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Vehicle Classification in Intelligent Transport Systems:
An Overview, Methods and Software Perspective
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Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS). Diverse ranges of ITS applications like

security systems, surveillance frameworks, fleet monitoring, traffic safety, and automated parking are using VC. Basically, in the
current VC methods, vehicles are classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a
compound method. This paper presents a pervasive study on the state of the art of VC methods. We introduce a detailed VC
taxonomy and explore the different kinds of traffic information that can be extracted via each method. Subsequently, traditional
and cutting edge VC systems are investigated from different aspects. Specifically, strengths and shortcomings of the existing VC
methods are discussed and real-time alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as
well as kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions involved in VC in the
context of machine learning, neural networks, miscellaneous features, models and other methods.

Index Terms—Intelligent Transportation System (ITS), Vehicle Classification (VC), Vehicular Ad-hoc Networks (VANETs), Soft
Computing.

I. INTRODUCTION

THE term of VC is the collection of methods used to
extract the vehicle’s parameters and classify the vehicle

into different classes. There exist distinct definitions for VC
in the publications. [1] defines VC as a tool for an accurate
counting of the axles number and spacing of the distinct
vehicles traveling in a lane. [2] considers VC as a pattern
recognition (PR) issue where vehicles are grouped into various
classes, namely off-road, sedan, two wheeler, bus, and pick
up truck. [3] deems VC as a vital part of ITS that collects
precious information for different applications such as system
planning and surveillance. [4] and [5] describe VC in such a
way that vehicles are detected and categorized with respect to
their types and certain sub-classes respectively. [6] specifies
VC by assigning the vehicles into various groups. In [7], [8],
VC is defined as a process of splitting up the vehicles based on
different predetermined classes. [9] denotes VC as one of the
vehicle identification methods. [10] defines the VC as a means
to provide information about the types of the vehicles that
traverse a monitoring zone by categorizing them into classes.
[11] performs the VC by evaluating the shape or size of a
crossing vehicle.

Vehicle classification is one of the main components of traf-
fic monitoring systems. It plays a crucial role in transportation
planning and traffic engineering. For example, safety organiza-
tions are very interested in identifying capacity and geometric
design of the freeways and pavement maintenance according
to the vehicle types, numbers and so forth. In ITS, different
applications like automated parking systems [12], [13], struc-
tural health monitoring [14], [15], [16], [17], [18], security
enforcement [19] and monitoring of traffic flow [20], [21]
widely avail of VC. For vehicles detection, various methods
such as transiting monitoring areas [22], [23], crossing in front
of fixed sensors [10], [24], global coverage [25], [26] or hybrid
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methods [24], [27] are used. Data gathered by sensors and
detectors encompasses a broad range of information including
speed [28], [29], acceleration/deceleration [30], number plate
[31], [32], make and model [33], [34], [35], axle weight and
spacing [36], [37], and vehicle count and shape, i.e., height,
width and length [23], [38].

Recently, several VC systems have been introduced due
to the tremendous advancements in soft computing, wire-
less communication and sensing technologies. These methods
have different requirements and specifications in terms of
hardware and configuration settings, deployment environment,
cost, sensor types etc. This makes it challenging for industry
and scientists to apt for a justifiable solution for their VC
applications.

The simplest method of VC is the manual count, nonetheless
it is prone to errors, laborious and also time consuming.
Vision-based methods as the most commonly used and studied
approach for VC detect and track the vehicles by withdrawing
visual features like textural patterns, colors and lines of the
video [39]. Vision-based methods undertake some phases
including image segmentation, PR, feature extraction, and
training.

In 1920, pneumatic tube detectors were introduced for VC
and today they collect the vehicular data for a short period
of time [40]. However, this method is not feasible for highly
congested and high-speed roadways, but it can recognize axle
spacing and axles number in a moving vehicle.

Magnetic loop detector is a technology that detects the vehi-
cle length and has been used in the recent decades for VC [41],
[42]. Dual loop detectors can measure the speed of a target
vehicle [43], [44]. Similar to the pneumatic tube detectors,
they do not perform well in high volume roads although they
are fairly cheap and perform automatic classification [30].

Axle configuration and weight of the vehicle are detectable
by piezoelectric sensors [28], [45]. This kind of sensors is
sensitive to the pavement temperature and speed of the vehicle
and can be used individually or along with weigh-in-motion
(WIM) systems.

Radar sensors are customary tools that are capable of
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classifying vehicles according to their dimensions like length,
size, height etc. [46], [47]. Despite their deficiency for the
dense traffic and compared to the other VC methods, they are
more resistant to the environmental variations [30].

Infrared sensors use the reflection light of a vehicle in order
to seek the equivalent match in the database [48], [49], [50].
Environment changes have a negative impact on the infrared
sensors.

Acoustic sensors utilize acoustic signatures that are speed
independent to determine the vehicle classes [51].

A VC system based on the Global Positioning System (GPS)
is shown to be the most dependable way to extract the global
movement parameters of the vehicle whereas it lacks the infor-
mation about the vehicle’s physical properties. Furthermore,
portable GPS and GPS mobile devices, or smartphones that
can provide kinematic characteristics of the vehicles are not a
reliable information source to classify the vehicles a in real-
time state.

A fusion of the methods based on the fixed location sensors
with other methods seem to be able to provide detailed
information [52], [53]. For example, information regarding the
make and brand of a vehicle obtained via vision-based meth-
ods can help to gain other data such as weight and axle spec-
ifications [54], [55]. Moreover, the camera can also retrieve
mobility parameters like speed, acceleration/deceleration, di-
rection within the coverage range [52],[56].

Except for GPS-based methods, current VC approaches
have generally local essence as mentioned earlier. As two
principal requirements for a reliable classification of vehicles,
the real-time collection of traffic information together with
having global access to the sensor data are necessary. In
the VC methods, mobility and physical parameters are to be
taken into account. This paper investigates the state of the art
including real-time methods like VANETs that can classify the
vehicles in a global mode. VANETs comprise vehicles that
are interconnected wirelessly and exchange real time traffic
information.

This paper is organized as follows. In section II, VC
taxonomy spanned over five fundamental methods is presented
whereby each method can acquire a wide spectrum of infor-
mation. Methods are broken down into subsections based on
the operational environment, sensor types, VC mechanisms
and sensors methodologies. Section III offers a comprehen-
sive overview on the state of the art, smart technologies
and novel breeds of VC methods like VANETs, Wireless-
Fidelity (Wi-Fi), Long Term Evolution (LTE), wireless sensor
networks (WSNs) and radio frequency (RF) including anal-
ysis, challenges, issues, comparison, description and relevant
algorithms. Here, VANETs are discussed as a superior and
plausible approach that can dependably classify the vehicles
by meeting the corresponding VC requisites. Finally, the last
section summarizes the findings of this work.

II. VEHICLE CLASSIFICATION TAXONOMY

This section describes the vehicle classification taxonomy.
VC methods are organized into five main categories depending
on the required physical changes on the roadways as well

as the deployment conditions of the equipment as follows:
intrusive, non-intrusive, off-road, manual or a combination of
aforementioned items called hybrid methods. Each method is
unique in terms of the extracted traffic information. They vary
from local to global, physical to kinematic and manual to
automatic.

Intrusive sensors are located under the road surface in holes
or attached to the road surface [57]. They are in contact with
the vehicles and contain diverse kinds of sensors such as loop
detectors [42], magnetometers [58], [59], piezoelectric sensors
[60] and vibration sensors [61]. Hence, they operate accurately
in retrieving miscellaneous data like the vehicle’s physical
information along with the motion signature.

Non-intrusive sensors are located above or next to the road
and their monitoring data are less influenced by pavement
quality compared to the intrusive sensors and have simpler
installation and maintenance [62]. These roadside sensor-based
systems span a broad range of varieties including laser light
detection and ranging (LiDAR) [63], [13], accelerometers [64],
infrared sensors [2], acoustic sensors [65], magnetometers
[66], [67] and Wi-Fi transceivers [68]. On the downside, theses
sensors highly require appropriate placement and direction ad-
justment [2]. Moreover, classification of overlapping vehicles
is very troublesome for this sort of systems. Additionally,
data calibration algorithms are needed to reduce the noise
impact on classification. Besides, both intrusive and non-
intrusive sensor-based VC systems can be characterized by
costly implementation and maintenance and they are highly
sensitive to the ambient status [69].

Mobile sensors embedded and deployed by satellite, air-
plane, or in vehicle GPS-enabled receivers are called off-
road sensors [70]. Sensors in satellites and unmanned aerial
vehicles (UAVs) are aerial systems that cover multiple lanes
from above roadways or even a road segment [71], [72]. Vision
sensors are the dominant technology [73], [74] in this category.
Despite their little construction and maintenance cost, these
systems are not accurate and are sensitive to lighting and
severe weather conditions.

Hybrid methods such as WIM, VANETs and also WSNs
consolidate multiple approaches for VC. The next section
extensively describes the VC methods. Taxonomy of VC
along with the information extracted via each method are
summarized in Table I.

III. VEHICLE CLASSIFICATION METHODS

There exist a few surveys about VC systems whilst most
surveys focus on the vision-based VC systems ignoring other
VC approaches [75], [76], [77], [78], [79], [80]. Others
only address particular types of VC systems. For instance,
[81] reviewed only road sensors such as inductive loop de-
tectors, piezoelectric, magnetic sensors, and also pneumatic
tubes while [82], [83] reviewed unmanned aerial vehicles
UAVs. Bouckerche et al. [35] presented a survey that just
focused on vision-based methods and categorised the vehicle
classification based on the vehicle type recognition (VTR),
vehicle make recognition (VMR), and also vehicle make and
model recognition (VMMR). In their work, they investigated
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TABLE I
TAXONOMY OF VEHICLE CLASSIFICATION METHODS AND RELATED EXTRACTED TRAFFIC INFORMATION.
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Non-intrusive Vision-based Video Images 7 3 3 3 7 3 7 3 3
Non-intrusive Sound-based Acoustic 7 3 3 3 7 7 7 3 3
Non-intrusive Sound-based Ultrasonic 7 7 7 7 7 7 7 3 3
Non-intrusive Remote Sensing Infrared 7 3 3 3 7 7 7 3 3
Non-intrusive Remote Sensing Laser Scanner 7 3 3 3 7 7 7 3 3
Non-intrusive Remote Sensing LiDAR 7 3 3 3 7 7 7 3 3
Non-intrusive Remote Sensing Radar 7 3 3 3 7 7 7 3 3
Non-intrusive Remote Sensing RF Transceivers 7 3 3 3 7 7 7 3 3
Non-intrusive Remote Sensing Wi-Fi-LTE Transceivers 7 3 3 3 7 7 7 3 3

Intrusive Contact Inductive Loops 7 3 3 3 7 7 7 3 3
Intrusive Contact Magnetic Sensors 7 3 3 3 7 7 7 3 3
Intrusive Contact Fiber Optic 7 3 3 3 3 7 7 3 3
Intrusive Contact Piezoelectric 7 3 3 3 3 7 7 3 3
Intrusive Contact Pneumatic 7 3 3 3 3 7 3 3 3
Intrusive Contact Strain Gauge 7 3 3 3 3 7 7 3 3
Intrusive Contact Seismic and Vibration 7 7 7 7 7 7 7 3 3
Off-road Aerial UAVs 7 7 7 7 7 3 7 3 7
Off-road Aerial Satellite 7 7 7 7 7 3 7 3 7
Off-road GPS-based In-vehicle GPS Device 3 3 3 3 7 7 7 7 7
Off-road GPS-based Mobile Apparatus 3 3 3 3 7 7 7 7 7
Hybrid Multi-Methodical WIM 7 3 3 3 3 7 3 3 3
Hybrid Multi-Methodical WSN 7 3 3 3 3 7 3 3 3
Hybrid Multi-Methodical VANETs 3 3 3 3 3 3 3 3 3
Manual Manual Manual Observation 7 7 3 3 3 7 7 3 7

the relevant models, methods and techniques. Most of the
papers concentrated on conventional VC methods. However,
some papers explored vehicle related methods for VC via
exploiting mobile devices like smartphones or GPS receivers
in an obscure manner and from confined perspectives. They
nearly overlooked the impact of groundbreaking vehicular
communications technologies and sensing techniques in their
studies. Jain et al. [80] mainly reviewed the traditional VC
methods in addition to the vision-based ones. They analyzed
different techniques for traffic monitoring and examined the
drawbacks and security weaknesses of the information. But,
they did not address a large spectrum of VC methods including
hybrid, remote sensing and also GPS-based methods in their
paper. In another research work, Won et al. [84] presented
an overview on current VC systems from various aspects
excluding notable methods such as LTE transceivers, GPS-
based methods and also vehicle-to-everything (V2X) commu-
nication. Furthermore, in a recent review article [85], although
researchers introduced VANETs capabilities for VC, their
research lacked some paramount VC methods encompassing
aerial, WSN as well as RF, Wi-Fi and LTE transceivers.

The findings demonstrate that available VC methods cannot
offer mobility and physical information of vehicles globally
and in a real-time fashion. We definitively believe that ve-
hicular networks are an effective solution to provide the VC
globally and in a real-time manner. This paper investigates
the traditional, state of the art and also global methods like
VANETs that classify the vehicles in a real-time mode. In

contrast to the all existing surveys and review papers that are
cited in this paper, our review has effectively complemented
the weaknesses of the mentioned papers by gathering all the
related VC methods ranging from conventional to emerging
in the miscellaneous journals. It is worth mentioning that
in the presented paper, the length of the description varies
significantly from one VC method to another. This is due
to the fact that some methods like vision-based are widely
favored by scientists while others such as pneumatic tubes,
piezoelectric sensors, fiber optic sensors, strain gauge, GPS-
based, LiDAR, Wi-Fi/LTE transceivers and infrared/ultrasonic
are rarely attractive for VC. Moreover, compared to other
surveys and reviews, we have thrived to more deeply study
VANETs and propose them as an alternative tool for VC. To
this end, we have conducted a comprehensive inspection to
find the current state of the art VC articles. We originally
began with around 500 publications that consequently resulted
in 284 final references for our work.

A. Vision-based Methods

Most researchers have conducted their VC studies based on
the vision-based methods, which are applied in the most popu-
lar VC systems [73], [74]. This is due to the fact that cameras
can properly feature the visual and geometrical characteristics
of a vehicle [162]. Image/video detection from a fixed location
mostly comprises most of the vision-based VC literature. They
are ambient-sensitive and have relatively low maintenance
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TABLE II
SUMMARY OF LITERATURE REVIEWS ON VISION AND SOUND-BASED METHODS.

Literature Sound Vision

Piyush et al. [86], Daniel et al. [87] 3 3
Kerekes et al. [88], George et al. [65], Borkar et al. [89], Ntalampiras [90], Bischof et al. [91] 3 7

Huttunen et al. [92], Dong et al. [93], Mei et al. [50], Bautista et al. [74], Mithun et al. [94], Unzueta et al. [95], Chen et al. [73] 7 3
Adu-Gyamfi et al. [96], Karaimer et al. [97], Kim et al. [98], Theagarajan et al. [99], Javadi et al. [100], Zhao et al. [101] 7 3

Gupte et al. [39], S. Matos et al. [38], Chang et al. [102], Moussa et al. [103], Hasnat et al. [104], Liu et al. [105] 7 3
Chen and Pears et al. [106], Liang et al. [107], Chandran et al. [108], Ahmed et al. [109], Atiq et al. [110], Buch et al. [56] 7 3

Abinaya et al. [111], Sotheany et al. [10], Daigavane et al. [112], Abdulrahim et al. [113], Narhe et al. [114], Yousaf et al. [78] 7 3
Lee et al. [115], Chen and Ellis et al. [116], Hadi et al. [117], Misman et al. [118], Shukla et al. [119], Mokha et al. [120] 7 3
Yan et al. [27], Nam et al. [121], Can et al. [122], Singh et al. [123], Chen and Qin et al. [124], Li and Ikeuchi et al. [125] 7 3

Kul et al. [79], Zhang et al. [126], Lim et al. [11], Yu et al. [127], Moutakki et al. [128], Meher et al. [129], Yang et al. [130] 7 3
Velazquez-Pupo et al. [23], Meng et al. [3], Prasad et al. [131], Sun and Zhang et al. [132], Wang et al. [133], Shih et al. [134] 7 3
Cretu et al. [135], Hsieh et al. [136], Yang et al. [137], Jayadurga et al. [138], Liu and Wang et al. [139], Manzoor et al. [140] 7 3

Biglari et al. [32], Ghassemi et al. [34], Ambardekar et al. [141], Liu and Zhang et al. [105], Song et al. [142], Khanaa et al. [143] 7 3
Asaidi et al. [144], Siddiqui et al. [24], Yao et al. [5], Yousaf et al. [78], Wang et al. [145], Almehmadi Tarig Saeed et al. [146] 7 3

Jehad et al. [147], Hannan et al. [148], Tamam et al. [19], Kafai et al. [149], Muthu Vaanathi et al. [150], Yu et al. [151] 7 3
Manzoor et al. [33], Chen and Ruan et al. [152], Zhang and Chen et al. [153], Jo et al. [12], Bai et al. [154], Silva et al. [155] 7 3

Hussain et al. [156], Siddiqui et al. [157], Zhang et al. [158], Peng et al. [159], Mussa et al. [160], Mishra et al. [161] 7 3

and operational costs. Besides, video/image detection methods
possess high capital cost, expensive computational burden
and also privacy concerns. In contrast to the in-road-based
classification systems, a single camera can cover several lanes.
The relative VC process includes images capture, feature
extraction, and finally the classification of the vehicle. Data
collection use various types of cameras such as aerial images
[163], [164], surveillance video systems, closed-circuit tele-
vision (CCTV) [106], [116], normal cameras [115], [125] or
omni-directional cameras [122]. Image processing techniques
are the underlying elements of the detection, tracking and
classification of the vehicles in these methods.

Sotheany et al. [10] used back propagation neural network
(BPNN) and radial basis function neural network (RBFNN) for
VC. Mei et al. [50] investigated robust vision-based VC and
tracking using sparse approximation theory. Wang et al. [145]
conducted an extensive review on the vision-based methods.
Many researchers like [23], [73], [94], [95], [124], [123],
[111], [126], [152], and [153] proposed image segmentation
from video footage as one of the most significant techniques
of image processing to classify the vehicles. Tripathi et al.
[4] and Tamam et al. [19] employed background subtraction
(BGS) as an image segmentation method for VC. Gaussian
mixture model (GMM) [165] is recognized as one of the
principle segmentation techniques in image processing. As
regards to other vision-based VC methods, some papers like
[147], [144], [130], [127], [129] focused on shadow removal
techniques [166] to improve the image and video quality in
image processing. On the other hand, Moutakki et al. [128]
and Velazquez-Pupo et al. [23] used occlusion handling for
tracking and classification of the vehicles in an obstructed
situation. Image detection encompasses the feature extraction
step, in which appropriate features for VC are selected.

Most popular features for VC include speeded-up robust
features (SURF) [134], [131], scale invariant feature transform
(SIFT) and Texture and shape features [133], [132], [114],
VMMR [34], [140], oriented fast and rotated brief (ORB)
[137] and pose estimation with convex hull (PE-CH) [139].
Yan et al. [27] proposed principle components analysis (PCA)

and BPNN for VC. Tripathi et al. [4] made use of Blob
detection technique as a feature extraction technique for VC.
Manzoor et al. [33] devised a VMMR-based VC system based
on the random forest (RAF) and used SIFT and histogram
of oriented gradient (HOG) for image processing. Similarly,
Siddiqui et al. [157] proposed VMMR-based VC using SVM,
SURF features and RAF.

Some literature like [93], [97], [92], [96], [138], [143],
[141], [142], [24], [32], [106], [150], [135], [154], [156], and
[11] addressed VC via the application of feature extraction
techniques. Javadi et al. [100] designed a vision-based system
that classifies analogous vehicles based on fuzzy c-means clus-
tering (FCM) [167] and using dimensions and speed attributes.
Zhao et al. [101] emphasized the relevant key parts of the
vehicle image to improve the accuracy. Mishra et al. [161] used
a non-linear kernel classifier, while Theagarajan et al. [99] and
Kim et al. [98] benefited from different approaches to address
VC using the largest ever image dataset. Liu et al. [105] also
investigated the issue of imbalanced dataset. Zhang et al. [158]
adopted kernel principal component regression (KPCR) for
VC. Liang et al. [107] investigated the classification of the
highway vehicles via regression analysis and image warping.
Chang et al. [102] discussed the matter of vehicle occlusion.
Other researchers such as Ahmed et al. [109], Moussa et al.
[103], and Chandran et al. [108] concentrated on the vision-
based methods. Hsieh et al. [136] classified the vehicles based
on the color. Peng et al. [159] robustly classified vehicles based
on PCA. Hannan et al. [148] and Yu et al. [151] adopted fast
neural network (FNN) and deep learning for VC respectively.
Nam et al. [121] proposed creative methods using thermal
cameras and visible light images for vehicle detection and
classification. Mussa et al. [160] outperformed VC by using
probabilistic neural network (PNN) to correctly assign the
vehicle’s classes. Silva et al. [155] adopted multiple classifier
algorithms to detect and classify motorcyclists. Almehmadi
Tarig Saeed et al. [146] benefited from the Viola-Jones method
as well as invariant moments features and multi-layer feed
forward perception (MLP) artificial neural network as PR
techniques in VC. On the other hand, Jo et al. [12] used the
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LeNet model from convolutional neural networks (CNN) along
with Haar-like features for image recognition of VC. Hasnat et
al. [104] combined optical sensors with a camera to classify
vehicles with hybrid algorithms like gradient boosting (GB)
[168] and CNN. Gupte et al. [39], Ha et al. [169], and S.
Matos et al. [38] also deployed vision-based methods where
the last two papers considered the edge detection and features
for VC.

B. Sound-based Methods

Acoustic sensors are low cost and simple, but they re-
quire complex data extraction mechanism and they are not
appropriate for stop-and-go traffic. Ultrasonic sensors are con-
tamination proof, weather-sensitive and relatively less costly
than acoustic sensors. Moreover, they can be easily installed.
Acoustic sensors capture the audio signals generated by a
passing vehicle via microphones. Ambient noise largely im-
pacts the performance of these sensors thereby making the
feature extraction a challenging problem. Therefore, either
acoustics sensors are generally deployed in group to decrease
the negative influence of environmental noise [90] or they are
integrated with other type of sensors like cameras to boost the
effectivity of those solutions [91].

Borkar et al. [89] benefited from smart cameras, robotic
sensors, smartphones and also drones to evaluate the vehicle
density, speed, and classification through practice of acoustic
signals. George et al. [65] employed acoustic signals while
Ntalampiras [90] established an innovative wireless acoustic
sensor network (WASN) to overcome the ambient noise prob-
lem. The system was composed of several wireless micro-
phones. Bischof et al. [91] benefited from an acoustic sensor
to better support the operation and activate the autonomous
training of the vision-based VC system. Different kinds of
algorithms like artificial neural network (ANN), support vector
machine (SVM) and k-nearest neighbor (KNN) were used for
classification. Piyush et al. [86] and Daniel et al. [87] devised a
scheme based on the combination of video and audio methods.
In the proposed approach, they used the MLF algorithm, and
the vehicle image was extracted from the relevant video frames
through BGS once the vehicle was detected by the acoustic
signal. Table II summarizes literature reviews on vision and
sound-based methods.

C. Remote Sensing Methods

The provision of global information by remote sensing
methods introduce them as one of the quickest trends for VC.
A wide range of methods can be named in this group including
infrared sensor, laser scanner, LiDAR, radar, RF, Wi-Fi, and
LTE transceivers. Table III summarizes the literature reviews
on remote sensing methods.

1) Infrared/Ultrasonic
Infrared sensors are expensive, sensitive to ambient condi-

tions and advisable for night vision and rainy weather. They
have low image quality and are typically used for battlefield
VC. Odat et al. [2] proposed a collaborative system including
ultrasonic and infrared sensors for VC. Otto et al. [6] utilized
two mobile infrared sensors and denoised the data mainly

using wavelet for VC. Mei et al. [50] used infrared sensors
for classification and robust tracking of the vehicles.

2) Laser Scanner
Laser scanner is another technology for VC that is sensi-

tive to weather conditions. Besides, it has more installation
expenses than cameras. Sandhawalia et al. [173], Chidlovskii
et al. [171], and Xiang et al. [172] performed different VC
approaches via laser scanners. Chidlovskii used dynamic time
wrapping (DTW) [186] and global alignment kernel (GA)
[187] as classifiers. Xiao et al. [170] designed a street park
monitoring system where vehicles were classified using mobile
laser scanners.

3) LiDAR
In LiDAR-based systems, light detection and ranging sen-

sors record the reflections of the laser beams to recognize
the shape and size of the passing vehicle for VC. LiDAR
has easier usage but worse performance than Radar in snow
and rain. Additionally, they are less expensive than Radar in
terms of production. LiDAR VC systems have high accuracy in
vehicle detection though they mainly suffer from the vehicle
occlusion issue. This technology appeared after RADAR in
the industry and uses laser light pulses instead of radio
waves. Shorter wavelength of LiDAR than RADAR allows the
detection of small objects. Besides, every second the LiDAR
system receives information from a large number of laser
pulses due to its high speed. This implies that data is updated
with higher frequency, thereby more accurate information
is received by the device. A LiDAR system can create a
precise 3D image of a vehicle or other objects by storing
each reflection point of a laser beam. Moreover, as one of
the applicable features in the automotive industry, the LiDAR
receiver is capable of measuring the distance to the detected
object where the reflection time and laser speed are used. As
a result, autonomous vehicles with on-board LiDAR sensors
can scan the environment and avoid collisions.

Researchers in [175] and [63] adopted LiDAR beams for
VC while Asborno et al. [174] concentrated on the truck body
classification by establishing two LiDAR units on the roadside.
Extracted features are fed to the several classifiers such as
SVM, decision tree (DT), naive bayes (NB) and ANN. Lee
and Coifman et al. [63], [175] launched LiDAR systems in
which the driver side of a car which is parked on the roadside
is equipped with two LiDAR sensors to vertically scan the
body of the passing car and extract the required features for
a highly precise VC.

4) Radar
Radar systems use radio waves and perform the classifica-

tion depending on the reflected radio signals from the body
of the vehicles. They are relatively cheap and unlike LiDAR
sensors, radar sensors are more resistant to the inclement
light and weather conditions. On the downside, they are not
generally designed for stop-and-go traffic and represent a less
accurate vehicle body than LiDAR. Raja et al. [183] exploited
the KNN as classifier and analyzed the VC using forward
scattering radar (FSR). Hyun et al. [55] proposed a scheme
for classification of mobile humans and moving vehicles based
on the Doppler spectrum feature. Urazghildiiev et al. [47]
proposed a VC solution based on the vehicle physical profiles
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TABLE III
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Mei et al. [50], Otto et al. [6], Odat et al. [2] 3 7 7 7 7 7
Xiao et al. [170], Chidlovskii et al. [171], Xiang et al. [172], Sandhawalia et al. [173] 7 3 7 7 7 7

Asborno et al. [174], Lee and Coifman et al. [63], [175] 7 7 3 7 7 7
Bernas et al. [176], Kerekes et al. [88], Sliwa et al. [20], [177], Haferkamp et al. [178] 7 7 7 7 3 7

Hyun et al. [55], Chen and Lin et al. [179], Saville et al. [180], Abdullah et al. [46] 7 7 7 3 7 7
Aziz et al. [181], Lee et al. [182], Urazghildiiev et al. [47], Meng et al. [3], Raja et al. [183] 7 7 7 3 7 7

Sardar et al. [184], Won et al. [68], Won, Sahu, and Park et al. [185] 7 7 7 7 7 3

in terms of height and length using a microwave radar sensor.
In a similar approach, Meng et al. [3] benefited from the
Bayesian network and GMM to classify the vehicles using
video and microwave radar sensors for height measurement.
Aziz et al. [181], Lee et al. [182], Abdullah et al. [46]
combined Z-score feature extraction method with NN for VC
using forward scattering radar. Chen and Lin et al. [179] and
Saville et al. [180] also employed radar as a commonly used
method in VC and traffic monitoring.

5) RF Transceivers
When a vehicle crosses the line of sight between an RF

receiver and transmitter installed on opposite road sides, the
propagation of the RF signals is disturbed leading to attenu-
ation and reflection. As a result, the receiver captures the RF
signals that carry distinctive patterns according to the size and
shape of the passing vehicle. Consequently, the vehicle clas-
sification is performed based on these patterns. Haferkamp et
al. [178] utilized the received signal strength indicator (RSSI)
of the attenuated signal as the key input for the classifier
algorithms like SVM and KNN for a very accurate VC. Silwa
et al. [177] used the low-rate wireless personal area networks
(LR-WPANs) with the Institute of Electrical and Electronics
Engineers (IEEE) 802.15.4 standard to classify the passing
vehicles in response to their particular radio fingerprints. It is
comparable to the previous work in terms of RSSI application,
but more accurate in a sense that it adopts three transceivers
on the roadsides. CNN [188], RAF [189] and SVM [190] were
the applied classifiers. In their following research [20], they
exploited a novel approach where signal attenuation patterns
were considered as radio fingerprints for VC. They applied
four machine learning algorithms such as RAF, proximity
forest (PF), SVM and deep Boltzmann tree (DBT) in their
work. Bernas et al. [176] developed a roadside-based system,
in which RSSI analysis from Bluetooth Low Energy (BLE)
beacons was performed using ML algorithms to detect and
determine the vehicles classes.

6) Wi-Fi-LTE Transceivers
Traffic monitoring systems recently aim to utilize Wi-Fi

transceivers to cover a large area as they are scalable and low
cost. VC is performed by using unique patterns of channel

state information (CSI) including spatio-temporal correlations
of amplitude and phase induced by the target vehicle [191].
In a similar work, Sardar et al. [184] availed of PCA and
NB algorithms to classify the vehicles using LTE and CSI
analysis. Won et al. developed a Wi-Fi-based system [68]
and an advanced version of it [185] with sound classification
accuracy.

D. Contact-based Methods

Contact-based methods span a wide spectrum of sensors
including loop detectors, magnetic, seismic and vibration,
pneumatic tube, piezoelectric, fiber optic and strain gauge.
Table IV summarizes the literature reviews on contact-based
VC methods.

1) Magnetic Field: Loop Detectors
Inductive magnetic loop detectors as shown in Fig. 1 are

considered as one of the most prevalent and popular traffic
monitoring systems for VC [192], [193]. They have a long
installation process. Researchers have conducted numerous
works that discuss about the loop detectors for VC which is a
wire coil under the road pavement. When a vehicle passes over
it, a peculiar signal called magnetic profile [194] is produced
depending on the type of the vehicle to perform classification.
Inductive loops make use of a magnetic signature as a feature
to detect and classify the vehicles [41], [193], [195]. Mocholı́-
Salcedo et al. [41] studied the inductive loops in the form of
asymmetrically shaped e.g. rectangular loops for the VC. Loop
detectors are divided into single and dual loop detectors. Sun
et al. [7], [8] also took advantage of inductive loop detectors
and heuristic algorithms in his study on VC.

a) Single Loop Detectors: Single loop detectors are low-
cost. Liu and Sun [196], Lamas-Seco et al. [29], [193],
Coifman et al. [197], Gajda et al. [44], and Meta et al.
[42] researched the use of single loop detectors as the VC
method. Tok et al. [198] combined the passing vehicle’s
magnetic signature with the axle configuration method to
classify vehicles with the similar axle structure using multi-
layer feed forward (MLF) artificial neural network [199]. Jeng
and Chu et al. [200] availed of akin VC system based on
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Fig. 1. Inductive loops.

the evaluation of vehicle’s body signature. Lao et al. [201]
developed an approach to classify vehicles using GMM.

b) Dual Loop Detectors: Dual loop detectors as opposed
to the single loop detectors have higher cost. Additionally, they
can measure information like length, average speed, flow and
occupancy yielding to better classification. Cheevarunothai et
al. [202] adopted the vehicle length for the VC which is known
as the main feature for VC. Wu et al. [43], [53], Wei et al.
[203], and Li et al. [204] employed dual loop detectors for the
VC.

2) Magnetic Field: Magnetic Sensors
Magnetic sensors as shown in Fig. 2 are less sensitive to

noise, Doppler effects and weather conditions, but they require
calibration.

Fig. 2. Magnetic sensor.

a) In-Road Magnetic Sensors: A vehicle that passes the
magnetic sensors induces distortion to the Earth’s magnetic
field [208], [213]. Different vehicles cause distinctive alter-
ation in the magnetic field that are captured by magnetic
sensors. Contrary to the loop detectors, energy efficiency, cost,
size and weight are some of the strengths of the magnetic
sensors.

Balid et al. [70] used the vehicle length metric for VC.
Bottero et al. [58] and Li and Lv [220] devised a WSN of
two magnetic sensors and then performed the VC-based on
the vehicle length and additionally magnetic waveform respec-
tively [58]. Li and Dong et al. [218] used a single magnetic
sensor and applied a minimum number of split-sample (MNS)
and classification and regression tree (CART) models [230]
for VC. Ma et al. [64] proposed a hybrid system consisting
of accelerometers and a wireless magnetic sensor network to
enhance the VC functionality. Xu et al. [59] addressed the
imbalanced data-sets effect of the magnetic sensors for VC.
They used various machine learning (ML) algorithms such as

KNN [231], SVM [232], CNN [233], and BPNN [234] to
classify vehicles. Dong et al. [214] demonstrated that only
one magnetic sensor is capable of a robust VC. Their work
was based on XGBoost classifier [235]. Yang et al. [207] and
Xu et al. [212] proposed a vehicle classification and detection
based on magnetoresistive sensors using the BPNN algorithm.
Liang et al. [206] studied the use of micro ferromagnetic
induction coil sensor via RBFNN. Kerekes et al. [88] evaluated
a VC using an ensemble of methods including magnetic,
acoustic, and RF sensors. They made use of KPCR and radio
fingerprints for a better classification.

b) Roadside Magnetic Sensors: Magnetic sensors are
frequently used in VC systems in the road or on the roadside.
Both solutions share the same mechanism based on the vehi-
cle’s magnetic profile. However, the latter classification system
is designed to mitigate the high installation and maintenance
cost of the in-road-based systems.

Lan et al. [215] used roadside magnetic sensors for VC.
Taghvaeeyan et al. [209] focused on a challenging theme
and developed a magnetic-sensor-based system to classify
vehicles with identical body sizes. Another challenging issue
in VC based on this method arouses especially when traffic
is congested and vehicles are driving slowly and closely
to each other. The vehicle proximity distorts the magnetic
signals enormously. Yang and Lei [67], [210] investigated
this problem from different aspects. Magnetic sensors can
also be combined with other VC methods. [66] proposed a
heterogeneous energy efficient system in which a camera is
turned on in case of a vehicle detection by a magnetic sensor.
Several researchers like Haj Mosa et al. [211], He et al. [217],
Sarcevic et al. [216], Li et al. [219], Yang and Lei et al. [67],
and Taghvaeeyan et al. [209] have conducted their research on
magnetic sensors instead of magnetic loops because they are
cheaper and less complex.

3) Fiber Optic Sensors

Many traffic applications recently tend to use fiber optic
sensors since they are light, small and fairly immune to
electromagnetic interference [236]. Furthermore, they have a
large bandwidth. The weakness is the limited angles range
that Fiber Optic system can sense. Al-Tarawneh et al. [205]
employed fiber bragg grating (FBG) sensors for VC. These
sensors capture the strain signals induced by a passing vehicle
from the road surface.

4) Piezoelectric Sensors

Piezoelectric sensors are embedded under the road surface
across the lanes and are capable of collecting information
regarding traffic counting, speed and axle of the vehicles.
Following the mechanical impacts or vibrations, piezoelectric
sensors convert pressure to the electrical charges. They can
also operate inside a WIM system. Moreover, they are sensitive
to temperature variations and also to surface conditions due
to voltage changes. Piezoelectric sensors are speed and time
independent. Furthermore, they are sensitive to temperature
drifts. Rajab and Al-Kalaa et al. [28], Rajab and Mayeli et
al. [60], and Santoso et al. [221] used piezoelectric sensors to
classify vehicles.
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TABLE IV
SUMMARY OF LITERATURE REVIEWS ON CONTACT-BASED METHODS.
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Al-Tarawneh et al. [205] 7 7 7 7 7 3 3
Yang and Lei et al. [67], Liang et al. [206], Yang et al. [207], Cheung et al. [208],Taghvaeeyan et al. [209] 7 3 7 7 7 7 7
Kaewkamnerd et al. [210], Haj Mosa et al. [211], Xu et al. [212], Markevicius et al.[213], Wang et al. [66] 7 3 7 7 7 7 7

Balid et al. [70], Kerekes et al. [88], Dong et al. [214], Lan et al.[215], Sarcevic et al. [216], Bottero et al. [58] 7 3 7 7 7 7 7
Xu et al. [59], He et al. [217], Li and Dong et al. [218], Li and Dong and Shi et al. [219], Li and Lv et al. [220] 7 3 7 7 7 7 7

Gajda et al. [44], Lao at al. [201], Cheevarunothai et al. [202], Jeng and Chu et al. [194], Meta et al. [42] 3 7 7 7 7 7 7
Coifman et al. [197], Lamas-Seco et al. [29], [193], Mocholı́-Salcedo et al. [41], Jeng and Chu et al. [200] 3 7 7 7 7 7 7

Liu and Sun et al. [196], Sun et al. [7], [8], Tok et al. [198], Li et al. [204], Wei et al. [203], Wu et al. [53], [43] 3 7 7 7 7 7 7
Rajab and Mayeli et al. [60], Santoso et al. [221], Rajab and Al-Kalaa et al. [28] 7 7 7 7 3 7 7

Ma et al. [64], Bajwa et al. [222] 7 3 3 7 7 7 7
Ye et al. [223], Stocker et al. [61], Jin et al. [224] Zhou et al. [225], Du et al. [226], Zhao and Wu et al. [227] 7 7 3 7 7 7 7

Nordback et al. [228] 7 7 7 3 7 7 7
Peters et al. [229] 7 7 7 7 7 7 3

5) Pneumatic tubes
Pneumatic tubes are portable and installed on the road

surface across the lanes as shown in Fig. 3. They are primarily
used for temporary traffic counting and can be extended
to collect data concerning speed and axle of the vehicle.
Pneumatic tubes suffer from low profile and easy deformation.
Moreover, they are moderately suited for VC. Currently, bike
classification and counting avail these tubes in the market.
Nordback et al. [228] worked on pneumatic tubes to categorize
vehicles.

Fig. 3. Pneumatic tube.

6) Strain Gauge
Strain gauge sensors measure the various strain response

of the pavement for the vehicles via PR for VC. They face
challenges concerning sensors adhesion and also compensation
for temperature variations. Al-Tarawneh et al. [205] explored
these sensors as the VC method.

7) Seismic and Vibration
Vibration sensors catch the unique seismic wave-forms

caused by a passing vehicle. Vibration-based sensor systems
perform VC using two underlying features; axle count and
spacing characteristics [222] and seismic signals induced by a
passing vehicle that includes unique characteristics [61], [224].
These sensors have good detection range but they require
careful calibration.

Bajwa et al. [222] utilized magnetic sensors for vehicle
detection purpose incorporated with vibration sensors used for
axle count and spacing as the key feature for VC method. Zhao
and Wu et al. [227] proposed the same technique for VC as
[222], but with further properties to achieve more efficient
classification. Stocker et al. [61] using MLP [237] and Jin et al.
[224] analyzed the specific seismic wave forms of the passing
vehicles for VC. Du et al. [226] and Zhou et al. [225] applied
seismic sensors for the localization and identification of the
vehicle classes. Ye et al. [223] deployed vibration sensors in
the pavement and classified the vehicles using ANN and K-
means clustering (KMC).

E. Off-Road-based Methods

Off-road methods cope with the classification techniques
that occur off the roads such as using different aerial platforms
or via GPS receivers. Literature discussing off-road-based
methods are cited in Table V.

1) Aerial Platforms
Although aerial images from UAVs and satellites cover

large road segments and have simpler data acquisition, they
can hardly detect a vehicle due to a wide range of objects.
Furthermore, they can not provide high resolution images
for VC. Cao et al. [72] worked on vehicle detection and
classification of low altitude airborne videos. Audebert et al.
[163] employed aerial images for VC using different CNN
models such as LeNet [241], AlexNet [233] and VGG-16
[242] and image segmentation techniques. Li et al. [164]
also investigated the application of aerial images for VC. Liu
and Mattyus et al. [238] employed HOG features [243] and
investigated an aerial platform to classify a few types of the
vehicles that are simply distinguishable. In addition, Tan et
al. [239] exploited an aircraft to collect images for VC using
the inception model [244]. Kanistras et al. [83], Puri et al.
[82] and Tang and Zhou et al. [71] used airborne imagery for
classification. Moreover, Ma et al. [245] introduced a vehicle
detection mechanism for aerial images based on rotation-
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TABLE V
SUMMARY OF LITERATURE REVIEWS ON OFF-ROAD-BASED METHODS.

Literature Aerial Platforms GPS-based

Liu and Mattyus et al. [238], Audebert et al. [163] Li et al. [164], Kanistras et al. [83], Puri et al. [82] 3 7
Cao et al. [72], Tan et al. [239], Tang and Zhou et al. [71] 3 7

Basyoni et al. [240], Simoncini et al. [26], Sun and Ban et al. [30] 7 3

invariant descriptors and cascade forest. They could reach
accurate, robust results for VC. Aerial images are prevalent in-
formation source due to their extensive coverage. Vision-based
methods are the dominant technology for aerial platforms.

2) GPS-based Methods
GPS on board of the vehicle has challenging technical,

privacy, security and institutional issues while Smartphones
equipped with different sensors are not reliable sources as
the provided direction in relation to the vehicle’s direction
is variable all the time. Basyoni et al. [240] focused on VC
based on data from cellular phones using genetic fuzzy (GF)
algorithms. Simoncini et al. [26] adopted GPS to recognize
and categorize vehicles on the road by applying a recurrent
neural network (RNN). Sun and Ban et al. [30] proposed a
low cost procedure to extract GPS data from mobile sensors
in an urban traffic for the VC.

F. Hybrid Methods

Hybrid methods include WIM, WSN and VANETs that ben-
efit from various technologies for VC. Table VI summarizes
the literature addressed hybrid VC Methods.

1) WIM
Weight-In-Motion (WIM) systems play an important role

in traffic engineering in terms of data aggregation and VC.
Modeling and estimation are the components of the WIM
architecture. A WIM system consists of multiple sensors, com-
puters and digital cameras that are planted on a bridge structure
and measures the dynamic axle load of the vehicle to compute
its weight data [229] as shown in Fig. 4. WIM employs
several techniques to classify vehicles accurately [246], [247].
They are safe and efficiently collect data. WIM limitation is
that the measurement is based on the fixed location sensors.
Besides, it has low weight accuracy estimation and also it is
expensive which is not suitable for local roads. Hernandez et
al. [248] consolidated loop detectors with weight-in-motion
sensors using various neural network (NN) algorithms such as
NB, SVM, DT, MLF [249], and also PNN [250] and multiple
classifier systems (MCS) [251] for VC. Won et al. [84] and
Shokravi et al. [85] included WIM in their survey. Peters et
al. [229], Roh et al. [246] and Romanoschi et al. [247] also
developed their systems based on this method.

2) WSN
VC methods based on wireless sensor networks (WSN)

are basically integrated with other methods and to a great
extent with magnetic and vibration sensors like magnetometer
and accelerometer as cited in [58], [220], [222], [90], [64],
[210]. Sometimes, they are incorporated with sound sensors
as referred in [90]. Won et al. [84] implicitly addressed WSN
in their review for VC.

Fig. 4. Weight-in-Motion (WIM) system.

3) VANETs-Based Methods
Vehicular ad-hoc networks (VANETs) promise to be one the

most revolutionary technologies in the last decade, so that a
large number of use cases in transportation and traffic domain
can profit from them [257]. A VANET-based system consists
of roadside units (RSUs) and vehicles with mounted onboard
units (OBUs), antennas, GPS and other sensors [258]. An OBU
is a telematics computing device installed in a vehicle and it
is a combination of various communication interface modules
[259]. Vehicular connectivity is provided by the infrastruc-
ture along the roads called RSUs [260]. Vehicles can use
dedicated short-range communication (DSRC) to periodically
exchange traffic information [261]. VANETs have two variants
as depicted in Fig. 5: vehicle-to-vehicle (V2V) that concerns
communication between vehicles, and vehicle-to-infrastructure
(V2I) that deals with communication between the vehicles and
an RSU.

In the recent years, VANETs have drawn intensive atten-
tion. They can collect a wide range of information in terms
of mobility and physical features such as speed, traveling
lane, acceleration, deceleration, position, direction as well
as height, type, length, and width respectively. Within the
scope of VANETs, most of the papers concern using mobility
and physical information of the vehicles for a particular
application. Among them, few papers have focused on VC
area. For example, Shokravi et al. [85] included VANETs in
their survey as an emerging VC method. Researchers have
addressed VANET-based VC methods from the kinematic and
physical information perspective as follows.

a) Mobility Parameters of Vehicles – General Use Cases:
VANETs benefit from the GPS receivers to localize and gain
mobility parameters of vehicles containing traveling lane and
position [262] as well as deceleration, acceleration and speed
[263], [30], [264]. Shao et al. [265] exploited a cooperative
vehicular system in highway scenarios, in which various
mobility information such as acceleration, deceleration in
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TABLE VI
SUMMARY OF LITERATURE REVIEWS ON HYBRID METHODS.

Literature VANETs WIM WSN

Sengkey et al. [252], [253], Mitra and Mondal et al. [254], Alhammad et al. [255], Jalooli et al. [256] 3 7 7
Peters et al. [229], Roh et al. [246], Romanoschi et al. [247], Hernandez et al. [248] 7 3 7

Bottero et al. [58], Ma et al. [64], Li and Lv et al. [220] 7 7 3
Bajwa et al. [222], Kaewkamnerd et al. [210], Ntalampiras et al. [90] 7 7 3

Fig. 5. Communication in VANETs.

addition to other parameters were used in order to achieve an
accurate localization in a cluster. Padron et al. [266] deployed
a cooperative system based on VANETs to broadcast the
mobility information including direction, position and speed.
It integrated a wireless communication interface, GPS receiver
and a real time clock. Nayak et al. [267] introduced a VANET
algorithm that observed vehicle lane changes using directional
indicators plus speed limit in each traveling lane so that speed
violations were detected rapidly. In this position-based system,
vehicular communication was performed in a secure manner.
Padron et al. [88] and Preet Singh et al. [157] employed
mobility information like speed, direction and position for
density estimation through beacon broadcasting.

b) Physical Parameters of Vehicles – VC Use Cases:
In the literature, many VC methods based on diverse kinds
of sensors deal with the detection of the physical parameters
of the vehicles. However, these sensors encounter some con-
straints including short coverage area with limited information
accuracy or devoted for proprietary routes [254]. Vision-based
VC methods are also prone to occlusions caused by trees,
vehicles, inclement weather conditions like precipitation, snow
or light changes. Therefore, the VC might be not so reliable
due to the poor image quality [121].

A vehicle identification number (VIN) is a particular iden-
tifier that determines some vehicle’s features such as the type,
brand and model [268]. It serves as the vehicle’s fingerprint
and comprises 17 characters distributed in three sections
namely vehicle identifier section (VIS), vehicle descriptor
section (VDS), and world manufacturer identifier (WMI).
Based on this method, in [254], Mitra and Mondal used
VANETs to track, identify and classify vehicles via vehicle
identification number. Alhammad et al. [255] proposed an
intelligent street parking lot system where drivers sent their
reservation requests comprising various vehicle’s physical data
such as type, size, registration number as well as drivers
information using VANETs. On the other hand, Jalooli et al.

[256] benefited from VANETs to devise a highway speed limit
advisory system based on some road safety measures such as
weather and traffic conditions as well as vehicle’s size and
type. Finally, Sengkey et al. [252], [253] utilized VANETs-
based vehicle classification to assess traffic density. In their
proposed model, packets disseminated vehicle types and ids
to the neighboring vehicles. Therefore, each vehicle received
packets from different classes of vehicles in the vicinity and
could estimate the density on the road. Besides, they could
figure out the traffic congestion based on the density and also
the road capacity threshold.

c) Advantages: VC using VANETs has some fascinating
advantages over existing methods as mentioned below.

Firstly, as discussed before, VANETs can provide all the
real-time and global kinematic and physical vehicular infor-
mation in a dependable way. Secondly, VANETs can take
advantage of heterogeneous classes of vehicles incurring an
added value and better classification in contrast to most of
the traditional VC methods that adopt only a limited number
of vehicle classes. Furthermore, the classification in VANETs
is performed without the need for generic time and resource
demanding soft computing techniques including ML, NN or
other available features and models. Every vehicle broadcasts
its mobility and physical information (especially its vehicle
class) to the surrounding vehicles and infrastructure for further
processing. This ability results in a very accurate VC through
VANETs with less computational overhead compared to the
conventional methods that suffer from different range of
classification errors. Classification of vehicles via VANETs
bears also other benefits. For example, some authors have
proposed to use VC so that it can serve other purposes.
For instance, they can calculate vehicular density based on
different classes of vehicles which is very useful for traffic
management. In addition, vehicles on the road have distinctive
behaviours such as speed, braking distance, stopping distance,
etc. which needs to be taken into account when identifying
a hazardous situation. Hence, a sustainable VC with respect
to the different vehicles characteristics is very beneficial for
traffic safety. Last but not least, as opposed to the traditional
methods, VC is more resilient to some negative influences
like vehicle occlusion, obstacles, weather conditions, and the
number of lanes that can significantly impact the VC accuracy.

d) Challenges: Recently, the emerging V2X technology
appears to be able to easily classify vehicles by sending
traffic information including the vehicle’s class via broadcast
safety messages to the classification system. This dramatically
increases the classification accuracy. However, to reach a
concrete result, we confront some issues as mentioned below.

GPS receivers of vehicles in a VANET do not perform well
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for the localization purpose due to their limited accuracy which
is around 20 to 30 meters and also low functionality in high
speed and urban areas with congestion and no direct links to
satellites. For the sake of a more accurate localization, there
is the demand to couple other techniques like image/video
localization [269], dead reckoning [270], [271] and cellular
localization [272], [273] with GPS information. Data fusion
methods can help merge all these information [274], [275],
[276], [277]. Wisitpongphan et al. [278] proposed an algorithm
to improve the precision of the vehicle’s localization in a
VANET, while Boeira et al. [279] used 5G technology for
positioning of the nodes. Time synchronization among all V2X
nodes is also required for safety for the road users [223].
Basically, this is carried out by GPS receivers. Nonetheless,
other alternatives should undertake this responsibility in case
of unavailable or poor GPS signal [223].

Reliable data transmission requires a reliable communica-
tion protocol. Communication efficiency is another challenge
which is greatly affected by high speed and congestion. High
speed can lead to fast obsolescence of the position information
while traffic congestion results in a broadcast storm [280]
and in losing seamless connectivity. In broadcast storms, a
redundant number of broadcast beacons causes collisions in
the data link layer. The broadcast storm problem in VANETs
was analyzed by Wisitpongphan et al. [278] considering packet
loss and delay. He suggested a mechanism to achieve a trade-
off between delay and packet loss. Alwan et al. [281] evaluated
the beaconing frequency variation based on real-time vehicles
positioning and proposed a scheme to increase the perfor-
mance of the position-based routing in VANETs. In addition,
authors in [282] evaluated the communication performance
of cooperative awareness messages (CAM) standardized by
European telecommunication standard institute (ETSI) using
traffic jams and platooning mobility scenarios. The results
showed a decline in CAM functionality that required to be
improved. In a similar approach, in [283] researchers examined
the ETSI CAM at curvy roads and realized that dissemination
performance decreased. Other challenges are range adaption
and interference, that must be taken into consideration.

Both communication between vehicles and infrastructure
(V2I) and directly between vehicles (V2V) have pitfalls and
advantages. In the centralized approach, a road side unit
(RSU) is the single point of failure that can jeopardize the
reliability. Moreover, it is less scalable than the distributed
approach [223]. On the other hand, the deployment of RSUs
can centralize the information for the classification system,
reduce excessive computation overhead, and guarantee seam-
less connectivity even in non-line-of-sight (NLOS) situations.
Furthermore, although V2V communication incurs trivial cost,
V2I communication requires maintenance and installation cost
for deploying RSUs. The integration of vehicle to infrastruc-
ture (V2I) and vehicle to vehicle (V2V) communications bear
some exceptional advantages as follows: [284]

• Sound information dissemination and fast packet delivery
for VANETs using powerful antennas,

• Plausible deployment cost,
• Short and long range communications coverage,
• Topology partitioning prevention due to high mobility,

• Resolving broadcast storms problems in dense areas
[285].

Furthermore, it provides interoperability with heterogeneous
solutions like Wi-Fi, cellular networks, WiMAX, and visible
light communication (VLC). The notion of ubiquitous ap-
proaches have some strengths such as reducing packet loss due
to line of sight (LOS) and broadcast storms and also provision
of reliability, higher data rate and illumination.

IV. SOFT COMPUTING TECHNIQUES

Soft computing plays a significant role in VC. Wide range
of algorithms in terms of ML and NN contribute to VC
systems. Besides, VC benefits from numerous features, models
and other classifiers that significantly increase the classifi-
cation accuracy. We have classified all the software-based
VC techniques in a systematic way in three tables based on
NN, ML and other solutions. Each technique serves various
purposes based on the application area for VC. They comprise
classification, training, segmentation, image/PR and feature
extraction. Furthermore, corresponding literature using these
soft computing methods have been distributed in the tables
accordingly. Bayesian networks (BNs) [3], [204], [151], [149]
as a widespread method for the data fusion are used when
multiple sensors are involved for the detection and classifica-
tion of the vehicles. The three tables list the most frequently
used soft computing techniques in VC.

In addition to the typical and also aforementioned NN
algorithms, VC take advantage of many other NN-based clas-
sifiers, such as random neural networks (RANN), soft radial
basis cellular neural network (SRBCNN), deep convolutional
neural network (DCNN), and deep neural network (DNN).
Table VII shows the divers range of NN techniques used in
VC along with the related literature and application areas.
The application areas of NN techniques are divided into two
groups namely Feature Extraction and Classification, PR and
Training. Totally, 16 types of NN algorithms were used for
VC such that only three of them dealt with feature extrac-
tion application. In total, 47 publications employed different
NN algorithms to classify vehicles such that 17 publications
availed feature extraction. The table shows that CNN was
the leader of NN algorithm from the usage perspective in
VC systems. 15 articles utilized CNN for feature extraction.
Moreover, the sum of MLP, MLF and ANN algorithms proved
to become the second most popular NN algorithms by 9 related
publications for classification, PR or training. Additionally, 7
papers exploited BPNN for the same application areas as the
three mentioned techniques.

Features, models and other methods including bag-of-visual
words (BOVWs), discrete Fourier transform (DFT), recur-
sive segmentation and convex hull (RSCH), etc. also hugely
contribute to VC. Table VIII demonstrates the literature that
used various types of features, models and other techniques in
VC in different application domains. The results describe that
segmentation, image/PR, feature extraction and classification
contributed to the application types of VC. 61 articles were
mentioned in this category that benefited from 33 distinctive
features, models and other methods. Among 23 publications
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TABLE VII
NEURAL NETWORK ALGORITHMS FOR VEHICLE CLASSIFICATION.

Literature NN Algorithms Application

[59], [207], [42], [138], [212], [27], [10] BPNN Classification, PR, Training
[26] RNN Classification, PR, Training

[211] SRBCNN Classification, PR, Training
[156] RANN Classification, PR, Training
[148] FNN Classification, PR, Training

[155], [206], [10] RBFNN Classification, PR, Training
[155], [146], [198], [248], [61], [223], [86], [87], [65] MLP, MLF, ANN Classification, PR, Training

[160], [248] PNN Classification, PR, Training
[163], [239] AlexNet Classification, PR, Training
[163], [12] LeNet Classification, PR, Training

[163] VGG-16 Classification, PR, Training
[59], [151], [224], [96], [93], [68], [98], [105], [102], [104], [101], [163], [239], [12], [5] CNN Feature Extraction

[96] DCNN Feature Extraction
[92] DNN Feature Extraction

TABLE VIII
FEATURES, MODELS AND OTHER METHODS FOR VEHICLE CLASSIFICATION.

Literature Features, models and other methods Application

[248] MCS Classification
[107] Regression Model Classification

[152], [73], [153], [106], [201] GMM Segmentation
[152] Sparse Coding Segmentation

[4], [19], [86], [87] BGS Segmentation
[151], [149] BN Segmentation

[42], [159], [183], [27], [184] PCA Segmentation
[42], [193] DFT Segmentation

[73] Shadow Removal Segmentation
[107] Image Warping Segmentation

[102], [139] RSCH, PE-CH Segmentation
[239] Inception Image and PR
[100] FCM Image and PR

[238], [72], [97], [83], [33] HOG Image and PR
[146] Viola-Jones Image and PR
[146] Invariant moments Image and PR
[12] Haar-like Image and PR

[34], [35], [140] VMMR Image and PR
[35] VTR and VMR Image and PR

[97], [94] Shape-based Feature Extraction
[126], [83] Gabor Filter Feature Extraction

[154] Part-based Feature Extraction
[125], [94] Spatio-Temporal Feature Extraction

[156] BOVWs Feature Extraction
[153], [133], [132], [114], [33] SIFT Feature Extraction

[134], [131], [157] SURF Feature Extraction
[240] GF Feature Extraction

[4] Blob Detection Feature Extraction
[46] Z-Score Feature Extraction

[38], [169] Edge Detection Feature Extraction
[137] ORB Feature Extraction

that addressed segmentation as their VC application, GMM
and PCA methods each with 5 and BGS with 4 publications
were the most interesting techniques. With respect to the
segmentation part, 10 types of features and models were
involved. With regard to image and PR, the HOG model with
5 and VMMR with 3 out of 14 publications showed to be
more prevalent for this sort of VC application. Besides, 9
kinds of features and models were discussed in this application
area. In terms of feature extraction application, 12 types of
models and features participated in this section. SIFT was
the most commonly used feature extraction method holding
5 out of 22 corresponding publications. Further, SURF with 3
related articles possessed the second favorite soft computing

technique. Lastly, classification had the smallest share of the
applications by only two articles that worked on two different
features/models.

Akin to ML algorithms, specifically, apart from prevalent
ML algorithms, VC benefits from many other ML-based
classifiers such as histogram intersection-based kernel (HIBK)
or genetic algorithm-extreme learning machine (GA-ELM).
Table IX lists the literature that availed ML techniques for VC
in different application fields. Comparably, this division with
70 papers held the highest number of papers in soft computing
techniques. Additionally, 17 different ML algorithms were
introduced here. ML application domains were congruent with
NN ones. The table shows that nearly all the ML algorithms
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TABLE IX
MACHINE LEARNING ALGORITHMS FOR VEHICLE CLASSIFICATION.

Literature ML Algorithm Application

[51] GA-ELM Feature Extraction
[155], [180], [150], [200], [59], [94], [97], [183], [178], [65], [83] KNN Feature Extraction

[248], [70], [174], [136] DT Classification, PR, Training
[59], [83], [70], [73], [97], [177], [178], [248], [91], [174], [126], [121], [106], [96], [24], [219],

[135], [215], [152], [154], [124], [128], [32], [20], [157], [72], [155] SVM Classification, PR, Training

[155], [248], [70], [2], [174], [184] NB Classification, PR, Training
[218] CART Classification, PR, Training
[218] MNS Classification, PR, Training
[214] XGBoost Classification, PR, Training

[155], [177], [33], [20], [157] RAF Classification, PR, Training
[171] DTW Classification, PR, Training

[125], [5], [171] GA Classification, PR, Training
[104], [95], [97] GB Classification, PR, Training

[161] HIBK Classification, PR, Training
[20] PF Classification, PR, Training
[20] DBT Classification, PR, Training

[223] KMC Classification, PR, Training
[158], [88] KPCR Classification, PR, Training

targeted classification, PR or training applications by 58 arti-
cles where algorithms for feature extraction formed a smaller
part of the literature with presenting two types of algorithms
that were discussed in 12 papers. In addition, it indicates that
the majority of researchers, 27 papers were inclined to use
SVM for VC while KNN with 11 publication appeared to be
the second most favorite ML algorithm. VC took advantage
of SVM for classification, PR or training whereas KNN was
applied to feature extraction.

Overall, it is concluded that researchers tend to prefer
ML algorithms over other techniques. SVM for classification,
PR and training followed by CNN and KNN for feature
extraction were recognized to be the most used techniques
in the investigated literature.

V. DISCUSSION

VC has been improved significantly in the recent years in
terms of accuracy and cost due to advancements in sensing,
soft computing techniques and various types of communication
technologies. However, some issues are still open for discus-
sion and more research that we aim to address in this section.

Firstly, in order to evaluate the performance of VC systems
in a fair and more effective manner, it is imperative to have a
common, universal and standard data set containing the certain
vehicle types. As a result, this enables the transport sector,
users or developers to opt for the most suitable VC system.
Nowadays, VC systems are benefiting from distinct vehicle
types that makes it extremely difficult to have an unbiased
comparison between them. besides, it has been investigated
that the more vehicle types there are, the lower VC accuracy
is derived.

Performance metrics is another significant challenge that
VC systems need to comply to. THe majority of VC systems
concentrate only on the evaluation of accuracy and overlook
other important metrics including resistance to inclement
weather conditions, overlapping vehicular positions, noise vul-
nerability, installation or maintenance costs, and operational

sustainability. For instance, many intrusive VC systems pro-
vide high accuracy since they are in contact with the vehicles
though they are so expensive with respect to installation as
well as maintenance. Likewise, vision-based systems undergo
privacy concerns despite having high classification precision.

Additionally, to analyze the performance and compare VC
systems rightfully, it is required to take into consideration the
empirical conditions as a significant factor in VC. Weather
conditions, lane numbers or obstacles are some examples
of the environmental issues that can affect the classification
results. Weather conditions highly influence specific sensors
such as Wi-Fi, LiDAR, camera, RF. Moreover, infrared sensors
and acoustic sensors are affected by the number of lanes caus-
ing overlapping vehicles and environmental noise respectively.
Therefore, there is a necessity to develop a global standard for
the experimental setup in order to address such a problem.

A large number of VC systems rely on ML methods. A
tremendous amount of information is required to be gathered
for training and building an efficient classification model
which results in high accuracy VC. Besides, this is a very time-
consuming process which demands huge efforts to achieve
reliable data. In the future, it is suggested to develop self-
learning VC systems so that classification models can be
trained and enhanced automatically and constantly.

Vehicle occlusion is known to be one of the serious chal-
lenges for VC specifically for non-intrusive roadside sensors
such as LiDAR, Wi-Fi, magnetic sensors, Radar, and RF by
causing disruption in their operation and incurring inaccuracies
in classifying the overlapping vehicles. A feasible solution is to
employ non-intrusive sensors which are located above the road
leading to a more effective VC system. Sensors like LiDAR
can be installed in various heights above each lane of the road
to resolve the interruptions due to the occlusion dilemma.

It is proved that we can obtain a high accuracy in classifi-
cation. But gaining the perfect VC with 100 percent accuracy
is yet a challenge to the researchers particularly when we
are dealing with numerous types of vehicles. One of the
underlying reasons for such a failure is that most of the
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TABLE X
VEHICLE CLASSIFICATION TECHNOLOGY ROADMAP.

Technology Maturity Deployed Since

Magnetic Sensor Commercialized 1830s
UAV Commercialized 1840s

Seismic and Vibration Sensors Commercialized 1850s
Infrared / RF Transceiver / Pneumatic Tube Commercialized 1920s

Ultrasonic / Inductive Loop / Radar / Strain Gauge Commercialized 1930s
Video-Images Commercialized 1940s

Piezoelectric Sensor / Satellite / WIM Commercialized 1950s
WSN Under Development 1950s

Laser Scanner / LiDAR / Fiber Optic Sensor Commercialized 1960s
GPS Sensor Commercialized 1970s

Wi-Fi Transceiver Commercialized 1980s
VANET / LTE Transceiver Under Development 2000s

approaches depend on a specific kind of sensor for VC. On
the other hand, there exist scant multi-methodical methods that
exploit hybrid and collaborative solutions with even various
deployment strategies to consolidate the strength of various
kinds of sensors, rectify their drawbacks and increase the VC
accuracy. The combination of heterogeneous roadside and in-
road sensors, WIM, VANETs and WSN lie in this category.
For example, for the sake of energy efficiency, a surveillance
camera can be activated once the vehicle is detected by a low-
energy sensor. Similarly, a camera can start monitoring when
the light is adequate while infrared sensors can function at
night. Hence, integration of different VC systems seems to be
very useful for an optimal classification.

The emergence of VANETs has revolutionized VC systems.
In the near future, all road users including vehicles will
be equipped with this technology enabling them to forward
the vehicle class data using vehicular communication to the
VC system. This property makes agencies to perform VC
easier with higher accuracy. More importantly, users can
utilize VANETs-based VC as they are capable of providing all
physical and mobility information of the vehicles globally and
in a real-time manner as opposed to other VC methods. Our
current literature review depicts that more efforts are desired
to leverage the application of VANETs in the market. VANETs
can produce near 100 percent VC accuracy compared to the
traditional methods. Nonetheless, as previously mentioned,
an important challenge is to guarantee solid communication
between vehicles and also with the infrastructure so that
messages can be transmitted in a secure and dependable way.
Other factors that matter for seamless connectivity are inter-
ference decline, range adaptation, and usage of heterogeneous
technologies like cellular, Wi-Fi, etc.

Our review covers a broad range of mature technologies
for VC such as seismic or magnetic sensors that are already
commercialized. On the other hand, some methods including
WSN, VANETs or LTE transceivers are still developing and
require more studies to reach a full readiness level. Table
X summarizes the technology roadmap of different kinds of
VC technologies. Pros and cons of all methods were priorly
mentioned in the related parts.

VI. CONCLUSION

Over the past decade, we have beheld the development
of VC systems due to the tremendous advancements in soft
computing methods, wireless communications and sensing
technologies. In this paper, we presented a pervasive taxonomy
of VC technologies in five major categories of intrusive, non-
intrusive, off-road, hybrid and manual approaches. It was
realized that conventional methods such as remote sensing,
vision, sound and contact-based form the biggest part of VC
systems. Comparatively, other approaches like aerial, GPS-
based and multi-methodological have drawn less attention.
Among all VC methods, video images are the most favorite
and widespread solution for researchers.

We investigated the diverse mobility and physical param-
eters that can be retrieved using each method. As opposed
to the other methods, it was indicated that VANETs are
the most ubiquitous approach by providing all the physical
and mobility vehicular information. Furthermore, VANETs
demonstrated that they can provide reliable VC due to their
real-time data compilation and also global traffic information
access. However, in some VANETs circumstances, we might
encounter some issues such as communication deficiency that
can degrade VC performance and should be taken into account.
Subsequent to VANETs, WSN and WIM as hybrid methods
and pneumatic tubes in the class of contact-based methods
manifested to be able to extract the most kinematic and
physical information for VC.

This paper tried to review the most commonly used VC sys-
tems in a systematic way. Strengths, pitfalls and methodologies
of the VC methods were discussed. Finally, we conducted a
comprehensive study on various soft computing techniques in
the literature for VC. These methods containing ML and NN
algorithms as well as features and models can enormously
alleviate the performance of VC. We distinguished them into
distinct groups based on the specific application domain to
better comprehend the correct usage of the technique in
classifying vehicles. ML and NN algorithms incorporated the
highest number of articles in VC respectively. SVM exhibited
to be by far the most customary algorithm among all soft
computing technique for VC.
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