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ABSTRACT

The role of the time surface term in the ADM Hamiltonian formulation of general rel-
ativity is investigated. We show that the variable contained in the time surface term (the
scale factor) plays the role of a time-like variable. The conjugated variable represents the
energy density in the reduced phase space, where the Schrodinger like equation for a wave
function is derived. The contribution from the surface term to the phase of the wave func-
tion allows us to define the phase time of the quantum Universe so that it coincides
with the proper time as an invariant interval for the classical dust filled Universe.
The quantum scenario of the evolution of the Universe filled in by the Weinberg-Salam
fields is considered. The wave function of the early Universe as the functional from the
Higgs fields and scale factor realizes the unitary irreducible representation of the SO(4,1)
group. The elementary particle masses are determined by the angles of the scale-scalar
field mixing.
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1 Statement of the problem

The Dirac-ADM canonical approach [1,2] to GR was the essential improvement on the way
to quantization of the Einstein-Hilbert theory of gravity developed by Wheeler, DeWitt
and others [3, 4, 5, 6]. This conventional scheme of the canonical quantization is based
on the (3+1) Dirac-ADM foliation [1, 2, 7, 8] of the four dimensional manifold (a;*1) along
the some time-like vector (associated with the rest frame of an observer):

ds2 = N2dt2 - Mg,kdx>dxk ; (rfV = rte< + N\lt)

(that means the restriction of the group of general coordinato transformations by the
kinemetric ones [8]: t —• t'{t) ; Zj —» x'i(t, 11,121X3)) and on the ADM action (WADH)
which differs from the initial Einstein-Hilbert action [9]

maUer\ ; {K*= SxG), (1)
•J L CK- J

by the surface terms:

Wan = WADM + »'s + IV7-,

where

IK7- = -

Ws = - [ dhpXdtl^Wg^N)]^ . (3J

For the derivation of local classical equations these surface terms are not essential, how-

ever, they play an important role in the determination of the global quantities of such a

total energy [10]. It is obvious that the wave function also has global nature and depends

on these surface terms. The statement of the problem consists in the canonical

quantization of the Einstein- Hilberfc action (1) by taking into account the

surface terms (2), (3). We continue the attempts to solve this problem in the papers

[H, 12]-

2 A new version of the Hamiltonian Formulation

To solve this problem we should
I) consider the space-scale variable o = [(3)</]« in the time surface term (2)

as one of dynamical variables :

ds2 = O2IN^i2 - WrtWfcdz'dz'], ; aNc = N ; detw = l, (4)

(we use the triad form afy for the rest dynamic variables (13])
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II) apply the Ostrogradsky method [14, 15] to the theory with second order
derivative of the scale factor with respect to the time coordinate. As the result, the
Hilbert action (1) in terms of the canonical conjugate variables a, 7ra,$,7r* (where $
denotes the set of matter fields including graviton u and photon A) has the form

WGR = fTdt f d3x \-wM a +5&{TWa) + £ *,«,, I -NcHBc\ + W3,

where
\adkN

k, Ak= OaAk - OkAQ - NlFlk

is the kinemetric invariant time derivative (we use here covariant derivative in the metric
&i&>jk, including the Laplace operator A/ = Vkd

kf), and HEC is the Einstein energy
density

with the photon energy

W(A) =

and three dimensional curvature

R = a2 ™R() )

III) perform the canonical transformation (^(aj,a) => (FI1Jj) which removes

the time surface term ^(" ia ) 0 )

TT111) § -Ì30(7T(a)a) = n(i) - JV4SItIi) . (6)

One can represent this transformation as

/4^ (7)
where C(f;), 5(7/) and F are some particular solution of the following equations

C(IJ)^S(Ij) - S(Ij)^C(Jj) = 1; <9o(hir) - iV*ft(lnr)

Finally, the Hilbert action reads in terms of the new variables as

hir) - A'^(lnF) + |&JV* = O . (8)

= /ClId1X f ^ > r w * - FJr)JV^ + I V 5 ,
•* L*=u»./t,lnr J

(9)
J

with space surface term Ws = W5 ~
 2So dtd3xdt(Nk7tWk) and constraints

• = ~(C2-S2^R)+ 7Tl1-^;+ Ti1A)=O, (10)

"Uk + x'wFtk^O. (U)



3 Interpretation of new variables

To treat the new variables n and r/, we consider the flat-space limit [12]: 7r(cj) = R =

JV* = 0;

C{rj) = 1; S{TI) = ?/, where the Hilbert action (9) has the form

= JdId3X {rfAÌ(Àk - dkA0) - Tir) - Nc(H(Ai - " ) J .WG

After the reduction on the constraint shell TiEC = 0 in the gauge Nc = 1, we get the
expression for the conventional action of electrodynamics

cd = fdtd3x {^,(yì* - 0kAn) -U''

Note that because

fl = f- (12)

in this limit the variable 7; can be treated as the time and the quantity Fl/F in
the reduced phase space is a "reduced energy" like the the quantity x/pJ +• ?/;2

is the spectral energy for a relativistic particle.

4 The wave function of the Universe

Suppose that the constraint ttsc = 0 has the set of solutions H = H[^ ,a — \...m. For
each solution one can write down the corresponding reduced Hilbert action

"'c%ai = fdtftPx I Y. / w * " W(M')) + W3 (13)

The quantization of the action leads to the Schrodiiigcr type evolution equation

i <5T/ " '"'

Let us consider the small time limit (7;) ~ 0 which correspond:! to the small Universe
(a ~ S(T/) —» 0). According to equation (8), in this region S(rj) ~ 7/, C(i;) ~ 1, and the
graviton term nfa dominates in the energy density (10). The corresponding solutions of
the constraints HEC = 0

n = 7irJd = ±J6rf~,-. (15)

and the reduced action reads

67T?A$glri77j • (16)

One can verify that in the supposition of homogeneousity of the space

A(T) = (l + S



a(t)Nc(t)dt = dTFricd; * = 0,±l, (18)

it follows from (16) the action for the Misner Universe [5] (in details see [6]):

v ^ (I9)

and the spectral decomposition for the wave function

^'"'™') ' (20)

where the role of the time is played by the logarithm of i;, and A* are the operators of
creation and annihilation of the Universe. Note that in the case of the homogeneous space
the particular solutions of eq. (8) read

C(7j) = l,cos;;, coshq; S(rj) = i], siiu/, sinhr;, P = ro (21)

respectively for k = O11, — 1.
The evolution of the Universe filled in by dust and radiation has been considered in

[12]. In this case the wave function of the Universe has the form <P± = exp{i\V±d(a.)}
with the reduced action

where VJ3) = Jd3xA3(r) and 7T(0) =
 2 / J [?AA/) - f^i] 's the solution of the constraint

(10) HEC = 0. The phase of this function coincides (up to the energy factor) with the
FViedmann time (18) for the dust case (HM = aCdust)

{ 2 2 )

and with the conformai time Ncdt = '/(Oro f°r t' le radiation (WA/ = (rad)

W£ = V(3)iradri{a)r0; V(a)r0 = f™ d a ^ . (23)
Va(O) h- 2 ( O )

It is worth to note that the this clear correspondence between the quantum and classical
physics ( the "phase time" and the "interval time") arises due to the maintenance of the
time surface term \d(lL{a)a) >n 'h e Hilbert action.

Thus, the time surface term helps us to establish the correspondence be-
tween the time as the phase of the ADM wave function of the Universe and
the classical proper time as an invariant interval.



5 Quantum scenario of the Weinberg-Salam Uni-
verse.

Let us consider the quantum scenario of the evolution of the Universe filled in by the

Weinberg-Salam fields and described by the action

W = J d3xdty/=a I ~— + n
6 + O11W* - 7 ( * t * ) * « + •••> (24)

where $ = I . ' J is the doublet of the complex scalar fields; */, and 1P/( are the left

and right fennions. We keep only the term of the scalar-fermion interaction generating

masses of the fennions ni^^V/t + ̂ a^L-i) to show the evolution of the mass parameters

with respect to the scale a. If we extract the scale factor a not only from I he metric (4)

#,„ = O2Jj111,, but also from all other matter fields ([16, 17]) <I> = <up, * = rt"3/2*c, we

can guarantee the classical limit of the massive fcrmion fields as the FViedmann dust of

the Universe. The action in terms of the physical fields <p, ^C,jj(\/--Tl = jVc) has the form

f •> / r < 4 ) ^ ( * K2 ' \ 3 » - ) i
J [ I 2 K 2 ^ 3 / K2 J

Note that the configuration a2 = yip'V represents the singular point: in the vicinity of
this point the sign before the four- dimensional curvature is changing. So, let us consider
only the field configuration such that [a2 — yy?'y] = p1 > 0. For this case one can
introduce new variables

IT
a = pcosh(0; Vi=U-SPSmIi(^)JIi; », = cos(0)exp {i\\}\ n? - sin(G) exp {1x2},

V K

where £, 0 , Xu\'2 are 'he angles of the scale-scalar mixing.
For the homogeneous space (17) with V^ = 1 we get the action

•" "

where D = -p1+pì^+(psmh0'1 ( è 2 + sìn2(0)x? + cos2(0)xl) is the SO(4, l)-invariant
differential form. By the Ostrogradsky method this action can be rewritten in terms of
momenta

W



•H = _ 1 ^ 2 - ^-— + ——

where /C2 is the Kazimir operator of the 50(4,1) group

P2

sin2(0)

We see that the variable p plays the same role as the scale a in the theory without
scalar fields, and it is the time like variable. Note that our transition to new variables
is similar to the Bekenstein transformation [18]. Repeating the canonical transformation
(7) K(P)P — \do[n{p)P) — Hr/, where F = r0, we get the expression foi the action

W =

This action describes the following ADM-scenario of the evolution of the Universe. In the
small time limit (77 ~ O) the Kazimir operator term dominates and the reduced system
on the constraint HEC = 0 has the form

dT-

The wave function of this system can be decomposed over the eigenfunctions of the Kaz-
imir operator with the eigenvalues /Ct

'3 = T3(T) ^ T3(O)IQ) =

- tanh(§0))> ,

where .4^ ' are the operators of the creation ami annihilation of the Universe, Vso(-i.i) ' s a

unitary irreducible representation of the 50(4,1) group. This wave function reproduces
the physical picture of the Mistier anisotropic Universe (16) discussed above in section 4.

In the large time limit, the SO(4,1) symmetry is broken, the Kazimir operator term
disappears in comparison with the mass term. In this case, the masses of elementary
particles in the Weinberg-Salarn model are determined by the fixed values of angles of the
scale-scalar field mixing and the ADM-observer gets the Fricdmann cosmological models
of radiation and dust, considered above.

6 Conclusion

We have shown that including the time surface term in the canonical Hamiltonian formu-

lation of GR helps us to extract the time-like variable and its conjugated momentum from



the extended phase space. By taking into account the time surface term we represented
here the new version of the Dirac - ADM Hamiltonian formalism for general relativity in
the reduced phase space with the Schrodinger - like equation for a wave function describ-
ing the quantum evolution of the Universe. This evolution coincides with the FViedmann
classical evolution of the dust filled Universe and shows that in GR like in special rela-
tivity there are two distinguished invariant time variables: the "phase time" of the
ADM-observer (who constructs the Hamiltonian and measures the time as a
phase of the wave function of the expanding Universe ) and the geometrical
time of the Friedmann observer (who measures the time as an invariant proper
interval and observes this expansion on the earth).

In special relativity, the corresponding times are connected by the Lorentz transfor-
mation and they coincide oniy in the case when the rest frame of the Einstein observer
coincides with the rest frame of a particle. Now the main question is to find the corre-
sponding transformation rfrom the rest frame of the ADM - observer to the FViedmann
one.
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