CHAPTER

8

INVERSE TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

INTRODUCTION
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The chapter begins with a review of the inverse trig-
onometric functions that are studied in trigonometry
courses. We next apply methods of calculus to obtain
formulas for derivatives and integrals. The fact that
function values may be regarded as angles allows us (o
consider applications such as measuring the rate of
change in the angle of elevation as an observer tracks
an object in flight, finding the rate at which a scarch-
light is rotating, and determining an angle that mini-
mizes energy loss as blood flows through a blood
vessel.

The hyperbolic functions. defined in Section 8.3,
are used in the physical sciences and engincering to
describe the shape of a flexible cable that is supported
at each end, to find the velocity of an object in a
resisting medium such as air or water, and to study
the diffusion of radon gas through a basement wall.

The chapter closes with a discussion of the inverse
hyperbolic functions. These functions are used pri-
marily for evaluating certain tvpes of integrals.
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CHAPTER 8 INVERSE TRIGONOMETRIC AND HYPERBOLIC FUMNCTIONS

.1 INVERSE TRIGONOMETRIC FUNCTIONS

FIGURE 8.1
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Definition (8.1)

ILLUSTRATION

Since the trigonometric functions are not one-to-one, they do not have
inverse functions (see Section 7.1). By restricting their domains, however,
we may obtain one-to-one functions that have the same values as the
trigonometric functions and that do have inverses over these restricted
domains.,

Let us first consider the graph of the sine function. whose domain is
I and range is the closed interval [ — 1, 1] (see Figure 8.1). The sine func-
tion is not one-to-one, since a horizontal line such as y = } intersects the
graph in more than one point. Thus, numbers such as n/6, 57/6, and
—7n/6 yield the same function value, 3. If we restrict the domain to
[ —n/2, =/2], then, as illustrated by the solid portion of the graph in
Figure 8.1, we obtain an increasing function that takes on every valuc of
the sine function once and only once. This new function, with domain
[ —n/2, n/2] and range [ —1, 1], is continuous and increasing and hence,
by Theorem (7.6), has an inverse function that is continuous and in-
creasing. The inverse function has domain [ — 1, 1]and range [ —n/2, /2].
This leads to the following definition.

The inverse sine function, denoted sin ™', is defined by

1

y=sin 'x ifandonlyif x=siny

for —1<x<land — w2 < y< /2.

The inverse sine function 1s also called the aresine function, and arcsin x
is often used in place of sin” ' x. The —1 in sin” ! is not to be regarded
as an exponent, but rather as a means of denoting this inverse function.
The notation y = sin ™' x may be read y is the inverse sine of x. The equa-
tion x = sin y in the definition allows us to regard v as an angle, and hence
y=sin~ ! x may also be read y is the angle whose sine is x. Observe that,
by Definition (8.1},
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®= Il y=arcsin | — |, then sin y = ~% and — =y < 5

T
Hence y = =

Using the method we introduced in Section 7.1 for sketching the graph
of an inverse function, we can sketch the graph of y = sin ™' x by reflecting
the solid portion of Figure 8.1 through the line y = x. This gives us
Figure 8.2. We could also use the equation x = sin y with —m/2 < y < n/2
to find points on the graph.
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The relationships f(f'(x)) = x and f*(f(x)) = x that hold for any
inverse function [ ! give us the following properties.

Properties of sin™' (8.2] b
(i) sin(sin”*x)=sin(arcsinx)=x if —l<x<I

() sin™!(sinx)=arcsin (sinx)=x if —-<x<

o =

w2 =

ILLUSTRATION

FIGURE 83
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Be careful when using (8.2). In the third part of the preceding illus-
tration, 2m/3 is not between —7/2 and n/2, and hence we cannot use (ii)
of (8.2). Instead, we use properties of special angles (see Section 1.3) to
first evaluate sin (27/3) and then find sin™! (v/3/2).

We may use the other five trigonometric functions to define inverse
trigonometric functions. If the domain of the cosine [unction is restricted

A

[B]

to the interval [0, 7] (see the solid portion of Figure 8.3), we obtain a one-
to-one continuous decreasing function that has a continuous decreasing
inverse function. This leads to the next definition,

Definition (8.3)
The inverse cosine function, denoted cos ', is defined by
y=cos 'x ifand onlyif x=cosy
for —-1<x<land0<y=<n.
The domain of the inverse cosine function is [ — 1, 1], and the range is
[0, z]. The notation y = cos™ ' x may be read y is the inverse cosine of x
or vy is the angle whose cosine is x. The inverse cosine function is also
called the arccosine function. and the notation arccos x is used inter-
changeably with cos ! x.
ILLUSTRATION

1 1 T
mm [fy=cos™' ], thencosy=_and 0 <y<n Hencey= 3

- - o

\

1 2n
= [f y = arccos (—;), then cos y = —5 and 0 < y < 7. Hence y = 3

The graph of the inverse cosine function may be found by reflecting
the solid portion of Figure 8.3 through the line v = x. This gives us the
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sketch in Figure 8.4. We could also use the equation x = cos vy with
0 < y < m to find points on the graph.

FIGURE 8.4
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Since cos and cos ™ ! are inverse Tunctions of each other, we obtain the
following properties.

Properties of cos [84] )
fi) cos(cos ' x)=cos(arccosx)=x if —1<x<I
fii) cos” !(cos x) = arccos(cos x) =x if 0<x<n=
ILLUSTRATION
o 1) T 1
FIGURE 8.5 = cos | cos —;) =—z since —l<—-<1
y=tanx, —n/2<x=<n2 - % 7 - -
. B b 5
! [ 47T Firid . LT
JL- | B arccos (CUS s = — since 0<— <7
| Lin . 3 3 3
|
T

¥ . N n
B o5 ! [cos(—ﬁ;)]: cos ! ( 3 ): 3

Note that in the third part of the preceding illustration, —=/4 is not
between 0 and n. and hence we cannot use (ii) of (8.4). Instead, we first
evaluate cos (— n/4) and then find cos ™! («/2/2),

If we restrict the domain of the tangent function to the open interval
(—m/2, 7/2). we obtain a continuous increasing function (see Figure 8.5).
We use this new function to define the inverse tangent function.
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Definition (8.5)
The inverse tangent function, or arctangent function. denoted by
tan !, or arctan, is defined by

y=tan 'x=arctanx ifand onlyif x=tany

for every x and —n/2 < y < /2.
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The domain of the arctangent function is R, and the range is the open
interval (—n/2. 7/2). We can obtain the graph of y =tan™! x in Fig-
ure 8.6 by reflecting wne graph in Figure 8.5 through the line y = x.

FIGURE 8.6

1

As with sin~ ' and cos . we have the following.

er-.[n'r'!lr""ﬁ of tan™"' |‘86]
(i) tan(tan ' x) = tan (arctan x) = x for every x
i . i T
(ii) tan ' (tan x) = arctan (tan x) = x if == e =
ILLUSTRATION
L8 i
== |[y=arctan(— 1), thentany = —land —J <y <3.
i
Hence y = ——.
’ 4
== (an (tan ' 1000) = 1000 by (8.6)(1)
= (an ! (tan " £ ince S
d ‘ - == g —_ % 2
4 4 2 4 2
B jrctan (tan ) = arctan 0 =0
EXAMPLE 1 Find the exact value of sec (arctan 2).
FIGURE 8.7 SOLUTION If we let y = arctan 3‘ then tan y = i We wish to find sec y.

Since —mn/2 < arctan x < 7/2 for every x and tan y > 0, it follows that
0 <y < m/2. Thus, we may regard y as the radian measure of an angle
of a right triangle such that tan y = %, as illustrated in Figure 8.7. By the
Pythagorean theorem, the hypotenuse is /3% + 2% = \/13. Referring to
the triangle, we obtain

5 2 \'I 3
5€C (‘drcl'dn i =35C YV = 3

1
3 3
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FIGURE 8.9
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If we consider the graph of y = sec x, there are many ways to restrict
x so that we obtain a one-to-one function that takes on every value of
the secant function. There is no universal agreement on how this should
be done. It is convenient to restrict x to the intervals [0, n/2) and [n. 37/2),
as indicated by the solid portion of the graph of y = sec x in Figure 8.8,
instead of to the “more natural” intervals [0, z/2) and (7/2, =], because
the differentiation formula for the inverse secant is simpler. We show in
I

the next section that D, sec™ ' x = 1/(xyx* — 1). Thus, the slope of the
tangent line to the graph of v = sec ™! x is negative il x < —1 or positive
il x = 1. For the more natural intervals, the slope is always positive, and
we would have D, sec™ ' x = 1/(| x|/x* — ).

FIGURE 8.8
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The inverse secant function, or arcsecant function, denoted by sec .

or arcsec, is defined by
y=sec 'x=arcsecx ifandonlyif x=secy

for [x| > 1 and y in [0, 7/2) or in [x, 3n/2).

The graph of v = sec ' x is sketched in Figure 8.9.

The inverse cotangent function. cot ', and inverse cosecant function.
cse ', can be defined in similar fashion (see Exercises 31 -32).

The following examples illustrate some of the manipulations that can
be carried out with inverse trigonometric functions.

EXAMPLE 2 Find the exact value of sin (arctan

— arccos %).

SOLUTION  If we let
u=arctany and v = arccos ¥,
then tanu=3 and cosv=1%.

We wish to find sin (4 — ¢). Since w and v are in the interval (0, 7/2), they
can be considered as the radian measures of positive acute angles, and
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FIGURE 8.10

P

FIGURE 8.11

1

y=sin""x

we may refer to the right triangles in Figure 8.10. This gives us

. sinv =, cos v = —,
/s 5 5

siny = ——, cos U =
5 N

Using the subtraction formula for the sine function, we obtain

sin (4 — v) = sin W COS v — COs U sin v

14 23

\‘.";Ig 5 \_-":5 5
B 24/5
- 5.5 25

EXAMPLE 3 If —1 < x < 1, rewrite cos (sin”! x) as an algebraic ex-
pression in x.

SOLUTION Let

1

yv=sin"'x, or,cquivalently, siny=x.

We wish to express cos y in terms of x. Since —n/2 < y < /2, it follows
that cos y > 0, and hence

cos y =+/1 —sin® y =4/1 — x%.

Consequently cos (sin™! x) = /1 — x2.

The last identity can also be seen geometrically if 0 < x < 1. In this
case 0 < y < n/2, and we may regard y as the radian measure of an angle
of a right triangle such that sin y = x, as illustrated in Figure 8.11. (The
side of length /1 — x* is found by using the Pythagorean theorem.)
Referring to the triangle, we have

2
cos (sin ' x) =cos y = \h—]_r— = /1 = %%,

EXAMPLE 4  Find the solutions of 5sin?t + 3sint — 1 = 0 that are
in the interval [ —n/2, /2]

SOLUTION  The equation may be regarded as a quadratic equation in
sin 1. Applying the quadratic formula yields

~3+9+20 -3+.29
S e, LR S,
10 10
Using the definition of the inverse sine function, we obtain the following
solutions:

t=sin"' %5(—3 +/29) ~ 0.2408

t=sin"! J5(—3 — 29) > —0.9946



EXERCISES] 8.1

Exer.

1-18: Find the exact value of the expression,

whenever it is defined.

| sin™! (—ﬁ)
2

tan ! (—4/3)
7 Y ; :’
sin ! 1 cos | —2=
2 2
tan"!'(—1)
aresin v | arccos =
—2 Al 3—
arctan
+3
arcsin 0 arccos (— 1)
arctan 0
RS i
sin 3 (o7
tan~ "1
v T b3
| arcsin > arccos 3

arctan —LS
i« o 3
SIN | arcsin I ﬁ]

tan (arctan 14)

d 7s
. e
s (.‘sll'l 5)

tan [tan ' (—9)]

' I
Cos (il[’CCDS 1)
" e |)J
Cos ( =
3,

p% kst

COs

sin ! (‘\fl‘l ) ! ..(.{1\ .
| § s cos 208
;) (085

tan ! [tan
arcsin [

arccos (cos (1)

arctan | tan -

/ S
arccos ( cos
4

L3

arcsin | sin —
( 4 <

; g s
arctan | tan —
4

e

2 f 4g
sin ! { sin — cos ' cos —
] (b 3 ) COs ( Q8 3 )

INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

tan ' (lan i )
G

1
sin {cos' : (—ﬂ-)“ cos(tan ! 1)
tan [sin ' (—1)]
sin (tan !y 3] | cos (sin~ ! 1)
tan (cos ' 0)

2 3
cot (sin ! ) sec| tan ! ( - _)
3 5

-
i)
Nﬁt(iﬂ 4

| R
sin (derlI] + Arccos ll)

. 4J
arctan — aresin
(-3 orsin
4
8

8
tdan (thtdn + Arccos ]_}‘)
5 3]
13 3
i i 4
| cos | sin —
L g

T
tan | cos 2—51:1 L—:

COs

w
=
=
== 7
S
I
(]
=]

w
—
|

n | taa

Exer. 19-22: Rewrite as an algebraic expression in x for
x>0,

sin (tan ' x)

; R
sec|sin ' -

tan (arccos x)

) |
cot (sm :
£

Exer. 23-30: Sketch the graph of the equation.

v
V

7y

= 8in (arccos x)

= sin~ ! 2x y=1sin"!x
=cos~ Ix y=2¢08 1 x
=2 tan"lx y=tan"'2x

¥ =sin(sin ' x)
Define cot ' by restricting the domain of the cotan-
gent function to the interval (0, n).

Sketch the graph of y = cot ' x.
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12 (2] Define cs¢ ™! by restricting the domain of the cose-
cant function to [ —7/2,0) U (0, = 2].
[b] Sketch the graph of y = cse™ ! x.
Exer. 33-36: |+) Use inverse trigonometric functions to
find the solutions of the equation that are in the given

interval, (0] Approximate the solutions to four decimal
places.

1 An art critic whose eye level is 6 feet above the floor

views a painting that is 10 feet in height and is mounted
4 feet above the floor, as shown in the figure.

[a) If the critic is standing x feet from the wall, express
the viewing angle f in terms of x.

() Use the addition formula for the tangent to show

10x
thatd =tan ' [ ——— |.
(,\'I — Eﬁ)

<) For what value of x is () =457

32 2tan®*t +9tant + 3 =0; (—m/2.m/2)
[—=/2:7/2]
35 15 cos* x — 14 cos? x +3=10: [0.x]

36 3tan* 0 — 19tan*0+2=0: (—n/2.7/2)

34 3sin®r+ 7sint+3=0;
EXERCISE 38

17 As shown in the figure, a sailboat is following a straight-
line course [, The shortest distance from a tracking sta-
tion T to the course is d miles. As the boat sails, the
tracking station records its distance k from T and its
direction () with respect to T. Angle x specifies the direc-
tion of the sailboat.

{a] Express z in terms of 4. k. and (.

[b) Estimate z to the nearest degree if d = 50 mi and
k=210miand 0 = 534",

EXERCISE 37

19 The only inverse trigonometric function available in
some computer languages is tan ', In BASIC, this func-
tion is denoted by ATN(X). Express the following in

terms of tan !,

(2 sin~ ' xfor x| < 1
jeos 'xfor|x|<land x#0
o0 If =1 <x < 1,isitalways possible to find sin Disin™ ! x)
by pressing the calculator key sequence [inv | [siN| twice?
If not. determine the permissible values of x.

8.2 DERIVATIVES AND INTEGRALS

In this section we shall concentrate on the inverse sine, cosine. tangent,
and secant [unctions. Formulas for their derivatives and for integrals that
result in inverse trigonometric functions are listed in the next two theo-
rems, with u = ¢(x) differentiable and x restricted to values for which the
indicated expressions have meaning. You may find it surprising to learn
that although we used trigonometric functions to define inverse trigonom-
etric functions, their derivatives are algebraic functions.
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Theorem (8.8)

) Diysin"‘u=—D u
A1 —u?
1
() D.cos 'u=—=—D,u
1 —
(i) Dotan 'y = 2 D, u
* =k R T
1
(iv) D.se¢c 'yu=———D_u
uy/u? —1

FROOF  We shall consider only the special case u = x, since the for-
mulas for u = g(x) may then be obtained by applying the chain rule.

If we let f(x) =sin x and g(x)=sin"' x in Theorem (7.7), then it
follows that the inverse sine function g is differentiable if |\| < 1. We shall
use implicit differentiation to find ¢'(x). First note that the equations

y=sin"'x and siny=x

areequivalentif —1 < x < 1 and —n/2 < y < n/2. Differentiating sin y = x
implicitly, we have
cosyD, y=1

1
cos y

and hence D.sin™ ' x =D y'=

Since —7m/2 < vy < m/2, cos y is positive and, therefore,

cos y= /1 —sin? y = 1 — x2.

Thus, D sin™!x=—
1 —x

for |x| < 1. The inverse sine function is not differentiable at +1. This
fact is evident from Figure 8.2, since vertical tangent lines occur at the
endpoints of the graph.

The formula for D, cos ™! x can be obtained in similar fashion.

It follows from Theorem (7.7) that the inverse tangent function is dif-
ferentiable at every real number. Let us consider the equivalent equations

y=tan 'x and tany=x

for —m/2 < y < n/2. Differentiating tan y = x implicitly. we have

sec2yD, y=1.

|
V=

Consequently. g

D tah™tx =D

Using the fact that sec? y = 1 + tan? y = | + x? gives us
g ) ] g

|
1 +x

D tan ' x =



8.2 DERIVATIVES AND INTEGRALS

435

ILLUSTRATION

Finally, consider the equivalent equations
yv=sec 'x and secy=x
for yin either (0, n/2) or (m, 37/2). Differentiating sec y = x implicitly vields
secytany D,y =1.
Since 0 < y <7/2 or < y < 3n/2, it follows that sec y tan y # 0 and.
hence.

i |
D.sec x=D,y= s
sec y tan y

Using the fact that tan y = sec? y — 1 = /x* — 1, we obtain

1

1

D.sec™ " x =-

xyxt =1

for [ x| > 1. The inverse secant function is not differentiable at x = +1.
Note that the graph has vertical tangent lines at the points with these
x-coordinates (see Figure 8.9). wm

GURE 8.12

:()hscr\'cr

I
<

400 ft

Stx) J'(x)
: 1 ;
= sin ! 3x — D, (3x) = Y
V1 —(3x)* V1 —0x*
1 1
B arccos []n x) T D.\: Inx=— -
J1 — (n x)* ¥/ 1 — (In x)°
f 2{,3.\'
=1 l'dfl_l E,2.\.’ —— _(,2.\':
1 + (e2¥)* ° [ + et
. ! . 2
= aresec(x”) —————D %)= .
2 =1 Xzt — 1

EXAMPLE 1T A rocket is fired directly upward with initial velocity 0
and burns fuel at a rate that produces a constant acceleration of 50 ft/sec?
for 0 <t < 5, with time 1 in seconds. As illustrated in Figure 8.12. an ob-
server 400 feet from the launching pad visually follows the flight of the
rocket.

{a) Express the angle of elevation ) of the rocket as a function of 1.

{b) The observer perceives the rocket to be rising lastest when d0/dt is
largest. (Of course, this is an illusion, since the velocity is steadily increas-
ing.) Determine the height of the rocket at the moment of perceived maxi-
mum velocity.

SOLUTION

(a) Let s(t) denote the height of the rocket at time ¢ (see Figure 8.12). The
fact that the acceleration is always 50 gives us the diflerential equation

§(1) =50,
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subject to the initial conditions s'(0) = 0 and s(0) = 0. Integrating with

respect to t, we obtain
[swar = [s0ar

s(t)=50t + C

for some constant C. Substituting ¢ =0 and using 5(0) =0 gives us
0= 50(0) + C. or € = 0. Hence

s'(t) = 501

Integrating again, we have

j' s(t) dt = fﬁOr dt

s(t)=25t2+ D

for some constant D. If we substitute ¢ = ( and use s(0) = 0, we obtain
0=250)+ D, or D =0. Hence

sit) = 25¢%,

Referring to Figure 8.12. with s(1) = 25¢%, we find

2 t
tan £ = or ()= arctan
16

400 ~ 16°

(b) By Theorem (8.8), the rate of change of # with respect to t is

dp | u\ _ 3x
dt 1+ (2162 \16) 256 + ¢+

Since we wish to find the maximum value of dfi/dt. we begin by finding
the critical numbers of dt)/dt. Using the quotient rule, we obtain

d [dé d?0 (256 + t*)(32) — 321(4¢%)  32(256 — 3t%)
di\dt)  di* (256 + *)? 256 + %
Considering d*0)/dt* = 0 gives us the critical number 1 = \.".’_‘363 It follows
from the first (or second) derivative test that d0/dt has a maximum value
at t = $/256/3 ~ 3.04 sec. The height of the rocket at this time is

5(3/256/3) = 25(:/256/3)* = 254/256/3 = 2309 ft.

We may use differentiation formulas (i), (i), and (iv) of Theorem (8.7)
to obtain the following integration formulas:

1
(1) J‘ — du=sin"'yu+C
1 —u

|
(2 —du=tan 'u+C
1) f|+f.iz

| I o 5
(3) = ~du=sec ' u+C
isjuc — 1
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lheorem (8.9)

These formulas can be generalized as follows for a > 0.

| . u
(i) I?CIII:SIH_I —4+1€
Jat —u? d

1 1 u
(il _['—,— sdu=-tan"'= 4+ C
a +u a a

L u

(iii) J' 5 du = sec +C

u\fu' —at a a

PROOF Let us prove (ii). As usual. it is sufficient to consider the case
i = x. We begin by writing

I I 1
f s dx = — [‘ ———dx
4° £x* a4l +(x/a)r

Next we make the substitution v = x/a. dv = (1/a) dx. Introducing the
factor 1/a in the integrand. compensating by multiplving the integral by
a. and using formula (2}, preceding this theorem, gives us the following:

1 1
r—,— - dx = f e b
J oac + x° ad 1+ (xfar a

| 1
1 !"
:rjl+1"2“

7 2 ol O

| =
=—tay !
a

| 5% -
= —tan + C
a a

The remaining formulas may be proved in similar fashion. w=m

x
G2X

EXAMPLE 2

Evaluate f _
1= et

The integral may be written as in the first formula of Theo-
1 and using the substitution

CLUTION
rem (8,9) by letting o =
jii= g, du = 2% dx.

We introduce a factor 2 in the integrand and proceed as follows:

2x

¢ | 1

f _ dx = f e ' b
4x % 1 e 2

Jl—e =Yy (e**)?
|
= _’f— (h{
- [ 2
= } sin"tu+ C

=g e EG
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EXAMPLE 3 Evalualcj‘ cdx.
5+x
SOLUTION  The integral may be written as in the second formula of
Theorem (8.9) by letting a* = 5 and using the substitution
=% du = 3x2 dx.
We introduce a factor 3 in the integrand and proceed as follows:
%2 1 1
de=z [ 3 d
f5+xf= 351yt
1 1
= —j ————dij
34 W52+ u?
11 u
s tan~l — 4 €
’ .._\Ilj \‘Ifj
/5 #*
A -1
=—tan —+
15 5
1
EXAMPLE & Evaluate J‘ —— dx.
xyx*—9
SOLUTION - The integral may be written as in Theorem (8.9)(iii) by let-
ting a® = 9 and using the substitution
0 =x2 du = 2x dx.
We introduce 2x in the integrand by multiplying numerator and denomi-
nator by 2x and then proceed as follows:
1 1
[‘ ——— _d,\‘:‘[-i,__'_:‘— 12.\’{{.\'
= .'\"\.-"’.\'4 -9 2xox \."J{X“Js - 3
1 1
= J‘ = du
&V oy fut— 32
W c
= i ibt‘.t. 3 +
1 !_':c‘2 C
=% sec 3 T
EXERCISES 8.2
Exer. 1-26: Find f"(x) if f(x) is the given expression. 9 sec ' yxi—1 10 x%sec™? 5x
1 osin”!x 2 sin"!ix 1 )
Librrey 5 12 arcsin In x
3 tan"! (3x — 5) @ tan ! (x?) '
A 13 (1 +cos ! 3x)3 14 cos” ! cos e
Cp e “arcsece 6 +/arcsec 3x
5 2 . 15 Inarctan (x?) 16 arctan -
7 X7 arctan (x7) 8 tan ' sin 2x x—1



EXERCISES 8.2

%39

17

18

20

22

24

26

cos (x M)+ (cosx) ' +cosTx

x arcecos /4x + | R A aaesna

( — Aresin - )

arctan x
21 -
x“+1

‘-J_J —

: = 23 JxsecT X
sin ' 5x E. \ -

(sin 2x)(sin ! 2x) 25 lldn \}.m_lin_t

[

(tan~ ! 4yx)etn ' 4%

Exer. 27-28: Find y'.

27 X

Exer. 29-44: Evaluate the integral.

29

33

35

37

39

11

43

45

46

47

28 In(x +)) =tan" ' xy

+xsin by = et

; l a |
{a) J‘_\_i 16 dx Ib) J“ T dx
- p* et
(=l J | +(-1T‘h ®} Jo 1 + 3%
(a) 3 ——dx (b) fisaa® —dx
oy b =
2 1
{a) ‘f — dx (b) J1 % ——— (x
xy/x2 — 1 Ny/xs —1

COs X

P VR =
cos? x + 1 VO — sin? x
1
f — dx 'Q’ — — dx
Va(l + x) * ety —e T

et sec ¥ tan x
—dx 38 J~ : ——— dX
16— | + sec™ x

1

40 f = dx
36— x°
X . 1
F g 42J——._ dx
X3 KA S X - |
. 1 e*
J ——qx 44 f ———dx
T JVd —¢

The floor of a storage shed has the shape of a right
triangle. The sides opposite and adjacent to an acute
angle 0 of the triangle are measured as 10 feet and 7 feet,
respectively, with a possible error of +0.5 inch in the
10-foot measurement. Use the differential of an inverse
trigonometric function to approximate the error in the
calculated value of 0.

Use differentials to approximate the arc length of the
graph of vy =tan ! x from A(0,0) to B(0.1. tan~ " 0.1).

An airplane at a constant altitude of 5 miles and a speed
of 500 mi/hr is flving in a direction away from an ob-
server on the ground. Use inverse trigonometric func-

50

51

52

tions to find the rate at which the angle of elevation is
changing when the airplane flies over a point 2 miles
from the observer.

A searchlight located § mile from the nearest point P on
a straight road is trained on an automobile traveling on
the road at a rate of 50 mi/hr. Use inverse trigonometric
functions to find the rate at which the searchlight is
rotating when the car is § mile from P,

A billboard 20 feet high is located on top of a building,
with its lower edge 60 feet above the level of a viewer's
eye. Use inverse trigonometric functions to find how far
from a point directly below the sign a viewer should
stand 10 maximize the angle between the lines of sight
of the top and bottom of the billboard (see Example 8
of Section 4.5).

The velocity, at time 1, of a point moving on a coor-
dinate line is (1 + %) ' ft/sec. If the point is at the origin
at t = 0, find its position at the instant that the accelera-
tion and the velocity have the same absolute value.

A missile is fired vertically from a point that is 5 miles
from a tracking station and at the same elevation. For
the first 20 seconds of flight, its angle of elevation
changes at a constant rate of 2° per second. Use inverse
trigonometric functions to find the velocity of the missile
when the angle of elevation is 30",

Blood flowing through a blood vessel causes a loss of
energy due to friction. According to Poiseuille’s law, this
energy loss E is given by E = kl/r*, where r is the radius
of the blood vessel. [ is the length, and k 1s a constant.
Suppose a blood vessel of radius r, and length [, branches
off. at an angle @, from a blood vessel of radius r; and
length {,. as illustrated in the figure, where the white
arrows indicate the direction of blood flow. The energy
loss is then the sum of the individual energy losses: that
is,

kb, ki,

Express [, and [, in terms of @, b, and ¢, and find the
angle that minimizes the energy loss.

EXERCISE 52
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53 Use Simpson’s rule, with n = 4, to approximate the arc | ¢
length of the graph of v = aresin x from A(0.0) to
B(1/2, n/6).

4 The graph of y = 4 arctan (x2) from A(0. 0) to B(l. 7 is
revolved about the x-axis. Use the trapezoidal rule, with
n =8, to approximate the area of the resulting surface.

8.3 HYPERBOLIC FUNCTIONS

The exponential expressions
(;.\I - (_’ - X (J.\ L (J -
= and  ——
occur in advanced applications of calculus. Their properties are similar
in many ways to those of sin x and cos x. Later in our discussion. we shall
see why they are called the hyperbolic sine and the hyperbolic cosine of x.

Definition {8.10)
The hyperbolic sine function, denoted by sinh, and the hyperbolic
cosine function, denoted by cosh, are defined by

: ef—eg™* e 4 e "
sinh x = A and cosh x =- ==

for every real number x.

We pronounce sinh x and cosh x as sinch x and kosh x. respectively.
The graph of y = cosh x may be found by addition of y-coordinates.
Noting that cosh x = je* + Je ™%, we first sketch the graphs of y = le*
and y = le * on the same coordinate plane, as shown with dashes in
Figure 8.13. We then add the y-coordinates of points on these graphs to
obtain the graph of y = cosh x. Note that the range of cosh is [1, ).

FIGURE 813 FIGURE 8.14
) AV
/
. + /
4
. /
4
\ /
4 !
\ \ Lt 4
et I
\ —— et
' L= B
V € [ /'_'/_,_,\ o
N Hj'
==t} +
A

We may find the graph of y = sinh x by adding y-coordinates of the
graphs of y = 1¢* and y = —%¢ ™" as shown in Figure 8.14.

Some scientific calculators have Keys that can be used to find values
of sinh and cosh directly. We can also substitute numbers for x in Defini-
tion (8.10). as in the following illustration.
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ILLUSTRATION

) o o034 p 03
= smhl:t- : ~ 3.63 -cosh(}.S:——t—--tl,lB

“

1% ]

FIGURE 8.15 The hyperbolic cosine function can be used to describe the shape of a
Ay uniform flexible cable. or chain. whose ends are supported from the same
height, As illustrated in Figure 8.15, telephone or power lines may be
strung between poles in this manner. The shape of the cable appears (o be
a parabola. but is actually a catenary (after the Latin word for chain).
If we introduce a coordinate system. as in Figure 8.15 it can be shown that
an equation corresponding to the shape of the cable is v = a cosh (x/a)
for some real number a.

The hyperbolic cosine function also occurs in the analysis of motion
in a resisting medium. If an object is dropped from a given height and if
air resistance is disregarded, then the distance y that it [alls in r seconds is
y = 4gt?. where ¢ is a gravitational constant. However, air resistance
cannot always be disregarded. As the velocity of the object increases, air
resistance may significantly affect its motion. For example, if the air resis-
tance is directly proportional to the square of the velocity, then the dis-
tance y that the object falls in ¢ seconds is given by

v = A In (cosh Bt)

for constants A and B. Another application is given in Example 2 of this
section.

Many identities similar to those for trigonometric functions hold for
the hyperbolic sine and cosine functions. For example, if cosh® x and
sinh? x denote (cosh x)* and (sinh x)2, respectively, we have the following
identity.

Theorem [8.11)

cosh® x —sinh? x =1

PROOEF By Definition (8.10),

, ) . et 4 p X 2 et — g ¥ 2
cosh” x —sinh~ x = = = e———

{.’2'\.4—2-4-(’_3"' (’3't '2+£'-2'T
(,l.t L 24 Z.t_e,l,\'+2_g—2.t
4

FATS
Il
z

Theorem (8.11) is analogous to the trigonometric identity cos® x +
sin? x = 1. Other hyperbolic identities are stated in the exercises. To
verify an identity, it is sufficient to express the hyperbolic functions in
terms of exponential functions and show that one side of the equation can
be transformed into the other as illustrated in the proofl of Theorem (8.11),
The hyperbolic identities are similar to (but not always the same as) cer-
tain trigonometric identities—differences usually involve signs of terms.
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FIGURE 8.16 FIGURE 8.17
.\‘_1 b o _\'2 =] P _I.': =1
AY Jr y
\\
w Pleos o sin t) /-"I sl inh 1)

\ B(1,0) \ [ B .

i —_— I * Ll

) ? : i \ X

/

If t is a real number, there is an mteresting geometric relationship be-
tween the points P(cos ¢, sin 1) and Q(cosh 1, sinh ) in a coordinate plane.
Let us consider the graphs of x* + y = | and x* — y* = I, sketched in
Figures 8.16 and 8.17. The graph in Figure 8.16 is the unit circle with
center at the origin. The graph in Figure 8.17 is a hyperbola. (Hyperbolas
and their properties will be discussed in detail in Chapter 12.) Note first
that since cos®t +sin? 1 = 1, the point P(cos 1. sin 1) is on the circle
x? 4+ y* = 1. Next, by Theorem (8.11), cosh®  — sinh® 1 = 1. and hence
the point Q(cosh t, sinh ) is on the hyperbola x* — y2 = |. These are the
reasons for referring to cos and sin as circular functions and to cosh and
sinh as hyperbolic functions.

The graphs in Figures 8,16 and 8.17 are related in another way. If
0 <t <n/2, then t is the radian measure of angle POB. shown in Fig-
ure 8.16. By Theorem (1.15), the area 4 of the shaded circular sector is
A =3(1)*t = }t, and hence 1 = 24. Similarly, if Q(cosh t.sinh 1) is the
point in Figure 8.17, then t = 24 for the area A of the shaded hyperbolic
sector (see Exercise 47).

The impressive analogies between the trigonometric and hyperbolic
sine and cosine functions motivate us to define hyperbolic functions that
correspond to the four remaining trigonometric functions. The hyperbolic
tangent, hyperbolic cotangent. hyperbolic secant. and hyperbolic cosecant
functions, denoted by tanh, coth. sech. and csch. respectively, are defined
as follows.

x

sinhx e¢*—e

i) tanh x = = =
0 coshx ee+4e™*
coshx &4 8%
N) cothx =——— = —, x#0
(i) sinhx ¢ —e*
1 2
(iii) sech x = e
coshx e 4e:
1 2
iv] cschx=— = __ —, x#0
v sinhx ¢ —¢™* >
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Theorem (8.13)

We pronounce the four function values in the preceding definition as
tansh x, cotansh x, setch x, and cosetch x. Their graphs are sketched in
Figure 8.18.

FIGURE 8.18

2
il
5

If we divide both sides of the identity cosh? x —sinh? x =1 (see
(8.11)) by cosh? x, we obtain

cosh? x  sinh? x 1

cosh? x  cosh?®x  cosh? x'

Using the definitions of tanh x and sech x gives us (i) of the next theorem.
Formula (ii) may be obtained by dividing both sides of (8.11) by sinh? x.

i) 1 —tanh? x =sech’ x (i) coth? x — 1 =csch? x

Note the similarities and differences between (8.13) and the analogous
trigonometric identities.

Derivative formulas for the hyperbolic functions are listed in the next
theorem, where u = g(x) and g is differentiable.
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m(8.14) N .
li) D,sinhu=coshuD, u
(i) D, coshu=sinhu D, u
i) D, tanh u = sech® u D, u
liv) Dy coth u= —csch? u D, u
(v) D,sechu= —sech utanhuD, u
vi) D, cschu = —csch ucqthu D, u
ROOI As usual, we consider only the case u = x. Since D, ¢* = ¢
and D™ = —e™%,
. g% —jp=% et et
D, sinh x = D, ( = ) = % = cosh x
't,.\' + (J—_\ N l,x —.p A -
and D coshx =D, ( = ) = = = sinh x.
To differentiate tanh x, we apply the quotient rule as follows:
D | D sinh x
tanh x = 0
! * cosh x
cosh x D, sinh x — sinh x D_ cosh x
B cosh? x
cosh® x — sinh? x
a cosh? x
l >
= — = sech® x
cosh” x
The remaining formulas can be proved in similar fashion. s
EXAMPLE 1 If f(x) = cosh (x* + 1). find f(x).
FIGURE 8.19 DLUTION Applying Theorem (8.14)(i). with u = x* + 1. we obtain
Basement wall . . . )
s Sx)=sinh (x* + 1) D, (x* + 1)
¢ pp o %y . -
=« *o"o o of Radon gas = 2x sinh (x* + 1).
Basement | o "o : oem . . ) :
o R S EXAMPLE 2 Radon gas can readily diffuse through solid materials
fo * *emian il such as brick and cement. If the direction of diffusion in a basement wall
fr s e T is perpendicular to the surface, as illustrated in Figure 8.19. then the radon
RN "i"""m concentration f(x) (in joules/cm?) in the air-filled pores within the wall at
°° O % o‘f""W\ a distance x from the outside surface can be approximated by
o g L) AYAR

f1x) = A sinh (gx) + B cosh (gx) + k.

where the constant ¢ depends on the porosity of the wall. the hall-life of
radon, and a diffusion coefficient: the constant k is the maximum radon
concentration in the air-filled pores: and 4 and B are constants that de-
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Theorem (8.15)

pend on initial conditions. Show that y = f{x) is a solution of the diffu-
sion equation

Py s
SOLUTION  Differentiating y = f(x) twice gives us
dy ;
P ¢ A cosh (gx) + ¢B sinh (gx)
dx
doy ;
and / “ = ¢?A sinh (¢gx) + ¢*B cosh (gx).
ax-

Since v = A sinh (gx) + B cosh (gx) + k, we have
g2y = ¢* A sinh (¢x) + g B cosh (gx) + ¢*k.

Subtracting the expressions for d*y/dx? and ¢*y yields

d*y ;
S =gty = —qk
dx”
and hence
d*y

~— @’y +g°k=0.
g gy 4

The integration formulas that correspond to the derivative formulas
in Theorem (8.14) are as follows.
! (i) jsinh udu=coshu+ C
| {ii) fcosh wdu=sinhu+ C
(iii) J.sv.-ci'u2 udu=tanhu+ C
(iv) J‘cschz udu= —cothu+ C
{v) fsech utanh udu= —sechu + C

{vi) fcsch ucoth udu= —cschu+ C

EXAMPLE 3 Evaluate f o2 sinh 3 d

SOLUTION  If we let u = x3, then du = 3x? dx and

f.\‘z sinh x* dx

.

! f{sinh x¥)3x7 dx

1 J sinh u du = coshu + C

=1 cosh x* 4+ C.
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EXERCISES 8.3

E Exer. 1-2: Approximate to four decimal places. 46 The region bounded by the graphs of y = cosh x,
’ x=—1,x=1.and y =0is revolved about the x-axis.
1 4 b cos 4 & -3 3 ' ! . i
ja) sl xRl fel tanh -3 Find the volume of the resulting solid.
(d) coth 10 {e] sech 2 if] esch(—1) ) ) . .
. 47 1f A is the region shown in Figure 8.17, prove that
2 (a) sinh In 4 {b) cosh 4 fc) tanh 3 (= 72A.
- -2 f] A 5
[d] coth (—10) (e} sech (—2) : () esch 1 _ 48 Sketch the graph of x* — 12 = | and show that as ¢
Exer. 3-26: Find f(x) if f(x) is the given expression. varies, the point P(cosh t, sinh r) traces the part of the
3 sinh Sx 4 sinh (x? + 1) 5 cosh (x7) graph in quadrants [ and IV,
6 cosh? x 7 vx tanh x 8 afétan tanh x #9 The Gateway Arch in St. Louis has the shape of an in-
) verted catenary (see figure). Rising 630 feet at its center
% il I_ - uﬂ}th X - sech El and stretching 630 feet across its base, the shape of the
x cot x X2 +1 arch can be approximated by
12 sech Sx 13 csch? éx 14 x csch e*® vy = —127.7 cosh (x/127.7) + 757.7
15 Insinh 2x for —315 < x < 315
16 Gubt 35 . (a] Approximate the total open area under the arch.
e [B] Approximate the total length of the arch.
17 cosh 4x* + 3 pp g
EXERCISE 49 ¥
18 1 Fricah 19 ] 20 In |tanh x| f
- dann x
| —cosh x tanh x + 1
21 cothln x 22 coth® 2x 23 ¢ sech x

24 lsech{x*+ 1

25 tan ' (csch x)

26 ¢schln x

Exer. 27-42: Evaluate the integral.

s
27 f_‘c"' cosh (x?) dx 28 | — dx
J sech Tx
sinh +/ x o
9 j : N2 dx 30 r,\' sinh (2x7) dx
VX ks 50 IT a steel ball of mass m is released into water and the
| . force of resistance is directly proportional to the square
31 ‘[cushl Ix dx 32 fsedl" (5x)dx of the velocity, then the distance y the ball travels in
‘ t seconds Is given by
33 rcsu:h2 (5x)dx 34 J'qsmh 4x) 72 dx
L i
. q v = km In cosh (\/f— r),
35 rtanh 3x sech Ix dx 36 J sinh x sech® x dx km
o 5 _ where ¢ is a gravitational constant and k > 0. Show
7 J"‘mh xoselrtx dx - J‘mlh Ko DG G by that y is a solution of the differential equation
39 fcoth xdx 40 J‘mnh x dx d*y 1 fdv\?
M- b-= = my.
- drr - k\di 4
41 J sinh x cosh x dx 42 [‘scch xdx
N 51 Ifa wave of length L is traveling across water of depth h

43 Find the area of the region bounded by the graphs of

- (see ligure on next page). the velocity ¢, or celerity. of
y=sinh3x,y=0,and x=1.

the wave is related to L and f by the formula
44 Find the arc length of the graph of y = cosh x from

. 3
(0, 1) to (1, cosh 1). g2 Bl 20h
2n ¥

45 Find the points on the graph of v = sinh x at which the
tangent line has slope 2. where g is a gravitational constant.
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(a) Find lim,_. v* and conclude that ¢ ~ /gL/(2n) in (a) Estimate the x-coordinate a of the point of inter-
deep water. section of the graphs.
{b) If x =0 and f is a continuous function, then, by (b) Use Newton's method to approximate a to three
the mean value theorem (4.12), f(x) — f(0) > f7(0) x. decimal places.
Use this fact to show that v = /gh if h/L =~ 0. Con- E 54 Graph, on the same coordinate axes, y = cosh? x and
clude that wave velocity is independent of wave y=2.
length in shallow water. [a) Set up integrals for estimating the centroid of the
EXERCISE 51 region R bounded by the graphs.
e———[.———>] [b] Use Simpson's rule. with n = 4, to approximate the

coordinates of the centroid of R,

Exer. 55-72: Verify the identity.

f 55 cosh x + sinh x = ¢* 56 cosh x —sinhx=¢"*
h 57 sinh (—x) = —sinh x 58 cosh (—x) = cosh x
i 59 sinh (x 4+ y) = sinh x cosh v + cosh x sinh y

60 cosh (x + y) = cosh x cosh y + sinh x sinh y

B 8 61 sinh (x — y) = sinh x cosh y — cosh x sinh y
52 A soap bubble formed by two parallel concentric rings ( » y ¥ ?

is shown in the figure. If the rings are not too far apart, 62 cosh (x — y) = cosh x cosh y — sinh x sinh y
it can be. shown that the ful}cthn f whoisc graph gf:p- . tanh x + tanh y
erates this surface of revolution is a solution of the dif- 63 tanh(x + y) =
; : s e : 1 + tanh x tanh y
ferential equation yv'" =1 + ('), where y = f(x). Il 4 .
and B are positive constants, show that y = A cosh Bxis tanh x — tanh y

asolution ifand only if AB = 1. Conclude that the graph 68 tanhiz— )= I — tanh x tanh y
is a catenary. 3 -
65 sinh 2x = 2 sinh x cosh x

EXERCISE 52 :
66 cosh 2x = cosh? x + sinh? x
x coshx —1 x coshx +1
R L. gs S TRAR T
67 sinh 5 5 68 cosh 3 5
S5 o 2 tanh x i h sinh x
anh2x = —— anh — = ———
1 + tanh? x 2 1 +coshx
71 {cosh x + sinh x)" = cosh nx + sinh nx for every posi-
tive integer n (Hinr: Use Exercise 55.)
E 53 Graph, on the same coordinate axes, y = tanh x and 72 (cosh x — sinh x)" = cosh nx — sinh nx for every posi-
y=sech®xfor0 < x <2, tive integer n

8.4 INVERSE HYPERBOLIC FUNCTIONS

The hyperbolic sine function is continuous and increasing for every x and
hence. by Theorem (7.6), has a continuous, increasing inverse function,
denoted by sinh ' Since sinh x is defined in terms of e, we might expect
that sinh ™' can be expressed in terms of the inverse, In, of the natural
exponential function. The first formula of the next theorem shows that
this is the case.
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hearem {E 1 6] 1
) sinh™'x =In(x + x>+ 1)

(i) cosh ™ 'x=In(x+x2—1), x> 1

1 1+x
Hj tanh ' x=—ln—=, [x| <1
(i) s [x]
5 14++1—x2
(iv) sech™' x=In——— " 0<x<]l
FROOF  To prove (i), we begin by noting that

y=sinh™' x ifand only if x =sinh y.
The equation x = sinh y can be used to find an explicit form for sinh ! x,
Thus, if
L g

3 €
¥ =ginh y= "

then e —2x —e¢ =10
Multiplying both sides by ¢*, we obtain

e — 2xe¥ — 1 = 0.
Applying the quadratic formula yields

23 + 4% + 4 i —
gl = - s Or ¢r=x+4 x4+ 1.

Since x — (x* 4 1 <0 and ¢" is never negative. we must have
" ]
e =x 4 x° + 1.
The equivalent logarithmic form is
y=In(x+ x* +1);

that is, sinh ™! x =In (x + X% + 1),

Formulas (i) (iv) are obtained in similar fashion. As with trigonomet-
ric functions, some inverse functions exist only if the domain is restricted.
For example. if the domain of cosh is restricted to the set of nonnegative
real numbers, then the resulting function is continuous and increasing,
and its inverse function cosh ' is defined by

y=cosh™'x ifand onlyif coshy=x, y>0.

Employing the process used for sinh ' x leads us to (ii).
Similarly,
y=tanh ' x ifand only if tanhy=x for %] = L.
Using Definition (8.12), we may write tanh y = x as
l'."‘ = g

e oY

Solving for v gives us (iii).
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Theorem (8.17)

Finally. il we restrict the domain of sech to nonnegative numbers, the
result is a one-to-one function, and we define

1

v=sech ' x ifand only if sechyv=x. 1y>0.

Again, introducing the exponential form leads to (iv). ==

In the next theorem u = ¢(x), where g is differentiable and x is suitably
restricted.

() D, sinh™'u= —l D, u
Jit+ 1
1
(i) D cosh™'u=——— Dou, u>1
Jit — 1
(i) D, tanh 'u= — Dou, |ul<1
—1
(M D.sech™'u=———D,u, O<u<l
uy1 —u~

PROOF

By Theorem (8.16)(i).

D sinh™' x =D In(x + x>+ 1)

B Vx2
e+ + 102 +1
1

4l

3
This formula can be extended to D, sinh ' u by applying the chain

rule. The remaining formulas can be proved in similar fashion. wm

EXAMPLE 1 If y =sinh™* (tan x), find dy/dx.

SOLUTION  Using Theorem (8.17)(1) with u = tan x, we have

dy 1 d | i
= tanx = sec” x
dx tan? x + 1 dx st
vian® x + | ax \fSECT X
1 ;
= - |sec x|* = |sec x|.
|sec x|

The following theorem may be verified by differentiating the right-
hand side of each formula.
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Theorem (8.18)

1
l e ——
t J'\faz + u?

du=sinh"-:+C. a>0

u
du=cosh™'—+C, O<a<u
a

1
[
1
‘ (i) Jﬂﬁduzalanh‘lg+c |u| <a

+lsech"1ﬂ+6', O<|ul<a
a a

v [ . ST
uva? —u?

If we use Theorem (8.16), then ecach of the integration formulas in the
preceding theorem can be expressed in terms of the natural logarithmic
function. To illustrate,

|
f . — du = sinh 1 X206
i

Jas 4+ us L

u ne i
=1n(—+ﬁ()+l)+(‘.
a A\ \u
We can show that if ¢ > 0, then the last formula can be written as

1 s
f o : du=In(u++a*+u?)+ D,
A&+ u

where D is a constant. In Section 9.3 we shall discuss another method for
evaluating the integrals in Theorem (8.18).

EXAMPLE 2 Evaluate | ——

SOLUTION  We may express the integral as in Theorem (8.18)(i), by
using the substitution

= 3x, du =3 dx,
Since du contains the factor 3, we adjust the integrand by multiplying by 3

and then compensate by multiplying the integral by § before substituting:

3dx

1 I
f — S ﬂr.\' =z
V25 + 9x2 3
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EXAMPLE 3  Evaluate f v

SOLUTION

Substituting = ¢*, du=e¢"dxy and

X
2
- dx,

— e

applying Theo-

rem (8.18)(iii) with @ = 4, we have

W |
j ﬁ: dx = J‘ FE () e dx

= J.-Tz _I " du

1 1
=-fanh™ -+ C
) +

4
=] tanh ! e +C
47 4
for |u| < a (that is, ¢* < 4).
EXERCISES 8.4
c | Exer. 1-2: Approximate to four decimal places. 1 . 1
L] e P 25 f — dx 26 | ——=dx
1 (a) sinh ™' 1 (b) cosh ' 2 X9 — x* VS —et
[c) tanh ™' (—1}) (d) sech '} 27 A point moves along the line x = 1 in a coordinate plane

2 [a) sinh™! (=2)
jc) tanh™'4

(b} cosh™ ! §

(d) sech ™' $

Exer. 3-18: Find f'(x) if f(x) is the given expression.

3 sinh ! 5x 4 gsinh™!'e*
5 cosh ' /x 6 \Jcosh ! x
7 tanh™! (—4x) 8 tanh ! sin 3x
9 sech ! x? 10 sech ' /1 —x
1 .tsinh‘ll— 12 —]——

X sinh ™' 17
13 Incosh™! 4x 14 cosh !ln4x
15 tanh ™! (x4 1) 16 tanh ! x*
17 sech ! /x 18 (sech ' x) !

Exer. 19-26: Evaluate the integral.
1 |
19 J‘—-r dx 20 f e %
B + 16x2 vi16x- —9
1
21 Jﬂm (i‘_\ 22 j‘

et 2
23_|' . 24 [ —dx
\:.-cl.\ — 16 " _'S —— 3_\“‘

sin X
dx

V1 +cost x

28

with a velocity that is directly proportional to its dis-
tance from the origin, If the initial position of the point
is (1, 0) and the initial velocity is 3 ft/sec, express the y-
coordinate of the point as a function of time f (in seconds).

The rectangular coordinate system shown in the figure
illustrates the problem of a dog seeking its master. The
dog. initially at the point (1, 0), sees its master at the
point (0, 0). The master proceeds up the y-axis at a con-
stant speed. and the dog runs directly toward its master
at all times. If the speed of the dog is twice that of the
master. it can be shown that the path of the dog is given
by y = f(x), where v is a solution of the differential equa-
tion 2xy” = /1 + (1')*. Solve this equation by first let-
ting z = dy/dx and solving 2xz' = 1 + =°, obtaining
z=4[Jx —(1/J/x)]. Finally. solve v'=3[yx—(1yx)].

EXERCISE 28
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Exer. 29-32: Sketch the graph of the equation. 1 | u
grap q 37 f 5 sdu=—tanh™!' - 4 C, |u| <a
9 p=sinh™! x 30 y = cosh ™! x =l 4 4
=R T, T | o TR T 1 | u ; f
' y=tanh 'x 12 y=sech ' x 38 r ——du= —-sech ul +C, O<|u|<ua
J fa® g2 a I
Exer. 33-38: Verify the formula. it L
Exer. 39-41: Derive the formula (see Theorem (8.16)).
D i =1 D 1
L i e : : _ e
ey " Vit — x e 39 cosh ' x=In(x+yx'—=1) x=21
1 is 1 1o Lo A% 2
3¢ D otanh ™' 1 = Y D, u, [u| <1 *0 tanh "' x = Jln I — |x| <1
o 2 3
| . . 4+l — %% .
35 D sech™ ' u= — ——— Dyt D=p=<l 41 sech™ ' x =In— ” » O<xxl
Uyl —us '
1 =L
-I?ihf=c{’!5h +C, O<u<u
U —a d
8.5 REVIEWX EXERCISES
Exer. 1-24: Find f'(x) if f(x) is the given expression. = J-: 2 1 ‘I 2 [** cos x
N 3 ———dx —
| arctan y/x — 1 2 tan ' (In 3x) RV =P O 1 4sinx
i . ] sinh (In x) 3
1 xf arcsec (x) 4 33 J- ~dx 34 fsech‘ (1 —2x)dx
cos ' x x .
qarcian 2x 5 Aresec 3 AT | X
2 & (1 + arcsec 2x) 35 [' ——_dx 26 j' —— iy
. 1 — %2 Y N9 —4x N e
7 Intan ' (x%) B ———
Arceos x . ] : |
. - sz . _ 37 1 : = dx 38 | ————dx
» sin~! /1 — &2 10 y/sin™! (1 —x?) ¢ X9 —4x° Y oxyd4xs —9
1 ({tan x + tan ' x)* 2 tan~ ! tan 2 X . 1
ki 39 J- — dx 40 [ —————dx
13 tan” ' ({tan ' x) g ¢** sec e 25x* + 36 Y J25x% + 36
g In sinh x 41 Find the points on the graph of v = sin ' 3x at which
5 coshe - the tangent line is parallel to the line through A(2. —3)
. and B(4, 7).
17 ¢ *sinhe™* 18 ¥ FoR

-y
(9]

Find the points of inflection and discuss the concavity

sinh x 0 In tanh (5x + 1) of the graph of y = xsin~ ! x.

cosh x — sinh x

42 Find the local extrema of f(x) = 8 sec x + csc x on the
sinh ™! (x%) 22 cosh™ 'tan x interval (0, 7/2). and describe where f(x) is increasing
| i or is decreasing on that interval.
i tanh ™ ! (tanh 3/x 24 — tanh 5 y
’ Ll X X 44 Find the area of the region bounded by the graphs of

y=x/x*+ 1), x=1,and y=0.
Exer. 25-40: Evaluate the integral. I : -
45 Damped oscillations are oscillations of decreasing mag-

S [‘ dic 2% J‘ A Ji nitude that oceur when frictional forces are considered.
" F B - 3G " 4 "
J 44 9 4+ Ox° Shown in the figure on the next page is a graph of the
2% o damped oscillations given by f(x) = e %7 sin 2x.
4 .r l 2% dx -~ _J 1 ﬁdr {a] Find the x-coordinates of the extrema of | for
vi—¢ N — e
0<x<2m
29 [‘ * _dx 30 J‘ : dx (b} Approximate the x-coordinates in part (a) to two
- sech (x°) it —1 decimal places.
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EXERCISE 45

46

47

48

49

Find the arc length of the graph of v = In tanh ix from
x=1tox=2

A balloon is released from level ground. 500 meters away
[rom a person who observes its vertical ascent. If the
balloon rises at a constant rate of 2 m/sec, use inverse
trigonometric functions to find the rate at which the
angle of elevation of the observer's line of sight is chang-
ing at the instant the balloon is at a height of 100 meters.
(Disregard the observer's height.)

A square picture with sides 2 feet long i1s hung on a wall

with the base 6 feet above the loor. A person whose eye

level is § feet above the floor approaches the picture at

a rate of 2 ftsec. If ¢ is the angle between the line of

sight and the top and bottom of the picture, find

[a) the rate at which {1 1s changing when the person s
8 feet from the wall

[b) the distance from the wall at which 0 has its maxi-
mum value

A stuntman jumps from a hot-air balloon that is hover-
ing at a constant altitude. 100 feet above a lake. A movie
camera on shore, 200 feet from a point directly below

5C

the balloon. follows the stuntman’s descent (see figure).
At what rate is the angle of elevation 1 of the camera
changing 2 seconds after the stuntman jumps? (Disre-
gard the height of the camera.)

EXERCISE 49

o0t

-

-
g
- =
,.{.—-'1___..-'-"""\
ﬁr_‘____..

-
\\‘f___.._llll ft

A person on a small island [. which is k miles from the
closest point A on a straight shoreline. wishes to reach
a camp that is d miles downshore from A by swimming
to some point P on shore and then walking the rest of
the way (see figure). Suppose the person burns ¢, calo-
ries per mile while swimming and ¢, calories per mile
while walking. where ¢, > ¢5.

[a] Find a formula for the total number ¢ of calories

burned in completing the trip.

[b] For what angle AIP does ¢ have a minimum value?

XERCISE 50
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TECHNIQUES OF
INTEGRATION

INTRODUCTION

A
o
n

In previous chapters we obtained formulas for evalua-
ting various types of integrals. Many are listed on the
inside front cover of this text. We also discussed the
method of substitution, which is used to change a com-
plicated integral into one that can be readily eval-
uated. In this chapter we consider additional ways to
simplify integrals. Foremost among these is integra-
tion by parts. which we discuss in the first section. This
powerful device allows us to obtain indefinite integrals
of In x, tan~ ' x. and other important transcendental
expressions. In later sections we develop techniques
for simplifying integrals that contain powers of trigo-
nometric functions, radicals, and rational expressions.

The use of a table of integrals is explained in Sec-
tion 9.7. Such tables are always incomplete. and it is
sometimes necessary to use skills obtained in previous
sections hefore consulting a table. The same can be
said for computer programs that are designed to eval-
uate various (but not all) indefinite integrals.

For applications involving definite integrals, it is
often unnecessary 1o find an antiderivative and apply
the fundamental theorem of calculus. because the
trapezoidal rule or Simpson's rule can be used to ob-
tain numerical approximations. In such cases either a
computer or a programmable calculator is invaluable,
since it can usually arrive al an approximation in a
matter of seconds.
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o
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9.1 INTEGRATION BY PARTS

Up to this stage of our work we have been unable to evaluate integrals
such as the following:

fln x dx, fxa"‘ dx, j,\'l sin x dx. J tan ' x dx

The next formula will enable us to evaluate not only these. but also many
other types of integrals.

mtarrat bv Dart
(eqgrati oy pa

- 'rc,)_ 'J Il u= f(x)and r = g(x) and if /" and ¢ are continuous, then
fu dv = v — J‘l? du.
PROCFE By the product rule.

D, [ /(x)g(x)] = f(x)g'(x) + glx)f(x).
or, equivalently.
Sx)g'(x) = D, [ S(x)g(x)] — g(x)/(x).

Integrating both sides ol the previous equation gives us
f fix)g'(x) dx = | D, [fx)gix)] dx — J g(x)/"(x) dx.

By Theorem (5.5)(i). the first integral on the right side equals f(x)g(x) + C.
Since another constant of integration is obtained from the second integral,
we may omit C in the formula: that is.

¥ (x)4"(x) dx = fix)g(x) f;r!.w)_f"t.\'} dx.

Since dr = g'(x) dx and du = ['(x) dx. we may write the preceding formula
asin (9.1). wm

When applying Formula (9.1) to an integral, we begin by letting one
part of the integrand correspond to dr. The expression we choose for dr
must include the differential dx. After selecting de, we designate the re-
maining part of the integrand by u and then find du. Since this process
involves splitting the integrand into two parts, the use of (9.1) is relerred
to as integrating by parts. A proper choice for dv is crucial. We usually
let dv equal the most complicated part of the integrand that can be readily
integrated. The following examples illustrate this method of integration.

EXAMPLE 1  Evaluate [xe?* dx.

SOLUTION  The following list contains all possible choices for di;
dx, xdx, e¥™dx, xe*™dx

The most complicated of these expressions that can be readily integrated
is e2* dx. Thus, we let

dv = e dx.
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The remaining part of the integrand is u—that is, « = x. To find v, we
integrate dv, obtaining v = $¢?*. Note that a constant of integration is not
added at this stage of the solution. (In Exercise 51 you are asked to prove
that if a constant is added to v, the same final result is obtained.) If u = x,
then du = dx. For ease of reference let us display these expressions as
follows:

dv = e** dx Uu=2x
p = le?* du = dx

Substituting these expressions in Formula (9.1)—that is, integrating by
parts—we obtain

(‘.\‘03" dx = x(4e**) — j%e“ dx.

We may find the integral on the right side as in Section 7.4. This gives us

f_\'e“ dx = $xe® — 1e** + C.

It takes considerable practice to become proficient in making a suitable
choice for dv. To illustrate, if we had chosen dv = x dx in Example 1, then
it would have been necessary to let u = e?*, giving us

dv = xdx u=e~
x? du = 2e?* dx.
Integrating by parts. we obtain

f.\‘ez" dx = ixie®™ — J‘xz(,:.r dx.

b

U=

ol

Since the exponent associated with x has increased, the integral on the
right is more complicated than the given integral. This indicates that we
have made an incorrect choice for dv.

EXAMPLE 2 Evaluate

3
(a) fx sec? x dx (b) r X sec” x dx

JO
SOLUTION
[a) The possible choices for dv are
dx, xdx, secxdx, xsecxdx, sec?®xdx, xsec® xdx.

The most complicated of these expressions that can be readily integrated
is sec? x dx. Thus, we let

dv = sec? x dx U=x
v = tan x du = dx.
Integrating by parts gives us
f_\' sec” x dx = xtan x — Lrta.n xdx

= xtan x + In [cos x| + C.
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(b) The indefinite integral obtained in part (a) is an antiderivative of
x sec? x. Using the fundamental theorem of calculus (and dropping the
constant of integration C). we obtain

n3 %3
.fu xsec” xdx = [x tan x + In

n/3
cos x |]ﬂ

tan © 4 | ‘ .
an — n|cos -
3 3

1
= (R B ln-,})— (0 + 0)
o
3

—J3—hi2= 112,

)—(U+lnl]

If, in Example 2, we had chosen di = x dx and u = sec® x, then the
integration by parts formula (9.1) would have led to a more complicated
integral. (Verify this fact.)

In the next example we use integration by parts to find an antideriva-
tive of the natural logarithmic function.

EXAMPLE 3 Evaluate fln xdx.

SOLUTION  Let

and integrate by parts as follows:
|
f!n xdy = (In x)x — J'(_,\-) —dx
X

=xlnx— fd.\‘

=xlhx—-—x+C

Sometimes it is necessary to use integration by parts more than once
in the same problem. This is illustrated in the next example.

EXAMPLE 4  Evaluale J'.\'Zez" dx,

SOLUTION  Let

-

dv = ¢** dx w=x"

5

v =1 du = 2x dx
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and integrate by parts as follows:
j.vlezx dx = x*(3e*) — J'(%e“]h dx
= $5%E — J‘xe“ dx

To evaluate the integral on the right side of the last equation, we must
again integrate by parts. Proceeding exactly as in Example 1 leads to

J'.\‘zel“ dx = ix%e?™ — Ixe™ + {e** + C.

The following example illustrates another device for evaluating an in-
tegral by means of two applications of the integration by parts formula.

EXAMPLE 5 Evaluate f €* cos x dx.

SOLUTION  We could either let dv = cos x dx or let dv = e* dx. since
cach of these expressions is readily integrable. Let us choose

X

dr = cos x dx u=e

Il

r = sin x du = e* dx

and integrate by parts as follows:
f@"' cos x dx = e¥sin x — ~r[sin x)e* dx
1 f@" cos x dx = ¢* sin x — f{f" sin x dx

We next apply integration by parts to the integral on the right side of
equation (1). Since we chose a trigonometric form for dv in the first inte-
gration by parts, we shall also choose a trigonometric form for the second,
Letting

dr = sin x dx u=e

b= —cos X du = ¢“dx
and integrating by parts, we have

fs-"" sin x dx = e*(—cos x) — I( —cos x)e* dx

(2) ft"" sin xdx = —e*cos x + fe" cos x dx.

If we now use equation (2) to substitute on the right side of equation (1),
we obtain

f{,.\' s ik I‘v" COS X d.‘c].

W

¥ sin x — [—e“ cos X +
or fr'" cos x dx = e"sin X 4 ¥ cos x — J ¥ cos X dx.

Adding [ ¢* cos x dx to both sides of the last equation gives us

2 fu"’ cos X dx = ¢* (sin x + ¢cos x).
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Finally, dividing both sides by 2 and adding the constant of integration
vields
fr"' cos x dx = 4e* (sin x + cos x) + C.

We could have evaluated the given integral by using dr = ¢* dx for
both the first and second applications of the integration by parts formula.

We must choose substitutions carefully when evaluating an integral of
the type given in Example 5. To illustrate, suppose that in the evaluation
of the integral on the right in equation (1) of the solution we had used

dv = e¥ dx i = sin x
r=e" du = cos x dx.
Integration by parts then leads to

|

( §in X dx = (sin x) ¢* J'p‘ cos X dx
= ¢¥ sin x - jv“ cos x dx.
If we now substitute in (1), we obtain
fe"' cos X dx = e*sin x — [c"' sin x — J-u"" Cos X :.!’.\'J.
which reduces to
ft"" cos x dx = J‘r"' cos x dx.

Although this is a true statement. it is not an evaluation of the given
integral.

EXAMPLE 6 Evaluate [sec? x dx.

o

SOLUTION  The possible choices for dr are
dx, secxdx, sect xdx, sec' xdx,
The most complicated of these expressions that can be readily integrated
is sec” x dx. Thus, we let
de = sec” x dx U = secx
r=tan x du = sec x tan x dx
and integrate by parts as follows:

fsc& X dx = sec x tan x — J sec x tan® x dx

Instead of applying another integration by parts. let us change the form
of the integral on the right by using the identity | + tan® x = sec” x. This
gives us

f!\'cc" Ndx =sec xtan x — J sec x (see? x — 1) dx,
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or J'sec’ X dx = sec x tan x — fsec-" xdx + J‘sec xdx.
Adding | sec? x dx to both sides of the last equation gives us
2 j&;cc3 X dx =sec xtan x + jscc x dx.

If we now evaluate | sec x dx and divide both sides of the resulting equa-
tion by 2 (and then add the constant of integration), we obtain

J sec” xdx = sec xtan x + 3 In [sec x + tan x| + C.

Integration by parts may sometimes be employed to obtain reduction
formulas for integrals. We can use such formulas to write an integral in-
volving powers ol an expression in terms ol integrals that involve lower
powers of the expression.

EXAMPLE 7  Find a reduction formula for fsin" xdx.

SOLUTION  Let
dv = sin x dx u=sin"""'x
U= —CO0S X diu=(n—1)sin" % xcos x dx

and integrate by parts as follows:
J‘sin" xdx = —cosxsin" tx+(n—1) fsin" ~2 608" Kdx
Since cos? x = 1 — sin? x, we may write
f&in" xdx=—cosxsin" ' x+(n—1) fﬁin"' xdx—(n—1) J‘sin" x dx.
Consequently,
fsin" xdx+(n—1) fsin" xdx=—cosxsin" ' x+i(n—1) fsin”' % xid

The left side of the last equation reduces to n | sin” x dx. Dividing both
sides by n, we obtain
=]

v+ —— | sin" 2 wdn
n

; 1 -
_[5'“" xdx = ——cosxsin"
n

EXAMPLE 8  Use the reduction formula in Example 7 to cvaluate
f.‘iil‘l" X dx.
SOLUTION Using the formula with n = 4 gives us

[‘:iin4 xdx=—3cosxsin®x+3 J.sinl xdx,
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EXERCISES 9.1

Applying the reduction formula, with n = 2, to the integral on the right.
we have

. "
j sin® xdx = —3cos xsin x + § J dx

—3cos xsinx +ix + C.
Consequently,
fs;in'* xdy= —jcosxsin®x —fcosxsinx +3x+ D

with D = iC.

It should be evident that by repeated applications of the formula in
Example 7 we can find | sin” x dx for any positive integer n, because these
reductions end with either | sin x dx or [ dx, and each of these can be
evaluated easily.

Exer. 1-38: Evaluate the integral.

1 r_\'e “dx

B

.
3 | e dx

5 j X ¢os Sx dx

p f.\' seC ¥ tan x dx

9 J‘_\"'J cos x dx
11 Jt;m oy
13 f\- xIn xdx

15 r_\‘ cse? x dx

17 J'e' ¥ sin x dx

19 ~f:cin X Incos x dx

21 J‘csc3 xdx

3

1 X
23 E dx

VXt +1

(Pl 1
25 Jl: X 8in 2x dx
27 ['_\12_\- + 3)°° dx

29 J' #** sin Sx dx

2

18

20

22

24

26

28

30

I xsin v dy
y

31 'r[}n x)? dx 32 It ¥ dx

33 f,\‘J sinh x dx 34 | (X 4+ 4) cosh 4x dx

.
' v sin dx dx
. .
| xe “Vx

J

l x cse® 3x dx

%

I xe *dx
J

i
l sin~txidy
i X% In x dx
(.\' tan ' xdx

ax e
fc’ Ycos 2x dx

L Y
x'e dx

| sec” x dx

| sin In x dx

’
J X Sec” 3x dx

.
.,
l\ cos (&) dx

35 [' cos \;"; dx

37 fcos bxqlx

36 I‘t;m' 1 3x dy

38 | (x+ 1'%+ 2)dx

Exer. 39-42: Use integration by parts to derive the re-
duction formula.

39

40

M1

42

43

44

45

46

47

% X
J x"etdx = x"e* —m l M et dy

J x"sinxdy=—x"cosx+m l x™" ! cos x dx

J‘Hn X" dx = x (o x)™ — ‘f:ln ) [l 5

sec”" 2xtanx m—2

" sec™ x dx = sec™ ™% x dx

m—1 m—1
form # 1.

Use Exercise 39 to evaluate J xSe* dx.

Use Exercise 41 to evaluate f(ln 3% dx.

IT f(x)=sin \,_\ find the area of the region under the
graph of [ from x =0 to x = n*.

The region between the graph of y = xy'sin x and the
x-axis fromx = Oto x = 7/ 2 isrevolved about the x-axis.
Find the volume of the resulting solid.

The region bounded by the graphs of v = In x, v =0,
and x = ¢ is revolved about the y-axis. Find the volume
of the resulting solid.
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48

49

50

51

52

Suppose the force fix) acting at the point with coordi-
nate x on a coordinate line | is given by f(x)=
x%yx? + 1. Find the work done in moving an object
fromx=0tox=1.

Find the centroid of the region bounded by the graphs
of the equations y =¢*, y=0,x =0, and x = In 3.

The velocity (at time t) of a point moving along a coordi-
nate line is t/e* ft/sec. IT the point is al the origin at
t = 0, find its position at time .

When applying the integration by parts formula (9.1),
show that if, after choosing dv, we use v + C in place of
v, the same result is obtained.

In Section 6.3 the discussion of finding volumes by means
of cylindrical shells was incomplete because we did not
show that the same result is obtained if the disk method
is also applicable. Use integration by parts to prove that
if f is differentiable and either f(x)> 0 on [a, b] or
f'(x) <0 on [a,b], and if ¥ is the volume of the solid

53

54

obtained by revolving the region bounded by the graphs
of f, x=a, and x = b about the x-axis, then the same
value of V is obtained using either the disk method or
the shell method. (Hint: Let g be the inverse function of
/. and use integration by parts on [} z[ f(x)]* dx.)

Discuss the following use of Formula (9.1); Given
[ (1/x) dx, let dv =dx and u = 1/x so that v = x and
du = (—1/x?) dx. Hence

F=lgpeT e

or J‘:—cdx=1+_1'l—_dx.

Consequently, 0 = 1.

Ifu = f(x) and v = g(x), prove that the analogue of For-
mula (9.1) for definite integrals is

f: ude = [uv]: - J:’ v du

for values a and b of x.

9.2 TRIGONOMETRIC INTEGRALS

In Example 7 of Section 9.1 we obtained a reduction formula for | sin" x dx.
Integrals of this type may also be found without using integration by
parts. If n is an odd positive integer, we begin by writing

fsin" xdx = jsin" “Lovsinedy

Since the integer n — 1 is even, we may then use the trigonometric identity
sin? x = | — cos? x to obtain a form that is easy to integrate, as illus-
trated in the following example.

EXAMPLE 1  Evaluate _fsins xdx.

SOLUTION

As in the preceding discussion, we write

fsinﬁ xdx = Isin“ x sin x dx

= flsinz x)% sin x dx
= J‘(l — cos? x)* sin x dx

= I{I — 2 ¢os? x + cos* x) sin x dx.
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Il we substitute
u=-cosx, du= —sinxdx,

we obtain

J sin® x dx = — ff] — 2 cos” x + cos* x)(—sin x) dx
= — r{l — 2 + uM) du

=—u+iwd L+ C
= —cos X + 3 cos® x —dcos® x +C.

Similarly. for odd powers of cos x we write

Ll Ll
cos” x dx = J cos" ! x cos x dx
and use the fact that cos® x = | — sin® x to obtain an integrable form.
If the integrand is sin” x or cos” x and n is even, then the half-angle
formula

1 —cos 2x i | + cos2x
= or Ccos”x = —

sin? x =

may be used to simplify the integrand.

EXAMPLE 2  Evaluate _[ cos? x dx.

SOLUTION  Using a half-angle formula, we have

fu)sl Xdx= %Jll + cos 2x) dx
= ix 4+ {sin 2x + C.

EXAMPLE 3 Evaluate J1h‘i'['l‘1 X dx.

SOLUTION
sin* x dx = | {sin? x)* dx

— e Pe N2
['(I I..‘)Ob...\) dx

i f{] — 2 cos 2x + cos? 2x) dx
We appy a hall-angle formula again and write

cos? 2x = §(1 + cos 4x) = 1 + 4 cos 4x.
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Substituting in the last integral and simplifying gives us

‘.sin" xdx

v

i th1L — 2cos 2x + 4 cos 4x) dx

iy —1sin 2x + 35 sin4dx + C,

Integrals involving only products of sin v and cos x may be evaluated
using the following guidelines.

Guidelines for evaluating i :
_'|' sin™ x cos” x dx (9.2) 1 If mis an odd integer: Write the integral as

J‘sin’" xcos" x dx = J‘sin'"_ b x cos" x sin x dx
and express sin” ' x in terms of cos x by using the trigonometric
identity sin® x = | — cos® x. Make the substitution
w=cosx, du= —sinxdx
and evaluate the resulting integral.
2 If nis an odd integer: Write the integral as

fsin"’ X cos" xidx = ‘fsin"' xcos" ! x cos xdx

and express cos” ! x in terms of sin x by using the trigonometric
identity cos? x = 1 — sin? x. Make the substitution

u=sinx, du=cosxdx

and evaluate the resulting integral.

3 If m and n are even: Use hal-angle formulas for sin” x and
cos” x to reduce the exponents by one-half.

EXAMPLE 4 Evaluate _(‘cos" x sin® x ey,

o

SOLUTION By guideline 2 of (9.2),
rcos*‘ xsin* v dx = I‘ms: ¥ sin* v cos xdx

= rlf — sin® x) sin* x cos x dx.

If we let u = sin x. then du = cos x dx, and the integral may be written

cos? x sin* xdx = J (1 — i di = Jm* u®) du
=W -+ C

=1tsin® x—tsin” x+ C.

The following guidelines are analogous to those in (9.2) for integrands
of the form tan™ x sec” x.
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Guidelines for evaluating ) 3
[ tan™ x sec” x dx (9.3) 1 If mis an odd integer: Write the integral as

J'tan"' x sec” x dx = ftan’“*‘ xsec" ! x sec x tan x dx

and express tan™ ! x in terms of sec x by using the trigonometric
identity tan? x = sec? x — 1. Make the substitution

u=secx, du=secxtan xdx
and evaluate the resulting integral.
2 Ifnis an even integer: Write the integral as

jtan"’ xsec" x dx = ftan”' x sec” 2 x sec? x dx

and express sec”” ? x in terms of tan x by using the trigonometric
identity sec? x = 1 + tan® x. Make the substitution

u=tanx, du=sec?xdx
and evaluate the resulting integral.

3 Kmisevenandnis odd: There is no standard method of evalua-
tion. Possibly use integration by parts.

EXAMPLE 5 Evaluate [‘tarr‘ x sec” x dx.
SOLUTION By guideline 1 of (9.3),

ftan3 xsecd x dx = J tan® x sec® x (sec x tan x) dx

Il

[‘(sec2 x — 1) sec* x (sec x tan x) dx.
Substituting u = sec x and du = sec x tan x dx. we obtain
ftam" x sec® x dx = r{ul — L du
= f(u“ —u*) du
=4 —du¥ 1 C

=Jsec’ x —isec’ x + C.

EXAMPLE 6 FEvaluate rlarﬁ X sec® x dx.

SOLUTION By guideline 2 of (9.3),
J‘tanl xsect x dx = ftarﬁ x sec® x sec? x dx
= J‘l:m2 X (tan® x + 1) sec? x dx.
If we let u = tan x. then du = sec? x dx, and

['u:(u: + 1) du

J tan? x sec* x dx

“{u* + u?) du

w+ i+ C

Ltan? x + tan® x + C.

o L[
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Integrals of the form | cot™ x csc”

fashion.
Finally,

x dx may be evaluated in similar

if an integrand has one of the forms cos mx cos nx,

Sin mx sin 1x, or sin mx cos nx, we use a product-to-sum formula to help
evaluate the integral, as illustrated in the next example.

EXAMPLE 7 Evaluate f o8 5% cos 3x dx.

SOLUTION
obtain

jcos Sx cos 3x dx = f%[cos 8x + cos 2x) dx

Using the product-to-sum formula for cos u cos v,

we

-

S i e
=ggsin 8x + 3sin 2x + C,

EXERCISES 9.2

Exer. 1-30: Evaluate the integral.

- |

11

13

17

19

21

23

25

27

29

31

%
J cos® x dx

2 f sin? 2x dx

J'sin: x cos? x dx 4§ [‘cosﬁ X dx
fsin" X cos” x dx 6 [-sin xcos? x dx
J‘sin" x dx 8 I sin® x cos® xdx
ftam"‘ x sect xdx 10 l sec” x dx
f tan® x sec? x dx 12 rtan-" xsec xdx
|~lanrJ xdx 14 fcol“ x dx
3
= ~ cos” X
j\;’sm x cos® x dx 16 ———dx
Y afsin x
[‘{tan ¥ + cot x)? dx 18 [col" x ese? vdx
L
J; sin? x dx 20 | tan? (Jmx) dx
J.sin Sx sin 3x dx 22 f COS X ¢os Sx dx
J:" sin 3x cos 2x dx 24 J sin 4x cos 3x dx
J'csc“ x cot™ x dx 26 J + Jcos x)? sin x dx
Cos X tan”
J‘ — dx 28 J J’.\'
2 —sinx sec’ x
2
sec” x boSCC X
f < dx 30 J ——dx
(1 + tan x)° cot’ X
The region bounded by the x-axis and the graph of

y =cos? x from x =0 to x = 2r is revolved about the
x-axis. Find the volume of the resulting solid.

32

33

34

35

36

The region between the graphs of y = tan* x and y = 0
from x = 0to x = = 4 is revolved about the x-axis. Find
the volume of the resulting sohd.

The velocity (at time 1) of a point moving on a coordi-
nate line is cos® 7t ft/sec. How far does the point travel
m 5 seconds?

The acceleration (at time 1) of a point moving on a co-
ordinate line is sin® r cos r ft sec®. At ¢ = 0 the point is
at the origin and its velocity is 10 ft/sec. Find its posi-
tion at time f.

{a] Prove that if m and n are positive integers,
J sin mx sin nx dx

sin (m — nlx sin(m + n)x

+C ifm##n
Am — n) 2Am + n)
X osin 2mx it
- - nmm=n
2 4m

(b} Obtain formulas similar to that in part (a) for
J.hin Mx cos ny dx
and j‘cus X Cos ny dy.
fa) Use part (a) of Exercise 35 10 prove that

e 0 ifm#n
I Sin My SN ax dx =
nILE |

r fm=n
(b) Find
. i -
(i) _ Sinmx cos nx dx
{11) ‘ COs mx cos nx dx
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9.3 TRIGONOMETRIC SUBSTITUTIONS

Trigonometric substitutions (9.4)

In Example | of Section 1.3 we showed how to change the expression
Var — x2, with a > 0, into a trigonometric expression without radicals.
by using the trigonometric substitution x = a sin (), We can use a similar
procedure for v/ 4+ x? and \/x? — a*. This technique is useful for elimi-
nating radicals [rom certain types of integrands. The substitutions are
listed in the following table.

| EXPRESSION IN INTEGRAND TRIGONOMETRIC SUBSTITUTION

a7 —x2 X =asin f)
Jot 4+ x? x=atanf
VX* — a? x =asect

When making a trigonometric substitution we shall assume that 0 is
in the range of the corresponding inverse trigonometric function. Thus.
for the substitution x = a sin 0, we have — /2 <6 < #/2. In this case.
cos ) > 0 and

)

Vvat —x* = a? — a*s5in? §

= Ja(1 — sin? 0)

= Ja? cos® 0

= g cos (.

If Ja> — x2 oceurs in a denominator. we add the restriction || #:a; o,
equivalently, —m/2 < ! < n/2.

EXAMPLE 1  Evaluate {'—1 — dx.

= \"\I(‘ = _\_':

SOLUTION  The integrand contains /16 — x>, which is of the form
va* — x? with a = 4. Hence, by (9.4), we let

x=4sinf) for —n2<0<n/2.

It follows that

Since x =4 sin (), we have dx = 4 cos () df. Substituting in the given in-
tegral yields

[ ’ x= [ : 4 ¢os 0 do
dx:= % cos

_\.z\_ 6= x2 (16 sin- )4 cos ) ‘

| |‘ |

16 ¢

i fcscz fldl)

i

e i
sin- !

= —Fcot8+C
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FIGURE 9.1

X
sin ) =
sin 3

FIGURE 9.2

X
tan f/ = —
4]

We must now return to the original variable of integration, x. Since
f) = arcsin (x/4), we could write —% cot # as —4% cot arcsin (x/'4), but
this is a cumbersome expression. Since the integrand contains /16 — x?.
it is preferable that the evaluated form also contain this radical. There is
a simple geometric method for ensuring that it does. I[ 0 < 0 < n/2 and
sin l = x/4. we may interpret (0 as an acute angle of a right triangle
having opposite side and hypotenuse of lengths x and 4, respectively (see
Figure 9.1). By the Pythagorean theorem, the length of the adjacent side
is /16 — x*. Relerring to the triangle, we find

A/ 16 — x
X

(]

cot il =

It can be shown that the last formula 1s also true if —7/2 < @ < 0. Thus,
Figure 9.1 may be used if 0 is either positive or negative.
Substituting /16 — x?/x for cot ¢ in our integral evaluation gives us

I 16—
| L N N . sl S
x4/ 16 — x- 16 ¥

_ 316 ~—x*
16x

+E:

If an integrand contains y/a* + x? for a > 0, then, by (9.4), we use the
substitution x = a tan ) to eliminate the radical. When using this substi-
tution we assume that  is in the range of the inverse tangent function;
that is, —71/2 < ! < /2. In this case, sec # > 0 and

V@ + a* tan® 0
Ja*(l + tan? 0)

va? + x?

Il

va®sec? @

a sec (.
After substituting and evaluating the resulting trigonometric integral, it is

necessary to return to the variable x. We can do this by using the formula
tan @ = x/a and referring to the right triangle in Figure 9.2.

1
EXAMPLE 2  Evaluate [‘ ; — %
¥ \4 + .\’_

SOLUTION  The denominator of the integrand has the form y/a® + x*
with @ = 2. Hence. by (9.4), we make the substitution
x=2tanf, dx=2sec’ 0db.

Consequently

Jd+xi=J4+4an?0=2y1+1an’0 =2sec’ 0 = 2sect
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I 1 2
and f : = dx = f— 2 sec* 6 df
4 4 %2 2secf
= fsec 0 dt
=1In|secf + tan 6| + C.
FIGURE 9.3 Using tan § = x/2, we sketch the triangle in Figure 9.3, from which we
X i
tan 0 =X obtain )
% /4 + x°
, =N iy
sec fl = 5 ;
V4 4+ x?
Hence
1 4+x7 x )
0 [t =M TN 3 i
2 oyl -x7 - -
The expression on the right may be written
A+t +x| —
In|~——-——|+C=In|J4+x*+x|-In2+C.
Since \-"4_+ x7 4 x > 0 for every x, the absolute value sign is unneces-
sary. If we also let D = —In 2 + C, then
1 (- |
r ——— dx = In [\4 + X* +Xx)+ D.
Y4+ N
If an integrand contains \.-f'xz — a?. then using (9.4) we substitute x =
a sec fl, where f is chosen in the range of the inverse secant function; that
is. either 0 < ) < /2 or m < 00 < 3%/2. In this case, tan § > 0 and
JxP—a® = Ja*sec? 0 — a?
=4/a?(sec2 0 —1)
FIGURE 9.4 = Ja? tan? 0
sec = = =« tan (.
da
Since
X
x B sec ) =—,
——3 a
6 we may refer to the triangle in Figure 9.4 when changing from the vari-

da

able 0 to the variable x.

EXAMPLE 3 Evaluate f \%_9 dx.

SOLUTION  The integrand contains /x> — 9. which is of the form
v x* — a? with a = 3. Relerring to (9.4), we substitute as follows:

x=3secl, dx=3secttanfdb
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FIGURE 9.5

X
secf = —
3

Vi — 9

FIGURE 9.6
sin ) = x

Consequently
P —9=9sec’l—9=3sec?f— 1 =3Jtan?f = 3 tan
and
=9 3 tan 6
[N =20y = [0 3sec O tan 6.d0
J X 3secl

=3 fmrﬁ 0 di
3 f (sec2 6 — 1) df =3 J's.ec2 0 do — 3 fdu
3tan 0 — 30 + C.

Il

Il

Since sec (! = x/3, we may refer to the right triangle in Figure 9.5. Using
tan § = \/x* — 9/3 and # = sec ™! (x/3), we obtain

\-"'.\’3 =] § \.-'.\'3 -9 o
\ ¢ =3 = (
f X de=s 3 o 3 s

= o ix
VXt —9 — 3sec ‘(1)+C.

Il

As shown in the next example, we can use trigonometric substitu-
tions to evaluate certain integrals that involve (a® — x?)", (a® + x7)". or
(x* — a*)", in cases other than n = 5.

. (1 —x3%2
EXAMPLE 4  Evaluate f ——

X

SOLUTION  The integrand contains the expression 1 — x*, which is of
the form @ — x* with a = 1. Using (9.4), we substitute

x=sinfl, dx = cos 0 df.

Thus, 1 — x2 =1 —sin? 0 = cos® ), and

1 — x2)3?2 0
j (7:,} {wb .,—-} -cos 0 di?
X
-[- cus* H 'r cost o
—J sin® H' sin* 0 sm2

= f cot* 0 csc? 0 do
—4cot® 0+ C.

To return to the variable x, we note that sin f# = x = x/1 and refer to the
right triangle in Figure 9.6, obtaining cot # = /1 — x?/x. Hence

(1 — x?)32 1 /1 =33\
r \,—é d,\' = '—'5 (f -+ C

iy .24 5/2
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EXERCISES 9.3

Although we now have additional integration techniques available. it
1s a good idea to keep earlier methods in mind. For example, the integral

J (x/§/9 + x*) dx could be evaluated by means of the trigonometric sub-
stitution x = 3 tan 0. However, it is simpler to use the algebraic substitu-
tion u = 9 + x* and du = 2x dx, for in this event the integral takes on the
form § [ u™ "2 du, which is readily integrated by means of the power rule.
The foIlowmsz exercises include integrals that can be evaluated using sim-
pler techniques than trigonometric substitutions.

Exer. 1-22: Evaluate the integral.

1
9 j‘[———xz e dx

I
" f{36+ m

23 The region bounded by the graphs of y = x(x? +
y=0, and x = 5 is revolved about the y-axis. Find 1hc
volume of the resulting solid.

4 J-\,d_—\'

10 | — i
4 J4xt =25

. |
—) d:
12 | e T A

1
-I 49 + x?

dx
16 [\\ X —9dx

o [ e

X
20 f{l - }3,:1'\

Ix—35
22[

\|'—\‘

X2+ 16

dx

== |12

‘1-)1

24 Find the area of the region bounded by the graph of
¥y =x%10— x?) "2, the x-axis, and the line x = 1.

Exer. 25-26: Solve the differential equation subject to
the given initial condition.

25 xdy =+x*—16dx: y=0ifx=4
26 V1 —x*dy=x%dx; y=0ifx=0
Exer. 27-32: Use a trigonometric substitution to derive

the formula. (See Formulas 21, 27, 31, 36, 41, and 44 in
Appendix IV.)

27 J‘\-':al +uw’ du

>
b o 2 N
—a? + u? +Tln u+at+ |+ C

2
\u +u+a
28 f ——du = ——l —— |4+ C
u\a +u? u |
29 'nl\uz—u“duz
4
t — at . u .
(20 —a*)ya® —u? +—sin" ' =+
§ 8 u
1 I =& 5
30f - —du= ———~fat —u? L
3. 73 2 2
usiaT —u 4

T - - _.a
31 J du= /u* —a* —acos™ ' -+ C
u "

£-7) ] d . g
Vit — a + SInju+yul —a? |+ ¢

9.4 INTEGRALS OF RATIONAL FUNCTIONS

Recall that if ¢ is a rational function, then g(x) = f(x) g(x). where f(x) and
glx) are polynomials. In this section we shall state rules for evaluating

ltﬂ\l:f\
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Let us consider the specific case g(x) = 2/(x* — 1). It is easy to verify
that

| —1 2
x~1" et xEi—1"

The expression on the left side of the equation is called the partial fraction
decomposition of 2/(x* — 1). To find | g(x)dx. we integrate each of the
fractions that make up the decomposition, obtaining

f le_ f dx = f \lﬁ dx + j .\':-ll dx

=ln|lx-1|-In|x+1|+C
x—1

=|1’1- “"C
x + 1

It is theoretically possible to write any rational expression f(x)/g(x) as
a sum of rational expressions whose denominators involve powers of poly-
nomials of degree not greater than two. Specifically. if f(x) and g(x) are
polynomials and the degree of f(x) is less than the degree of g(x). then it
can be proved that

) _

L= Fy+ Fy+ 4+ F,
gx)

such that cach term F, of the sum has one of the forms

A Ax + B
) oF b i
(ax + b)Y {ax” + bx + ¢)'

for real numbers 4 and B and a nonnegative integer n, where ax® + bx + ¢
is irreducible in the sense that this quadratic polynomial has no real zeros
(that is. b* — dac < 0). In this case, ax* + bx + ¢ cannot be expressed as
a product of two first-degree polynomials with real coefficients.

The sum F, + F, + -+ + F, is the partial fraction decomposition of

f(x)/g(x), and each F, is a partial fraction. We shall not prove this algebraic

result but shall. instead. state guidelines for obtaining the decomposition.
The guidelines for finding the partial fraction decomposition of

f(x)/g(x) should be used only if f(x) has lower degree than g(x). If this is

not the case, then we may use long division to arrive at the proper form.
For example, given

x¥—6x>+5x—3

2

x*=—1
we obtain, by long division,
x¥—6x*+ 5x—3 by — 9
) e =x—-—64+——.
x—1 xt—1

We then find the partial fraction decomposition for (6x — 9)/(x* — 1).
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Guidelines for partial fraction
decompositions of f(x)/g(x) [9.5)

1 If the degree of f(x) is not lower than the degree of g(x), use long
division to obtain the proper form.

2 Express g(x) as a product of linear factors ax + b or irreducible
quadratic factors ax® + bx + ¢, and collect repeated factors so
that g(x) is a product of different factors of the form (ax + b)" or
(ax* + bx + ¢)" for a nonnegative integer n.

3 Apply the following rules.
Rule a For each factor (ax + b)" with n > 1, the partial fraction
decomposition contains a sum of n partial fractions of the form
Al AZ An
+ )
ax+b  (ax+ b @ (ax + b)"

where each numerator A, is a real number.

Rute b For each factor (ax? + bx + ¢)" with n > 1 and with
ax? + bx + cirreducible, the partial fraction decomposition con-
tains a sum of n partial fractions of the form

Aix + B; A,x + B, Mk A, x + B,
ax* + bx+c¢  (ax* + bx + ¢)? (ax® + bx + o’

where each A, and B, is a real number.

4% 4 13x 9
EXAMPLE 1 Evaluate [ 32>~ 4x,
X7 4 2x% — 3x

SOLUTION  We may factor the denominator of the integrand as follows:
X+ 2 —3x=x(x? 4+ 2x— 3 =x(x+ 3)(x—1)

Each factor has the form stated in Rule a of (9.5), with m = 1. Thus, to the
factor x there corresponds a partial fraction of the form A/x. Similarly. to
the factors x + 3 and x — 1 there correspond partial fractions B/(x + 3)
and C/(x — 1), respectively. Therefore the partial fraction decomposition
has the form

4,\'2+13.\‘—9_,~1+ B 5 G
xx+3x—=1 x x+3 x—1

Multiplying by the lowest common denominator gives us
() 4x* + 13x —9 = A(x + 3)(x — 1) + Bx(x — 1) + Cx(x + 3).

In a case such as this, in which the factors are all linear and nonrepeated,
the values for A, B, and C can be found by substituting values for x that
make the various factors zero. If we let x = 0 in (%), then

—9=-34, or A=3.
Letting x = 1 in (*) gives us
§=4C, or C=1.
Finally, if x = —3 in (). then
—12=12B, or B=—1.
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The partial fraction decomposition is, therefore,

4x* + 13x —9 3+ — 1 g 2
xx+3x—-1 x x+3 x-1

Integrating and letting K denote the sum of the constants of integration,

we have
4x? + 13x—9 ~ 3 r —1 2
cenl e X = ~dx e X Ix
j.\'{.\‘+3]l,\'—1!u c_\'”+~"\'+3‘h+~r.\'— 1“

=3In|x|—-In|x+3 +2|n|_\' 1|+ K
=In|x*=In|x+3|+Injx—1}+K
Sy = 17

+ K.
v+ 3

= In

Another technique for finding A, B, and C is to expand the right-hand
side of (%) and collect like powers of x as follows:

45 + 13x —9=(A+ B+ O)x* +(24—-B +3C)x — 34

We now use the fact that i two polynomials are equal. then coefficients
of like powers of x are the same. It is convenient to arrange our work in
the following way, which we call comparing coefficients of x.

coefficients of x*: A+B+ €= 4
coefficients of x: 24— B+ 3C= 13
constant rerms:  —3A4 = —9

We may show that the solution of this system of equations is 4 = 3,
B=—1l,and C=2.

3x® — 18x% + 29x — 4
EXAMPLE 2 Evaluate [ =5 =5 " dx.
X b e

SOLUTION By Rule a of (9.5). there is a partial [raction of the form
A/(x + 1) corresponding to the factor x + | in the denominator of the
integrand. For the factor (x — 2)* we apply Rule a (with m = 3). obtaining
a sum of three partial fractions B/(x —2). C/(x — 2)°. and D/(x — 2)*.
Consequently. the partial fraction decomposition has the form
3x% — 18x2 + 29x —4 _ A " B C D
F+Dx—2F x4+l x—-2 (x—2
Multiplying both sides by (x + 1(x — 2)* gives us
(%) 3xd — 18x2 4+ 29x — 4 = A(x — 2 + B(x + 1)(x — 2)°
+ Clx + 1)(x — 2) + Dix + 1),

Two of the unknown constants may be determined easily. If we let x =2
in (*), we obtain

6=3D. or D=2
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Similarly, letting x = — | in (%) yiclds
—54 = —274, or A=2.
The remaining constants may be found by comparing coeflicients. Ex-

amining the right-hand side of (=), we see that the coefficient of x*is 4 + B.
This must equal the coeflicient of x* on the left. Thus, by comparison.

coefficients of x*: 3= A + B.

Since 4 = 2. it follows that B = 1.
Finally. we compare the constant terms in (=) by letting x = 0. This
gives us the following:

constant terms: = -84 4B =2C 4+ D

Substituting the values we have found for 4. B, and D into the preceding
equation vields

—d == 1644 =20 4 3,

which has the solution C = —3. The partial fraction decomposition is,
therefore,
3x7 — 18x% + 29x — 4 2 f, 1 P 3 2
= 2 'f_ *
(x+ Dix —2)° x+1 x-=2 (x—=2¢ (x—2°

To find the given integral, we integrate each of the partial fractions on the
right side of the last equation, obtaining

3 I

-
x—2 (x—=2)

2ip w1 | hlx=2] %

with K the sum ol the four constants of integration. This may be written
in the form

3
In [(x + 1)*|x = 2|] + e s + K.

v —x—21

: 3 ilx.
2P —x* 4+ 8x—4

EXAMPLE 3  Evaluate f

SOLUTION  The denominator may be factored by grouping as follows:
2 = x4 B — 4 =X2x - D +42x — 1) = (x* + H)2x — 1)

Applying Rule b of (9.5) to the irreducible quadratic factor x* + 4. we
see that one of the partial fractions has the form (Ax + B)/(x* + 4). By
Rule a. there is also a partial fraction C/(2x — 1) corresponding to the
factor 2x — 1. Consequently,
x* = x—21 Ax + B (&
WP —x*+8x—4 xF+4 -1
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As in previous examples, this leads to

(%) xt =x =21 =(Ax+ B)(2x— 1) + C(x* +4).

We can find one constant easily. Substituting x = } in (%) gives us
B =43¢, or C=-5.

The remaining constants may be found by comparing coeflicients of x
in (%)

coefficients of x*: 1=24+C
coefficients of x: —1=—A+ 2B
constant terms; —21 = —B +4C

Since € = —5, it follows from 1 = 24 + C that A = 3. Similarly, using
the coefficients of x with 4 = 3 givesus —1 = —3 4+ 2B, or B = 1. Thus
the partial fraction decomposition of the integrand is

. x?—x—21 __3,\'+I+ -3
23 —x*+8x—4 xX*+4 2x—1
3x 1 5

= + - — - -,
x>+4 x*4+4 2x—1

The given integral may now be found by integrating the right side of the
last equation. This gives us

(S
J | un

—ZIn|2x— 1|+ K.

5 |
“In(x*+4)+ 2 tan !

8]
3| =

I

S Bl g 3
EXAMPLE 4  Evaluate [ ‘—H;:”; dx.

SOLUTION  Applying Rule b of (9.5), with n = 2, yields
Sx* —3x*+7x—-3 Ax+B Cx+D
(x2 4 1)2 ST TR
Multiplying by the led (x* 4 1)* gives us
5x3 —3xr 4+ Ix—3=(Ax+ B(x2+ )+ Cx+ D
523 -3+ 7x—=3=Ax*+ Bx* + (A + C)x + (B + D).
We next compare coefficients as follows:
coefficients of x: 5=4
coefficients of x*>: —3 =B
coefficients of x: 7T=A+C

constant rerms. —-3=B+D
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This gives us A=5 B= -3, C=7—A4=2, and D= -3 -B=0.
Therefore
Sx¥—=3x2+Tx—=3 S5x—3 2x
(EC | R Y
5x 3 2x
R R 1

Integrating yields

1

d\-— In(x*4+1)—3tan" ' x — —
X

J~ —3\ +'?x
1\ + 1)?

b | tn

2+ 1

EXERCISES 9.4

Exer. 1-32: Evaluate the integral.
ax—12
1
.r xix —4) d
x+ 34
2 J' S e N
(x —6)(x+ 2)

J- §7 ik 1
N+ Dx—2x—3)
J- axt 4 sax+ 134

(x—1)(x+5)x+3)

6x — 11
5 - dx
-J‘l.\‘--l]'M

i

Sxt 4+ 1lx 417
7 e Ay
fx’ + 5x* +4x + 20 a

- j-i_\ﬂ —3x? 4 6x—127
x* +9x2

19"-\ +3x+1 h

+ 5x°? (x* + 113

2 + 1) +p N

X 3% — 2 ¥ +"\ 3
23 J‘id.\' T dx

X2 X3 —4x

o |y

- J-l\" +10xdx J~\ 4 2x 4 4x 41
e
¥ (orw

= R
25 J~,\ X" -+ ]ﬂ s

o [Z19%7 +506—25 X +9x* (x* +4)°
J X0x—5 °© gy (D=5 +46x+98

7 | x+16 y 11x +2 (x* + x— 12§

x3+2x—8'\ j’\ —5\—1 ZBJ-—E.\' —3.\“—3.\"+3x+1h

: u:

5x2 — 10x — 8 4x? —5¢— 15 x + 1)

‘?I i 10 f_.‘..—; d
— 4x J Ry — 8%

%% — 255 =33
11 —_— — X
f (x + 1)*(x — 5) :

12

2x*—12x + 4
[

x? — 4x?
- J-‘)_\"‘ +17x3 + 3x2 —8x + 3

— dx
x* + 3x*

$x2 + 30x +43
‘“ j:\.\ 30x + 4. i

(x +3)°

I8 YH 6%t 3% 416
.J‘ R . i

Tr U T
ij dx
x4+ 6x4+9

dx

4% 4 232 — S — 18

29 S .
f (x — H)x + 1)? ox
l- 10x% 4+ 9x + 1

30
J x4 3x2 4 x

dx

x¥ 43¢+ 304+ 63
3 :
-[ (x2 —9)° v

- J-\ —x* =23 +4xT—15x+5
(x* +ll'[x + 4)

Exer. 33-36: Use partial fractions to evaluate the inte-
gral (see Formulas 19, 49, 50, and 52 of the table of
integrals in Appendix IV).

|
33 j 3 - du du
as — us

1
» J'n(a-;]- bu)
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1 1 may be evaluated by writing it as
5 e —— ], 36 —_——
j wa + bu) j j ula + bu)? = J- (1/x3)
. LR
37 If flx) = x/(x* — 2x — 3), find the area of the region a+ (b/x)
under the graph of £ from x =0 to x = 2. and using the substitution u = a + (b/x).

38 The region bounded by the graphs of y=1/(x— 1)(4—x), 42 Generalize Exercise 41 to integrals of the form

yv=0, x=12, and x =3 is revolved about the yp-axis. j‘ 1 doi

Find the volume of the resulting solid. ax" + bx
39 If the region described in Exercise 38 is revolved about 43 Suppose g(x) = (x — ¢,)(x — ca) -~ (x —¢,) for a posi-
the x-axis, find the volume of the resulting solid. tive integer n and distinct real numbers ¢y, ¢, ..., ¢, I
flx) 1s a polynomial of degree less than n, show that
40 :E the law Ff J'ogi.s'.r:' ?Ir['owﬂ;. It is IlSSl}mCE! thftt at_ timebt. f(x) A, A, " " A,
at n S : o S L T I =
e rate of growth f(r) of a quantity f(t) is given by qx) x—¢  x—c =i

J'(t) = Af(t)[ B — f(1)], where A and B are constants, If . - o
1(0) = C, show that with A, = fle)/g'le) for k=1,2,..., n. (This is a
method for finding the partial fraction decomposition

flt)y=—— BC ) if the denominator can be factored into distinct linear
C+(B—Cle 1™ factors.)
41 As an alternative to partial fractions, show that an inte- 44 Use Exercise 43 to find the partial fraction decomposi-
gral of the form tion of
f L Wt — =3 S+ T
T —— "
Joax? + bx x¥ — 5%+ 4x

9.5 INTEGRALS INVOLVING QUADRATIC EXPRESSIONS

Partial fraction decompositions may lead to integrands containing an
irreducible quadratic expression ax® + bx + ¢. If b # 0, it is sometimes
necessary to complete the square as follows:

o b
ax2+bx+c=u(_\-~+ax)+c

b\? b?
zu(x—kﬂ) +c—5

The substitution u = x + b/(2a) may then lead to an integrable form.

EXAMPLE 1 Eva]uatef%dx.

SOLUTION  Note that the quadratic expression x? — 6x + 13 is irre-
ducible, since b* — 4ac = —16 < 0. We complete the square as follows:
x2—6x+13=(x*—6x )+ 13
=(x?—6x+N+13-9=(x—3)?+4
Thus,

2x—1 2x — 1
Rl e f =l
.r1-2-6x+13d‘ f{x—3)2+4”
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We now make the substitution

u=x—3. x=u+3 dx=du
Thus,

2—1  , r2u+3)—1
J‘_\'*’—ﬁ.\‘+l3{h_J‘ u + 4 o

J‘l’ﬁ-i—‘jf
= | ——du
!f‘+4‘

I‘ 2u e 48 o1 ;
5 du 45 s du
Youm+4 Joum+4

Il

- 5 o
|nllf"+4}+,’laﬂ 1,’+C

_n

> 3 X
:Inl.\‘"—ﬁ.\:+i31+,—)lan - + C.

We may also employ the technique of completing the square if a quad-
ratic expression appears under a radical sign.

|
EXAMPLE 2 Evaluate ri e

B+ 2x— a7

SOLUTION  We complete the square for the quadratic expression
8 + 2x — x7 as lollows:

B+ 2x—xl=8=(x*—-2x)=8+1—=(x*=2x+1)
=9 —(x—1)
Thus,

f ".]7;' Ei.\. = J1 |7‘ (I,\._
\-8 + 2x —x° \'9 — (x = 1)~
Using the substitution

u=x—1. du=dx

yields
1 1
r _____.;u’.\'z.. ~dx
v Y84+ 2x — x° CNI=(x=1)
1
= f ———du
V9 —ut
= i
= sin 3 o O
x—1

I
@,
I
+
0
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In the next example we make a trigonometric substitution after com-
pleting the square.

EXAMPLE 3 Evaluate J" __ _ &

VX3 + 8x + 25

SOLUTION  We complete the square for the quadratic expression as

follows:

X? 4 8x 4 25 =(x? + 8x )+ 25
=(x*+8x+16)+ 25— 16
=(x+472+9

Thus,

J‘—]_; (ll"\‘: r%d\:
N +8\ \{\+4|L +9

If we make the trigonometric substitution

x+4=3tan0, dx=3sec?fdo,

then
X+ 4P +9=9tan?0+9 =3 tan? 0+ 1 =3secd
1
and f— X —I—Sbcr () do
+ 8x +
= J's;ec 0 do
FIGURE 9.7 =In|secl + tanf| + C.
Xx+4 y ; . ; g
tan 0 = o To return to the variable x. we use the triangle in Figure 9.7, obtaining
. [ X* + 8% +25 X44
_J _.1;11.\-=ln\ + 3 ‘+("
Vix + 47 +9 VX + B+ 25 3 Y
x+4 —ln\\ +8\+25+\‘+4| In|3|+C
=In|v/x* +8x + "5+1+4|+K
3 with K = C —1In 3.
EXERCISES 9.5
Exer. 1-18: Evaluate the integral.
1 2x=+3 x+3
P ———— E— dx - dx —dx dx
(x+ 1) +4 i J\I(,__\._:nln .rv'g_g_\-__\-l . J“)\ +6x+ 17
1 1 I
——————— dx dx —_— = — Iy
) e e I~ um ' gf:,\-2+4.\-+5)2'“ o f(,\-l_ﬁ_\-naa-‘l“

5 Ix 1 - dx 12 | Jx(6 — x) dx
f\4\—\— J\7+m_\‘ J.[\-Tﬁwm [+ ‘
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. 1 p J- 2x . 19 Find the area of the region bounded by the graphs of
f2x2—3x+9 = (X +2x 4957 y=1/(x"+4x+29),y=0,x= —2,and x = 3.
& 3 20 The region bounded by the graph of y=1/(x*+ 2x+ 10},
5 j 2 13012 dx L IV'X + 10x dx the coordinate axes, and the line x = 2 is revolved about
the x-axis. Find the volume of the resulting solid.
. 3x2—4x+6d i B x—1 dx
——rr i 3 *
2 x2 —dx +5 0 ¥+ 1

9.6 MISCELLANEOUS SUBSTITUTIONS

In this section we shall consider substitutions that are useful for evaluating
certain types of integrals. The first example illustrates that if an integral

contains an expression of the form ¢ f(x), then one of the substitutions
u = 3 f(x)or u= f(x) may simplify the evaluation.

3

dx.

EXAMPLE 1  Evaluate _fi
\1‘{.'_\.2 _'_4

SOLUTION 1  The substitution u =23/ x*+4 leads to the following
equivalent equations:
u=3Yx*+4, BP=x>+4, x*=u'—4
Taking the differential of each side of the last equation. we obtain
2xdx =3u* du, or xdx=3u®du.

We now substitute as follows:

3 Fies

X X
J.{erz_’_:1 d_!(:f j# 2.+4 Cx dx

= r{u“‘ — 4u) du

= 3(411‘ = 71;21 +C= mulm —10)+C
= Tﬁ(-\ + 4}2 1‘{l‘\." s 6:' + (‘

SOLUTION 2 If we substitute u for the expression underneath the radi-
cal, then

u=x>+4, or x*=u—4
and 2xdx =du, or xdx=1%du.

In this case we may write

3 2

f%dxzf%-xd.r
IxP+4 Y +4
4 1
=‘fu T 2f1u23 w13 du
=1Gu’"? — 2"':‘} +C=3u—-100+C

tu
= 1olx? +4;-3(x3 —6)+ C.
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1
EXAMPLE 2 Evaluate | ————dx.
VX 4+ WX

SOLUTION  To obtain a substitution that will eliminate the two radicals

Vvx = x'? and yx = x13, we use u = x!/", where n is the least common
denominator of { and 4. Thus, we let

u=x%  or, equivalently, x = uS.

Hence
dx = 61’ du, x"* =W =u*, x'P =W’ =u?

and, therefore,

| u?
f —dx = J ——— 6utdu= bf L du.
Jx + Yx w 4+ u° u+ 1
By long division,
u? . 1
=uw—-—u+1—-——-:
u+1 u+ 1

Consequently,

| " 1
J‘i,_dx=6f(u'—u+1—”4_1):.%:

Jx + Yx

Il
2
£
et

|
fad g
2
“
2
N
£
o
|
L=
Z>
o
e
=
+
e

If an integrand is a rational expression in sin x and cos x. then the sub-
stitution
X
u=tan for —m<x<nm
will transform the integrand into a rational (algebraic) expression in u. To
prove this, first note that

X 1 ] ]
cos - = = S —
2 sec(x/2) 1 +tan?(x/2) /1+u?
in . tan - co * :
S =1an=Cco§ — = | ——
2 2 2 N1+ u?
Consequently,
; o X X 2u
sinx = 2 sin — cos — =
2 2 1+ u-
;5 % 2u? | —u?
esx=1=-2s*-=1—-—— S =——.
2 14+u* 1 +u

1

Moreover, since x/2 = tan ! u. we have x = 2 tan~ ! u and, therefore,

dx = du.

)

Y-t u
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Theorem [9.6)

The following theorem summarizes this discussion.

If an integrand is a rational expression in sin x and cos x, the fol-
lowing substitutions will produce a rational expression in u;

3 _ 2u - __l—ul oo 2 i
M= YT YT
5%
h = tan —.
where u = tan 3
) |
EXAMPLE 3 f;vaiuamf _ . dx.
4s8in x — 3 cos x

SOLUTION  Applying Theorem (9.6) and simplifying the integrand
yields

i I

X T I = T 7
~|4sin_\'—3cos_\’“: -[4 2u 3 1 —u? 1 4+ u*
1+uw*) l+u3)

(‘ 2
o ip— m_—
J Bu— 31 —u‘!l{”

] 2

du

|
2 | =—————du.
f 3% + 8u—3

Using partial fractions, we have

1 _I 3 | [
3+ 8u—3 10 31.'—_i_u+3)

and hence

1 1 3 1
_____ _ i - d
-[4 sin x — 3 cos x & 5~[<3Lt -1 uw+ 3) ;

1
=q(ln|3u—l|—ln|u+3]+C
1 Ju—1
SIn u+3 Tl
1 Jtan (x/2) —
—:]n o @7{\ ) : + C.
5 tan (x/2) + 3

Theorem (9.6) may be used for any integrand that is a rational expres-
sion in sin x and cos x. However, it is important to also consider simpler
substitutions, as illustrated in the next example.

EXAMPLE 4  Evaluate [ . - dx.
| +sin” x
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SOLUTION  We could use the formulas in Theorem (9.6) to change the
integrand into a rational expression in u. The following substitution is

simpler:
u=sinx, du=cosxdx
Thus,
c COs X 1
J 5 —dx = j 5 du
| + sin” x 1 +u
=arctan u + C
= arctan sin x + C,
' EXERCISES 9.6
Exer. 1-26: Evaluate the integral. sin x cos x
3 — . 21.[-1___‘_ dx 2[‘—‘,jd'T
1 J_\.\u_-'\. ¥ 9 di 3 ' X2 4. dX cos xfcos x — 1) Josintx—sinx—2
; ) X l
X 5 :
" f e o P SN 23 fy_ - 24 | e
3 3x + 7 dox + 3)
sin 2x sin v
s 35 ] ‘ 25_[',, : de W [ -
N 6 j:, ———x sin® x — 2sinx — 8 Scos x +cos” x
vx +4 Va4 ux
~ WX ]
7 | | —— 8 J' = dx Exer.27-32: Use Theorem (9.6) to evaluate the integral.
St Yx +4x
| 1
Ix+3 27 | ———dx 28 | —— dx
9 f —dx 10 [u dx -r 2+ sinx j 3+ 2cosx
(x+1DJx =2 JE ST :
; 13 29 j ———— dx 30 f — — dx
'\LJT 12 |"" o+ I'“ I + sin x + cos x tan x + sin x
. Ayl:3 2 1/3 %
(v +4) oo X9 —]
S€C X
. T 31 f T llk 32 J' dx
13 J‘e""\ 1= ¥ dx 14 | iy ¢ 4—3tanx sinx — ./ /3 cos x
“ \il + ‘.\'
425 R Y .
15 J' S ik 16 kg Exer. 33-34: Use Theorem (9.6) to derive the formula.
"+ 4 Jin x
Vi +simx - | + tan by
. . 33 J seexdy=In T
17 J‘sln vx + 4 dx 18 i Vet tdx I —tan ;x|
. R I 1 —cos x)
19 J‘ < 20 [ —__dx 34 ‘[csc xdx==In —) + C
(x — 11 Jd (3x+ 4o 2 1 + cos x,

9.7 TABLES OF INTEGRALS

Mathematicians and scientists who use integrals in their work sometimes
refer Lo tables of integrals. Many of the formulas contained in these tables
may be obtained by methods we have studied. In general, tables of inte-
grals should be used only after gaining experience with standard methods
of integration. For complicated integrals it is often nccessary to make



486

CHAPTER 9 TECHNIQUES OF INTEGRATION

substitutions or to use partial fractions, integration by parts, or other
techniques to obtain integrands to which the table is applicable.

The following examples illustrate the use of several formulas stated
in the brief table of integrals in Appendix IV. To guard against errors in-
troduced when using the table, you should always check answers by
differentiation.

EXAMPLE 1 Evaluate fx" cos x dx.

SOLUTION  We first use reduction Formula 85 in the table of integrals
with 7= 3 and « = x, obtaining

i‘_\"‘ cos vdy =x¥sinx — 3 I.\'B sin x dx.

Next we apply Formula 84 with n = 2, and then Formula 83, obtaining

(‘xz sinxdx= —x?cosx +2 f.\' cos x dx

= —x?cos x + 2(cos x + xsin x) + C.
Substitution in the first expression gives us

J leosxdy=xsinx + 3x?cosx —6cosx — bxsinx + C.

EXAMPLE 2 Evaluate [ ———dxfor x> 0.

X \.-"3 + Sx°

SOLUTION  The integrand suggests that we use that part of the table
dealing with the form /a® + u’. Specifically, Formula 28 states that

— = + €

w? \;"&3 + u? a’u

J‘ du Jaz + u?

(In tables. the differential du is placed in the numerator instead of to the
right of the integrand.) To use this formula, we must adjust the given inte-
gral so that it matches exactly with the formula. If we let

at=3 and u? = 5x2,

then the expression underneath the radical is taken care of: however, we
also need

(i) u? to the left of the radical
(i) du in the numerator

We can obtain (i) by writing the integral as

|
5 J‘T—T dx.
S5x=+/3 + 5x-
For (i) we note that

iw=+5v and du=\ 5 dx
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and write the preceding integral as

! |
5-— —— /5 dx.
I Sx3 3 + 5%

The last integral matches exactly with that in Formula 28, and hence

l 5x2
x*+J3 + 5x* %l\ J\}

5x
— T e
X

t

As illustrated in the next example. it may be necessary to make a
substitution of some type before a table can be used to help evaluate an
integral.

EXAMPLE 3 Evaluate 0 yor = —dt

SOLUTION  Let us begin by rewriting the integral:

sin 2x 2 8in X COS X
J. \—f dx
"‘5—‘3(:05!: ’-—SLos\

Since no formulas in the table have this form, we consider making the

substitution u = cos x. In this case du = —sin x dx and the integral may
be written
sin X cos X Cos X ;
E‘f:i_dx:—lf-_ = (—sin x) dx
3 —Scos x N3 —5kas X
u
=—2 | ——du
? — Su

Referring to the table of integrals, we see that Formula 55 is

5 T—
I& = — (bu — 2a)ya + bu.
Ja+bu 37
Using this result with ¢ = 3 and b = —35 gives us

/ ~ b
—EJ. _H du = —2(1)1’—51;—6]\;"3— S5u+ C.
V3 — 5u 75,

Finally. since u = cos x. we obtain

sin 2x + s
f — dx=—--(5cos x + 6)/3 —5cosx + C.
V3 —5Scosx :

We have discussed various methods for evaluating indefinite integrals:
however, the types of integrals we have considered constitute only a small
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EXERCISES 9.7

percentage of those that occur in applications. The following are examples
of indefinite integrals for which antiderivatives of the integrands cannot be
expressed in terms of a finite number of algebraic or transcendental

functions:

j{;"xa +4x — 1 dx, f\,f'3 cos? x + 1 dx. fe"‘" dx

In Chapter 11 we shall consider methods involving infinite sums that are
sometimes useful in evaluating such integrals.

Exer. 1-30: Use the table of integrals in Appendix IV to
evaluate the integral.

] J‘ \,4 '}; 9x?

dx

3 fns — X} dx
5 J'x\fﬂ dx
7 J‘sin6 3x dx

9 fcsc* x dx

11 f.\' sin™! x dx
13 f{* ¥ sin 2x dx

2 [—mis
4 [*ax — 16 dx
6 f <+2\:h
8 fwcos (x2) dx

10 Isin Sx cos 3x dx
12 r.xl tan” ! xdx

14 J-.\-s In x dx

16 J‘ 177 dx
3% — 252

9.8 REVIEW EXERCISES

Exer. 1-100: Evaluate the integral.

1 f,t sin ! x dx

1
3 J'O In(l + x)dx

5 J.c(}s.3 2x sin® 2x dx

7 J‘tan x see’ x dx

\ @

\‘ + 1%)‘ 2

2 ‘sccﬁl\‘)zh‘
1
\4- [ e¥* dx
Jo
\ P TR 1
& 'co:u X dx
8 J tan x sec® x dx

|
s —— dx
ot 16 — x*

X
12 fh_3¢ 02 dx

1
14 J‘m dx

10

o fors

19 jeh cos ! etdx

21 ‘j‘_\'"‘ \2 + x dx

5 sin 2x
j 4 + 9sin x
\.9"" 2x
25 —— iy
(A==

27 | — ]—_ dx

x{d = 4x)

29 J V16 — sec? x tan x dx

x? — 20x? — 63x — 198
15 [‘7

18 fcns xa/sin? x — Ldx

20 fsinz x cos? x dx

tan x
24 | — — dx
< 4 + 3sec x
26 f\-’:iix“ —3xdx ,

1
28 | =s5——sdx
vf 2x¥? 4+ 557

cot x
30 _[ dx
V4 — cse? x

— X

— 81
j- X
(x +2)°
17 . dx
=
Hx 48
1 £ d
o

21 J‘(,zx sin 3x dx
23 jsin" x cos® x dx

-

=
'\.-'4 -

25 _J

X
18 | ————dx
-fx2+6.~:+ 13

20 J- Qlﬂ X
2cosx + .‘!
22 jcos {In x) dx

24 Jvcotz Ix dx

1
26 | ———d
'fx\JS‘xz +4 =
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e
27 o>
-J‘ x% 4 2x2 A

-3

X
28 - X
J. P g o - e

29 f o + 2 dx
31 fe"' sec ¢” dx

33 J'_‘,z sin 3x dx

35 fsin*‘ x cos'? x dx

37 [T+ dy
2
» | s
vaAxs + 25

41 ft«:c2 X tan? x dx
33 jx cot x esc x dx
45 f X8 — x*)13
47 J‘\.-"_\' sin \.-,\‘ dx
49 J—FH dx

| +¢*

X —dy + 3
51 j ———— dx

VX
53 _['
2%

{ =2
55 o ML R,
J-xf T+ B>

57 J‘tun 1 Sx dx

\]6“—\_

Iﬂl\ X

59 j
(.Ob =

1
61 r—— - dx

v \T+5,TJ

63 fcm" xdx

65 J'.\--*;_GJ — 25 dx

2x +1
30 f W dx

32 f,\' tan x2 dv
34 J.sin 2x cos.x dx

36 jsin 3x cot 3x dx

38 j.\'(4.\'3 + 28)" Y2 dx

Ix+2
o [ S
x4 8x + 25

42 jsin3 xeos® v dy
44 f(l + csc 2x)* dx
46 J X (In x)? dx

48 (x5 —3xdx

e
50 [ yppT dx
cos? x
52 f Eh G
v 1+ sinx

54 ~dx

X
j 25 — 9y?

. 7
JF—m+w

58 fsin* 3xdx

56 dx

&
60 f dx
CSC IX~

Ix+3
62 | T

64 f cot® x cse x dx

b6 J‘{ﬁin X0 gy

67

69

71

80

o [

85

87

89

1

/‘ﬁ'f

93

95

oF

99

155

J-.t""l In x dx

J‘I.\‘z — sech? 4x) dx

r,\': e dx

3
JIT = 10x — x*

dx
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CHAPTER

10

INDETERMINATE FORMS AND |
IMPROPER INTEGRALS

INTRODUCTION

The first important limit we considered in Chapter 3
was the derivative formula

. . flx)— fla)
fla) = lim * :
X+ X—d
If f is continuous at x = a, then taking the limit of the
numerator and denominator separately gives us

o) = flay— flay 0
' - a—ada 0

an undefined expression. However, we know that de-
rivatives are not always undefined. You may recall
that to arrive at each rule for finding derivatives we
used an algebraic or trigonometric simplification,
which was sometimes accompanied by an ingenious
manipulation or geometric argument. In this chapter
we introduce techniques that allow us to proceed in a
more direct manner when considering similar prob-
lems about limits. The most important result we shall
discuss is L'Hapital's rule. used for investigating limits
of quotients in which both numerator and denomina-
tor approach 0 or both approach =« or —oo. Other
so-called indeterminate forms are considered in Sec-
tion 10.2. In the last two sections we study definite
integrals that have discontinuous integrands or infi-
nite limits of integration.

The topics discussed in this chapter have many
mathematical and physical applications. Our most im-
portant uses for them will occur in the next chapter,
when we discuss infinite series.
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CHAPTER 10 INDETERMINATE FORMS AND IMPROPER INTEGRALS

10.1

THE INDETERMINATE FORMS 0/0 AND o0/ o0

In Chapter 2 we considered limits of quotients such as

lim
wag —y

= and lim oY
a0 X

In each case, taking the limits of the numerator and denominator gives us
the undefined expression 0/0. We say that the indicated quotients have
the indeterminate form 0/0 at x = 3 and at x = 0, respectively. We pre-
viously used algebraic. geometric, and trigonometric methods to calculate
such limits. In this section we develop another technique that employs the
derivatives of the numerator and denominator of the quotient. We also
consider the indeterminate form oc/oc, where both the numerator and the
denominator approach = or — ». The following table displays general
definitions of the forms we shall discuss.

Indeterminate form Limit form: lim Sx)
e g(x)
0 o ;
lim flx)=0 and limg(x)=0
0 | X+ X—FC
% . ;
- lim fix)=>or —» and lmg(x)= = or —=

Cauchy's formula (10.1)

The main tool for investigating these indeterminate forms is L'Héopital's
rule. The proof of this rule makes use of the following formula, which bears
the name of the French mathematician Augustin Cauchy (1789 -1857).

If / and g arc continuous on [a, b] and differentiable on («. b) and
if g'(x) # 0 for every x in (a, b), then there is a number w in (a, b)
such that

)~ @) _ (%)

g(b) —gla) g'(w)’

PROOF  We first note that g(b) — g(a) # 0. because otherwise gla) =
¢(h) and. by Roll¢’s theorem (4.10), there is a number ¢ in («. h) such that
¢'lc) = 0, contrary to our assumption about ¢’

Let us introduce a new function /1 as follows:

hix) = [ fth) — fla)]g(x) — [glh) — gla)] f(x)

for every x in [a. b]. It follows that A is continuous on [a, b] and differ-
entiable on (a. b) and that iifa) = h(b). By Rolle’s theorem, there is a num-
ber w in {a, b) such that f'(w) = O: that is.

[fthy — fla)]y'(w) — [glh) — gla)] f(w) = 0.

This is equivalent to Cauchy's formula. ==
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L'Hopital's rule® (10.2)

“G. L'Hopital (1661 -1704) was a French
nobleman who published the first calculus
book. The rule appeared in that hook:
however, it was actually discovered by his
teacher, the Swiss mathematician Johann
Bernoulli (1667-1748). who communicated
the result to L'Hopital in 1694,

FIGURE 10.1

Y

Cauchy’s formula is a generalization of the mean value theorem (4.12),
for if we let g(x) = x in (10.1). we obtain

f(b) — fla) _ [(w)

h—a A

The next result i1s the main theorem on indeterminate forms.

Suppose f and g are differentiable on an open interval (a. b) con-
taining ¢, except possibly at c itself. If f(x)/g(x) has the indeterminate
form 0/0 or «c/x at x = ¢ and if ¢'(x) # 0 for x # ¢, then

. Jx) L f(x)
lim~——=1lim~——,
xee JIX) e glIX)

provided either

f(x) .S

Iim="~exists or lm=——-=
x—e g'(X) xve g'(X)

PROCFE  Suppose f(x)/g(x) has the indeterminate form 0/0 at x = ¢ and
lim, .. [f'(x)/g'(x)]] = L for some number L. We wish to prove that
lim, [ f(x)/g(x)] = L. Let us introduce two functions F and G as follows:
Flix)=f(x) ifxs#¢ and Flc)=0
Gix)=glx) ifx#c¢ and Gley=10
Since lim F(x)=lim f(x) = 0 = Flc),

X= X

the function F' is continuous at ¢ and hence is continuous throughout the
interval (a, b). Similarly. G is continuous on {a, b). Morcover, at every
x # ¢ we have Fl(x) = f(x) and G'(x) = ¢'(x). It follows from Cauchy’s
formula, applied either to the interval [¢, x] or to [x, ¢], that there is a
number w between ¢ and x such that

Fix) — Fie)  Filw) flw)

Gix) — Gle)  G'w)  ¢'(w)

Using the fact that F(x) = f(x). G(x) = g(x), and F(¢) = Gle) = 0 gives us

fx) _ ['(w)
gix)  g'(w)

Since w is always between ¢ and x (see Figure 10.1). it follows that
lim 22 — g L SO

=lm~ —=1h - =
xee X)) wac g’ W) e (W)

which is what we wished to prove.

A similar argument may be given if lim ., [ f'(x)/g'(x)] = %. The
proof for the indeterminate form = /o is more difficult and may be found
in texts on advanced calculus. mm
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L'Hopital’s rule is sometimes used incorrectly., by applying the quo-
tient rule to f(x)/g(x). Note that (10.2) states that the derivatives of f(x)
and g(x) are taken separately. after which the limit of ['(x)/g'(x) is
investigated.

P
EXAMPLE 1 Findligi o> %=

X0 3x

SOLUTION  Both the numerator and the denominator have the limit 0
as x — 0. Hence the guotient has the indeterminate form 0/0 at x = 0.
By L’Hdpital’s rule (10.2).

cosx + 2x — 1 . —sinx+2

lim = lim ;
x~0 3:\. x—0 3

provided the limit on the right exists or equals 0. Since

i —sinx+2 2
1m =,
a0 3 3

it follows that

. cosx+2x—1
Im— =
=0 3Ix

LV OS]

Sometimes it 1s necessary to employ L'Hopital's rule several times in
the same problem, as illustrated in the next example.

& +e =2

EXAMPLE 2 Find lim

x—0 L—C0o82%

SOLUTION  The given quotient has the indeterminate form 0/0. By
L'Hopital's rule,
e +e v —2 L et —e™"

lim = lim . ;
wrg 1 — 08 2% =0 28in 2x

provided the second limit exists. Because the last quotient has the indeter-
minate form 0/0, we apply L'Hopital's rule a second time, obtaining

et —e™* e 4e™ 2|

lim ——; = lim = .
eap 2SIN2X  s<pgScos2x 4 2

It follows that the given limit exists and equals

| rap=—

L'Hopital’s rule is also valid for one-sided limits. as illustrated in the
following example.
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t
EXAMPLE 3 Find lim —+2%%
x—(m2y- 1 + sec x

SOLUTION  The indeterminate form is so/co. By L’Hopital’s rule,

. 4 tan x , 4 sec? x . 4 sec x

lm — = lm — = |im .

x=(r2)- 1 +8€C X yomz-SeCxtan X xoqmz)- tanx
The last quotient again has the indeterminate form oo/oo at x = 7/2;
however, additional applications of L’'Hopital's rule always produce the
form = /oo (verify this fact). In this case the limit may be found by using
trigonometric identities to change the quotient as follows:
4secx  4fcosx 4

tan x  sin x/cos x  sin x
Consequently

i 4 tan x : 4 4
Iim - = lim - ==,
s~z 1 +s€cx  xomz-sinx 1

Another form of L’Hopital's rule can be proved for x — oo or
x — —oo. Let us give a partial proof of this fact. Suppose
lim f(x) = lim g(x) = 0.

If we let u = 1/x and apply L'Hopital’s rule,
fx) . f(1/u) . D, f(1{u)
= lim lim —

1 = = = ¥
e ] 9[\'} u—0+ g(l-’u] u=g+ D“ g(lf“)

By the chain rule,
D, f(1u) = f(1u)(—1/u*) and D, g(1/u) = g'(1ju)(—1/u?).

Substituting in the last limit and simplifying, we obtain
I _ g LU _ e S

lim ——= = = = = i ,
= GIX)  umo+ gL <o g'(x)

We shall also refer to this result as L'H6pital's rule. The next two examples
illustrate the application of the rule to the form o /o,

In x

EXAMPLE 4 Find lim —.

x— '\": X

SOLUTION  The indeterminate form is oo/o0. By L'Hopital's rule,

. Inx
lim — = lim
= \.-" 5 X

1/x
1/(2y/x)

The last expression has the indeterminate form 0/0. However, further ap-
plications of L'Hépital's rule would again lead to 0/0 (verify this fact). If,
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instead., we simplify the expression algebraically. we can find the limit as
follows:

. 1/x L 2x . 2
lim = lim = lim —=0
- |12\\ } X X XU b, =
L,J.\'
EXAMPLE 5 Find lim . if it exists.
x=+x N

SOLUTION  The indeterminate form is 20/%. We apply L'Hopital’s
rule:

. {,J.\ : 3{__,3-,\-
lim — = lim —~
. X 2x

X ¥ X —_—

The last quotient has the indeterminate form oo/7. so we apply
L'Hopital's rule a second time. obtaining

l. 3‘33.\' 1 9(,.'\.\' .

.llTl % = limm B = oC.

R X

Thus, ¢*/x* has no limit. increasing without bound as x — .

It is extremely important to verify that a given quotient has the indeter-
minate form 0/0 or /= before using L'Hapital’s rule. 1f we apply the
rule to a form that is not indeterminate, we may obtain an incorrect con-
clusion, as illustrated in the next example.

2 v ’.\' + J_'\. 3 i .
EXAMPLE 6 Find lim E : L if it exists.

x—=0 X-

SOLUTION  The quotient does nor have either of the indeterminate
forms, 0/0 or o« /o0, at x = 0. To investigate the limit, we write

g BRLE e Pl
g : = lim (¢* + c’_“]( ,).
o b

=0 X x=0
Since Iim*+e =2 and lim—= @,
il x=0 X"

it follows that

[,-‘- I_) —X
lim - =0
x==10 R

If we had overlooked the fact that the quotient does not have the in-

determinate form 0/0 or =o/o0 at x =0 and had (incorrectly) applied
L'Hépital's rule, we would have obtained

., et e B
lim - = lim
X0 X" =0 ..
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FIGURE 10.2
R
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Since the last quotient has the indeterminate form 000, we might have
applied L'Hopital's rule. obtaining

- e 1 + 1

lim ——=hm — = = 1.

- Zx =0 & 2
This would have given us the (wrong) conclusion that the given limit exists
and equals 1.

The next example illustrates an application of an indeterminate form
in the analysis of an electrical circuit.

EXAMPLE 7  The schematic diagram in Figure 10.2 illustrates an elec-
trical circuit consisting ol an electromotive force V. a resistor R, and an
inductor L. The current [ at time ¢ is given by

P
J':RII —. a7,

When the voltage is first applied (at + = 0), the inductor opposes the rate
of increase of current and 1 is small; however, as t increases, I approaches
VIR.

(a) If L is the only independent variable, find lim; - 1.

(b) If R is the only independent variable, find lim, . I.

SOLUTION

fa) If we consider V. R. and 1 as constants and L as a variable, then the
expression for I is not indeterminate at L = (. Using standard limit theo-
rems. we obtain

N
lim = (1 —a~ %L}

lim I =
L—=0"* L=+0"*
i g
= |1 = lim *'“”‘)
R( L~ . /
I I
= 1—-0==.
T

Thus. if L ~ 0, then the current can be approximated by Ohm’s law
I=V/R.

(b) If V. L, and  are constant and il R is a variable, then I has the indeter-
minate form 0/0 at R = 0. Applying L'H&pital's rule, we have

Tt 1.1 1
lim I =V lim
R—0* R—~D* R
0 — ,~RiLy §
= Thy =2 100
R0 1

. o
V[0 UH4¢H=LL
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This may be interpreted as follows. As R — 0%, the current [ is directly
proportional to the time ¢, with the constant of proportionality V/L. Thus,

at t = | the current is V/L, at t = 2 it is (V/L)(2), at t = 3 it is (V/L)(3),
and so on.
EXERCISES 10.1
Exer. 1-52: Find the limit, if it exists. sa Hi sinx+2cosx—2
. osinx . 5x x-p COS* x — x 8In x — 1
lim 2 lim —— .
-0 2X x—0tan x a8 sin ™' 2x % i In (In x)
m—— m —
5 fop—1-—3 . o] san SO ¥ i INX
3 lim ———— 4 lim ——
xvs X7 —125 xea x4+ 4—2 %5 iy tan x — sin x
gy e e L
3¢
5 25— Sxiqi9 i x4 3 x=0 X tanx
W = ) ———
oz Sx? —Tx—6 sreey 2%* 4 3x—90 a8 fim 2x® —5x2 + 6x—3
3 2
7 I X3 —3x 42 8 li x*—5x+6 =1 X' =2 +x—1
m—=— m-—
i %% — D R T e | v 33 e Yy =g
39 lm —— 40 lim —
. SinXx—x . sin x g3 =3 =0 1 —cos?x
9 lim —— 10 lim —— " 5 5
s—ptan X — x c~0 X —tanx " 1imx —x?=3x*45x -2
" i x+1—¢ v x+1—¢ st XF =5 4 0% — Tx + 2
im ———— im ——
= > ey x? &1 x4+ =3 —x+2
- , X =50 1 9% — x4 2
o o =—RHY% .l —sinx % ;
13 lim——=— 14 lim — i ~
=0 x x=m2 COS X %3 fim X —tan X e i e~
. 1+sinx . cosx x=0 X SIDX s L™
15 lim ——— 16 lim — 70 .
1wz COS* X x-p- X P T +5x—4 e Tini > sin” ! x
—————— im -
2 4 sec x Ih 5% = xInx x=0 X — S0 X
17 M = 12 lim ———
so(m2) - 3tanx 40+ COt X xR , tan x
47 lim ——— 48 lm ——
s x2 " In x - l@0°° X x=(n/2)- €Ot 2x
1 m — 20 Im ——
e I Sz X I 2¢% + Inx , @
" 3 49 7 e 18 50 IIT =
, n sin x . x x— O 3 e
21 lim ——— 22 lim ———
»—0+ 1N sin 2x —otan~tx . X—cosx . X+ coshx
51 lim —— 52 lim ————
, e —e*—2sinx o dn(x—1 E * s X241
23 lim——— 24 lim
x=+0 X sin x =2 X—2
T 2% — Ix — o= F [c| Exer. 53-54: Predict the limit after substituting the in-
25 lim %) 26 lim———— dicated values of x for k =1, 2, 3, and 4.
x=0 ’ x—+0 Xx°
. In(tan x + cos x) )
27 i 2x2 4+ 3x + 1 8 1 w41 8 lin———0u —— x=107%
im ———— im ————— i+
= 2 b x+4 et W T z==0%  yIn(x* 1)
tan? (sin~ ! x)
. xlnx ) 28 54 lim— ¢ x=+10"*
29 ‘h!‘!: m 30 j.'f!} m =0 1 —cos []n(l +XJJ -
e o 55 An object of mass m is released from a hot-air balloon.
31 lim —,n>0 32 lim p n=10 If the force of resistance due to air is directly propor-
HA BT tional to the velocity ¢(r) of the object at time 1. then
S H In(x—1) it can be shown that
im

22t (X —2) v(t) = (mg/k)(l — e &mry,
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where k >0 and ¢ i1s a gravitational constant. Find capacity and interpret it as the maximum number of
limy g+ v(t) individuals that the environment can sustain. Find
lim,., v(f) and limg ., v(t), and discuss the graphical

56 If a steel ball of mass m is released into water and the i e
significance of these limits.

force of resistance is directly proportional to the square

of the velocity, then the distance s(¢) that the ball travels 59 The sine integral Si(x) = [3 [(sin u)/u] du is a special
n time ¢ is given by function in applied mathematics. Find

s(t) = (m/k) In cosh («/gk/m 1), - Six) . Silx)y—x

) e ) (a) lim —— (b lim ———
where k>0 and ¢ is a gravitational constant. Find x=0 X x=0 -
fimy .+ 5(0). 60 The Fresnel cosine integral C(x) = [ cos u” du is used in
57 Refer to Definition (4.22) for simple harmonic motion. the analysis of the diffraction of light. Find
The following 1s an example of the phenomenon of res- (x) Clx) — x
onance. A weight of mass m is attached to a spring [al |1H‘1 = N lim g
x=—=0 - x—0

suspended from a support. The weight is set in motion by
moving the support up and down according to the for- | ¢ |61 (a] Refer to Exercise 60. Use Simpson’s rule, with n = 4,
mula h = A cos wmt. where A and w are positive constants to approximate C(x) for x = §, 3.3, and 1.

and 1 is time. If frictional forces are negligible, then the {b) Graph C on [0. 1] using the values found in (a).
displacement s of the weight from its initial position at

time  is given by E] 62 Refer to Exercise 61. Let R be the region under the graph

of C from x =0to x =1, and let V be the volume of

Aw? it s AP e . R
5= — _ (cos wt — €08 wyl). the 3f1|1d aht..uned b} re\'aoiungiR dbout_ the x-axis. Ap-
Wy — " proximate V by using Simpson’s rule with n = 4.
with @, = k/m for some constant k and with @ # w,. 63 Let x>0, If n# —1, then [{"dt =["""/(n + 1]}
Find lim,, ... 5. and show that the resulting oscillations Show that ’
increase in magnitude. . .
5 o ; : limfi"dr:" =2 d
58 The logistic model for population growth predicts the we—1 V! i
size y(r) of a population at time t by means of the formula 64 Find lim ., f(x)/g(x)if

v(r) = K/(1 +ce™ "), where r and K are positive constants i ['1 @ gt and  alx) = e
and ¢ = [K — y(0)]/3(0). Ecologists call K the carrying T = Jo & W BOE guT=eT

10.2 OTHER INDETERMINATE FORMS

In the preceding section we discussed limits of quotients that have the
indeterminate forms 0/0 or o« /o0. Products may lead to the indeterminate
form 0 oc. as defined in the following table.

Indeterminate form | Limit form: lim [ f(x) g(x)]
0= lim f(x) =0 and limg(x)= % or — =

In exercises we shall also consider the indeterminate form 0- = for
the case x — = or x - — ». The following guidelines may be used.

Guidelines for investigating i
lim, .. [f(x) g(x)] for the form 1 Write f(x) g(x) as
0- e (10.3) S0 e
1/g(x) 1f(x)y

2 Apply L'Hépital’s rule (10.2) to the resulting indeterminate form
0/0 or ao/c0.
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The choice in guideline 1 is not arbitrary. The following example shows
that using f(x)/[1/g(x)] gives us the limit whereas using g(x)/[ 1/f(x)] leads
to a more complicated expression.

EXAMPLE 1 Find lim x?In x.

x> F

SOLUTION  The indeterminate form is 0 - «. Applying guideline | of
(10.3), we write

In x

.
¥-lnp=

(&)

1/x

!

Because the quotient on the right has the indeterminate form o /% at
x =0, we may apply L'Hépital's rule;

; 3 ... AR ] 1
lm x“Inx= lim 5= lim —
x—{}* x—=0+* lll.l'_'(" <=0+ —2/X7

The last quotient has the indeterminate form o /% ; however, further ap-
plications of L'Hépital’s rule would again lead to /=, In this case we
simplify the quotient algebraically and find the limit as follows:

i t_“‘,

lim — = 1lm —/— = lim —=0
x—0- /X" x=0+ —2X  x-g+ —2

Il, in applying guideline 1, we had rewritten the given expression as

5

2
X X

»¥lhx= =
I'lnx  (Inx)”

1- -
then the resulting indeterminate form would have been 0/0. By L'Hopital's
rule,

lim x*Ilnx= lim —
x—0* =0+ (Inx)

= fil e T
l-l?- —(In x)"*(1/x)
= lim [—2x%1n x)?].

x—={)"

The expression —2x%(In x)? is more complicated than x? In x, so this
choice in guideline 1 does not give us the limit.

EXAMPLE 2 Find lim (2x — 7)sec x.

x—+{wj2)~
SOLUTION  The indeterminate formis 0 - =, Using guideline | of (10.3),
we begin by writing

2x—m 2x—nm
(2x — m)secx = ] =

/secx  cosx
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Because the last expression has the indeterminate form 0/0 at x = n/2,
L'Hopital's rule may be applied as follows:

Ty — 2 2
. 2x—1m , 2
lim = lm —=—=-2
o {kiz— 1008 X ez - —sinx  —1

The indeterminate forms defined in the next table may occur in in-
| vestigating limits involving exponential expressions.

Indeterminate form Limit form: lim f(x)**
x—e
0 . ]igi flx)=0 and I|£n gix)=0 o
a? - lim f(x)= % or —x and ]im_ gix)=10 [
: i . lim f(x)=1 and lim g;i\'l = g5 0T =4O

X x—¢

[n exercises we shall also consider cases in which x = » orx — — =

One method for investigating these forms is to consider
.‘, — _II[.Y}'(HX}
and take the natural logarithm of both sides, obtaining

In v =In f(x) = g(x) In f(x).
If the indeterminate form for v is 0° or 0, then the indeterminate form
for In y is 0+ ., which may be handled using earlier methods. Similarly.
if y has the form 1. then the indeterminate form for In y is = - 0. It fol-

A+

K20 N X

that is, lim f{x)y™ =¢".

This procedure may be summarized as follows.
Guidelines for investigating

to— i y)x)
lim, .. f(x)** for the forms 1 Lety= f(x}*.
0° 17, and oo” (10.4) 2 Take natural logarithms in guideline [:

In y = In f{x)"™ = g(x) In f(x)
3 Investigate limIny = lim [g(x)In f(x)] and cenclude the

X X

following:

1l

(@ IflimIn y = L, then lim y = ",
(b) If limIn y = =, then lim y = o,
(c) IflimIn y = —c, then lim y = 0,

x—+e Xkg

lows that
if limlny=In (lim _r) =L, then limy= ¢k
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A common error is to stop after showing lim, . In y = L and conclude
that the given expression has the limit L. Remember that we wish to find
the limit of y. Thus, if In y has the limit L, then y has the limit e, The
guidelines may also be used if x - %0 or if x - — o or for one-sided
limits.

EXAMPLE 3  Find lim (1 + 3x)%2%,

.
SOLUTION  The indeterminate form is 1. Employing Guidelines (10.4),
we proceed as follows:
Guideline 1 y=(1+ 3x)tn2x

1 In (1 + 3x)
Guideline 2 Iny= s In (1 4 3x) = — = =
=R ~X
Guideline 3 The last expression has the indeterminate form 0/0 at x = 0,
so we apply L'Hépital's rule;
, . In(1 + 3x) 3L +3x) 3
Im Iny= lim - _ =1 e

o e x—0+ =N x=0* 2 2

Consequently we arrive at the following:

lim (1 + 3x)VC% = Jim y=¢*?

s el | e 2=

The final indeterminate form we shall consider is defined in the fol-
lowing table.

Indeterminate form Limit form: lim [ f(x) — g(x)]
| o — oA _ . lim _['(x}_z ~ and limg(x)= =

When investigating = — . we try to change the form of f(x) — g(x)
to a quotient or product and then apply L'Hépital's rule or some other
method of evaluation, as illustrated in the next example.

EXAMPLE 4 Find lim ( rl — l)

x—=0* &= l X

SOLUTION  The form is = — oo: however, if the difference is written
as a single fraction. then

) i 1 . X—=e* 41
lim ——==—— == Hiin —
P 1 x =0+ Xet —x

This gives us the indeterminate form 0/0. It is necessary to apply
L'Hopital’s rule twice, since the first application leads to the indeterminate
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FIGURE 103

Insulation

form 0/0. Thus,

lim ,\‘—9"+l:]i

x=0* Xxet—x capt xet 4+ e — 1
_ - 1
T e+ 27

EXAMPLE 5
cable is given by

The velocity v of an electrical impulse in an insulated

3

where k is a positive constant. r is the radius of the cable, and R is the
distance from the center of the cable to the outside of the insulation, as
shown in Figure 10.3. Find

v=

(a) lim ¢ (b) lim ¢
R=r? r=0*
SOLUTION

{(a) The limit notation implies that r is fixed and R is a variable. In this
case the expression for v is not indeterminate, and

(&) ()

(b) If R is fixed and r is a variable, then the expression for v has the in-
determinate form 0 oc at r = 0, and we first change the form of the ex-
pression algebraically. as follows:

In (r/R)
(r/R)™2

lim vr= —k lim k(1*In 1 = —k(0) = 0.

R—r” R—=r*

Inr— In R
— = i 2

r—0t r

lim v = —k lim
r—0* p=p=

The last quotient has the indeterminate form oo /oo at r = 0, so we may
apply L'Hépital’s rule, obtaining

: . (k=20
lim v = —kR? lim ———+
i
r—0* p0F L)
o s e
= —kR? lim (—,’) = —kR*(0) =0.
= R
EXERCISES 10.2
Exer. 1-42: Find the limit, if it exists. o _ .y
. . . 7 lim sin x In sin x g lim .\(; —tan 'y
1 lim xlInx 2 lim tan xInsinx xm0 X & J
x=0* x—+{x/2}
3 lim (xI = 1je 4 lim x(eV™ —1) 9 lim x sin 10 lim ¢ *lnx
oo P X+ x X~*+z0
5 lim e ¥ sin x 6 lim xtan™'x 11 lim x sec? x 12 lim (cos o !

x—0

S e -

x—=0 x =l
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o 15 . : 41 lim (sinh x — x)
13 lim (] += 14 lim (¢* + 3x)'" —_—
X=X -‘( X" 2
L ; 42 lim [In (4x + 3) = In (3x + 4)]
15 lim (ef — 1) 16 lim x* = X
X0 X (¢ Exer.43-44: Graph f on the given interval and use the
17 lim x'* 18 lim (tan x)* graph to estimate lim f(x).
X xX={ni2) t o)
19 lim (tan x)* 20 lim (x —2) 43 f(x) = (x tan x)**); [=1,1]
x—{ml2) ol | 1 17k
. L = . - ; n(x + :
21 hm (2x 4 1) 22 lim (1 + 3x)=c* 44 f(x) =[: { ]jl ¢ [—05.05]
X x—=0- ) lan x
g ( Xt o st fi ( F Exer. 45-46: (a) Find the local extrema and discuss the
xeem \X — x+1 s=i* AN X—1 Inx behavior of f(x) near x = 0. [b) Find horizontal asymp-
| 1 totes, if they exist. (] Sketch the graph of f for x > 0.
i - — 26 im (secx — tan x . . x
25 ,,-ILT (_\_ e ) .r-er:. (sec x — tan x) 45 f(x) = x'* 46 f(x) = x
27 lim (1 — x)n* 28 lim (1 + &% ™ 47 The geometric mean of two positive real numbers a and
s i b is defined as ab. Use L'Hépital's rule to prove that
A | n el - g X | ERE
29 lim ( - ) 30 lim (cot® x — cse® x) b= T (“I t+b ‘)t
=0+ \Jx*+1 X x—+0) ¥ st X 2 /-
31 ]irn_ cot 2x tan~ ' x 32 lim x*2°* 48 If a sum of money P is invested at an interest rate of
R : o 100r percent per year, compounded m times per year.
33 lim (cot®* x —e™7) then the principal at the end of t years is given by
x—0 %
\_ —— . P(1 +rm ')™. If we regard m as a real number and let
34 |'fn (Vx®+4—tan ' x) m increase without bound. then the interest is said to be
. — ) - compounded continwously. Use L'Hépital's rule to show
35 \-~I.I-m». (1 + cos x)=*" 36 .]-'1'[1.1- (1 +ax)™ that in this case the principal after 1 years is Pe".
X 4 N 49 Refer to Exercise 55 of Section 10.1. In the velocity
li ' = ) ’
37 o (.r*’ T e formula
N = e e O v(t) = (mg/k)(1 — ¢~ *miny
38 lim (v/x*+35x* + 3 —x?) 4 a . . _
P m represents the mass of the falling object. Find
39 lim (x + cos 2x)ss 3 40 lim sec x cos 3x lim,, ., vit) and conclude that v(r) is approximately pro-
X0 Krin 2) portional to time 1 if the mass is very large,
10.3 INTEGRALS WITH INFINITE LIMITS OF INTEGRATION
FIGURE 104 Suppose a function f is continuous and nonnegative on an infinite interval
["f(x) dx [a, x)and lim ., f(x)=0.1ft > a, then the area A(f) under the graph of
" [ from a to 1. as illustrated in Figure 10.4, is
At

Alt) = f: J(x)dx.

[flim, ., A(r)exists, then the limit may be interpreted as the area of the
region that lies under the graph of f, over the x-axis, and to the right of
X =, as illustrated in Figure 10.5. The symbol [/ f(x)dx is used to
denote this number. If lim, ., A(t) = s, we cannot ‘assign an area to this

(unbounded) region.
Part (i) of the next definition generalizes the preceding remarks to the
case where f(x) may be negative for some v in [a, o).
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Definition (10.5]

FIGURE 105
j f(x) dx

FIGURE 10.6
[f, 1t dx

(i) If f is continuous on [a, %), then
f () dx = lim _[’ £(x) dx.

provided the limit exists.
(i) If f is continuous on (— o, a], then

fj . flx)dx = lim f [(x) dx,

t— =

provided the limit exists.

If f(x)= 0 for every x, then the limit in Definition (10.5)(ii) may be
regarded as the area under the graph of f, over the x-axis, and to the left
of x = a (see Figure 10.6).

The expressions in Definition (10.5) are improper integrals. They differ
from definite integrals in that one of the limits of integration is not a real
number. An improper integral is said to converge if the limit exists, and
the limit is the value of the improper integral. If the limit does not exist,
the improper integral diverges.

Definition (10.5) is useful in many applications. In Example 4 we shall
use an improper integral to calculate the work required to project an
object from the surface of the earth to a point outside of the earth’s gravi-
tational field. Another important application occurs in the investigation
of infinite series.

EXAMPLE 1 Determine whether the integral converges or diverges,
and if it converges, find its value.
" 1

"l

vz x —1

I
(a) 1 — dx  [b)

SOLUTION
{a) By Definition (10.5)(1).

% | ! | =1 I
—— _dx=1i _dx =1 B
[} amgpte=tlim [ = lim [_ Il

£

4 —1 1
J]IIrl:l (r_--l-+3_-i-)—0+l—l.

Thus. the integral converges and has the value 1.
(b) By Definition (10.5)(1),

, | : el _
J: = dx :I.l._n? .I: ~ _-—IcI.\
tim [In (x = 1),
lim [In(t—1) —In(2—1)]

=+
lim In(t = 1)= 0.

L x

Il

Since the limit does not exist, the improper integral diverges.
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FIGURE 10.9
AY

FIGURE 10.10

The graphs of the two functions given by the integrands in Example 1.
together with the (unbounded) regions that lie under the graphs for x > 2,
are sketched in Figures 10.7 and 10.8. Note that although the graphs have
the same general shape for x > 2, we may assign an area to the region
under the graph shown in Figure 10,7, but not to that shown in Fig-
ure 10.8.

FIGURE 10.7 FIGURE 10.8
AY AY

=Y

v

The graph in Figure 10.8 has an interesting property. Il the region
under the graph of v = 1/(x — 1) is revolved about the x-axis. we obtain
the (unbounded) solid of revolution shown in Figure 10.9. The improper

integral
v |
J; T [_x 1) dx

may be regarded as the volume of this solid, By (a) of Example |. the
value of this improper integral is 7 - 1, or 7. This gives us the curious fact
that although we cannot assign an area to the region in Figure 10.8. the
volume of the solid of revolution generated by the region (see Figure 10.9)
is finite. (A similar situation is described in Exercise 35)

EXAMPLE 2 Assign an area to the region that lies under the graph of
y = ¢%, over the x-axis, and to the left of x = |.

SOLUTION  The region bounded by the graphsof y =¢*, p =0, x = |,
and x =1, for 1 <1, is sketched in Figure 10.10. The arca of the wn-
bounded region to the left of x = 1 is

f_l e dx = lim J:l e dx = Iim‘ [t,xll

= = g

=1lim (e—e')=¢e—0=¢,
It =

An improper integral may have two infinite limits of integration. as in
the following definition.
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| Definition (10.6)

FIGURE 10.11

=Y

FIGURE 10.12

A P B
; X b 7

Let f be continuous for every x. If a is any real number, then

[7 fyax = [* fmax + [ f) dx,

provided both of the improper integrals on the right converge.

If either of the integrals on the rightin (10.6) diverges, then j‘_' . fx) dx
is said to diverge. It can be shown that (10.6) does not depend on the choice
of the real number a. It can also be shown that [ . flx) dx is not neces-
sarily the same as lim, .. , _’[’.., flx) dx (consider f(x) = x).

EXAMPLE 3

P ]

(a) Evaluate f (T2 dx.
- o

!
(b} Sketch the graph of f(x) = e and interpret the integral in (a) as
o
an area,

SOLUTION  (a) Using Definition (10.6). with @ = 0, yields

J‘;- 1 f J‘IJ 1 f 4 & 1 f\
b —dx —idx.
-1+ X2 o 1 +x2° 0 14+ x*

Next, applying Definition (10.5)(i), we have

i I » T ] - ) i
J:. 32 dx = ,]Ln;l. § T dx = ;ILT [artlan '\Jn

= lim (arctan t — arctan0) == —0 =

PG

A
[SYE—1

Similarly, we may show. by using (10.5)(11), that

0 1 4
J._’ T2 dx-——z‘

Consequently the given improper integral converges and has the value
(7/2) + (7/2) = =.

(b) The graph of y = 1/(1 + x?)is sketched in Figure 10.11. As in our pre-
vious discussion, the unbounded region that lies under the graph and
above the x-axis may be assigned an area of m square units.

Let us conclude this section with a physical application of an improper
integral. If @ and b are the coordinates of two points 4 and B on a co-
ordinate line [ (see Figure 10.12) and if f(x) is the force acting at the point
P with coordinate x, then, by Definition (6.21). the work done as P moves
from A to B is given by

W= f ® f(x) dx.

In similar fashion, the improper integral [ f(x) dx may be used to define
the work done as P moves indefinitely to the right (in applications, we use
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the terminology P moves to infinity). For example, if f(x) is the force of
attraction between a particle fixed at point 4 and a (movable) particle at
P and if ¢ > a. then [ f(x) dx represents the work required to move P
from the point with coordinate ¢ to infinity.

FIGURE 10.13 EXAMPLE 4 Let ! be a coordinate line with origin O at the center
of the earth, as shown in Figure 10.13. The gravitational force exerted at
a point on [ that is a distance x from O is given by flx) = k/x?, for some
constant k. Using 4000 miles for the radius of the earth. find the work re-
quired to project an object weighing 100 pounds along [. from the surface
to @ point outside of the carth’s gravitational field.

SOLUTION  Theoretically, there is always a gravitational force f(x)

acting on the object: however, we may think of projecting the object from

the surface to infinity. From the preceding discussion we wish to find
W= L JUx) dx.

H0

By definition. f(x) = k/x? is the weight of an object that is a distance x
from O, and hence

k
100 = £(4000) = .
0 = £(4000) 0007

or. equivalently.

k = 100(4000)* = 10?16 - 10° = 16 - 10¥,

: 1
Thus, f(x)=(16- 10%) —
x°
and the required work is
: [ ) 1
r_ 108 Sl 108 1 N 3
W= [ (16109 3 dx =16+ 10" lim S
16 10 I L o T ( " ])
= 16- im | — =16-10°lim| — 4 ——
1+ X J4oo0 1=« \ [ 4000
16+ 10%
=—— =4-10° mi-lb.
4000 !
In terms of foot-pounds,
W =5280-4-10° ~ (2.1)10° t-Ib,
or approximately 2 trillion ft-1b,
EXERCISES 10.3
Exer. 1-24: Determine whether the integral converges e ) - -
or diverges, and if it converges, find its value. 3 Jvl oo dx 4 f.a T

] : 2 ! 2 ! ¥ X
1 fl mdx 2 J‘_ ; [\—_ !'J—jff.\ 5 f u 5_—2\ dx & f § _t‘iT(j dx
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o ] .
7 J‘u e T dx 8 ‘(" ) et dx
-1 1 x 1
9 =3 dx 10 J‘ —dx
-—m X 0 \{ v 4+ 1
i l ’ X
11 f ;—Jd.\' 12 J. —‘,-u‘.f.\'
—w (x — 8)F U] + x5
COs X ) 1
13 [P 14 |° dx
0 1+ sin® x r % x*+ 4
15 Jw xe ™ dx 16 J” cos® x dx
- -
=1n x s 1
17 J' — 7 dx 18 J' L
1 x 3 xm— |
19 J'”r cos x dx 20 rr'_ sin 2x dx
o b &
21 j' sech x dx 22 f xe “dx
- JO
0 1 . x+ 18
3 J- 5 dx 24 f = %
—wxt —3x + 2 4 xS 4 x—12

Exer. 25-28: If f and g are continuous functions and
0 < f(x) < g(x) for every x in |a, 20), then the following
comparison tests for improper integrals are true:

() If |7 g(x) dx converges, then | f(x)dx converges.
(i) If [ f(x) dx diverges, then [ g(x) dx diverges.
Determine whether the first integral converges by com-
paring it with the second integral.

1 l ro |

25 - X
1]+ x? o «'l
& I " 1

2 [Py [ reids

e

e 2
2 ol o

J‘:' 1 dx

2
JI e iy

Exer. 29-32: Assign, if possible, a value to (2l the area
of the region R and (5] the volume of the solid obtained
by revolving R about the x-axis.
29 R={{x, Pix=1,0=<p=<1/x]

27 LT ]% dx;

28 J']’ e dx;

30 R={(x,))x>10<y<1//x)

31 R={(x,):x>4,0=< y<x¥2

32 R={{x;y): =8, 0=y =<x"23

33 The unbounded region to lhe right of the y-axis and be-
tween the graphsof y = ¢ * and vy = 0 is revolved about

the y-axis. Show that a volume can be assigned to the
resulting unbounded solid, and find the volume.

34 The graph of y = ¢ * for x > 0 is revolved about the x-
axis. Show that an area can be assigned to the resulting
unbounded surface, and find the area.

35 The solid of revolution known as Gabriel’s horn is gen-
erated by rotating the region under the graph of y = 1/x
for x = 1 about the x-axis (sce figure),

(a] Show that Gabriel’s horn has a finite volume of =
cubic units.
(b

Is a finite volume obtained if the graph is rotated
about the y-axis?

[c) Show that the surface area of Gabriel's horn is given
by [{ 2x(1/x)y/1 + (1/x*) dx. Use a comparison test
(see Exercises 25 -28) with f(x) = 2n/x to establish
that this integral diverges. Thus. we cannot assign
an arca to the surface, even though the volume of
the horn is finite.

EXERCISE 35

36 A spacecralt carries a fuel supply of mass m. As a con-
servation measure, the captain decides to burn fuel at
a rate of R(t)= mke ¥ g/sec, for some positive con-
stant k.

(a] What does the improper integral [ R{t)dr represent?
[b) When will the spacecraft run out of fuel?

37 The foree (in joules) with which two electrons repel one
another is inversely proportional to the square of the dis-
tance (in meters) between them. If, in Figure 10.12. one
electron is fixed at A, lind the work done if another elec-
tron is repelled along | from a point B, which is | meter
from A, to infinity.

38 An eleetric dipole consists of opposite charges separated
by a small distance d. Suppose that charges of +¢ and
—q units are located on a coordinate line [ at id and
—4d, respectively (see figure). By Coulomb’s law. the net
force acting on a unit charge of —1 unit at x > id 1s
given by

—Kkg Ky

Jx)=- +n.\-+§d]2

(x — -'_.d']'t

for some positive constant k. If a > 4d. find the work
done in moving the unit charge along [ from a to infinity.

EXERCISE 38
o k| |
e i - = -
-0 d v
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39 The reliability R(1) of a product is the probability that it
will not require repair for at least ¢ years. To design
a warranty guarantee, a manufacturer must know the
average time of service before first repair of a product.
This is given by the improper integral [ (—0R'(1) d1.
{a) For many high-quality products, R(r) has the form
¢ ¥ for some positive constant k. Find an expression
in terms of k for the average time of service before
repair,

[b) Is it possible to manufacture a product for which
Ry =1/t + 1)

40 A sum of money is deposited into an account that pays
interest at 8°, per year, compounded continuously (see
Exercise 48 of Secction 10.2). Starting T years from now,
money will be withdrawn at the capital flow rate of f(1)
dollars per year. continuing indefinitely. For future in-
come to be generated at this rate, the minimum amount
A that must be deposited, or the preseni value of the
capital flow, is given by the improper integral 4 =
¥ fle 2% dr. Find A4 if the income desired 20 years
from now is

fa) 12.000 dollars per year

{b] 12,000e°°% dollars per vear

41 [a) Use integration by parts to establish the formula

L

b Gl

"

It can be shown that the value of this integral is /n/2.

2

X

ax

] dx =

R
Jn e du.

(b) The relative number of gas molecules in a container
that travel at a speed of ¢ cm/sec can be found by
using the Maxwell-Boltzmann speed distribution F:

Fll‘] - (,E(Z(, mu'-‘.leT!l

where T'is the temperature (in K), m is the mass of
a molecule, and ¢ and k are positive constants. The
constant ¢ must be selected so that _ﬂ{ Flv)dr = 1.
Use part (a) to express ¢ in terms of k, T, and m.

10.4

42 The Fourier transform is useful for solving certain differ-
ential equations, The Fourier cosine transform of a func-
tion [ is defined by

Ffix)] = j‘"l f(x) cos sx dx

for every real number s for which the improper integral
converges. Find Fe[e ] for a > 0.

Exer. 43-48: In the theory of differential equations, if
[ is a function, then the Laplace transform L of f(x) is
defined by

LUl = [7 e (v dx
for every real number s for which the improper integral
converges. Find L[ f(x)] if f(x) is the given expression.

43 | 44 x 45 cos x

46 sin x 47 o™ 48 sin ax

49 The gamma function I' is defined by I'in) = ,fn: X" le*dx
for every positive real number n,

ja) Find T(1). I'(2). and T'(3).
[b) Prove that I'(n + 1) = nl'(n),

(e] Use mathematical induction to prove that if n is any
positive integer, then I'(n + 1) = n!. (This shows that
factorials are special values of the gamma function.)

ax

50 Refer to Exercise 49. Functions given by f(x) = cx'e”
with x > 0 are called gamma distributions and play an
important role in probability theory. The constant ¢
must be selected so that [] f(x)dx = 1. Express ¢ in
terms of the positive constants k and a and the gamma
function I'.

|c] Exer. 51-52: Approximate the improper integral by
making the substitution # = 1/x and then using Simp-
son’s rule with n = 4,

1 |
51 y T dx
L yxtyx

INTEGRALS WITH DISCONTINUOQUS INTEGRANDS

If a function f is continuous on a closed interval [a, b]. then, by Theo-
rem (5.20), the definite integral [? f(x) dx exists. If f has an infinite dis-
continuity at some number in the interval. it may still be possible to assign

a value to the

integral. Suppose, for example, that f is continuous and

nonnegative on the hall-open interval [a, b) and lim ., f(x)= =. If
a < 1 < h. then the area A(f) under the graph of f from «a to t (see Fig-
ure 10.14. on the next page) is

A(t) = _[: f(x) dx.
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FIGURE 10.14 If lim, ., - A(t) exists, then the limit may be interpreted as the area of the
'|.’ f(x) dx unbounded region that lies under the graph of f, over the x-axis, and
¢ between x = a and x = b. We shall denote this number by |} f(x) dx.

For the situation illustrated in Figure 10.15, lim, .. f(x) = =, and
we define [; f(x) dx as the limit of |? f(x)dx ast - a”.

AY

FIGURE 10.15
J:h,,i"lx}dx
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These remarks are the motivation for the following definition.

Definition (10.7) ] . ) i
(i) If f is continuous on [a, b) and discontinuous at b, then

f: f(x) dx = lim _]' " f(x) dx,

t—=b~

provided the limit exists.
(ii) If f is continuous on (a, b] and discontinuous at a, then

[ reax = tim [* feo) dx,

t=at

provided the limit exists.

As in the preceding section, the integrals defined in (10.7) are referred
to as improper integrals and they converge if the limits exist. The limits
are called the values of the improper integrals. If the limits do not exist,
the improper integrals diverge.

Another type of improper integral is defined as follows.

Definition {10.8) ; = : ;
If f has a discontinuity at a number ¢ in the open interval (a, b) but

is continuous elsewhere on [a, b], then

[0 e dx = [ feo dx + [ fx) dx,

provided both of the improper integrals on the right converge. If
both converge. then the value of the improper integral % f(x) dx is
the sum of the two values.
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FIGURE 10.16

L

FIGURE 10.17
LAY

The graph of a function satisfying the conditions of Definition (10.8) is
sketched in Figure 10.16.

A definition similar to (10.8) is used if / has any finite number of dis-
continuities in (a. b). For example, suppose [ has dismminuilie\ at ¢, and
¢3. with ¢; < ¢,, but is continuous elsewhere on [a, b]. One possibility is
illustrated in Figure 10.17. In this case we choose a number k between
¢y and ¢, and express [} /(x) dx as a sum of four improper integrals over
the intervals [a.c,]. [c. k]. [k.c,]. and [c,. b]. respectively. By defini-
tion. [ f(x) dx converges if and only if each of the four improper integrals
in the sum converges. We can show that this definition is independent of
the number k.

Finally. if f is continuous on (a, b) but has infinite discontinuities at a
and b. then we again define [% f(x) dx by means of (10.8).

EXAMPLE 1

|
— E!.\'.
I—x

SOLUTION  Since the integrand has an infinite discontinuity at x = 3,
we apply Definition (10.7)(i) as follows:

L.—.._.
s
|
=
L
Il
=
o]
-
I‘
|
=
=

Il
3
|
(3%
P
S0
|
+
I
¥
tad

. , , . I
EXAMPLE 2 Determine whether the improper integral J:: dx
X

converges or diverges.

SOLUTION  The integrand is undefined at x = 0. Applying (10.7)(ii)
gives us

[:’ l i iy ,f.l -I_ dx = lim [In .\‘]Jl

vl x f=0* X =0
= lim (0 —Int) = .

r—=0-

Since the limit does not exist. the improper integral diverges.

EXAMPLE 3  Determine whether the improper integral J: - 1 - ix

converges or diverges.
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SOLUTION  Theintegrand is undefined at x = 3. Since this number is in
the interval (0. 4), we use Definition (10.8) with ¢ = 3:

4 ] 1 1 & |
,[:1 (x — 3)° dx = J‘.. (x — 3)? dx + L =3P dx

For the integral on the left to converge. both integrals on the right must
converge. Equivalently. the integral on the left diverges if either of the
integrals on the right diverges. Applying Definition (10.7)(i) to the first
integral on the right gives us

J"‘ I cdx = lim r ] 5 dx

VX — 3}" f—3- ¥

Il
=
w2

=
——— .
=
|
Ll -
|
tad | w
o g
Il
Q

Thus. the given improper integral diverges.

It is important to note that the fundamental theorem of calculus can-
not be applied to the integral in Example 3. since the function given by
the integrand is not continuous on [0, 4]. If we had (incorrectly) applied
the fundamental theorem, we would have obtained

=] P . I 4
x—3l 3 3

This result is obviously incorrect, since the integrand is never negative.

7 !
EXAMPLE 4  Evaluate | < dx.
-2 (x + 1)
SOLUTION  The integrand is undefined at x = — I, which is in the in-
terval (—2. 7). Hence we apply Definition (10.8), with ¢ = —1:
= [ e 1 - l

Jo2(x + |)“‘ 3 dx:.-l (x + ”3.3 “J'\‘+J_1 (x + “1 j-d‘\'

We next investigate each of the integrals on the right-hand side of this
equation. Using (10.7)(i) with b = — 1 gives us

-] ] 't 1
———dx= 1 — gt
J‘ 1P dx ' im J‘ll.\'+ T dx

=1
1

2

lim [3(x+ 1)
=3 lim [(t+ D2 —=(=1)'7]

—=—1

=30+1)=3.
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Similarly, using (10.7)(11) with a = — 1 yields

|

7 l 7 |
 __dx= i — _dx
f—l (x + 1)23 dx ,JI”,', J: (3% - 1)23 &

lim {3{.\' + 1)1-'3]

=]
3 lim [(8)'F —(r + ']
[

=32—-0)=6.

]

Il

Since both integrals converge, the given integral converges and has the
value 3 + 6 =9,

An improper integral may have both a discontinuity in the integrand
and an infinite limit of integration. Integrals of this type may be investi-
gated by expressing them as sums of improper integrals, each of which
has one of the forms previously defined. As an illustration. since the inte-
grand of jo‘ (1/yx) dx is discontinuous at x = 0, we choose any number
greater than 0—say 1—and write

J‘“! I—— dx.= J:Jl L_ dx + J‘Ir L; dx.
; NE

V¥ VX

We can show that the first integral on the right-hand side of the equation
converges and the second diverges. Hence (by definition) the given integral
diverges.

Improper integrals of the types considered in this section arise in phy-
sical applications. Figure 10.18 is a schematic drawing of a spring with an
attached weight that is oscillating between points with coordinates —¢
and c on a coordinate line y (the y-axis has been positioned at the right for
clarity). The period T is the time required for one complete oscillation
that s, ewice the time required for the weight to cover the interval [ —c. ¢].
The next example illustrates how an improper integral results when we
derive a formula for T.

FIGURE 10.18
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EXAMPLE 5 Let v(y)denote the velocity of the weight in Figure 10.18
when it is at the point with coordinate y in [ —¢, ¢]. Show that the period
T is given by
T=2 Ly,
Joop(y)

SOLUTION  Let us partition [ —¢, ¢] in the usual way, and let Ay, =
Ve — V5, denote the distance the weight travels during the time interval
At,. If w, is any number in the subinterval [y, . v, ]. then v(w,) is the
velocity of the weight when it is at the point with coordinate w,. If the
norm of the partition is small and if we assume ¢ is a continuous function,
then the distance Ay, may be approximated by the product v(w,) Af;;
that 1s,

Ay, = viw,) Ar.

Hence the time required for the weight to cover the distance Ay, may be
approximated by

and, therefore,

By considering the limit of the sums on the right and using the definition
of definite integral, we conclude that

Note that v(c) = 0 and v(—c) = 0, so the integral is improper.

Exer. 1-30: Determine whether the integral converges
or diverges, and if it converges, find its value.

g 1
1 —dx
P
i1 ”
3 j‘ 3 :1 X
5 J::” sec’ x dx
4 1 dx
7 j:] {4 }‘ = dX

4 |
q-[.“ @ —x3?? g0

2 1 N -
11 _r e dx 12 ' Do gy
-1 (x+ 1) J-1
0 1 i X
—dx 13 J‘ .l 14 ],f_i dx
X o \4 —X" v \4 — X
4 |
1 d 15 J' —dx 16 f ——dx
1|\+“!]‘4 2 JO x2—x —2
7 17 r{: xlnxdy 18 | *tan? ¥ dx
6 '”I t_. dx ) I
UaAX 19 J‘" " tan x dx 20 f > dx
o Joo | —cosx
, |
% =d 21 dx 22 J’ Lo i
T N 2 —§\+4 vex (Inx)*
2 X | 1
10 —dx 23 f — cos —dx 24 [‘n sec x dx
x*—1 1 x* X Jo
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cos X s X
% | = ——dx 6 I:I ; dx
b 1 —sin x 40 Jx —1
4 ] r3 N
27 = dx ZSJ dx
0 x* —dx + 3 Lxt =1

-. | 0 1
9.’:: (I\._4jldx 30.[ w_\'—l—idx

Exer. 31-34: Suppose that £ and ¢ are continuous and
0 < f(x) < g(x) for every x in (a, b]. If f and 4 are dis-
continuous at x = a, then the following comparison tests
can be proved:

1) If {3 g(x) dx converges, then [ f(x) dx converges.
() If [; f(x) dx diverges, then [* g(x) dx diverges.
Analogous tests may be stated for continuity on [a, b)
with a discontinuity at x = b. Determine whether the

first integral converges or diverges by comparing it with
the second integral.

.Iu‘r _[_ g

VX

w1
.rh ' xt

- 8in X
e

dx:

NES

/4 SEC X
2 J‘l —— dx
0 _\“‘

2 cosh x ; 2 | -
b= [ g
{ g A
34 " ;: 3 d.\. Ju Xl = dx

Exer. 35-36: Find all real values of n for which the
integral converges.

L " 1 1 o
35 fo x"dx 36 j‘{. X" n x dx
Exer. 37-40: Assign, if possible, a value to 5 the area
of the region R and (p) the volume of the solid obtained
by revolving R about the x-axis.

37 R={(x,3):0<x< 1,0 <y < 1/ix)

38 R={(x,):0<x<1,0<y<1/3x}

39 R={(x,y —4=x=40=<y=<l/(x+4)}
o0 R={x.yhl<cx<20<y<lx—1)

- | COS X ) "
41 Approximate [:} — dx by making the substitution
. X

u =/ x and then using the trapezoidal rule with n = 4,

. a1 8N X ) ) o
42 Approximate ; - dx by removing the discontinuity
ol X G

at x = () and then using Simpson’s rule with n = 4.

43 Refer to Example 5. If the weight in Figure 10.18 has
mass m and if the spring obeys Hooke's law (with spring

44

45

constant k > 0), then, in the absence of frictional forces.
the veloeity ¢ of the weight is a solution of the differential
equation

dr

mr - ky
dy :

0.

(a) Use separation of variables (see Section 7.6) 1o show
that ¢ = (k/m)c* — v2). (Hint; Recall from Exam-
ple 5 that v{c) = v(—¢) = 0.)

(b} Find the period T of the oscillation.

A simple pendulum consists of a bob of mass m attached
to a string of length L (see figure). If we assume that the
string is weightless and that no other frictional forces are
present, then the angular velocity ¢ = di)/di is a solution
of the differential equation
4

v—+—sinfl =0,
L

where ¢ is a gravitational constant.
fa) If v =0 at 0/ = +0,,. use separation of variables to
show that

%
“;F (cos (1 — cos (1),

2
b=

(b) The period T of the pendulum is twice the amount of
time needed for ¢/ to change from —0, to f),. Show
that T is given by the improper integral

T—3 II"II:L iy

= —_ — ).
NV g % JJeos 0

—cos i,

EXERCISE 44

When a dose of 1, milligrams of a drug is injected di-

rectly into the bloodstream. the average length of time

T that a molecule remains in the bloodstream is given

by the formula T = (1/y,) |3 t dy for the time 1 at which

exactly v milligrams is still present.

ja) If v = yye " for some positive constant &, explain
why the integral for T is improper.

{b) I 7 is the half-life of the drug in the bloodstream,
show that T'=1/ln 2.
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a6

In fishery science, the collection of fish that results from
one annual reproduction is referred to as a cohort. The
number N of fish still alive after 1 vears is usually given
by an exponential function. For North Sea haddock with
initial size of a cohort Ny, N = Nye %%, The average
life expectancy T (in years) of a fish in a cohort is given

10.5 REVIEW EXERCISES

Exer, 1-16: Find the limit, if it exists.

15

. In(2 —x) . sin 2y — tan 2x
It e 2 |lim .

=0 1+¢e” ] X

L XEEOv 43 B 3

I ——— & lim—————

v (x4 1) x—0 S0 X

e —e T — 4y R

lim : — 6 lim —

x—=0 X° w—=in 3y SEC X

lim — 8 lim cosxlncosx
=z & x+E)2)

lim (1 — 2e!%)x 10 lim tan™! xecscx
X tand

lim (1 + 8x%)'~ 12 lim (Inx)y*!

x—=0 x—=1

S | . 1 |
lim (e*+ '™ 14 lim |— —
i x=0+ \an x X
e . 34 2x

lim 16 lim —

e ® e X 1

Exer. 17-28: Determine whether the integral converges
or diverges, and if it converges, find its value.

17

-
f — dx
Jr i

18 J
-+ .

by T = (1/Ng) [3° t dN for the time 1 when precisely N

fish are still alive.

fa) Find the value of T for North Sea haddock,

(b) Is it possible to have a species such that N =
No/(1 + kNgt) for some positive constant A? If so,
compute T for such a species.

0 1 *
19 J N dx 20 jo sin x dx
- 1 |
21 ‘ : dx 22 J.B dx
J-8 ofy “4x 44
™2 2 -] 1
23 J " dx 24 [ —dx
o= 1) Yoyt =1
T l L]
25 .‘[‘_ ; m‘ dx 26 ‘I. x xe* l'.‘l.\‘
=1 In x w2
| : dx 28 r csc x dx
JO O x it

|¢| Exer. 29-30: Approximate the improper integral by
making the substitution ¥ = 1/x and then using Simp-
son’s rule with n = 4.

29

31

R B o [
L e Ydx 30 jl e~ ¥ sin /' x dx
Find lim ., fix)g(x) if f(x)= [{(sin)*? dt and
glx)=x*.

32 Gauss™ error integral erf (x) = (2/y/7m) [y e " du is used

in probability theory. It has the special property
lim, ., erf(x) = 1. Find lim,_, *'[1 —erf(x)].



