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Abstract—In Massive MIMO base stations (BSs), the hardware
design needs to balance high spectral efficiency (SE) with low
complexity. The level of hardware impairments (HWIs) indi-
cates how strong the signal distortion introduced by hardware
imperfections is. In particular, the analog-to-digital converters
(ADCs) have an important impact on signal distortion and power
consumption. This article addresses the fundamental problem of
selecting the optimal hardware quality in the Massive MIMO
space. In particular, we examine the optimal HWI and ADC bit
allocation per BS antenna to maximize the SE. The results show
that in co-located arrays with low channel gain variations across
antennas, equal ADC bit allocation is optimal. In contrast, cell-
free Massive MIMO systems benefit the most from optimizing
the ADC bit allocation achieving improvements in the order of 2
[bit-per-channel-use] per user equipment when using regularized
zero-forcing (RZF). In addition, when including the impact
of power consumption in cell-free Massive MIMO with RZF,
allocating low values of mixed ADC bit resolutions across the BS
antennas can increase the energy efficiency up to 30% compared
to equal ADC bit allocation.

I. INTRODUCTION

In this information age, the demands for data traffic rise
every year and wireless communications are essential to sup-
port the increase in mobile connectivity [1]. In parallel, the
power consumption (PwC) of information and communication
technologies (ICT) is rising and becoming an important eco-
nomical and environmental burden [2], [3]. Thus, to satisfy
the high data traffic demands and maintain or even reduce
the PwC of ICT, it is imperative to make improvements in
spectral efficiency (SE) and energy efficiency (EE) of wireless
networks.

In the development and implementation of 5G networks,
Massive MIMO is a key multiple antenna technology that
provides both high SE and EE. This is realized by using a
large number of antennas at the base station (BS) to serve
several user equipments (UEs) on the same time-frequency
resource with spatial multiplexing techniques [4]–[6].
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In 3G and 4G cellular networks, the BSs account for the
largest portion of the total PwC [7], and within macro BSs,
the power amplifiers and site cooling are responsible for over
80% of their consumption [8]. By directing signals into narrow
beams using a large number of BS antennas, Massive MIMO
can substantially reduce the transmission PwC in comparison
to current macro BSs [4], [5]. As a result, power amplifiers
would require much less power to operate, and in turn, the
cooling requirements would also be reduced since the power
amplifiers are predominantly responsible for heat dissipation.
From another perspective, Massive MIMO can be used to
serve more UEs while maintaining the same PwC as compared
to current cellular networks, which in turn, increases EE.
However, increasing the number of BS antennas requires more
hardware components that will analogously increase the PwC.
The above discussion reveals a critical component of Massive
MIMO operation, that is the hardware design. We will now
overview some recent advances that have reported in the
related literature.

We first recall, that it has been shown that Massive MIMO
BSs can operate with low-end hardware that reduces PwC
while still supporting high SE [9]–[11]. An important com-
ponent in the receiver hardware of BS antennas is the analog-
to-digital converter (ADC) for its impact on signal distortion
and PwC [12]. Each antenna element requires two ADCs
(for in-phase and quadrature chains), which means hundreds
or more ADCs would be needed in a fully digital Massive
MIMO BS. A key feature of Massive MIMO is the ability to
coherently combine signals in the same time scale as the small-
scale fading variations. This means that the digital signals
from the ADCs need to be jointly processed in real-time.
Thus, the ADCs can not only increase the PwC, but can also
create a bottleneck in the fronthaul processing. To manage
these effects, low ADC bit resolution has been proposed for
Massive MIMO BS antennas, which can, in theory, support
high performance in terms of bit-error-rate, SE, and PwC
[13]–[16].

In the aforementioned works, low and equal ADC bit
resolution is assumed across BS antennas. Alternatively, a
mixed-ADC approach has been proposed in [17], [18], where
the ADC bit resolution is allowed to be different across BS
antennas and vary at high speed following the small-scale
fading variations. In this context, [18], [19] studied the optimal
ADC bit allocation to maximize the SE in millimeter wave
and Massive MIMO systems, respectively. However, these
works do not consider the effect of imperfect channel state
information (CSI) which is crucial to accurately evaluate the
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performance of Massive MIMO. Recently, [20], [21] studied
a mixed-ADC system under imperfect CSI, where a small
portion of the BS antennas have high-resolution ADCs and the
remaining have 1-bit ADCs [20], and low-resolution ADCs
[21]. In [21], the aim was to optimize the access phase of
internet-of-things devices considering the impact of mixed-
ADCs in a cell-free Massive MIMO system. The authors con-
cluded that by optimizing the UE access to the network, high
gains in sum SE and EE can be achieved. In [20], the authors
considered uncorrelated Rayleigh fading and concluded that
mixed-ADCs architectures are most beneficial for high signal-
to-noise ratio (SNR) while using zero-forcing processing. In
our previous work [22], majorization theory was used to assess
the impact of ADC bit allocation under a total ADC bit budget
and uncorrelated Rayleigh fading. The results indicate that low
and equal ADC bit allocation (e.g., 3-4 bits) is the optimal
strategy to maximize the SE and minimize PwC.

A. Contributions

This article studies the uplink of a Massive MIMO system,
where the ADC bit resolution can be customized based on
the large-scale fading (LSF) variations of the channel. These
variations occur due to the movement of UEs and obstacles
in a macroscopic scale1 or by serving different UEs in the
coverage area over time. The main contributions of this paper
are given as follows:

• To the best of our knowledge, this is the first article that
optimizes the ADC bit allocation based on a rigorous
achievable SE analysis with spatially correlated channels
and LSF variations across the BS antennas under imper-
fect CSI. Our analysis considers a co-located BS antenna
array and a cell-free Massive MIMO deployment, where
the BS antennas are distributed over the service area.
In practice, the channels between different BS antennas
are indeed spatially correlated and exhibit LSF variations
[23]. These channel phenomena affect the dynamic range
of the received signal power across the BS antennas, and
in turn, the quantization distortions. This makes the ADC
bit allocation fundamentally different from scenarios with
uncorrelated fading, as in [20], [22]. In addition, the LSF
variations occur over a much slower time scale compared
to the small scale fading changes.2 This simplifies the
mixed-ADC implementation and provides the necessary
time to conduct further optimization of the ADC bit
allocation, in contrast to the prior work in [17]–[20],
where high-speed switches are required to track the small-
scale fading.

• A general optimization framework is proposed to allocate
the ADC bits across the BS antennas. A detailed analysis
of the minimum pilot distortion and maximum product
of SINRs ADC bit allocation is given under a sum of
ADC bits (ADC bit budget) or a PwC constraint. The
ADC bit budget constraint allows for a direct evaluation

1This scale can span orders of magnitude larger than the wavelength of
propagating signals.

2The LSF fading changes in seconds or hundreds of milliseconds, whereas
the small-scale fading changes within a few milliseconds or microseconds [5].

of the allocation of ADC bits per BS antenna rather
than focusing on the total number of ADC bits available.
On the other hand, the PwC constraint accounts for a
more practical scenario compared to the ADC bit budget,
limiting the aggregated power consumed by all ADCs.
The impact of optimal ADC bit allocation is evaluated in
terms of SE and EE.

• A closed-form optimal ADC bit allocation strategy is
proposed to minimize the pilot distortion under an ADC
bit budget. This strategy is simple to implement and it
reveals important insights into the relationship between
the ADC bit allocation and the received power level at
each BS antenna.

• A closed-form achievable SE with maximum ratio (MR)
combining is derived as a rigorous lower bound on
the capacity. This SE expression is used to formulate
geometric programs to allocate the ADC bits across the
BS antennas.

The rest of this article is organized as follows: Section II
describes the system model. Section III explains the channel
estimation procedure, the pilot distortion minimization prob-
lem along with its solution in closed-form, and introduces the
main study cases for the numerical results. To evaluate the
SE performance, an achievable closed-form SE expression is
derived in Section IV. In Section V, optimal ADC bit alloca-
tion strategies are developed based on the aforementioned SE
expression. Section VI studies the effect of PwC on the ADC
bit allocation and evaluates the performance in terms of EE.
Finally, Section VII concludes our work.

Notation: The transpose, conjugate, conjugate transpose,
and inverse are given by (·)T , (·)∗, (·)H , and (·)−1 respec-
tively. The set of natural and complex numbers are denoted
as N and C, respectively. Matrices and vectors are represented
by upper and lower bold case letters, as X and x, respectively.
The element in the ith row and jth column of a matrix X is
given by [X]ij while [x]i denotes the ith element of x. The
ith column of X is denoted by xi. The notation diag(X),
corresponds to the matrix X with all non-diagonal elements
set to zero, whereas, diag(x) is a diagonal matrix with the
elements of x in the diagonal. The absolute value is denoted
as | · | and abs(X)2 takes the squared absolute value on every
element of X.

II. SYSTEM MODEL

Consider the uplink of a single-cell Massive MIMO system,
where the BS has M antennas and serves K single-antenna
UEs via spatial multiplexing. The communication channel
follows a block fading model in which the channel is con-
sidered static for a time period Tc and frequency-flat within a
bandwidth Bc. The total number of complex samples enclosed
within the time Tc and bandwidth Bc is denoted as τc = TcBc,
which in turn, forms a coherence block. The block fading
model assumes that the channel realizations remain fixed
within a given coherence block and change independently at
random from one coherence block to another. The channel
between the M BS antennas and UE k, denoted as UEk, is
defined as hk ∼ CN (0,Rk). The spatial correlation matrix
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of the channel hk is given by Rk and β̄k = tr(Rk)/M is
the average channel gain that corresponds to the LSF effect.
The diagonal elements of Rk can be different which allows
for modeling both co-located and cell-free Massive MIMO
channels using the same system model. Special cases of
these channel models are given in Section III-C. The receiver
hardware connected to each BS antenna is assumed to be
affected by hardware impairments (HWIs), that are modeled as
an additive distortion with an energy proportional to the signal
energy with proportionality constant ε2m ∀m ∈ {1, . . . ,M}.
Hence, εm = 0 corresponds to perfect hardware at the mth BS
antenna. The received signal at the BS for an arbitrary sample
in a given coherence block is

y =

K∑
i=1

hixi + n+ e (1)

where xi is the transmitted signal from UEi which can be
composed of a data or pilot symbol. The thermal noise is
defined as n ∼ CN (0, σ2IM ), where σ2 is the average noise
energy per symbol. By defining Dε = diag(ε1, . . . , εM ), the
distortion caused by HWIs is modeled as

e = Dε

(
K∑
i=1

E
{
|xi|2

}
diag

(
|[hi]1|2, . . . , |[hi]M |2

)
︸ ︷︷ ︸

=Dh

) 1
2

r

(2)
where the randomness introduced by the hardware distortion is
given by r ∼ CN (0, IM ). The total amount of instantaneous
energy3 received at the mth BS antenna is denoted as [Dh]mm.
Since the pilot and data signals experience the same channel
realizations, the term Dh allows for a clear evaluation of the
hardware distortion within the channel estimation process and
its impact on the SE.

Remark 1. The distortion model in (2) is based on Bussgang’s
decomposition, where the effect of a nonlinear deterministic
operation is expressed as an additive distortion that is uncorre-
lated with the input. A recent review of this model is available
in [24]. The model has been used to represent different types of
physical HWIs that cause nonlinear distortions to the received
signals [5], [14], [20], [25]. The quantization is such a
nonlinear deterministic operation performed at the receiver
and it depends on the received signal energy which is affected
by the channel. Thus, the distortion model in (2) is well suited
for analyzing the distortions introduced by the ADCs.

The model for the hardware distortion in (2) can be used to
characterize the impact of HWIs on the SE of Massive MIMO
systems, for any source of distortion that is proportional to
the instantaneous received signal energy.4 In particular, the
quantization distortion

εm = ζm2−bm (3)

3The term instantaneous energy is used to specify that the hardware
distortion depends on the small-scale fading. Essentially, it corresponds to
computing the expected value of the received energy conditioned on the
channel realizations.

4This means the the results for HWI allocation can be extended to design
the quality of other hardware components apart from the ADCs.

is used to map the ADC bit resolution and the level of HWI
[22]. The term ζm depends on the saturation level of the ADC
with practical values within 1 < ζm < 2, and bm is the ADC
bit resolution at the mth BS antenna.

Remark 2. In real systems, there is correlation between the
distortion from different BS antenna elements and the model
in (2) neglects this effect. However, this correlation has been
shown to have limited impact when many UEs are served [25],
particularly when it comes to coarse quantization, and it is a
common practice to neglect it [14]–[16], [20].

Furthermore, the randomness of the distortion in (2) is
assumed to be independent of the transmitted signal which
is not true in practice but it allows for a tractable analysis
that yields a closed-form expression for the SE under MR
combining. Thus, in Section IV, the SE with the distortion
model in (2) is compared against that of an exact quantization
model to showcase the validity of SE expressions obtained
with (2) for optimizing the ADC bit allocation.

III. CHANNEL ESTIMATION

The channel is estimated at the BS based on pilot sequences
transmitted by the UEs in the uplink. Thus, τp out of τc
samples of the coherence block are reserved for channel
estimation. The pilot transmitted by UEk is denoted by
φk ∈ Cτp×1, whose elements have unit modulus, that is,
|[φk]j | = 1 ∀j ∈ {1, . . . , τp}. The pilots are assumed to be
mutually orthogonal and each UE transmits a different pilot,
such that, φH

i φk = 0 if i 6= k and φH
i φk = τp if i = k. The

transmitted pilot signal from UEk is defined by the vector
xk =

√
%kφk corresponding to τp instances of xk in (1), thus,

the received pilot signal is

YP =

K∑
i=1

hi
√
%iφ

T
i +N+Ξ ∈ CM×τp (4)

where %i is the energy per pilot symbol transmitted by UEi

such that |[xi]j |2 = %i ∀j ∈ {1, . . . , τp}. The matrix N
with i.i.d. elements defined as [N]mj ∼ CN (0, σ2) represents
the thermal noise, and Ξ = [e1, . . . , eτp ] corresponds to the
hardware distortion matrix. The hardware distortion is defined
as in the previous section, such that ej = DεD

1
2

h rj , where
rj ∼ CN (0, IM ) and independent ∀j ∈ {1, . . . , τp}.

To estimate hk, a channel observation zk is obtained by
projecting the received pilot signal YP onto the pilot used by
UEk, also known as a de-spreading operation, such that

zk = Yp
φ∗

k

τp
√
%k

= hk +
1

√
τp%k

(
n̄+DεD

1
2

h r̄
)

(5)

where n̄ = Nφ∗
k/
√
τp ∼ CN (0, σ2IM ) and

r̄ =
∑τp

j=1 rj [φk]
∗
j/
√
τp ∼ CN (0, IM ) since the Gaussian

distribution is invariant to unitary transformations. Note that
the distortion term D

1
2

h r̄ in (5) depends on the channels and is
not Gaussian distributed. Thus, computing the minimum mean
squared error (MMSE) channel estimate is very cumbersome.
To estimate the channel hk, the linear MMSE (LMMSE)
channel estimation is used instead, given as follows.
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Lemma 1. Given the channel observation zk in (5), the
LMMSE channel estimate of hk is

ĥk = E
{
hkz

H
k

} (
E
{
zkz

H
k

})−1
zk = RkΨ

−1
k zk (6)

with

Ψk = Rk +
1

τp%k

(
σ2IM +

K∑
i=1

%iDεDRi
Dε

)
︸ ︷︷ ︸

Noise and pilot distortion

(7)

where DRi = diag(Ri). The channel estimation error is h̃k =
hk − ĥk, with correlation matrix

C̃k = E
{
h̃kh̃

H
k

}
= Rk −RkΨ

−1
k Rk. (8)

Proof: It follows from applying standard LMMSE tech-
niques [5, Sec. 3].

Due to the HWIs effect in the received pilot signal, the
channel estimate ĥk is corrupted by a distortion that depends
on the channel of interest hk, which cannot be removed by
the de-spreading operation in (5). In addition, the orthogonality
between the pilots is destroyed by the HWI effect giving rise
to a distortion that depends on the channel realizations from
other UEs in the system. To minimize the MSE of the channel
estimates, the noise and hardware distortion effect should be
as low as possible (corresponding to the last two terms in
(7)). The term “pilot distortion” is precisely used to specify
the effect of hardware distortion on the channel estimation.

Remark 3. The channel estimates and their errors in
Lemma 1 are not Gaussian distributed. Thus, they are not
statistically independent even though they are uncorrelated
by design. This observation is important when deriving the
achievable SE expressions later in the paper.

A. HWI allocation for minimal pilot distortion

The main purpose of this article is to study the optimal
allocation of hardware quality per antenna to achieve maximal
SE or EE. In Massive MIMO, the channel estimates are
used to coherently combine the signals from all BS antennas
and perform spatial multiplexing. As a result, the quality of
channel estimation is crucial to achieve high SE. Thus, a first
approach to optimize the allocation of HWI per antenna (i.e,
εm) is to minimize the pilot distortion. Consider the following
optimization problem:

minimize
εm≥0, ∀m∈{1,...,M}

tr

(
Dε

K∑
i=1

%iDRi
Dε

)

subject to

M∑
m=1

log2

(
ζm
εm

)
≤ bTOT.

(9)

The objective minimizes the pilot distortion (see the third
term in (7)) while the constraint imposes a lower limit on
the combined level of HWIs for all antennas. The function
that aggregates the level of HWIs across the antennas in
the constraint of (9) corresponds to an ADC bit budget∑M

m=1 bm ≤ bTOT ∈ N, where the ADC bits bm have been
relaxed to be real-valued (see (3) for mapping an ADC bit

resolution bm to εm). To make the problem in (9) tractable and
find a closed-form solution, there is no constraint to enforce
bm ≥ 1 which results in positive real-valued ADC bits that
can be below 1 (See Figure 1). However, in Section III-B,
a heuristic method to map the optimal real-valued ADC bit
solution to integer values is proposed.

Lemma 2. The problem in (9) has a quadratic objective and a
convex constraint since log2(1/x) is a convex function. Thus,
it is a convex optimization problem of standard form that can
be solved efficiently by well established methods [26].

Remark 4. It is worth mentioning that the ADC bit budget
constraint can be changed to another linear or convex con-
straint, to accommodate other aspects of hardware design,
without changing the methodology to solve the problem. As an
example, the alternative constraint

∑M
m=1 εm ≥ εTOT imposes

a total minimum HWI energy εTOT that needs to be dispensed.

Remark 5. Regarding the analysis on the ADC bit allocation,
we point out that there is no maximum ADC resolution con-
straint per BS antenna in (9). Having an aggregated constraint
of an ADC bit budget or total PwC (as shown in Section VI)
would intrinsically limit the maximum ADC bit resolution per
BS antenna. Throughout all the simulation results in this paper,
the maximum ADC bit resolution that was assigned never
surpassed 15 bit, which is common in practical ADCs. Hence,
even if we added a maximum ADC bit resolution constraint of
15 bit, it would not impact the results.

The optimal HWI allocation is found by analyzing the
Lagrange dual problem and evaluating the Karush-Kuhn-
Tucker (KKT) conditions. The following theorem summarizes
the optimal solution for the optimization problem (9).

Theorem 1. The optimal solution of the convex optimization
problem in (9) is given by

εOP
m =

(
2−bTOT

M∏
m′=1

ζm′

√
pU
m′

pU
m

) 1
M

⇒ bOP
m =

1

M

bTOT +
M∑

m′=1
m′ 6=m

log2

(
ζm
ζm′

√
pU
m

pU
m′

) (10)

where pU
m =

∑K
i=1 %i[Ri]mm is the average undistorted

received pilot power.
Proof: It follows from minimizing the Lagrangian by

evaluating the KKT conditions. Since the primal problem in
(9) is convex, the primal and dual points that satisfy the KKT
conditions are primal and dual optimal with zero duality gap
[26, Ch. 5]. See Appendix A for details.

The optimal solution εOP
m satisfies the total HWI budget

constraint with equality (see Appendix A) which means that
the full ADC bit budget bTOT is used. The optimal level of
HWIs is allocated based on the received signal strength per
antenna, so that higher received power at a given antenna
results in lower level of HWI (more ADC bits) allocation and
vice-versa. The proportion of HWI allocation is based on the
product of the received power across the antennas due to the



5

Algorithm 1 Procedure to map real-valued ADC bit allocation
to integer values.

1: Initialize the integer ADC bits as bINT
m = bbOP

me.
2: Set N DIFF = bTOT −

∑M
m=1 b

INT
m .

3: while N DIFF 6= 0 do
4: if bINT

m < 1 then
5: Set to bINT

m = 1 ∀m ∈ {1, . . . ,M}.
6: end if
7: Set N DIFF = bTOT −

∑M
m=1 b

INT
m .

8: if N DIFF > 0 then
9: Add 1 bit to the N DIFF lowest values of bINT

m .
10: else if N DIFF < 0 then
11: Subtract 1 bit to the N DIFF highest values of bINT

m .
12: end if
13: end while

exponential relationship between the level of HWI εm and the
ADC bit bm.

Remark 6. If the average undistorted received pilot power is
equal across the antennas (i.e., pU

m = pU) and all ADCs are
equal (i.e., ζm = ζ), (10) reduces to equal ADC bit allocation:
bOP
m = bTOT

M . If these conditions hold approximately, equal ADC
resolution is approximately optimal. Similar conclusions were
also drawn in [22].

B. Integer ADC bit allocation

The result in Theorem 1 finds the optimal level of HWI to
minimize the pilot distortion. However, when mapping these
values into ADC bits bOP

m as shown in (10), these numbers are
not likely to be integers. Thus, the heuristic Algorithm 1 is
proposed to map the optimal real-valued ADC bits bOP

m into
integer values that can be implemented in real ADCs. The
operator b·e stands for rounding to the nearest integer. Note
that this algorithm allocates the full ADC bit budget bTOT ∈ N.

C. Numerical example

To illustrate the impact of spatial channel correlation and
LSF variations on the optimal HWI allocation, the model
Rk = D

1
2

βk
R̄kD

1
2

βk
is taken as an example for the spatial

channel correlation matrices, which is based on [27]. The LSF
coefficients between UEk and each BS antenna element are en-
closed in βk = [β1k, . . . , βMk]

T , such that Dβk
= diag(βk).

The correlation matrix R̄k has [R̄k]mm = 1 and |[R̄k]mm′ | ≤
1 ∀m 6= m′ ∈ {1, . . . ,M} to account for the correlation
between antenna elements. Recall that β̄k = tr(Rk)/M is the
average channel gain. Four cases are simulated for the spatial
correlation matrices:

1) Co-located antennas and spatial correlation (Co-corr-
I): The matrix R̄k follows the Gaussian local scattering
model defined in [5, Ch. 2], with angular standard
deviation σang. The LSF coefficients are equal for all
antenna elements such that diag(βk) = β̄kIM . The av-
erage channel gain is modeled as β̄k = ω−1d−α

k zsh,
where ω is the fixed pathloss at 1 km accounting for
fixed propagation effects (e.g., wall penetration), α is
the pathloss exponent, and dk is the distance between

Table I: Simulation parameters.

Parameter Value
System bandwidth BW = 20 [MHz]

Max. trans. power per UE 10 log10(ρMAXBW) = 20 [dBm]
Noise power 10 log10

(
σ2BW

)
= −94 [dBm]

Square side length 0.4 [km]
Pathloss exponent α = 3.76
Pathloss at 1 km ω = 148.1 [dB]

Shadow fading std. dev. σsh = 10 [dB]
Angular std. deviation σang = 10◦

Antenna variations std. dev. σlsf = 4 [dB]
ADC constant ζm = 1.6 ∀m ∈ {1, . . . ,M}

Power amplifier efficiency η = 0.39
Fixed circuit power PCST = 10 [W]

coding/decoding power PCD = 1.15 [Joule/Gbit]
Power per UE PUE = 0.1 [W]

Power per BS antenna PBS-A = 0.05 [W]

UEk and the BS (measured in [km]). The shadow fading
effects are included in zsh and modeled as independent
log-normal distributed with standard deviation σsh [dB],
that is, 10 log10(zsh) ∼ N (0, σ2

sh). Note that since the
antennas are co-located the distance dk is considered to
be the same for all antennas at the BS.

2) Co-located antennas, spatial correlation and rank 1
diagonal variations (Co-corr-D1): The matrix R̄k is
defined as in the previous case, whilst the variations of
the LSF coefficients of each BS antenna are included
following a log-normal distribution with standard devi-
ation σlsf . Thus, βmk = β̄kzlsf

m where 10 log10(zlsf
m ) ∼

N (0, σ2
lsf). Note that the term “rank 1” means that the

same realization of zlsf
m is shared for all K UEs.

3) Co-located antennas, spatial correlation and rank K
diagonal variations (Co-corr-DK): The matrix R̄k is
defined as in the case of Co-corr-I, and the varia-
tions across the LSF coefficients of each BS antenna
are modeled following a log-normal distribution with
standard deviation σlsf . Thus, βmk = β̄kzlsf

mk where
10 log10(zlsf

mk) ∼ N (0, σ2
lsf). The term “rank K” means

that each UE and antenna element have variations in the
LSF with independent realizations.

4) Cell-free and uncorrelated channels (Cell-free): The
matrix R̄k = IM and the antenna elements are assumed
to be located at different positions so that βmk =
ω−1d−α

mkzsh, where dmk corresponds to the distance
between UEk and the mth antenna element. The shadow
fading effects are included in zsh and are modeled as
in the case Co-corr-I.

The UEs are dropped uniformly at random in a squared
area. In the case of co-located antennas, the BS is located at the
center of the square whereas in the Cell-free case the antennas
are distributed uniformly at random. A minimum distance of
10 meters is enforced between all UEs and BS antennas.
Statistical channel inversion power control is assumed such
that %k = min

{
ρMAX, %̄/β̄k

}
where %̄ is used to set the SNR

level and ρMAX is the maximum transmission energy per
symbol. Table I summarizes the main simulation parameters
used.

Figure 1 shows the empirical cumulative distribution func-
tion (CDF) of the optimal allocation of ADC bits given in
Theorem 1. In the Co-corr-I case there are no LSF variations



6

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Optimal ADC bit bOP
m

C
D

F

Co-corr-I
Co-corr-D1
Co-corr-DK

Cell-free

Figure 1: CDF of optimal ADC bit allocation with M = 100,
K = 10, %̄/σ2 = 1 (SNR = 0 [dB]), and bTOT = 3M .

across antenna elements which yields equal ADC bits as the
optimal allocation. In contrast, in the other cases, as more
variations are introduced in the diagonal elements of the spatial
correlation matrices, the optimal ADC bit allocation becomes
more spread.

IV. ACHIEVABLE SE

To send the information through the channel, the transmitted
signal from UEk, in (1), is defined as xk =

√
ρksk where the

unit-power data symbol is sk ∼ CN (0, 1) and ρk is the average
energy per data symbol. At the BS, linear signal processing
is assumed to combine the signals from all BS antennas, such
that, ŝk = vH

k y is the observation of the data symbol sk given
by

ŝk =E
{
vH
k hk

}√
ρksk︸ ︷︷ ︸

Desired signal

+
(
vH
k hk−E

{
vH
k hk

})√
ρksk︸ ︷︷ ︸

Channel gain uncertainty

+

K∑
i 6=k

vH
k hi

√
ρisi︸ ︷︷ ︸

Inter-user interference

+vH
k n︸︷︷︸

Noise

+ vH
k e︸︷︷︸

Data distortion

(11)

where the term “data distortion” in (11) refers to the negative
effect that hardware distortion has on the combined data signal.
The combining vector is given by vk and two different options
are considered:

vk =

{
ĥk MR(∑K

i=1 ĥiĥ
H
i ρi + σ2IM

)−1

ĥkρk RZF.

MR combining requires the least amount of operations to
implement, and it maximizes the gain of the desired signal.
Regularized zero-forcing (RZF) is the state-of-the-art heuristic
scheme for this setup. It adds a level of complexity by
introducing a matrix inversion but suppresses inter-user inter-
ference, while maintaining a decent SNR level for the desired
signal.

The achievable SE is calculated as a lower bound on the
ergodic capacity, which is obtained by using the use-and-
then-forget methodology assuming Gaussian data symbols and
worst case independent Gaussian effective noise [4], [5]. The
effective noise is composed of the channel gain uncertainty,

inter-user interference, noise and data distortion effects as
shown in (11). Note that the channel gain uncertainty term
is a consequence of the capacity lower bound and for large
number of BS antennas, as in the case of Massive MIMO, it
has a negligible impact on the tightness of the lower bound
[4], [5]. The achievable SE is given in the following theorem.

Theorem 2. An achievable SE for UEk ∀k ∈ {1, . . . ,K}
under hardware distortions is

SEk =

(
1− τp

τc

)
log2

(
1 +

|E {ŝks∗k}|
2

Var (ŝk − E {ŝks∗k} sk)︸ ︷︷ ︸
=SINRk

)
(12)

where Var(·) is the variance operator. The effective SINR with
the HWI model in (2) is

SINRk =
∣∣E{vH

k hk

}∣∣2 ρk/(
K∑
i=1

E
{∣∣vH

k hi

∣∣2} ρi

−
∣∣E{vH

k hk

}∣∣2 ρk + E
{∣∣vH

k n
∣∣2}+ E

{∣∣vH
k e
∣∣2}).

(13)

Proof: The achievable SE in (12) follows from applying
the use-and-then-forget bound [4], [5] on the equivalent SISO
channel in (11) with deterministic gain E{vH

k hk}
√
ρk and

non-Gaussian noise.
The achievable SE in (12) can be used for any type of

hardware distortion, in particular, exact quantization which is
used later on to validate the model in (2). The effective SINR
(13) follows by assuming the model in (2) and it is valid for
all linear combining methods. In the case of MR processing,
the effective SINR can be found in closed-form as shown in
the following corollary.

Corollary 1. In the case of MR combining, a closed-form
expression for the effective SINR is given in (14) at the top of
next page, where the operator abs(·)2 corresponds to element
wise absolute value squared.

Proof: The proof is provided in Appendix B.
The effect of HWIs on the SE is more complicated than

in the channel estimates as it is shown in the SINR expres-
sion in (14). Since the hardware distortion affects both the
channel estimates and data signals, cross products arise in the
linear combining process which, in turn, form the additional
distortion terms shown in (14). To illustrate how the spatial
correlation and large-scale variations along the antennas affect
the SE, numerical results are presented next.

A. Numerical example with minimum pilot distortion

To validate the accuracy of the results obtained with the
HWI model in (2), the SE with exact quantization is also cal-
culated, such that the quantized received signal for an arbitrary
sample of the coherence block is yq = Q(

∑K
i=1 hixi + n),

where Q(·) stands for the quantization operation. For ADC bit
resolutions of up to five bm ≤ 5, the quantization levels are
optimized as in [28], and for bm > 5 uniform quantization is
used with optimized levels as in [29]. The channel estimates
are obtained following the same procedure as in Section III,
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SINRk =ρktr
(
RkΨ

−1
k Rk

)2/(
ρktr

(
D2

εabs
(
diag

(
RkΨ

−1
k Rk

))2)︸ ︷︷ ︸
Self-distortion (UEk)

+

K∑
i=1

ρi%i
τp%k

tr
(
D2

εabs
(
diag

(
RiRkΨ

−1
k

))2︸ ︷︷ ︸
Distortion from inter-user interference

+D2
εdiag

(
abs

(
RkΨ

−1
k

)2
D2

εabs (Ri)
2
)

︸ ︷︷ ︸
Additional distortion from all UEs

)

+ tr

( ( K∑
i=1

ρiRi︸ ︷︷ ︸
Inter-user interference

+σ2IM︸ ︷︷ ︸
Noise

+

K∑
i=1

ρiD
2
εDRi︸ ︷︷ ︸

Data distortion

)
RkΨ

−1
k Rk

) )
(14)

where the quantized received pilot signal corresponds to the
τp instances of yq with pilot symbols. The LMMSE chan-
nel estimates are given by the first equality in (6), where
the expectations are found numerically. The SE with exact
quantization is computed using (12), where the data estimates
are given by the first equality in (11) considering quantized
channel estimates and received data signal. In all the results
with exact quantization, the integer bit allocation algorithm
proposed in Section III-B is used.

Figure 2 shows empirical CDF curves of the SE per UE
where the spatial correlation matrices are modeled based
on the four cases in Section III-C. The markers correspond
to results with the exact quantization model and the lines
correspond to (13) from Theorem 2 for RZF, and (14) from
Corollary 1 for MR. It can be seen that the additive distortion
model in (2) is accurate in most cases. However, in the Cell-
free case with equal ADC bit allocation, there is a gap between
the exact quantization and the additive distortion model in (2).
A possible explanation is that the distortion becomes practi-
cally independent when it is combined from many different
signals that have similar strength, which might not be the case
in Cell-free since the UEs are located at different distances to
the antennas. This discrepancy is substantially reduced when
the ADC bit allocation is optimized to minimize the pilot
distortion since the antennas with higher received power are
allocated more ADC bits that allows them to increase their
dynamic range.

In the case of MR combining, optimizing the ADC bit al-
location provides almost no SE gains. In contrast, when using
RZF, improvements of up to 1 [bit-per-channel-use] ([bpcu])
per UE for the Cell-free case with the exact quantization
model are shown in Figure 2d. This indicates that the optimal
ADC bit allocation is mostly beneficial for obtaining accurate
channel estimates that enhance the performance of interference
suppression techniques like RZF.

V. OPTIMAL HWI ALLOCATION

In Section III-A, the optimal HWI allocation for minimal pi-
lot distortion was found in closed form. This result gave good
insights into how to allocate the HWI based on the received
signal strength of the pilot signals. However, minimizing the
pilot distortion does not necessarily maximize the performance
in terms of SE since the impact of HWIs is fundamentally
different as it is shown in Theorem 2. The same is true for the

PwC where less distortion often comes at a higher PwC (e.g.,
a higher ADC bit resolution increases the PwC). To further
study the optimal allocation of the HWI level per antenna,
consider the following optimization framework:

maximize
ε=[ε1,...,εM ]T

ρ=[ρ1,...,ρK ]T

f OBJ(ε,ρ)

subject to f HWI(ε,ρ) ≤ 0,

0 ≤ εm ≤ εMAX ∀m ∈ {1, . . . ,M},
0 ≤ ρk ≤ ρMAX ∀k ∈ {1, . . . ,K}, (15)

where ρMAX is the maximal transmission energy per symbol
and εMAX is the maximal HWI level so that εm ≤ εMAX ⇒
bm ≥ 1.

The optimization problem formulation in (15) constitutes
a general framework to optimize the level of HWI per an-
tenna and the transmission energy per data symbol. In uplink
communications, power control is essential to avoid signals
from UEs with low channel gains to be overshadowed by
signals from UEs with high channel gains. In addition, power
control is important to reduce the dynamic range of signals
so that the ADCs introduce less quantization distortion. Thus,
it is desirable to optimize the transmission energy per data
symbol and the level of HWI together. The function f OBJ(ε,ρ)
corresponds to the optimization objective and it can be set
to maximize the SE, or another useful utility function, such
as minimizing the distortion or maximizing the EE. The
function f HWI(ε,ρ) enforces a constraint on the HWI level
and (or) transmission energy per data symbol based on design
requirements, such as, an ADC budget, or maximum PwC,
among others.

The selection of f OBJ(ε,ρ) and f HWI(ε,ρ) depends on the
design requirements of the system. However, it is also impor-
tant to choose functions that allow for amenable formulations
that can be solved efficiently. In the following sections, the
optimization framework in (15) is used to obtain insights into
the optimal HWI allocation to maximize the SINR under an
ADC bit budget or a PwC constraint. The functions f OBJ(ε,ρ)
and f HWI(ε,ρ) are selected so that (15) can be rewritten as
geometric programs for which efficient solvers exist [26].
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(a) MR and equal ADC bit allocation.
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(b) RZF and equal ADC bit allocation.
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(c) MR and min pilot distortion ADC bit allocation.
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(d) RZF and min pilot distortion ADC bit allocation.

Figure 2: CDF of SE per UE for M = 100, K = 10, τc = 200, %̄/σ2 = 1 (SNR = 0 [dB]), and bTOT = 3M . The lines
correspond to the SE with the additive distortion model in (2), whereas the markers are the results with exact quantization and
integer bit allocation (see Section III-B).

A. Maximizing the SINR

This section aims at acquiring insights into the optimal HWI
allocation that maximizes the SE with MR combining. As
shown in Theorem 2, the SE has a logarithmic dependency
on the effective SINR. Since the logarithm is a concave and
monotonically increasing function, it is often advantageous to
optimize the effective SINRs directly to find more tractable
formulations. To define the objective function f OBJ(ε,ρ), it
is necessary to find a good compromise between fairness
and aggregated performance of the UEs. Thus, consider the
following objectives

f OBJ(ε,ρ) =


K∏

k=1

SINRk(ε,ρ) Max-prod SINRs

min
k∈{1,...,K}

SINRk(ε,ρ) Max-min fairness.

(16)
The first objective in (16) maximizes the product of SINRs

(i.e., the geometric mean) and it aims at maximizing the ag-
gregated performance of all UEs, while maintaining a certain
level of fairness since UEs with very low SINR would make
the objective function small. This objective is a lower bound
on the sum SE in which the term “1” is removed from the SE

expression (12), (see [5, Ch. 7] for more details). The second
objective in (16) is called max-min fairness and it seeks to
maximize the lowest SINR among all UEs. Here, the focus is
on balancing the SE among the UEs to create the highest even
performance as possible. The function

f HWI(ε) =

M∑
m=1

log2

(
ζm
εm

)
− bTOT (17)

is set to satisfy an ADC budget constraint as in Section III-A.
Notice that in the uplink, each UE has an independent power
budget, thus, there is no need to add a constraint to the ag-
gregated transmission energy per data symbols, which means
that f HWI(ε) does not depend on ρ.

The effective SINR in (14) depends on Ψk, which in turn,
is a function of the HWI level through the pilot distortion term
in (7). As a result, the problem (15) with the objectives given
in (16) and constraint in (17), are not convex. The impact of
HWI in Ψk is encompassed by the pilot distortion which was
analyzed in Section III-A. Thus, to gain more insights into
the HWI level allocation for maximal SINR, the optimization
problems can be solved by assuming Ψk is fixed. In this case,
the problem for both objectives in (16) and constraint in (17)
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f D
k (x,ρ) =

M∑
m=1

(
ρk |[Ak]mm|2 +

K∑
i=1

(
ρi%i
τp%k

∣∣[RiRkΨ
−1
k

]
mm

∣∣2 + ρi [Ri]mm [Ak]mm

))
xm

+ xT

(
K∑
i=1

ρi%i
τp%k

abs
(
RkΨ

−1
k

)2 ◦ abs (Ri)
2

)
x+ tr

((
K∑
i=1

ρiRi + σ2IM

)
Ak

)
. (20)

can be casted as geometric programming problems. This result
is summarized in the following theorem.

Theorem 3. Consider the variable change xm = ε2m
∀m ∈ {1, . . . ,M} and x = [x1, . . . , xM ]T . If Ψk is fixed,
then (15) with the objectives given in (16) and constraint in
(17), can be casted as geometric programming problems with
the following formulations:

Max-prod SINRs

maximize
t≥0, xm≥0, ρk≥0,

∀m∈{1,...,M}
∀k∈{1,...,K}

t

K∏
k=1

ρkwk

subject to t

K∏
k=1

f D
k (x,ρ) ≤ 1,

M∏
m=1

ζ2mx−1
m ≤ 22bTOT ,

xm ≤ ε2MAX, ρk ≤ ρMAX.

(18)

Max-min fairness

maximize
t≥0, xm≥0, ρk≥0,

∀m∈{1,...,M}
∀k∈{1,...,K}

t

subject to
tf D

k (x,ρ)

ρkwk
≤ 1,

M∏
m=1

ζ2mx−1
m ≤ 22bTOT ,

xm ≤ ε2MAX, ρk ≤ ρMAX,

(19)

where wk = tr (Ak)
2, Ak = RkΨ

−1
k Rk and f D

k (x,ρ) is
defined in (20) at the top of this page.

Proof: It follows from rewriting the effective SINR in (14)
as SINRk = ρkwk/f

D
k (x,ρ), and noticing that f D

k (x,ρ) is a
posynomial function of xm and ρk. Then, the max-product
of SINRs problem can be re-casted as in (18) by adding a
new variable t to impose a constraint on the product of the
SINR denominators. The max-min fairness problem can be
directly rewritten as in (19) by doing an epigraph formulation
[26]. Finally, it can be seen that both problems (18) and (19)
maximize a monomial with constraints being posynomials or
monomials lower than a constant. Thus, they are geometric
programs [26].

To account for the dependency that Ψk has on εm, the
iterative Algorithm 2 is proposed. Notice that the proposed
algorithm converges because the optimization problem always
maximizes the same objective. However, since Ψk is kept fixed
in each optimization step, it is not guaranteed that the solution
converges to the global optimum.

Algorithm 2 Iterative procedure to update the pilot distortion
Ψk.

1: Initialize Ψk by setting εm = ζm2−
bTOT
M

∀m ∈ {1, . . . ,M}.
2: repeat
3: Solve the optimization problem (18) or (19) and store

the optimal solution εOP-SE
m .

4: Update Ψk by setting εm = εOP-SE
m .

5: until Convergence is achieved.

To gain more insights into the SE with optimal HWI
allocation, Monte-Carlo simulations are conducted following
the same setup as in Section IV-A. The optimization problems
in (18) and (19) are solved with CVX, a package for specifying
and solving convex programs [30]. The iterative optimization
algorithm converges in two iterations in all cases, thus, the
convergence results are not plotted.

Figure 3a shows the empirical CDF curve of the optimal
ADC bit allocation for the Co-corr-D1 and Cell-free cases.
It can be seen that the optimal ADC bits are more spread
in the case of Cell-free since there are more LSF variations
across the BS antennas. In the case when the bit allocation
provides minimum pilot distortion, the ADC bits are less
spread than for max-product of SINR or max-min fairness. In
the minimum pilot distortion case, the optimal HWI allocation
seeks to balance the dynamic range of the received pilot
signal. In turn, when optimizing the effective SINR, more
involved dependencies arise due to the linear combining and
the optimal HWI allocation is conditioned on cross products
between spatial correlation matrices.

Figs. 3b, 3c, and 3d, show the empirical CDF of SE per
UE for the additive uncorrelated distortion model in (2) with
the expressions found in Theorem 2 for RZF and Corollary 1
for MR (depicted by lines). These results are validated by
the exact quantization model introduced in Section IV-A
(depicted by the markers). The results with uniform equal
ADC bit allocation, and the joint high-resolution/one-bit with
antenna selection approach from [20] have been included as
benchmarks. In the latter, the number of antennas with high-
resolution ADCs is 20% of the total number of BS antennas,
and the value of the high ADC resolution is selected so that
the total ADC bit budget constraint is satisfied, that is 11
bit ADCs. In Figs. 3b, 3c, and 3d, it can be seen that max-
min fairness reduces the SE of UEs with high channel gains
(shown in the high percentile regions) in order to enhance the
performance of the UE with minimum SE. Moreover, as more
LSF variations arise going from Co-corr-I to Cell-free, max-
min fairness is able to offer higher SE. However, except for
very low SE percentile values, the max-product of SINR and
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(c) Channel model Cell-free with τc = 1000.
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(d) Channel model Cell-free with τc = 200.

Figure 3: CDF of the optimal ADC bit allocation and SE per UE with M = 100, K = 10, %̄/σ2 = 1 (SNR = 0 [dB]), and
bTOT = 3M . In Figs. 3b, 3c, and 3d, the lines correspond to the results in Theorem 2 and Corollary 1 (for MR) with the
distortion model in (2). The markers are the results with exact quantization and integer bit allocation (see Section III-B). The
results for joint high/1-bit from [20], assume 20 antennas with 11 bit ADCs and the rest with 1-bit ADCs.

minimum pilot distortion methods are able to offer higher SE.
In the case of MR, max-product of SINR and minimum pilot
distortion offer almost the same SE for all UEs.

Notice that the optimization problems (18) and (19) are
solved with the SINR expression for MR which does not cor-
respond to the optimal operating point of RZF. Nevertheless,
it is important to assess the potential benefits of interference
suppression methods like RZF. The max-product of SINRs
with MR tends to assign more power to UEs with higher
channel gains which may not be the best approach to suppress
interference. On the other hand, in cases with co-located BS
antennas, the level of interference from a given UE varies less
than in the Cell-free case, where some BS antennas might
be located much further than others. As a result, RZF with
minimum pilot distortion provides higher SE for most UEs
under Co-corr-I, whereas the max-product of SINRs provides
the highest SE under the Cell-free case.

The joint high-resolution/one-bit with antenna selection
approach from [20] performs better in scenarios with large
coherence block sizes as it is shown in Figure 3c, achieving
higher SE than max-min fairness with RZF for more than
60% of the UEs. However, the minimum pilot distortion and
max-product of SINRs methods offer higher SE than the joint
high-resolution/one-bit with antenna selection approach. This
indicates that allocating different ADC bit values based on LSF
variations is more beneficial than having a few BS antennas
equipped with high-resolution ADCs and the rest with one-bit
ADCs.

In summary, statistical channel inversion power control
combined with minimum pilot distortion HWI allocation offers
the same or higher SE as the max-product of SINRs technique
and it is easier to implement. The only exception is in the
Cell-free case with RZF, where optimizing the max-product
of SINRs increases the SE for most UEs more than 1 [bpcu]
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compared to minimum pilot distortion, and more than 2 [bpcu]
compared to equal ADC bit allocation.

Remark 7. As shown in Figure 3, unequal ADC bit allocation
is mostly advantageous when there are LSF channel variations
across the BS antennas, that is, large changes in the diagonal
elements of the spatial correlation matrices. In contrast, the
amount of correlation between antenna elements (i.e., value of
the off-diagonal elements of the spatial correlation matrices) is
less influential in the SE improvements provided by optimizing
the ADC bit allocation. This result is in line with Remark 6.

VI. IMPACT OF PWC ON THE HWI ALLOCATION

In previous sections, an ADC bit budget constraint is
used to get a clear comparison between equal and mixed
ADC bit allocation. However, in practice the PwC is a more
suitable measure of cost. Thus, in this section the optimal
HWI allocation for maximizing the product of SINRs under
a PwC constraint is analyzed. This problem is solved based
on a mixed-ADC approach, and to provide a benchmark for
comparison, the solution to the same problem considering
equal ADC bits across the BS antennas is also included.

Before formulating the optimization problem, a model for
the PwC of ADCs needs to be established. However, finding
a general power model for ADCs is hard because the PwC
depends on many design parameters, for example, architecture,
sampling frequency, oversampling factor, among others. Thus,
to get a general model of the ADC PwC, the Walden’s figure
of merit FoMW = PADC/(2

bfs) is used, where PADC is the
dissipated power by the ADC, fs is the sampling frequency,
and b is the number of ADC bits. Thus, the ADC PwC of the
mth BS antenna is modeled as

PADCm = D12
bm = D1ζmε−1

m (21)

which grows exponentially with the number of ADC bits. The
proportionality constant D1 depends on the Walden’s figure
of merit such that D1 = FoMWfs. The survey [31] provides
numerical values for these terms based on state-of-the-art
ADCs.

Similar to the previous section, the optimization framework
in (15) is used. Since the goal is to maximize the product of
SINRs, the objective function is the same as in (16). The key
difference, is that in this analysis there is no fixed ADC bit
budget, that is, the total ADC bit budget is optimized as well
as the allocation of ADC bits. Thus, the constraint function is
instead given by the PwC of the ADCs and the transmission
data power, defined as

f HWI(ε,ρ) = PTXD-ADC(ε,ρ)− γPC (22)

PTXD-ADC(ε,ρ) =

(
1− τp

τc

)
BW

η

K∑
k′=1

ρk︸ ︷︷ ︸
Transmission data power

+2D1

M∑
m=1

ζmε−1
m︸ ︷︷ ︸

Total ADC power

(23)

where η is the efficiency of the power amplifier, assumed
to be equal for all BS antennas, and PTXD-ADC(ε,ρ) is the
PwC that depends on the HWI level and transmission en-
ergy per data symbol. The term γPC imposes a maximum

PwC for PTXD-ADC(ε,ρ). The power function PTXD-ADC(ε,ρ)
is linear in ρk and monotonically decreasing in εm. Thus,
lower transmission power and higher HWI level result in lower
PwC. Moreover, PTXD-ADC(ε,ρ) is a posynomial function,
which means that the power constraint becomes a posynomial
lower than a constant. The max-product of SINRs objective
can be transformed into a monomial function by adding an
auxiliary variable and including a geometric constraint as
shown in Section V-A. Thus, the optimization problem in (15)
with max-product of SINRs objective in (16) and constraint
function in (22) is a geometric program [26]. In the case of
equal ADC bit allocation, the optimization variable is changed
to ε such that εm = ε for m ∈ {1, . . . ,M}. Note that this
change of variables also results in a geometric program.

To illustrate the balance between the sum SE benefit and
the cost of PwC, the EE is used as a performance metric and
is defined as [5, Ch 5]

EE =BW

K∑
k=1

SEk

/(
PCST + PUEK + PBS-AM

+ PPILOT + PTXD-ADC(ε,ρ) + PCDBW

K∑
k=1

SEk

)
(24)

where PCD accounts for the coding, decoding and backhaul
PwC. The transmission power of pilots is modeled by PPILOT =
τp
τc

BW

η

∑K
k′=1 %k. The circuit PwC per UE is PUE, while PBS-A

accounts for the power consumed by the circuitry on each
BS antenna that is independent of the ADC bit resolution.
The term PCST accounts for the power consumed by baseband
processing (e.g, linear processing and channel estimation) plus
fixed terms (e.g., site cooling). The values of these parameters
are in Table I and are selected based on [5, Ch 5].

To analyze the optimal ADC bit allocation, Monte Carlo
simulations with the same simulation setup as in Section V-A
are performed. Figure 4a shows the empirical CDF of the
optimal ADC bit allocation. It can be seen that, similar to
Figure 3a, the ADC bit resolution is more spread as the
variations of LSF among the channels increase. However,
in contrast to Figure 3a, where the ADC resolutions reach
values of up to 10 bits, the bit resolution in Figure 4a is
concentrated below 5 bits. In particular, in the case of Cell-free
with γPC = 10 [W], over 40 % of the BS antennas have 1 bit
ADC bit resolution. Thus, adding a PwC constraint reduces
the values of the ADC bits used.

Figure 4b shows the EE versus the target PwC, and all
results consider exact quantization with the proposed integer
bit allocation in Section III-B and RZF. Note that since the
PwC and SE both increase when the ADC bit resolution
increases, the optimal solution satisfies the power constraint
with equality. Thus, the optimal SE follows the same behavior
as the EE depicted in Figure 4b. The EE has unimodal shape
(i.e., increases, saturates, and then decreases) which means
that the target PwC can be customized to maximize SE and
EE. Comparing equal and mixed-ADC bit allocations, it can
be seen that for co-located scenarios, the EE is almost the
same whereas in the Cell-free case, mixed-ADCs increases
the EE up to 30% at its maximum compared to equal ADC
bit allocation.
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Figure 4: CDF of optimal ADC bit allocation and EE vs γPC with RZF, M = 100, K = 10, τc = 200, %̄ = σ2 (SNR = 0 [dB])
and D1 = 0.006 [W/conv-step]. The results in Figure 4b consider the exact quantization model and integer bit allocation (see
Section III-B).

VII. CONCLUSION

This article studied the optimal ADC bit allocation problem
for maximal SE or EE when the selection of ADC bits is done
with respect to the large-scale fading. For the SE, in cases
with co-located BS antennas and small channel variations
across the antennas, equal ADC bit allocation is close to
optimal. In contrast, when there are large channel variations
across the BS antennas, as in cell-free Massive MIMO, the SE
benefits of optimizing the ADC bit allocation are substantial
for interference suppression methods such as RZF.

In the case of cell-free Massive MIMO, the proposed
ADC bit allocation method to minimize the pilot distortion
combined with statistical channel inversion power control and
RZF has a simple implementation and provides more than
1 [bpcu] SE gain compared to equal ADC bit allocation.
Furthermore, for max-product of SINRs power control and
ADC bit optimization, the SE gain is of 2 [bpcu] SE compared
to equal ADC bit allocation.

By considering the PwC as a constraint in the max-product
of SINRs problem, the optimal ADC bit allocation that maxi-
mizes EE and sum SE is found at ADC bit resolutions below
6 bits. Furthermore, in the case of cell-free Massive MIMO
with RZF and a mixed-ADC approach, improvements of up
to 30% can be achieved compared to equal ADCs.

APPENDIX A: PROOF OF THEOREM 1

Let λ1 be the Lagrange multiplier for the constraint in (9)
and ε = [ε1, . . . , εM ]T , then

L(ε, λ1) =

M∑
m=1

ε2mpU
m +λ1

(
M∑

m=1

log2

(
ζm
εm

)
− bTOT

)
(25)

is the Lagrangian function where pU
m =

∑K
i=1 %i[Ri]mm and

the dual problem is

maximize
λ1≥0

inf
εm≥0 ∀m∈{1,...,M}

L(ε, λ1). (26)

Since (9) is a convex problem, a point (ε̂, λ̂1) is primal and
dual optimal (it solves (9) and (26)) with zero duality gap
(i.e., the optimal objective is the same for (9) and (26)) when
it satisfies the KKT conditions given by

M∑
m=1

log2

(
ζm
ε̂m

)
− bTOT ≤ 0 (27.a)

λ̂1 ≥ 0 (27.b)

λ̂1

(
M∑

m=1

log2

(
ζm
ε̂m

)
− bTOT

)
= 0 (27.c)

∇εL(ε̂, λ̂1) = 0 (27.d)

where ∇ε(·) is the gradient with respect to ε. From (27.d) the
following conditions are found:

2ε̂mpU
m − λ̂1

ln(2)ε̂m
= 0, ∀m ∈ {1, . . . ,M} (28)

where ln(·) denotes the natural logarithm. By clearing ε̂m from
(28) and inserting it into (27.c), the optimal solution is found
and (27.a) is satisfied with equality.

APPENDIX B: PROOF OF CLOSED-FORM SE EXPRESSION
WITH MR

The closed-form expression in (14) is found by calculating
the expectations in (13) using known properties of circularly
symmetric complex Gaussian random vectors [10, Appx. A].
First, the term in the numerator is found by using the fact that
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E
{
h̄H
i D2

εDhi
h̄i

}
= E

{
M∑
l=1

M∑
m=1

M∑
m′=1

[Ak]ml[Ak]
∗
m′lε

2
l [R

1
2
i g]

∗
m

∣∣∣[R 1
2
i g]l

∣∣∣2 [R 1
2
i g]m′

}
(a1)
=

M∑
l=1

ε2l [RiAk]ll[RiAk]
∗
ll +

M∑
l=1

M∑
m=1

ε2l [Ak]ml[RiAk]
∗
ml[Ri]ll

= tr
(
D2

εabs
(
diag

(
RiRkΨ

−1
k

))2
+RiAkD

2
εDRi

AH
k

)
(33)

E {[g]m[g]∗m′ [g]l[g]
∗
l′} =



E
{
|[g]m|4

}
= 2 if m = m′ = l = l′

E
{
|[g]m|2 |[g]l|2

}
= 1 if m 6= l, with

m = m′, l = l′

m = l′, l = m′

0 otherwise.

(34)

E
{
tr
(
D2

εD
D
hAkD

2
εD

P
hA

H
k

)}
=tr

D2
ε

K∑
i=1

ρiDRiAkD
2
ε

K∑
i′ 6=i

%i′DRi′A
H
k


+ E

{
K∑
i=1

ρi%i

M∑
l=1

M∑
m=1

ε2mε2m′ |[Ak]mm′ |2
∣∣∣[R 1

2
i g]m

∣∣∣2 ∣∣∣[R 1
2
i g]m′

∣∣∣2}

=tr

(
D2

ε

K∑
i=1

ρiDRiAkD
2
ε

K∑
i′=1

%i′DRi′A
H
k

)
+

K∑
i=1

ρi%iD
2
εdiag

(
abs (Ak)

2
D2

εabs (Ri)
2
)

(35)

the LMMSE channel estimate ĥk and error h̃k are uncorrelated
by design, so that

E
{
vH
k hk

}
= E

{
ĥH
k

(
ĥk + h̃k

)}
= tr

(
RkΨ

−1
k Rk

)
.

(29)
To calculate the first term in the denominator of (13), for
ease of notation let Ak = RkΨ

−1
k , h̄i = AH

k hi and
Dhi

= diag(|[hi]1|2, . . . , |[hi]M |2), then

E
{∣∣vH

k hi

∣∣2} = E
{ ∣∣h̄H

i hk

∣∣2 + %i
τp%k

h̄H
i D2

εDhi h̄i

+ h̄H
i

(
σ2

τp%k
IM +

K∑
i′ 6=i

%i′

τp%k
D2

εDRi′

)
h̄i

}
. (30)

From [10, Appx. A] it follows directly that

E
{∣∣h̄H

i hk

∣∣2}={tr (AkRk)
2
+tr

(
RkAkRkA

H
k

)
for i = k

tr
(
RiAkRkA

H
k

)
for i 6= k.

(31)
To find the second term in (30), let hi = R

1
2
i g such that

g ∼ CN (0, IM ) and Ri = R
1
2
i R

1
2
i , then the result in (33) at

the top of this page holds, where (a1) follows from expanding
the terms [R

1
2
i g]l =

∑M
n=1[R

1
2
i ]mn[g]n and applying the

property of circularly symmetric complex Gaussian random
vectors shown in (34) at the top of this page.

The third term in (30) is a quadratic function of hi and
the expectation is found by direct calculation of second order
moments of circularly symmetric complex Gaussian random

vectors. Since the noise n is independent from the channels
and hardware distortions, the third term in the denominator of
(13) is E

{∣∣vH
k n
∣∣2} = σ2E

{
‖ĥk‖2

}
= σ2tr

(
RkΨ

−1
k Rk

)
.

To calculate the fourth term in the denominator of (13), recall
that in the case of data transmission Dh =

∑K
i=1 ρiDhi which

in the following is denoted as DD
h, whereas in the case of

pilot transmission Dh =
∑K

i=1 %iDhi which in the following
is denoted as DP

h, then it follows that

E
{∣∣vH

k e
∣∣2}=E

{
h̄H
k D2

εD
D
hh̄k+

σ2

τp%k
tr
(
DD

hD
2
εAkA

H
k

)
+

1

τp%k
tr
(
D2

εD
D
hAkD

2
εD

P
hA

H
k

)}
. (32)

The first term in (32) is follows as in (33), and the second term
in (32) follows from calculating known second oder moments
of the channel vectors. The last term in (32) is computed as
shown in (35) at the top of this page, where the last equality
is found by expanding the terms [R

1
2
i g]l =

∑M
n=1[R

1
2
i ]mn[g]n

and applying the properties in (34). Finally, by combining all
results, merging terms that form the matrix Ψk (see (7)), and
performing lengthly algebraic manipulations, the expression in
(14) is found.
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