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Summary 

Background 

Pandemic management includes a variety of control measures, such as social distancing, testing/quarantining and 

vaccination applied to a population where the virus is circulating. The COVID-19 (SARS-CoV-2) pandemic is 

mitigated by several non-pharmaceutical interventions, but it is hard to predict which of these regulations are the 

most effective for a given population. 

Methods 

We developed a computationally effective and scalable, agent-based microsimulation framework. This unified 

framework was fitted to realistic data to enable us to test control measures (closures, quarantining, testing, 

vaccination) in multiple infection waves caused by the spread of a new virus variant in a city-sized societal 

environment. Our framework is capable of simulating nine billion agent-steps per minute, allowing us to model 

interactions in populations with up to 90 million individuals. 

Findings 

We show that vaccination strategies prioritising occupational risk groups minimise the number of infections but 

allow higher mortality while prioritising vulnerable groups minimises mortality but implies increased infection 

rate. We also found that intensive vaccination and non-pharmaceutical interventions can substantially suppress the 

spread of the virus, while low levels of vaccination and premature reopening may easily revert the epidemic to an 

uncontrolled state. 

Interpretation 

Our analysis highlights that while vaccination protects the elderly from COVID-19, a large percentage of children 

will contract and spread the virus, and we also show the benefits and limitations of various quarantine and testing 

scenarios. 

Funding 

This work was carried out within the framework of the Hungarian National  Development,  Research,  and  

Innovation  (NKFIH) Fund 2020-2.1.1-ED-2020-00003. 
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Research in context 

Evidence before this study 

We still do not have an effective medical treatment against COVID-19 (SARS-CoV-2), thus the majority of the 

efforts to stop the pandemic focuses on non-pharmaceutical interventions. Each country came up with a local 

solution to stop the spread of the virus by increased testing, quarantining, lock-down of various events and 

institutions or early vaccination. There is no clear way how these interventions can be compared, and it is especially 

challenging to predict how combinations of interventions could influence the pandemic. Various mathematical 

modelling approaches helped decision-makers to foresee the effects of their decisions. Most of these models rely 

on classical, deterministic compartmental “SEIR” models, which can be solved easily but cannot take into account 

spatial effects and most non-pharmaceutical interventions affect the same parameters, so there is no way to analyse 

their separate or joint effects. Agent-based microsimulations are harder to solve but can consider far more details. 

Several models were developed on these lines focusing on questions about ideal vaccination, lock-down or other 

specific problems, but none of these studies evaluated and compared the individual and mixed effects of a wide 

variety of control measures. 

Added-value of this study 

Here we present PanSim, a framework where we introduce a detailed infection event simulation step and the 

possibility to control specific workplaces individually (schools, hospitals, etc.), test various vaccination, testing 

and quarantine scenarios while considering preconditions, age, sex, residence and workplace of individuals and 

mutant viruses with various infectivity. The level of details and granularity of simulations allow our work to 

evaluate this wide range of scenarios and control measures accurately and directly compare them with one another 

to provide quantitative evidence to support decision-makers. Analysis of our simulations also provides emergent 

results on the risks children and non-vaccinated individuals face.  

Implications of all the available evidence 

The agent-based microsimulation framework allows us to evaluate the risk and possible consequences of particular 

interventions precisely. Due to the outstanding efficiency of the computations, it is possible to apply scenario-

based analysis and control design methods which require a high number of simulation runs to obtain results on a 

given confidence level. This will enable us to design and quantitatively assess control measures in case of new 

waves of COVID-19 or new pandemic outbreaks. 
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Introduction 

Epidemic management includes a variety of control measures ranging from non-pharmaceutical interventions such 

as social distancing, testing and quarantining1,2, to vaccination3, hospitalisation, and beyond4–7. Typically, control 

measures are differentially applied to various groups (compartments) of the society and decision-makers often 

need to refocus their intervention strategies as new infection hotspots or new virus variants emerge8,9. 

Mathematical modelling is now increasingly used to inform decision-makers10,11. In these models, disease 

progression is often described by variants of the now classical SEIR approach where individuals move between 

disease-related compartments (such as susceptible, exposed, infected, and removed12). A key element is the 

probability of person-to-person disease transmission upon adequate contact, which defines the likelihood of a 

person’s transition from the susceptible to the exposed compartment. This is often based on predefined values, but 

it can also be calculated from environmental data, using formulas of varying complexity13–15. Traditionally, the 

resulting models are then run with ordinary differential equations, which are deterministic and can provide crude 

estimates on how interventions may affect the outcome of the epidemic. Differential equations can be relatively 

easily fitted to pandemic data16–20 but have difficulty dealing with population heterogeneity and spatial context at 

sufficient resolution, especially as intervention strategies often change. For instance, differential equation driven 

analysis of vaccination strategies or other intervention policies is feasible and widely used19,20, but the number of 

compartments is limited and predominantly organised by (only a couple of parameters, e.g.) age or serostatus. 

Another strategy is provided by stochastic, agent-based models (ABMs), where agents, corresponding to 

individuals, move and transmit the infection among each other.  ABMs can easily handle subgroups, complex 

scenarios and also provide indications regarding the geographic spread of the pandemics. However, they are 

compute-intensive as they rely on repetitions of many elementary steps, and also, a large amount of external data 

is required for their parameterisation5,21–24. There is a clear need for compute-efficient fine-grained ABM 

implementations to support decision-makers in planning and scheduling effective interventions such as vaccination 

policies and safe reopening schemes. 

Methods 

Here we present a modelling approach using the notions of control theory wherein a detailed, agent-based, 

microsimulation description was built for a mid-sized Hungarian town using realistic statistics on the population 

as well as on its daily movements. We used this Pandemics Simulator model (for brevity PanSim) to simulate the 

COVID-19 (SARS-CoV-2) pandemics starting from the onset of the second wave in the Autumn of 2020 and 

continuing through the Spring of 2021 until September 2021. During this time, various lock-down and opening 

measures were implemented, a new, fast-spreading virus variant appeared, and vaccination programs were started. 

All these events affected the dynamics of the pandemic and have been incorporated into the model for detailed 

analysis. A special focus of the simulations was the design of vaccination and reopening strategies used to inform 

decision-makers responsible for practical implementations. 

Although the presented results are focused on a single town, PanSim can be applied to larger populations, and in 

fact, our results were used to assist Hungarian decision-makers in designing control measures. The performance 

of the core simulator enables the expansion of the model to a far larger population sizes. The limiting factor is the 

availability of uniformised data on population movements, but data from mobile network providers and services 

like Google Maps could overcome this barrier. 

Modelling Framework 

In our framework, agents represent people who live in a virtual city and follow daily routines consisting of regular 

activities such as going to work or school, resting during weekends, as well as stochastically selected elements 

such as shopping, entertainment, etc. Such an ensemble of agents is a typical complex, stochastic system25 where 

agents pass infection randomly to each other, and pandemic is a state of the system with an infection level above 

a threshold. Interventions, such as lock-downs, quarantines target specific parts of the system intending to bring 
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the system back to a “healthy” regime best described as an unrestricted state with no or low infection levels. This 

setup is analogous to controlling dynamical systems, a problem that occurs in many fields26. From this perspective, 

an intervention is a control measure (input) characterised by a few parameters (constraints), such as target (scope), 

speed, and resource requirements (costs). For instance, a lock-down measure can target a geographic region, or an 

age-group, or a type of business (say restaurants) or a given time of the day. A particular feature of pandemic 

management is that a series of interventions or scenarios are applied. For example, vaccination programs or 

reopening plans are complex scenarios wherein simple interventions are carried out according to a given schedule 

in time and space. Precisely, in the presented micro-level model, 179,500 agents follow the statistical behaviour 

of the population of the Hungarian town of Szeged. At the heart of the model is an infection event, where virus 

transmission occurs with a probability depending on the proportion of infectious individuals present at a given 

location such as a home, classroom, or hospital ward22.  A fast-spreading virus variant – mastered on the example 

of B.1.1.7 that appeared in late 202027,28 – was considered to increase transmission probability by a factor of 1·5 

to 1·929,30. Disease progression was considered to follow a SEIRD-like model9 in which an individual can be in a 

susceptible, exposed, infected, recovered, or deceased state (see supplement for details). Vaccination was included 

in the model as a reduction in individuals’ probability of contracting the virus. It was reduced to 52% and 96% 

after 12- and 28-days post-vaccination31, respectively. Before the simulation, PanSim was provided with input data 

such as the number, age-, sex- distribution, medical precondition, etc., of the agents, the structure of families 

assigned to various geographic locations, size of classes at schools etc. (see supplement for details). At the 

beginning of the simulation, PanSim randomly assigned the agents to various locations (homes, schools, working 

places, etc.) as well as to daily routines (e.g., home-work-shopping-home). The agents were then let to follow their 

routine in the microsimulation (Fig. 1A), and they passed on the infection to each other with some probability, 

which depends on their infection status. In the one-year-long simulations, starting from 1st October 2020, 

additional lock-down and curfew restrictions were implemented on 11th November 2020, and vaccination was 

started on 1st January 2021 (see supplement for detailed parameter sets). The B.1.1.7 variant was introduced into 

the population starting 11th January, leading to the third wave of infections in the Spring of 2021. 

Results 

Simulation outputs give geographic information about the number of simulated people at each location (Fig. 1A) 

and statistics on infection events at these locations (Fig. 1B). It is noticeable that restrictions decrease the number 

of infections generally, but the significant effects concentrate on institute types that are locked down during these 

restrictions (Fig. 1B). Closing particular types of locations is just one of many policies applied to control the 

pandemic. The modelling framework is flexible since interaction strategies (quarantine policies, closures of 

specific locations, testing intensities, and reopening timings) can be implemented by simply changing input 

parameters rather than reprogramming the system. This makes it possible to calculate „intervention landscapes” 

in which these interventions and other key parameters (infectivity of a novel strain, vaccination intensities, and 

prioritisation order) are varied in a grid-like fashion, and the outcome of a given scenario is characterised by a 

colour code (Fig. 1C). A “severity function” was calculated for the measure of the seriousness of the pandemia by 

adding the total number of deaths to a scaled function of the total number of hospital beds occupied above a critical 

limit for the whole investigated period. This analysis shows that stronger interventions (such as high vaccination 

rates, stringent restrictive measures), as expected, tend to improve outcomes while other factors, for instance, the 

infectivity of the virus variants or too early reopening, can markedly deteriorate the outcome (Fig. 1C). From these 

strategies, we will now concentrate on a few key control parameters of the pandemic that plague decision-makers 

in many countries.  
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Figure 1: PanSim realistically simulates population movements and infections in the virtual city emulating Szeged. (A) 

Institutions and households are localised in a virtual city. Colour codes represent different types of locations, and node sizes 

correlate with the number of infected people. (B) Distribution of infection events at various types of locations when the virus 

is unmitigated or when restrictions are applied. (Note the logarithmic scale, error bars show the uncertainty of 20 simulations.) 

(C) Sensitivity of the pandemic in various intervention types and levels. The colour code shows the severity function of the 

pandemics for the labelled changes. (Details on the analysed scenarios and the severity function can be found in the 

supplement.) 

Quarantine strategies can have mixed effects with the arrival of a fast-spreading and more harmful virus 

variant 

Quarantine procedures can follow different rules. If only the diagnosed infected patients are quarantined (Q1), and 

there is no contact tracing for quarantining, then the autumn wave is much larger, and most of the population get 

through the disease to reach herd immunity before the fast-spreading virus variant appears (Fig. 2A). With better 

tracking, resulting in quarantining households (Q2) as well as the classmates or a portion of workmates (Q3), the 

autumn wave is smaller, leaving more people susceptible for the more harmful variant in the spring wave (Fig. 

2A). The severity of the pandemic is still much higher with a weaker quarantine policy because the hospital burden 

is exceptionally high for an extended period during the autumn wave (Fig. 1C, Fig. 2A). The simulator suggests 

that the eventual total number of deaths is higher with better quarantining policies, partly because a more 

transmissible and harmful variant appeared later (Fig. 2B). However, death rates would be higher when healthcare 

is overloaded, which is not accounted for in the simulator. We have also assumed that people who got infected by 

the slower spreading variant are fully immune to the new variant as well after recovery32.  

Increased testing intensity can effectively suppress only moderately infective virus strains 

The WHO recommends that the ratio of positive tests should remain under 5% in order to control pandemics. With 

our simulations fitted to the Hungarian testing rate (Supplementary Figure 4) (testing ~0·15% of the population 

daily), we see far higher positivity values (Fig. 2C). If we increase the testing rate to ~3·50% of the population 
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tested each day (see supplement for details) – which level was reached only by a few countries – then we can push 

the positivity rate below 5% (Fig. 2C). The model follows here the “contact tracing” concept, where housemates, 

class-/workmates of positively tested individuals are tested the next day with some probability (these rates were 

increased in simulations on Fig. 2 C,D). With testing, ~3·50% of the population each day, the positivity rate is 

pushed below 3% (Fig. 2C), but even with such low positivity, we find a severe hospital burden during the spring 

wave (Fig. 2D). We can conclude that extensive testing could repress the pandemic with a moderately infective 

virus (average European strains spreading during the autumn wave) (Fig. 2D). However, extensive testing is 

incapable of controlling the pandemic of a highly transmissible and more harmful variant, such as B.1.1.7 (spring 

wave of Fig. 2D), despite vaccination starting around the same time as the appearance of this variant (Fig. 2A 

inset).    

 

Figure 2: Variations in quarantine scenarios and testing intensities can slow down but not suppress the pandemics. (A-

B) Time course of simulations with varied quarantine scenarios (Q1 – diagnosed patient quarantined at home, Q2 – diagnosed 

patient and household quarantined, Q3 – patient, household and workmates/classmates are quarantined) showing (A) the 

percentage of hospitalised COVID-19 patients in the population and (B) the accumulated number of death events due to 

COVID-19 scaled to the whole population. Appearance and spread of the B.1.1.7 variant are shown on the inset of panel A. 

Start date of restrictions and the start of vaccination are noted on plots. (C-D) The testing rate was increased from the reference 

value of 0.15% of people tested daily, fitted to Hungarian data (Supplementary Figure 4), to the highest level achieved by most 

actively testing countries (3·5% daily). (C) Time courses of the daily ratio of positive tests and (D) the percentage of 

hospitalised COVID-19 patients in the population each day (hospital burden) are plotted. Daily testing rates are shown on the 

inset of panel C. (Average and std. of 20 simulations are shown.) 

Vaccination order strategies have opposing effects on new infection numbers and hospital burden 

Ever since the COVID-19 vaccination started towards the end of 2020, vaccines were in short supply in many 

countries, so decision-makers had to design vaccination strategies that determined whom to vaccinate and in what 

order (e.g., differences between Israel and the EU)33. One approach is to concentrate on vulnerable groups, such 
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as the elderly, the chronically ill, etc. These groups were then vaccinated in the order of decreasing vulnerability. 

Another approach is to select groups according to their essentiality and occupational risk, such as healthcare 

professionals, nursing home workers, teaching personnel, etc. Both ordering methods could have their benefits, 

and various countries follow either one of these or a mixed prioritisation rule. In earlier plots, we assumed a mixed 

order used in Hungary. Still, we have also analysed the differences caused by using the two extreme strategies (see 

supplement for details of different vaccination orders). The occupational risk method is better in controlling 

infection numbers and helps to maintain key infrastructure (e.g. essential workers), but the number of the 

hospitalised and deceased people is lower in the case of vulnerability-based prioritisation (Fig 3 A-C). The reason 

for this difference is apparently that the elderly and people with chronic conditions who otherwise make up the 

majority of hospitalised and deceased patients are vaccinated first, and so they avoid infection. Early vaccination 

of highly vulnerable groups can in itself reduce the hospital burden even at higher infection rates in the spring 

wave (Fig 3B). Nevertheless, the key strategy to control the pandemic is to increase the vaccination intensity (Fig. 

3D), which could have a far larger effect than varying the vaccination order (compare Fig. 3B – before reopening 

and Fig. 3D).   

Too early reopening after lock-downs can lengthen pandemics 

Curfew in evening hours and lock-down of social event sites, restaurants, and pubs is a crucial strategy to control 

pandemics by decreasing the number of interactions between individuals. In the simulations presented, all of these 

restrictions were applied from November 2020 (dashed line in plots of Fig. 2 and 3). A crucial question is when 

these restrictions can be lifted, and life can return to “normal”.  

 

Figure 3: Results of various vaccination and reopening strategies. (A) Percentage of the population infected, (B) percentage 

of hospitalised COVID-19 patients in the population, (C) the accumulated number of death events due to COVID-19 scaled to 

the whole population, each day. Panel A-C were simulated with the assumption that daily 0.2% of the population could be 

vaccinated. (D) Changes in this rate have major effects on the percentage of hospital patients.  (Average and std. of 20 

simulations are shown.) 
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In Figure 3 A-C, we also analysed the effects of lifting these restrictions at three different time points. Reopening 

close to the peak of the pandemic can lead to the collapse of the healthcare system by filling up hospitals (Fig. 3B) 

and increase the total death cases (Fig. 3C). Reopening while the number of infections is dropping could extend 

the length of the pandemic leading to a slight increase in total death counts, but not affect the hospital burden too 

dramatically (Fig. 3 B, C). 

Discussion 

The modelling framework described here was primarily developed to handle lock-down, quarantine, and 

vaccination scenarios. Nevertheless, relevant new information emerged from the simulation results. For instance, 

it shows that the autumn wave affected the various age groups quite similarly, while in the larger spring wave, 

distinct age groups were differentially involved (Fig. 4A). In these simulations, we used the vulnerability 

vaccination order, resulting in a situation where the elderly are less often infected than younger people in the spring 

wave. Specifically, almost 50% of children below 14 who meet in schools (students over 14 are home-schooling 

in these simulations) go through the infection during the spring wave (Fig. 4A). 

We can calculate the critically investigated effective reproduction number (Rt), defined as the actual average 

number of secondary cases per primary case at a given time (see supplement for details). When Rt is below one, 

the epidemic is declining, while the number of cases is increasing when it is above one. Plotting the simulated 

changes of the effective reproduction number in time, together with the same values empirically calculated for 

Hungary and the solution of a deterministic model9, we can observe that PanSim microsimulation provides a more 

detailed and better prediction of the observed data (Fig. 4B).  

 

Figure 4: High infection rate of children and precise, effective reproduction number (Rt) emerge from the simulation 

results. (A) Percentage of the various age groups catching the infection during the autumn and the spring wave (error bars 

show the uncertainty of 20 simulations). (B) Changes in the reproduction number of the virus were calculated from the reference 

scenario (Fig. 1C) simulations (average and std. of 20 simulations) plotted together with the fits of a deterministic SEIRD 

model and empirical data about Hungary34.  

PanSim can be applied to complex, realistic scenarios and can test the effects of various interventions. Here we 

used these features to gain a general understanding of the impact of various quarantine strategies, possibilities to 

contain the pandemic by increased testing, optimal vaccination ordering and risks of early reopening. Directions 

of further development include differentiation between vaccine efficacies and taking into consideration the waning 

of immunity. The emergence of new virus variants with their specific epidemiological parameters and potential 

capability to escape previously acquired immunity could also be considered in an extended version of the model. 

From an algorithmic perspective, an intervention in PanSim is a uniformly built GPU (graphics processing unit) 

compatible module that has input parameters such as the type of intervention, speed, resource availability etc., and 

that can be combined into realistic scenarios (see https://github.com/khbence/pansim and supplement for details). 

The model could be adapted to specific data on any other cities, regions, or countries. Simulations of one year 
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considered with a ten-minute timestep for 179,500 agents were run under 64 seconds on a single NVIDIA V100 

GPU. Still, the code is scalable up to 90 million agents on a single GPU. This computational speed enables PanSim 

to be used for control design, where interventions are optimised towards specific goals (e.g., keeping healthcare 

burden below a threshold while minimising the costs caused by quarantining people)9,12. Events with finer spatial 

resolution, for example, using public transport or working in separated offices, are feasible to implement in case 

of sufficient input data. The performance can also be scaled up to country or continent level simulations, including 

occasional long-distance trips (e.g. tourism or business) that could be crucial in the importation of diseases. The 

major challenge here is collecting the data on individuals’ movements to feed into the simulator. However, with 

extensive, uniformised data35 it will be possible to use PanSim to study detailed and dynamically changing country-

specific intervention strategies in fine spatio-temporal resolution upon this, or possible later pandemics. 

Data Sharing 

The code used for the simulations is available here: https://github.com/khbence/pansim, and it contains links to 

the data used to run the scenarios described. 
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