − (q0J0 − q · J)2

q2 + iε

]
, (23)

when the box terms in Eq. (22) can be eliminated. Thus, the Faddeev equivalence theorem [30]
is valid, if the currents are conserved,

q0J0 − q · J = qJ = 0, (24)

and the box terms are eliminated. It is just the case when the R variables are equivalent to
the L ones [30]. However, if elementary particles are off their mass shell (in particular, in
bound states) the currents are not conserved1.

Radiation variables have vacuum as a state with the minimal energy, whereas the Lorentz
ones lose the vacuum postulate as the time component give the negative contribution to the
energy. Therefore, Schwinger in [29] . . . rejected all Lorentz gauge formulations as unsuited
to the role of providing the fundamental operator quantization. . .

1The change of variables R → L means a change of physical sources. In this case, the off mass-shell L variable
propagators lose the Coulomb pole forming the Coulomb atoms. The loss of the pole does not mean violation of
the gauge invariance, because both the variables (R and L) can be deˇned as the gauge-invariant functionals of the
initial gauge ˇelds.
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Let us believe Schwinger and consider the massive vector Lagrangian

L = −1
2
(∂μW+

ν − ∂νW+
μ )(∂μW−

ν − ∂νW−
μ ) + M2

W W+
μ W−

μ +

+
[
J−

μ W+
μ + J+

μ W−
μ

] e

2
√

2 sin θW

in terms of radiation variables [14] W±R
μ = W±

μ + ∂μ[1/(M2
W −�)]∂kW±

k .
In this case, instead of the standard propagator [13]

J̃+
μ DL

μν(q)J̃−
ν = −J̃+

μ

1
q2 − M2

W

(
gμν − qμqν

M2
W

)
J̃−

ν (25)

we have the radiation one [14]

J̃+
μ DR

μν(q)J̃−
ν =

J̃+
0 J̃−

0

q2 + M2
W

+
(

δij −
qiqj

q2 + M2
W

)
J̃+

i J̃−
j

q2 − M2
W

. (26)

The R propagator is regular in the limit MW → 0 and is well-behaved for large momenta.
In the following we compare two propagators DL

μν and DR
μν .

3.2. Weak Static Interaction as the Origin of Enhancement. Let us consider the K+ →
π+ transition amplitude

〈π+| − i

∫
dx4dy4Jμ(x)DW

μν(x − y)Jν(y)|K+〉 = i(2π)4δ4(k − p)GEWΣ(k2) (27)

in the ˇrst order of the EW perturbation theory in the Fermi coupling constant (8) comparing
two different W -boson ˇeld propagators, the accepted Lorentz (L) propagator (25) and the
radiation (R) propagator (26). These propagators give the expressions corresponding to the
diagrams in Fig. 4

Σ(k2) → ΣR(k2) = 2F 2
πk2 + 2i

∫
d4qM2

W

(2π)4
k2 + (k0 + q0)2

(−|q|2 − M2
W )[(k + q)2 − m2

π + iε]
, (28)

Σ(k2) → ΣL(k2) = 2F 2
πk2 + 2i

∫
d4qM2

W

(2π)4
(2kμ + qμ)DL

μν(−q)(2kν + qν)
(k + q)2 − m2

π + iε
. (29)

The versions R and L coincide in the case of the axial contribution corresponding to
the ˇrst diagram in Fig. 4, and they both reduce to the static interaction contribution be-
cause

kμkνDF
μν(k) ≡ kμkνDR

μν(k) =
k2
0

M2
W

.

However, in the case of the vector contribution corresponding to the second diagram in Fig. 4
the radiation version differs from the Lorentz gauge version (25)1.

1The Faddeev equivalence theorem [30] is not valid, because the vector current Jμ = K∂μπ − π∂μK becomes
the vertex Γμ = K∂μDπ−Dπ∂μK , where one of ˇelds is replaced by its propagator �Dπ = δ(x), and ∂μΓμ �= 0.
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Fig. 4. Axial (a) and vector (b) current contribution to K+ → π+ transition

In contrast to the Lorentz gauge version (25), two radiation variable diagrams in Fig. 4 in
the rest kaon frame kμ = (k0, 0, 0, 0) are reduced to the static interaction contribution

i(2π)4δ4(k − p)GEWΣR(k2) = 〈π+| − i

∫
dx4J0(x)

1
�− M2

W

J0(x)|K+〉 (30)

with the normal ordering of the pion ˇelds which are at their mass shell1, so that

ΣR(k2) = 2k2F 2
π

[
1 +

M2
W

F 2
π (2π)3

∫
d3l

2Eπ(l)
1

M2
W + l2

]
≡ 2k2F 2

πg8. (31)

Here Eπ(l) =
√

m2
π + l2 is the energy of π meson and g8 is the parameter of the enhancement

of the probability of the axial K+ → π+ transition. The pion mass shell justiˇes the applica-
tion of the low-energy ChPT [1], where the summation of the chiral series can be considered

here as the meson form factors [4, 6, 18]

∫
d3l

2Eπ(l)
→

∫
d3lfV

K (−(l)2)fV
π (−(l)2)

2Eπ(l)
.

Using the covariant perturbation theory [32] developed as the series Jk
μ(γ⊕ ξ) = Jk

μ(ξ)+
F 2

π∂μγk + γifijkJj
μ(ξ) + O(γ2) with respect to quantum ˇelds γ added to ξ as the product

eiγeiξ ≡ ei(γ⊕ξ), one can see that the normal ordering

〈0|γi(x)γi′ (y)|0〉 = δii′N(z), N(z) =
∫

d3l eil·(z)

(2π)32Eπ(l)
,

where z = x − y, in the product of the currents Jk
μ(γ ⊕ ξ) leads to an effective Lagrangian

with the rule �T = 1/2

M2
W

∫
d3zg8(|z|)

e−MW |z|

4π|z| [Jj
μ(ξ(x))J j′

μ (ξ(z + x))(fij1 + ifij2)(fi′j′4 − ifi′j′5)δii′ + h.c.],

where g8(|z|) =

[
1 +

∑
I�1

cIN I(z)

]
is series over the multiparticle intermediate states (this

sum is known as the Volkov superpropagator [2, 33]). In the limit MW → ∞, in the lowest
order with respect to MW , the dependence of g8(|z|) and the currents on z disappears in the
integral of the type

M2
W

∫
d3z

g8(|z|) e−MW |z|

4π|z| =

∞∫
0

drr e−rg8

(
r

MW

)
� g8(0).

1The second integral in (28) with the term (k0 + q0)2 really does not depend on k2, and it can be removed by
the mass rotation.
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In the next order, the amplitudes K0(K̄0) → π0 arise. Finally, we get the effective
Lagrangians [17]

L(ΔT=1/2) =
GF√

2
g8(0) cos θC sin θC×

×
[
(J1

μ + iJ2
μ)(J4

μ − iJ5
μ) −

(
J3

μ +
1√
3
J8

μ

)
(J6

μ − iJ7
μ) + h.c.

]
, (32)

L(ΔT=3/2) =
GF√

2
cos θC sin θC

[(
J3

μ +
1√
3
J8

μ

)
(J6

μ − iJ7
μ) + h.c.

]
. (33)

This result shows that the enhancement can be explained by static vector interaction that
increases the K+ → π+ transition by a factor of g8 = g8(0), and yields a new term describing
the K0 → π0 transition proportional to g8 − 1.

This Lagrangian with the ˇt parameter g8 = 5 (i.e., g8 sin θC cos θC � 1) describes the
nonleptonic decays in satisfactory agreement with experimental data [2, 17].

CONCLUSIONS

We have investigated the low-energy relations between the values of resonance masses
in the meson form factors, and the differential radiative kaon decay K+ → π+e+e−(μ+μ−)
rates following from the ChPT [1, 2, 4]. We give nontrivial predictions of muon/electron
ratio and the effective form factor slope, which are in agreement with the experi-
mental data.

The high sensitivity of these relations, the low energy status of ChPT, where they arise,
and the universality of the enhancement coupling constant g8 for all kaonÄpion weak transition
amplitudes with the rule of selection �T = 1/2 can be explained by a static weak interaction
of massive vector bosons [14] suppressing retarded loop pion diagrams [5, 7, 8] that can
destruct the form factor structure of the decay amplitudes. The enhancement of kaonÄ
pion transition can be considered as consequences of normal ordering of all pions in the
instantaneous loop on their mass shells p2 = m2

π. Therefore, the obtained ChPT amplitudes
allow one to extract information about the form factors of π and K mesons from the K+ →
π+l+l− processes.
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APPENDIX: CALCULATION OF K+ → π+l−l+ DECAY WIDTH

A.1. The Matrix Element. The matrix element for the process in Fig. 5 can be obtained
by Feynman rules:

iM(K+ → π+l+l−) = ūs(q−)(−ieγμ)vs′
(q+) i

gμν

q2
〈π+(p)|Jem

ν |K+(k)〉, (34)
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after inserting parameterization

iM(K+ → π+l+l−) = ūs(q−)(−ieγμ)vs′
(q+) i

gμν

q2
eF (kp)(k + p)ν . (35)

Fig. 5. K+ → π+l−l+ diagram

To obtain the square root of matrix element, one has to sum over spins:

∑
s,s′

|M|2 =
e4|F (kp)|2

q4
Tr[q+/γμ/q−/γν/− m2

l γμ/γν/](p + k)μ(p + k)ν =

=
4e4|F (kp)|2

q4
[q+μq−ν + q+νq−μ − q+q−gμν − m2

l gμν ](p + k)μ(p + k)ν =

=
4e4|F (kp)|2

q4
[2q+(p + k) q−(p + k) − q+q−(p + k)2 − m2

l (p + k)2]. (36)

Next if we deˇne

z =
q2

M2
K

=
2q+q− + 2m2

l

M2
K

; x =
(p + q−)2

M2
K

=
m2

π + 2pq− + m2
l

M2
K

;

R =
( mπ

MK

)2

; rl =
( ml

MK

)2

,

(37)

where l = e, μ, we obtain

∑
|M|2(z, x) =

2e4F 2

z2

[(
2x + z − 2 − 2rl

)(
− 2x − z + 2R + 2rl

)
+ z

(
z − 2 − 2R

)]
,

where we used the momentum conservation law and relations:

k = p + q− + q+ = p + q, q−q+ =
M2

K

2
(z − 2r),

(k + p)2 = M2
K(2 + 2R − z), (k − p)2 = q2 = M2

Kz,

q−(p + k) =
M2

K

2
(2x + z − 2R − 2r), q+(p + k) =

M2
K

2
(2 + 2r − z − 2x),

q(p + k) = M2
K(1 − R).
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A.2. The Decay Rate. The phase volume (in the frame of k = 0) is

dΦ =
d3q+d3q−d3p

2ε+2ε−2ε
δ4(k − p − q+ − q−); d4q− = d4q,

=
|q+|ε+dε+dΩ+

2ε+
d4qd4pδ4(k − p − q)δ((k − q)2 − m2

π)δ((q − q+)2 − m2
l ),

=
|q+|dε+dΩ+

2.2MK

1
2
|q|dq24πδ

(
q2 − 2q+q

)
; dΩ+ = 2πd cos θ+,

=
dε+
8MK

4πdq2 1
2
2π =

dxdz

16
4π2πM2

K ; q+q = q0ε+ − |q||q+| cos θ+, (38)

and the decay width is

dΓ =
1

2MK

2e4F 2

z2

[(
2x + z − 2 − 2rl

)(
− 2x − z + 2R + 2rl

)
+ z

(
z − 2 − 2R

)]
×

× 1
(2π)5

dxdz

4
π2M2

K , (39)

dΓ
MKdxdz

=
α2F 2

8πz2

[(
2x + z − 2 − 2rl

)(
− 2x − z + 2R + 2rl

)
+ z

(
z − 2 − 2R

)]
.

After integration the decay width is

dΓ
MKdz

=
α2

6πz3
λ3/2(1, z, R)F 2(z)(z + 2r)

√
1 − 4r

z
, (40)

where
λ(1, z, R) = (z2 + 1 + R2 − 2z − 2Rz − 2R). (41)
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