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ABSTRACT

The role of the time surface term in the ADM Hamiltonian formulation of general rel-
ativity is investigated, We show that the variable contained in the time surface term {the
scale foctar) plays the role of a time-like variable. The conjugated variable represents the
encrgy density in the reduced phase space, where the Schradinger like equation for & wave
function is derived. The contribution from the surface term to the phase of the wave func-
tion allows us to define the phase time of the quantum Universe so that it coincides
with the proper time as an invariant interval for the classical dust filled Universe.
The quentum scenario of the evolution of the Universe filled in by the Weinberg-Salam
ficlds is considered. The wave function of the early Universe as the functional from the
Higgs fields and scale factor realizes the unitary irreducible representation of the S0{4,1)
group. The clementary particle masses are determined by the angles of the scale-scalar
field mixing.
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1 Statement of the problem

The Dirac-ADM canonical approach (1, 2] to GR was the essential improvement on the way
to quentization of the Einstein-Hilbert theory of gruvity develuped by Wheeler, DeWitt
and others [3, 4, 5, 6]. This conventional scheme of the canonical quantization is bosed
on the (3+1) Dirac-ADM foliation [1, 2, 7, 8] of the four dimensional manifold (z*) along
the some time-like vector {associated with the rest frame of an observer):

ds? = Nh? — mg,kt{r‘tﬁzk i (dr = drf + N

(that means the restriction of the growp of general coordinnte transformations by the
kinemetric ones [8]: ¢ — '(t) ; 2 — ¢'i(t, T1. T2, 23)) and on the ADM nction (Wappr)
which differs from the initin! Einstein-Hilbert action [9]

m—[d‘"r»/_[

H)H

+ -Csnatter] H (’\.'2 = 87"6)1 (1]

by the surface terms:
Wer = Wapsr + Ws + W,

where

Wr=- f didzy [a ‘/—] [8f = 7 = 2w 1] @

W= — f dtd:'zék.[\/”_Jg_{mg‘*am'][;% . (3)
For the derivation of lacal classical equations these surface terms are not essential, how-
ever, they piay an important role in the determination of the global quantities of such a
total energy [10]. It is obvious that the wave function also has global nature and depends
on these surface terms. The statement of the problem consists in the canonijcal
gquantization of the Einstein- Hilbert action (1) by taking into account the
surface terms (2), (3). We continue the nitempts to solve this problem in the papers
{11, 12].

2 A new version of the Hamiltonian Formulation

To solve this problem we should
1) consider the space-scale variable a = {®g]t in the time surface term (2)
a5 one of dynamical variables :

5 = a®[N2dt? - w;kwj;_,liIiJIJ]‘ ; aNe=N ; detw=1, {4)
(we use the triad form wyy; for the rest dynamic varisbles [13])
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If) apply the Ostrogradsky method [14, 13} to the theory with second order
derivative of the scale factor with respect to the time coordinate. As the result, the
Hilbert action (1) in terms of the canonical conjugate variables a,m,, %, 7wy (where &
denotes the set of matter fields including graviton w and photon 4) has the form

T 1 ;
Wgr = L dt j; Pz [—nm% +3th(ama) + 3 we ® —N.Hec| + Ws,
P A

where 0
&= doa + Zad V¥, Ape= Doy — Ao — N'Fie

Sre= (ngwgy + wiyns -~ ViNg = VN + gu,zu,,iaj;w),

is the kinemetric invariant time derivative {we use here covariant derivative in the metric
wigwye, including the Laplace operator Af = Vi f), and Hee is the Einstein energy
density , \ .

Hee = —%ﬂ’?‘,) + 7'I'E":.,,| (%) + (2%.—'2) R+'H(_.1); {5)
with the photon cnergy

My = é”ﬁs)ﬂkm + ;l,-Fx‘;‘F Y

and three dimensional curvature

R =aq? (S)R(a'zuﬁ) - ‘:’JR(._.;?) + b‘ﬂ'%AcﬁI,

111} perform the canonical transforimation (A, e) => (II,7) which removes

the time surface term §8(m,)
o 1 ,
M) & —Eén(ff(u)a) = 11{§ — N*&n) . (6)
Oxne can represent this transformation as

N'Z
"o = 2 SOy o= TS, ™

where C(#), S{7) and [ are some particular solution of the following equations

d d 1
Cl) g St = S Cla) =15 Qp(uT) - NO{nT) + 30N =0, (8)

Finally, the Hilbert nction reads in terms of the new variables as

Wer = f dtdsﬂ'.' Z :rr(@;li‘ - HI’;N"P;, + Ws s (9)
P=w, A lnT
with space surface term Wy = Wy — 2 f7 dtdPzd (N¥*mL) and constraints
mn 6 . 6
HEC:_F(CQ_SZFEH}-F?F(QN)W-‘_HM}=D’ (10)
Py = mr@eInl + demry + 18en + ZV;T;L),‘ + Trf,‘)Fu: ={. (11)



3 Interpretation of new variables

To treat the new variables [1 and 1, we consider the flat-space limit [12]: =y = R =
Ne=0
Cl} = 1; S{n) = 5, where the Hilbert action (9} has the form

. ‘ n
Wer = [ iz { 7o (Ax — Bedg) = Thip — No(Ha) — F)}'

Alter the reduction on the constraint shell Hge = 0 in the gaupe M. = 1, we get the
expression for the conventional action of clectrodynamics

[y fedt = f iz {b g (Ar ~ Do) — Heny )

Note that because 1
L . 1
= “r ( 2)

in this limit the variable 5 can Le treated as the time and the quantity [1/T in
the reduced phase space is a "reduced energy” like the the quantity /&° + 2
is the spectral energy for a relativistic particle.

4 The wave function of the Universe

Suppose that the coustraint Hge = 0 has the set of solutions I = H{;f ca = 1..m. For

each solution one can write down the corresponding reduced Hilbert action

Wity = f it / Bz ( S mmd - H{;‘,‘f;) + 15 {13)
$=un A Inl”
The quantization of the action leads to the Scirddinger type evolution equation
16 -
?E\Fnﬂﬂﬁ}‘pn. (14)

Let us consider the small time limit () ~ 0 which corresponds to the small Universe
(a ~ S(n) — 0). According ta equation (8), in this region S{y) ~ 7, C(#) ~ 1, and the
graviton terin ﬁfw, dominates iu the energy density (10). The corresponding solutions of

the constraints Hege =10 ;
N=HM= ﬁrr?u];-}. (15)

and the reduced action reads
T
Weops = [J dt fv Pz (3 mes F f672,, 5ol - (16)

Ore can verify that in the supposition of homogeneousity of the space

2y ~1
ds? = AINAUME ~ A%r)de%);  Afr) = (1 + :—:?) {i7)
)]
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ali}Vo(t)dt = dTpres. £ =0,21, {18)

it follows from (16} the action for the Misner Universe [5) (in details see [6]):

Were = Vg (rr(w)(w(T) w{0)} ¥ t')'zr(hJ lnqt(o))) (19}
and the spectral decomposition for the wave function
W= [dm (43,00 5 A7 eMen-), (20)

where the role of the 1ime is played by the logarithm of 5, and A* are the operators of
creation and annihilation of the Universe. Note that in the case of the homogeneous space

the particular solutions of eq. (8) read
C(n) = 1,cosn, coshry;  S(y) = psing,sinhy, T=ry {21)

respectively for k=0,1,—1.
The evolution of the Universe filled in by dust and radintion has been considered in
[12). In this case the wave function of the Universe has the form ¥, = exp {iIVi*¥{a)}

with the reduced action

T
e — ;L-meo du [Elal - —-—-(_(u) )]

12 . . .
where ¥jg) = Jd*zAYN(r) and Tia) = 2‘/;3—, [‘Hw) - 3(;’?‘;‘:-] is the solution of the constraint
(10) Hee = 0. The phase of this function coincides {up to the energy factor) with the
Friedmann time (18} for the dust ease {Hgr = afuys)

Ve, a(T) Ga
rred _ Y(0)Cdustn ] — f
“ uat 5 TFnerl("-), TFﬂed(a] (01 da KzE{a] (22}
and with the conformal time Nedt = i(#)ry for the rodiation (Hay = €rpu)
ATy 6
Wi = Viytruan{a)ro; #la)ro = _/;(U) dﬂ%- (23)

It is worth to note that the this clear correspondence between the quantum and classical
physics ( the "phase time” and the "interval time”) arises due to the maintenance of the
time surfoce term 18(my,a) in the Hilbert acticn.

Thus, the time surface term helps us to establish the correspondence be-
tween the time as the phase of the ADM wave function of the Universe and
the classical proper time as an invariant interval.



5 Quantum scenario of the Weinberg-Salam Uni-
verse.

Let us consider the quantum scenario of the evolution of the Universe filled in by the
Weinberg-Salam fields and described by the action

) (4} .
W= f d“:cdt‘/_'"{ i LI

5 + 8,00 — (T ) Pp+ } (24)

where ¢ = :i: is the doublet of the complex scaler fields; ¥y, und ¥y are the left
and right fermions. We keep only the term of the sealar-fermion internction generating
masses of the fermions m(T Wy + ¥ T pa) to show the evolution of the mass parameters
with respect to the scale . If we extract the scale factor ¢ not only from the metric (4)
Guwr = @*§uye, but also from all other matter ficlds ([16, 17]) & = ap, ¥ =a ¥, we
can guarentee the classicnl limit of the massive fermion felds ns the Friedmann dust of
the Universe. The action in terms of the physical Felds , ¥, §(+/—§ = N.) has the form

We w? -
/d4 { [ (a T3V 5") 28""‘9"“ + 80" 0" = V(P Lo ¥ e +

+8, E—' da
o (N | = —v| =

Note that the configuration a* = “T’tp'tp represents the singular point: in the vicinity of
this point the sign before the four- dimenstonal curvature is changing. So, let s consider
only the field configuration such that [a® — Sp*w] = p* > 0. Fur this case one can

introduce new variables

a = peosh(£); @, = {-j——ipsiull(f)n,-; ny = cos(O) exp {ixi}; 10 = 5in(BYexp {1x2},

where £, 8, x1. xu are Lhe angles of the scale-scalar mixing,
For the homogeneous space (I17) with ¥y = 1 we get the action

/ dt{—g—‘z— (%) + N, [Ef—zp* (%) - ‘r\/gpsinh(f)(ﬁ'mm)% + - ]
i (5 o) 5}

where D = — 54 p*¢3+(psinh £)? (9’ +5in*(8)x3 + cos’(@)ﬂ) is the SO{4, 1)-invariant
differential form. By the Ostrogradsky method this action can be rewritten in terms of

momenta

W= /dt{

1 1
Ta)d — Tp — NeHeo + Ef?ﬁ (Tr(p;p) + 53., (Trm tanh(f))}

a=£8,x1.x2
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12, kpPb  KE 3. .
Hee = -~2- 5 T T r“ i + — 2;3'1 ﬁ +7 FPSlnh(E)(‘pLdni)‘pHﬂ"_

where X? is the Kazimir operator of the 50(4, 1) group

2 2 P;l P;a
£ =Fa smh"(.f) ( ® 56y +Es7("e_)) ‘
We see that the variable p plays the same role as the scale a in the theory without
scalar fields, and it is the Lime like variable. MNote that our transition to new variables
js similar to the Bekenstein transforination [18]. Repeating the canonical transformation
{7) #(mb — SO0t ) == Th), where T = rg, we get the expression for the action

K2 3 -
fdt{z Foye — T — Nc[ m J;p81n]1(5)(wLarfi)¢Rc 4. J

+§au (JD(E) lﬂllll(E)) }

This action describes the following ADM-scenario of the evolution of the Universe, In the
amall time lintit (7 ~ 0) the Kazimir operater tenin dominates and the reduced system
on the constraint Hge = 0 has the form
.tT) dn
W = f P K{P.) + ~—=_ (7 tanl IT, = o tc.
=1 [ r ¥ K )+MT( ; am(s))} 4T = 3515

The wave function of this system can be deccinposed over the eigenfunctions of the Kez-
imir operator with the cigenvalues X,

U(T, = T(T) - T4(0)]a) = Z [Ai+)€+"‘_'7"‘l’g(aﬂan) + AE—IE—‘&T,\[J:(QTIOD)} ,

Y (arlao) = Ysourlar) Ysou{ae) exp [1PE (tanh{fr) — tanh{o)}} ,

where 4) are the operators of the creation and annihilation of the Universe, Ysoumn iSa
unitary irreducible representation of the SO(4, 1) group. This wave function reproduces
the physical picture of the Misner anisotropic Universe {16} discussed above in section 4.

In the large time limit, the $0(4, 1) symmetry is broken, the Kazimir operator term
disappears in comparison with the mass term. In this case, the masses of elementary
particles in the Weinberg-Salam mode! are determined by the fixed values of angles of the
scale-scalar ficld mixing and the ADM-observer gets the Friedmann cosmological wmodels
of radiation and dust, considered above.

6 Conclusion

We have shown that inciuding the time surface term in the canenical Hamiltonian formu-
lation of GR helps us to extrect the time-like variable and its conjugated romentum from

7



the extended phase space, By toking into account the time surface term we representod
here the new version of the Dirac - ADM Hamiltonisn formalism for general relativity in
the reduced phase space with the Schridinger - like equation for a wave funciion describ-
ing the quantum evolution of the Universe. This evolution coincides with the Friedmann
clessical evolution of the dust filled Universe and shows that in GR like in special reln-
tivity there are two distinguished invariant time variables: the *phase time” of the
ADM-observer (who constructs the Hamiltonian and measures the time as a
phase of the wave function of the expanding Universe ) and the geometrical
time of the Friedmann observer (who measures the time as an invariant proper
interval and observes Lthis expansion on the earth).

In special relativity, the corresponding times are connected by the Lorentz transfor
mation and they ceincide only in the cose when the rest frame of the Einstein observer
coineides with the rest frame of a particle. Now the main questjon is to find the corre-
sponding transformation firom the rest frame of the ADM -+ observer to the Friedmann

one.
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