
ScienceDirect

Available online at www.sciencedirect.com

Procedia Manufacturing 53 (2021) 427–434

2351-9789 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME
10.1016/j.promfg.2021.06.045

10.1016/j.promfg.2021.06.045 2351-9789

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia Manufacturing 00 (2020) 000–000   

     www.elsevier.com/locate/procedia 
   

 

 

2351-9789 © 2019 The Authors, Published by Elsevier B.V. 
Peer review under the responsibility of the scientific committee of NAMRI/SME 

49th SME North American Manufacturing Research Conference, NAMRC 49, Ohio, USA 

In-situ Droplet Monitoring of Inkjet 3D Printing Process using Image 
Analysis and Machine Learning Models   

 Michael Ogunsanyaa, Joan Isicheia, Santosh Kumar Parupellia, Salil Desaia, Yi Caib,*  
aDepartment of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States 

bDepartment of Applied Engineering Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States 
 

* Corresponding author. Tel.: +1-336-285-3162; fax: +1-336-334-7704. E-mail address: ycai@ncat.edu 

Abstract 

Additive manufacturing (AM) has yielded major innovations in the electronics, biomedical and energy domains. One of the AM techniques which 
has witnessed widespread use is the inkjet 3D printing (IJP). The IJP process fabricates parts by depositing colloidal liquid droplets on substrates. 
Despite its advantages, variations in input process parameters and fluid properties can have a profound impact on the print quality. This paper 
aims to address this issue by presenting a novel vision-based approach for in-situ monitoring of droplet formation. Further, a machine learning 
model was used to study the relationship between droplet attributes and droplet modes. A drop watcher camera was used to capture a sequence 
of videos obtained from different combinations of voltage and frequency. Custom source code was developed using python libraries to capture 
variations in droplet attributes (droplet size, velocity, aspect ratio, and presence of satellites) and their impact on the droplet modes (normal, 
satellite, and no-droplet) using computer vision. A backpropagation neural network mode (BPNN) was applied, with the droplet features as inputs, 
to classify output droplet modes. The BPNN classified droplet modes with 90% (high) accuracy. This research forms the basis for future 
development of digital twin model of inkjet 3D printing towards predictive analysis and process optimization. 
 
© 2019 The Authors, Published by Elsevier B.V. 
Peer review under the responsibility of the scientific committee of NAMRI/SME 

 Keywords: additive manufacturing; inkjet 3D Printing; image analysis; machine learning; neural network. 

 
1. Introduction 

Additive Manufacturing (AM), popularly known as 3D 
Printing, is the “process of joining materials to make objects 
from 3D model data usually layer-by-layer, as opposed to 
subtractive manufacturing technologies such as traditional 
manufacturing”. AM has been hailed as the third industrial 
revolution which enables the fabrication of complex freeform 
designs. AM is a creative technology which has the capability 
to revolutionize the global manufacturing industry [1]. 
According to American Society for Testing and Materials 
(ASTM), there are different types of additive manufacturing 
processes, including photo-polymerization process, extrusion-
based systems, powder bed fusion processes, material jetting 
processes, binder jetting processes, beam deposition processes, 
sheet lamination processes and direct write technologies [2]. 

AM has numerous benefits over the traditional and subtractive 
manufacturing methods. Some of the important benefits include 
complexity, efficiency, flexibility, high degree of design 
freedom, reduced assembly and predictable production [3]. The 
materials that can be used for fabricating 3D structures include 
metallic, polymers, ceramics, and composites. Initially, AM 
known as rapid prototyping was developed for building 
prototypes only, With the advancement of the technologies and 
materials AM has broadened its applications into a wide range 
of fields such as biomedical, aerospace, electronics, 
automobile, construction, food industry, consumer, jewelry, 
military, and manufacturing [4-9]. 

Inkjet 3D printing (IJP) [10] is one of the most popular AM 
techniques that deposits a sequence of sub-millimeter (micro 
scale) liquid droplets with very high precision and accuracy. 
The deposition can be customized to build both 2D and 3D 
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printed artifacts. Of all the AM processes, inkjet printing has 
emerged at the frontline due to the following desirable features: 
low cost, high pattern precision and resolution, scalability, and 
non-contact approach [11-14]. IJP consists of two techniques 
which include continuous inkjet and drop-on-demand inkjet 
[15-17].  In continuous inkjet technique, drops are produced 
continuously, and their paths are varied by the amount of charge 
applied. In drop-on-demand ink-jet technique, droplets are 
produced as needed (on demand) by applying the voltage only 
when a drop is desired. In the IJP process the liquid material is 
jetted out from the printer head (carrying an ink-filled cartridge) 
in a sequence of micro-droplets via a micrometer-sized nozzle 
head which are then solidified on the substrate. The deposited 
materials are in the form of chemical solutions and colloidal 
dispersions. The major actuation mechanisms of the inkjet 
nozzle head include thermal, piezoelectric and 
electrohydrodynamic. The benefits of IJP are compatibility 
with elastomers, mask less, reduced manufacturing costs, and 
the fabrication steps. The crucial challenges of the inkjet 3D 
printing technology in real-life applications are the need for 
inspection techniques and robust procedure to quantify and 
validate the process repeatability and component 
reproducibility. The significant requirements for any printing 
process include high throughput and high precision. An in-situ 
inspection tool is critical for IJP as minor drifts in process 
conditions can lead to large variations on the output part quality. 
To ensure the high throughput of the IJP process, in-situ 
monitoring and verification of the process parameters at each 
printing step is needed. There are numerous available sensing 
platforms, but they lack the high precision and throughput 
requirements and are quite expensive [18].   

Vision-based approaches for in-situ quality assurance of AM 
processes can be employed for the enhancement of AM printing 
quality. Sensing, imaging and video devices such as cameras, 
sensors, and related devices are prominent for the 
implementation of in-situ process monitoring [19,20]. An 
efficacious real-time monitoring system plays a crucial role in 
quality assurance of the 3D printing process. The reliable 
monitoring system enables closed-loop control-based 
autonomous 3D printing systems along with the in-process 
diagnosis for AM processes. Over the past decades, numerous 
research studies have been conducted to establish advanced 
sensing technologies for the in-situ sensing and vision 
monitoring of 3D printing processes. Tapia and Elwany [21] 
reported a broad and thorough review of research efforts 
performed in the field of process monitoring and control for the 
improvement of part quality in metal-based AM process. Spears 
and Gold [22] conducted a progress review of process 
monitoring technology within the domain of Selective Laser 
Melting (SLM) additive manufacturing to establish a real-time 
quality assurance, and closed-loop feedback control of the SLM 
additive machine. Everton et al. [20] reported a state-of-the-art 
comprehensive review of various in-situ inspection and closed-
loop control techniques employed in the assessment of AM 
printing quality. They reviewed literature that utilized 
pyrometry, the use of infrared cameras, visual and other 
camera/video-based methods for in-situ process monitoring. 
Qin et al. [23] demonstrated a real-time imaging 
characterization technique to create a real-time monitor system 

for printing detection. Their research also provided a 
foundation for an automated fabrication approach for E-jet 
printing. Other methods such as thermal imaging [24], high 
speed imaging [25], acoustic sensing, and inline coherent 
imaging [26] have been proposed as alternatives for in-situ 
monitoring of AM processes. Artificial intelligence (AI) and 
machine learning (ML) approaches were also utilized by 
researchers for process monitoring of different AM techniques. 
A comprehensive review of various artificial intelligence 
methods employed throughout AM are presented in [27] and 
[28]. A machine learning approach was utilized by Caggiano et 
al. [29] to develop on-line fault recognition through the use of 
automatic image processing in timely identifying material 
defects which occur as a result of process non-conformities in 
SLM of metal powders. Their research entailed the retrieval of 
in-process images captured during the layer-by-layer SLM 
process. These images were then examined via a bi-stream 
Deep Convolutional Neural Network-based model, and the 
recognition of SLM defective condition-related pattern was 
accomplished by automated image feature learning and feature 
fusion. Wu and Xu [30] utilized predictive models for 
predicting droplet velocity and volume using ensemble 
learning. Lin et al. [31] evaluated the two aspects of droplets 
profiles; droplet shape and temperature, using radial basis 
function neural networks. Huan et al. illustrated a deep learning 
method for unsupervised learning of droplet flow patterns. A 
deep recurrent neural network (DRNN) was used to execute the 
unsupervised learning portion of their research. 

This research work focuses on the IJP process. Within this 
area, particular attention was devoted to in-situ monitoring of 
droplet formation since it poses one of the most vital 
components related to the quality and reliability of the IJP 
process. Ink droplet properties such as velocity, size, aspect 
ratio, and presence of satellites, are among the critical factors 
associated with droplet formation and behavior. Therefore, a 
crucial understanding of these parameters was investigated to 
create parts with geometric and operational integrity [32]. The 
main contributions of this paper include: 1) To apply a vision-
based approach for in-situ monitoring of droplet formation. 2) 
Utilize machine learning models in studying the relationship 
between droplet parameters and droplet modes. 

2. System overview 

The FUJIFILM Dimatix material printer DMP 2850 with 
piezoelectric jetting system was employed in this research 
work. It has a resolution of 5 µm and repeatability of ±25 µm 
as shown in Fig. 1. The cartridge consists of a jetting module 
with 16 piezoelectric jetting nozzles, and a fluid module with a 
built-in fluid bag. The mechanism of an individual 
piezoelectric inkjet print nozzle is shown in Fig. 2. The nozzles 
can deliver a drop volume of 1 pL and 10 pL. For this research 
work, Dimatix fluid material was used for jetting the droplets 
for in-situ monitoring of the inkjet process. Drop watcher 
camera system was used to monitor the jetting behavior of each 
nozzle on-the-fly by modifying the waveform, voltage, and 
frequency setting.  
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Fig. 1. (a) Dimatix-2850 inkjet printer; (b) printer cartridge assembly [33]. 

3. Methodology  

The methodology was performed as two tasks which include 
(1) image acquisition and processing and (2) droplet 
classification using a neural network algorithm. For the real-
time monitoring of inkjet printing, the following subtasks were 
performed:  

1. Construction of matrix for equipment parameter 
settings; 

2. Capturing of data; 
3. Preprocessing of captured data;  
4. Measuring of attributes of droplets from captured 

data;  
5. Classification of droplets;  
6. Training of machine learning algorithm;  
7. Testing and validating of machine learning algorithm. 

 

Fig. 2. Schematic diagram of a piezoelectric inkjet nozzle mechanism [33]. 

3.1. Construction of matrix for obtaining multiple droplet 
videos for feature extraction 

The parameters of the DMP-2850 that were tuned for jetting 
the droplets were voltage and frequency. To capture different 
inkjet 3D printing scenarios, multiple videos at different 
voltage and frequency but at a constant waveform was recorded 
according to the constructed matrix in Table 1.  

Table 1. Possible combinations of levels for voltage and frequency. 

Sequence 
No. 

Voltage 
(V) 

Frequency 
(kHz) 

1 15 5.6 

2 25 5.6 

3 30 5.6 

4 15 7 

5 25 7 

6 30 7 

3.2. Capturing of data 

The drop watcher camera of the DMP-2850 was used to 
capture movies for a constant waveform and by setting 
frequency and voltage according to each experimental 
combination set as given in Table 1. For each movie, out of the 
sixteen piezoelectric jetting nozzles only a maximum of seven 
were activated to fit the camera view and reduce the volume 
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and size of data generated. The drop watcher generates 15 
frames in a second and has a resolution of 720 pixels by 480 
pixels by 3 channels.   

3.3. Preprocessing of captured data 

The videos obtained from the drop watcher camera contain 
noises which are from various sources. Some of those noises 
are from the cleaning mechanism during cleaning procedures 
of spitting, purging or blotting are carried out. Sometimes, ink 
droplets from nozzles that do not fire well could result in a 
bigger clogging of ink or splashes. As a result, we do not want 
to confuse a satellite for a noise in the system. Thus, one of the 
reasons we performed data preprocessing before analyzing, 
extracting, and measuring some droplet attributes. So, the 
concept of background subtraction was deployed to obtain our 
foreground (that is, ink droplets from each nozzle). To be 
consistent, a unique background frame was used for each 
movie as obtained according to session 3.2. The background 
frame was manually selected from the movie with the aid of a 
custom-written Python code and chiefly using OpenCV and 
NumPy libraries. A good background should have minimum or 
no noise and no initial ink droplet to provide only the region of 
interest when background subtraction is performed. 

Our background subtraction was based on the principle of 
matrix addition and subtraction, for frames in the video, the 
foreground frames were obtained by subtracting the 
background frame from the considered frames. 
Mathematically, Equation 1 shows the relationship: 

 
Fgd_framei = framei - Bgd_frame            (1) 
 
where Bgd_frame is the background frame, Fgd_framei is 

the frame showing the considered ink droplet of the ith frame 
framei is ith frame in the movie 

After background subtraction, to have a better and clearer 
foreground frame that will aid analysis, further preprocessing 
was carried out using OpenCV functions (blur, thresh, and 
dilate).  

3.4. Measuring attributes of droplets from captured data 

After removing the noises from the images in each frame, 
we proceeded into capturing four main droplet attributes which 
include droplet size, aspect ratio, droplet velocity, and presence 
of satellites. For clarity, our chosen droplet parameters are 
described and explained as given below and illustrated in Fig. 
3:  

Droplet size: Droplet size is captured in this work with the 
droplet area. Minimum droplet size was set to 10 pixels to 
capture satellites if any.  

Aspect ratio (AR): It is the ratio of droplet width to its height 
as AR = width/height. Four categories are used for our AR, 
round when AR is approximately 1, mid elongation when AR is 
greater than 0.5, high elongation when AR is less than 0.5, and 
none when AR is 0. 

Droplet velocity: In this work, velocity is captured by 
measuring the distance of a droplet between two successive 
frames and the dividing by the time between the two frames. 

The video play rate is 15 fps (frames per second), and it is not 
the actual camera shutter speed. The camera of the Dimatix 
does not support kHz image capturing. The Dimatix software 
actually combines the images of different droplets under the 
same parameter settings and uses 15 fps (1s) in the video to 
depict the life of a droplet. As a result, the actual time between 
two consecutive frames will be 1/(Voltage frequency*15) 
seconds. The distance of the droplet movement during this time 
can be measured in pixels as shown in Fig. 3(c). This time and 
distance information can then yield the droplet velocity. 

Satellite droplets: In this case, we are only interested to see 
if there are any lingering droplets after the main droplet. One 
of the properties assigned to satellites in this work is its area 
which is much smaller than its main droplet. With this, we can 
measure if there is a satellite or no-satellite. 

 

 

Fig. 3. (a) The droplet size is captured by the area of the droplet within the 
bounding box. The droplet below the bounding box is a mirrored or reflected 
droplet which they both have the same characteristics; (b) The dimension in 
red gives the width and green gives the height which are both used to calculate 
aspect ratio; (c) Two consecutive frames with the vertical distance between 
them are used for velocity calculation; (d) A main droplet and a satellite. 

3.5. Classification of droplets 

One of our tasks is to monitor the process in real-time. From 
the droplet attributes in session 3.4, each droplet from a nozzle 
in a frame is labelled according to its class. This led to 
supervised learning. In this work, three droplet modes were 
considered, these include normal, no-droplet, and satellite 
modes. In a piezoelectric actuator as in our printer case, 
frequency and voltage amplitude are some of the parameters 
that determine the type and nature of droplet formed as clearly 
explained in the works of [18] and [34]. 

Normal Droplet Mode: This is the desirable condition when 
a nozzle of the inkjet printer releases a fine drop of ink with 
consistent and uniform droplet size, having speeds and aspect 
ratios within + or - a given range, and with no satellites. Normal 
ink droplet is expected at a minimum voltage and frequency for 
the actuator to release fine ink droplet. 

No-Droplet Mode: In this mode, one or more nozzles are not 
injecting out ink or the droplet details are not captured. So, 
droplet dimensions are not available. This could be because of 
insufficient voltage or frequency to cause a droplet release from 
the reservoir or one or more nozzles are clogged or not 
functional. This will result in voids in the printed parts. 
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droplets from nozzles that do not fire well could result in a 
bigger clogging of ink or splashes. As a result, we do not want 
to confuse a satellite for a noise in the system. Thus, one of the 
reasons we performed data preprocessing before analyzing, 
extracting, and measuring some droplet attributes. So, the 
concept of background subtraction was deployed to obtain our 
foreground (that is, ink droplets from each nozzle). To be 
consistent, a unique background frame was used for each 
movie as obtained according to session 3.2. The background 
frame was manually selected from the movie with the aid of a 
custom-written Python code and chiefly using OpenCV and 
NumPy libraries. A good background should have minimum or 
no noise and no initial ink droplet to provide only the region of 
interest when background subtraction is performed. 

Our background subtraction was based on the principle of 
matrix addition and subtraction, for frames in the video, the 
foreground frames were obtained by subtracting the 
background frame from the considered frames. 
Mathematically, Equation 1 shows the relationship: 

 
Fgd_framei = framei - Bgd_frame            (1) 
 
where Bgd_frame is the background frame, Fgd_framei is 

the frame showing the considered ink droplet of the ith frame 
framei is ith frame in the movie 

After background subtraction, to have a better and clearer 
foreground frame that will aid analysis, further preprocessing 
was carried out using OpenCV functions (blur, thresh, and 
dilate).  

3.4. Measuring attributes of droplets from captured data 

After removing the noises from the images in each frame, 
we proceeded into capturing four main droplet attributes which 
include droplet size, aspect ratio, droplet velocity, and presence 
of satellites. For clarity, our chosen droplet parameters are 
described and explained as given below and illustrated in Fig. 
3:  

Droplet size: Droplet size is captured in this work with the 
droplet area. Minimum droplet size was set to 10 pixels to 
capture satellites if any.  

Aspect ratio (AR): It is the ratio of droplet width to its height 
as AR = width/height. Four categories are used for our AR, 
round when AR is approximately 1, mid elongation when AR is 
greater than 0.5, high elongation when AR is less than 0.5, and 
none when AR is 0. 

Droplet velocity: In this work, velocity is captured by 
measuring the distance of a droplet between two successive 
frames and the dividing by the time between the two frames. 

The video play rate is 15 fps (frames per second), and it is not 
the actual camera shutter speed. The camera of the Dimatix 
does not support kHz image capturing. The Dimatix software 
actually combines the images of different droplets under the 
same parameter settings and uses 15 fps (1s) in the video to 
depict the life of a droplet. As a result, the actual time between 
two consecutive frames will be 1/(Voltage frequency*15) 
seconds. The distance of the droplet movement during this time 
can be measured in pixels as shown in Fig. 3(c). This time and 
distance information can then yield the droplet velocity. 

Satellite droplets: In this case, we are only interested to see 
if there are any lingering droplets after the main droplet. One 
of the properties assigned to satellites in this work is its area 
which is much smaller than its main droplet. With this, we can 
measure if there is a satellite or no-satellite. 

 

 

Fig. 3. (a) The droplet size is captured by the area of the droplet within the 
bounding box. The droplet below the bounding box is a mirrored or reflected 
droplet which they both have the same characteristics; (b) The dimension in 
red gives the width and green gives the height which are both used to calculate 
aspect ratio; (c) Two consecutive frames with the vertical distance between 
them are used for velocity calculation; (d) A main droplet and a satellite. 

3.5. Classification of droplets 

One of our tasks is to monitor the process in real-time. From 
the droplet attributes in session 3.4, each droplet from a nozzle 
in a frame is labelled according to its class. This led to 
supervised learning. In this work, three droplet modes were 
considered, these include normal, no-droplet, and satellite 
modes. In a piezoelectric actuator as in our printer case, 
frequency and voltage amplitude are some of the parameters 
that determine the type and nature of droplet formed as clearly 
explained in the works of [18] and [34]. 

Normal Droplet Mode: This is the desirable condition when 
a nozzle of the inkjet printer releases a fine drop of ink with 
consistent and uniform droplet size, having speeds and aspect 
ratios within + or - a given range, and with no satellites. Normal 
ink droplet is expected at a minimum voltage and frequency for 
the actuator to release fine ink droplet. 

No-Droplet Mode: In this mode, one or more nozzles are not 
injecting out ink or the droplet details are not captured. So, 
droplet dimensions are not available. This could be because of 
insufficient voltage or frequency to cause a droplet release from 
the reservoir or one or more nozzles are clogged or not 
functional. This will result in voids in the printed parts. 
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Satellite Mode: This is a condition when there is at least one 
satellite droplet from a nozzle. Satellite droplet is an elongated 
part of the main droplet that are formed by a thread-like ink 
which are usually much smaller than the main droplet in size. 
This is usually caused by low ink particle concentrations or 
local trapping of particles despite having minimum voltage and 
frequency. The satellite droplets are usually not desirable as 
they will reduce the printing resolution. 
 

 

Fig. 4. (a) Normal droplet mode with width, height, and aspect ratio for six 
nozzles, (b) satellite droplet mode, and (c) satellite droplet mode with other 
features such as main droplets, satellites and nozzle point, no-droplet mode 
(blocked nozzle), and noises.  

After data preprocessing, four nominal input features with 
their respective coded values were generated. From the code 
run on different movies as performed on each experiment, data 
were collected and presented in Table 2 to train and test the 
chosen machine learning algorithm. Fig. 4(a) and 4(b) show 
normal and satellite droplet modes displaying droplet width, 

height, and aspect ratio for all six nozzles activated with main 
droplets depicted above and mirrored droplets below for each 
nozzle point. Fig. 4(c) shows a view where satellite mode and 
no-droplet mode coexist for different nozzles. Raw datasets for 
different droplet attributes were extracted using the above-
developed code. To capture reality, some of the noises are 
shown as depicted in Fig. 4(a), 4(b), and 4(c). It is worth to note 
that, these noises are contaminants caused during the inkjet 3D 
printer self-cleaning process. 

Table 2. Input features and associated coded values. 

Aspect Ratio 
(Code 1) 

Size    
(Code 2) 

Velocity 
(Code 3) 

Satellite 
(Code 4) 

Class 

Round (1) Normal (1) Normal (1) No (1) Normal (1) 

Mid-
elongation (2) 

Low (2) Low (2) One (2) Satellite (2) 

High-
elongation (3) 

High (3) High (3) Two or 
more (3) 

No-droplet 
(3) 

None (4) None (4) None (4) N/A N/A 

3.6. BPNN-based machine learning for IJP process 
monitoring 

The tradeoff between functionality and simplicity weighed 
heavily in the selection of the BPNN as the choice for the neural 
network algorithm. The BPNN was selected for use due to its; 
quick and easy implementation and being less complicated than 
other neural networks. In addition, the literature reveals that 
BPNN has previously been applied to the inkjet printing 
process [32,35]. A back propagation artificial neural network 
was developed to serve as a predictive model for different IJP 
droplet patterns. Typically, a normal droplet pattern is 
preferred in the IJP printing process, however, complications 
arise from determining the features or properties which 
influence droplet patterns. Therefore, the goal of the neural 
network model is to collect various droplet properties and 
assess the combination which gives a particular droplet mode. 
Neural network was employed to demonstrate the relationship 
between droplet properties and patterns. Back propagation 
neural network (BPNN) algorithm was used based on its high 
accuracy for predictive and classification purposes. The BPNN 
structure is made up of three layers: input layer, the hidden 
layer, and output layer. Its operation entails the computation of 
difference in error between the network’s output and desired 
output which is then propagated back through the network. 
Error minimization is performed during the back-propagation 
process and involves the recurrent adjustment of weights 
within the network’s intermediary layers. The required number 
of hidden units and layers are dependent on problem 
complexity. 
 

(a) 

(b) 

(c) 

Real-time display of droplet 
attributes (width, height, 

aspect ratio, etc.) 
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Fig. 5. The BPNN neural diagram. 
 
For this research, a sigmoid and SoftMax activation function 

were used in the hidden and output layer, respectively, as 
shown in Fig. 5. The BPNN was constructed with four (4) input 
features: satellite droplets, droplet aspect ratio, droplet size, and 
droplet velocity and three (3) output patterns: normal, satellite, 
and no-droplet. As suggested by Chattopadhyay [36], and 
based on a sensitivity analysis for the number of hidden nodes, 
n=3 hidden nodes were used as this number gave the optimal 
tuning without overfitting the dataset. Source code in 
MATLAB R2017a was used to develop the BPNN model and 
evaluate its performance. The Levenberg-Marquardt (LM) 
algorithm was used to train the neural network. 95 sets of data 
were collected from some selected frames in different cycles 
associated with different video movies based on the three 
droplet modes to train and test the neural network model. The 
data consisted of input features and output patterns which were 
assigned numerical nomenclature (code) as seen in Table 3, and 
split into two sets: the training dataset, comprising of about 
70% of the entire dataset and test dataset containing the 
remaining 30%.  

Table 3. Snapshot of dataset. 

Data 
Index 

Aspect 
Ratio 

Size Velocity Satellite Class 
Output 

1 1 1 1 1 1 

2 4 4 4 1 3 

3 3 1 2 2 2 

4 2 2 2 3 2 

5 3 2 3 3 2 

6 2 2 1 2 2 

7 3 2 1 3 2 

8 1 1 1 2 2 

 
To address the initial paucity of training data, k - fold cross-

validation method [37] was used. The dataset was randomly 
split into k equal-size subsamples. The k-1 subsamples were 
used as a training dataset and the leftover single subsample was 
used for validating the model. The cross-validation process was 
then repeated for k times, with each of the k subsamples used 
exactly once as the validation data. A 4-fold cross-validation 
was performed, which enabled the algorithm to evaluate 4 

folders (each group holds 25% of the training dataset to be 
tested 4 times) in random to conduct the analysis. Thus, the 
total datasets for the algorithm were augmented to N = 380 data 
points. Each fold was also applied to prevent the overfitting of 
the problem. For testing, 30% of the entire dataset was used to 
test the accuracy of the BPNN models. 

4. Results and Discussion  

The prediction performance of the BPNN was assessed 
based on the accurate classification of the test data set. A 
confusion matrix was applied to detect the prediction accuracy 
of the network. Fig. 6. illustrates the confusion matrix for the 
BPNN which had an overall accuracy of 90%. The 
nomenclature droplet patterns in the confusion matrix are as 
follows: Normal: 1, Satellite: 2 and No-droplet: 3. Out of the 
30 test data, 3 were classified incorrectly and the remaining 27 
were classified correctly. In addition to the confusion matrix, 
the target output from test data was plotted against the network 
output to demonstrate the efficacy of the network as seen in 
Fig. 7. Overall, considering the limited data, the BPNN gave 
highly accurate results and demonstrated the efficacy of neural 
network application on in-situ droplet monitoring. It is believed 
that the accuracy can be higher with more available data. 

 

 

Fig. 6. BPNN Confusion Matrix. 

 

Fig. 7. Target Output vs BPNN Output. 
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The prediction performance of the BPNN was assessed 
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confusion matrix was applied to detect the prediction accuracy 
of the network. Fig. 6. illustrates the confusion matrix for the 
BPNN which had an overall accuracy of 90%. The 
nomenclature droplet patterns in the confusion matrix are as 
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5. Conclusion and Future Work 

In this research work, we demonstrated a novel in-situ 
process monitoring for inkjet-based 3D printing systems. The 
framework utilized in this paper integrates the image 
processing technique and machine learning algorithms for 
vision-based approach of in-situ monitoring of droplet 
formation. A sequence of videos was captured by a drop 
watcher camera for different voltage and frequency 
combinations. The four attributes (droplet size, aspect ratio, 
droplet velocity, presence of satellites) of the droplet were 
extracted from the video frames to categorize the behavior of 
the droplet (normal, no-droplet, and satellite modes). A 
backpropagation artificial neural network (BPNN) was 
developed to integrate various droplet properties and assess the 
combination which gives a particular droplet mode. The overall 
accuracy of the BPNN for classification of the test data set was 
around 90% and thus illustrates the efficacy of neural network 
application for in-situ droplet monitoring. 

This paper presents our ongoing work, which is a 
preliminary part of our long-term goal of a digital twin model 
of inkjet 3D printing towards process optimization and closed-
loop control. The feasible, simplicity and accuracy of the 
BPNN method presented in the paper provides the foundation 
for our future advancement. Based on the identification of the 
current droplet mode, a closed-loop control method will be 
developed in the future by adjusting the key control parameters 
(e.g., voltage and frequency) and keeping the droplets in the 
desirable mode.  
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