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ABSTRACT

Submodular extensions of an energy function can be used to efficiently compute approximate
marginals via variational inference. The accuracy of the marginals depends crucially on the
quality of the submodular extension. To identify accurate extensions for different classes of
energy functions, we establish a relationship between the submodular extensions of the energy
and linear programming (LP) relaxations for the corresponding MAP estimation problem. This
allows us to (i) establish the worst-case optimality of the submodular extension for Potts model
used in the literature; (ii) identify the worst-case optimal submodular extension for the more
general class of metric labeling; (iii) efficiently compute the marginals for the widely used dense
CRF model with the help of a recently proposed Gaussian filtering method; and (iv) propose
an accurate submodular extension based on an LP relaxation for a higher-order diversity
model. Using synthetic and real data, we show that our approach provides comparable upper
bounds on the log-partition function to those obtained using tree-reweighted message passing
(TRW) in cases where the latter is computationally feasible. Importantly, unlike TRW, our
approach provides the first computationally tractable algorithm to compute an upper bound
on dense CRF model with higher-order Potts potentials.

c� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The desirable optimization properties of submodular

set functions have been widely exploited in the design

of approximate MAP estimation algorithms for discrete

conditional random fields (CRFs) (Boykov et al., 2001;

Kumar et al., 2011). Submodularity has also been recently

used to design an elegant variational inference algorithm to

compute the marginals of a discrete CRF by minimising an

upper-bound on the log-partition function. In the initial

work of Djolonga and Krause (2014), the energy of the CRF

was restricted to be submodular. In a later work (Zhang

e-mail: pankaj@robots.ox.ac.uk (Pankaj Pansari)

et al., 2015), the algorithm was extended to handle more

general Potts energy functions. The key idea there was to

define a large ground set such that its subsets represent

valid labelings, sublabelings or even incorrect labelings

(these may assign two separate labels to a random variable

and hence be invalid). Given the large ground set, it is

possible to define a submodular set function whose value is

equal to the energy of the CRF for subsets that specify a

valid labeling of the model. We refer to such a set function

as a submodular extension of the energy.

For a given energy function, there exists a large number

of possible submodular extensions. The accuracy of the

variational inference algorithm depends crucially on the
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choice of the submodular extension. Yet, previous work

has largely ignored the question of identifying accurate

extensions for different energy classes. Indeed, the difficulty

of identifying submodular extensions of general energy

functions could be a major reason why the experiments

of Zhang et al. (2015) were restricted to the special case of

models specified by the Potts energy functions.

In this work, we establish a hitherto unknown connec-

tion between the submodular extension of the Potts model

proposed by Zhang et al. (2015), and the objective function

of an accurate linear programming (LP) relaxation of the

corresponding MAP estimation problem (Kleinberg and

Tardos, 2002). Specifically, the Lovasz extension of a sub-

modular extension can be shown to be an objective function

for the LP relaxation. This connection has four important

practical consequences. First, it establishes the optimality

of the submodular extension of the Potts model, via the

tightest LP relaxation (among first-level relaxations of the

Sherali-Adams hierarchy (Sherali and Adams, 1990)) under

UGC-hardness assumptions (Manokaran et al., 2008). Sec-

ond, it provides an accurate submodular extension of the

hierarchical Potts model, via the LP relaxation of the corre-

sponding MAP estimation problem proposed by Kleinberg

and Tardos (2002). Since any metric can be accurately ap-

proximated as a mixture of hierarchical Potts models (Bar-

tal, 1996, 1998), this result also provides a computationally

feasible algorithm for estimating the marginals for metric

labeling. Third, it establishes the equivalence between

the subgradient of the LP relaxation and the conditional

gradient of the problem of minimising the upper bound of

the log-partition. This allows us to employ the widely used

dense CRF, since a subgradient of its LP relaxation can

be efficiently computed using a recently proposed modified

Gaussian filtering algorithm (Ajanthan et al., 2017). As

a consequence, we provide the first efficient algorithm to

compute an upper bound of the log-partition function of

dense CRFs. This provides complementary information

to the popular mean-field inference algorithm for dense

CRFs, which computes a lower bound on the log-partition

(Koltun and Krahenbuhl, 2011). Fourth, we obtain an

accurate submodular extension for a higher-order diversity

model based on an LP relaxation. Higher-order models can

capture interesting properties of the image that cannot be

expressed using pairwise models (Vineet et al., 2014; Kohli

et al., 2007). We show that our upper-bounds on synthetic

problems are comparable to those from tree reweighted

message passing (TRW) (Wainwright et al., 2005) for the

case of sparse CRFs. Unlike our approach, TRW is com-

putationally infeasible for dense CRFs, thereby limiting

its use in practice. Using pairwise dense CRF models, we

perform stereo matching on standard data sets and ob-

tain better results than Koltun and Krahenbuhl (2011).

We also perform semantic segmentation on the MSRC-21

dataset using a combination of dense pairwise and higher-

order diversity model. The complete code is available at

https://github.com/pankajpansari/denseCRF.

2. Preliminaries

We now introduce the notation and definitions that we

make use of in the remainder of the paper.

Submodular Functions: Given a ground set U =

{1, . . . , N}, let us denote by 2U its power set. A set function

F : 2U → R is submodular if, for all subsets A, B ⊆ U

F (A ∪ B) + F (A ∩ B) ≤ F (A) + F (B). (1)

The set function F is modular if there exists s ∈ RN such

that F (A) =
�

k∈A sk ∀ A ⊆ 2U . Henceforth, we will use

the shorthand s(A) to denote
�

k∈Ask.

Extended Polymatroid: Associated with any sub-

modular function F is a special polytope known as the

extended polymatroid defined as

EP (F ) = {s ∈ RN | ∀A ⊆ U : s(A) ≤ F (A)}, (2)

where s denotes the modular function s(.) represented as a

vector (Bach, 2013).
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Lovasz Extension For a given set function F with

F (∅) = 0, the value of its Lovasz extension f(w) : RN → R

is defined as follows (Bach, 2013) : order the components

of w in decreasing order such that wj1 ≥ wj2 ≥ · · · ≥ wjN
,

where (j1, j2, . . . , jN ) is the corresponding permutation of

the indices. Then,

f(w) =
N�

k=1
wjk

(F ({j1, . . . , jk}) − F ({j1, . . . , jk−1})) .

(3)

The function f is an extension because it equals F on the

vertices of the unit cube. That is, for any A ⊆ V , f(1A) =

F (A), where 1A is the 0-1 indicator vector corresponding

to the elements of A.

Property 1. By Edmond’s greedy algorithm (Edmonds,

1970), if w ≥ 0 (non-negative elements),

f(w) = max
s∈EP (F )

�w, s�. (4)

Property 1 implies that an LP over EP (F ) can be solved

by computing the value of the Lovasz extension using

equation (3).

Property 2. The Lovasz extension f of a submodular

function F is a convex piecewise linear function.

Property 2 holds since f(w) is the pointwise maximum

of linear functions according to equation (4).

CRF and Energy Functions A CRF is defined as a

graph on a set of random variables X = {X1, . . . , XN }
related by a set of edges N . We wish to assign every

variable Xa one of the labels from the set L = {1, 2, . . . , L}.

The quality of a labeling x is given by an energy function

defined as

E(x) =
�

a∈X
φa(xa) +

�

(a,b)∈N
φab(xa, xb), (5)

where φa and φab are the unary and pairwise potentials

respectively. In computer vision, we often think of X as

arranged on a grid. A sparse CRF has N defined by 4-

connected or 8-connected neighbourhood relationships. In

a dense CRF, on the other hand, every variable is connected

to every other variable.

We can augment the above pairwise models with higher-

order potentials. Let C be the set of cliques on subgroups

of variables. These cliques can, for instance, be the set of

superpixels from a clustering method, such as k-means or

mean-shift Comaniciu and Meer (2002). Also, let xc be

the component of x formed by elements in clique c. The

energy function now also contains higher-order potentials

E(x) =
�

a∈X
φa(xa) +

�

(a,b)∈N
φab(xa, xb) +

�

c∈C
φc(xc), (6)

The energy function can be interpreted as defining a

probability distribution P (x) as:

P (x) =





1
Z exp(−E(x)) if x ∈ LN ,

0 otherwise.

(7)

The normalization factor Z =
�

x∈LN exp(−E(x)) is

known as the partition function.

Inference There are two inference problems in CRFs:

(i) Marginal inference: We want to compute the marginal

probabilities P (Xa = i) for every a = 1, 2, . . . , N and

i = 1, 2, . . . , L.

(ii) MAP inference: We want to find a labeling with

the minimum energy, that is, minx∈LN E(x). Equivalently,

MAP inference finds the mode of P (x).

3. Review: Variational Inference Using Submodu-

lar Extensions

We now summarise the inference method of Zhang et al.

(2015) which made use of a submodular extension.

Submodular Extensions A submodular extension is

defined using a ground set such that some of its subsets

correspond to valid CRF labelings. Note that not every

subset needs to represent a valid labeling - some of them

could correspond to incomplete or invalid labelings. To

obtain such an extension, we need an encoding scheme

which gives the sets corresponding to valid CRF labelings.
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Fig. 1: Illustration of 1-of-L encoding used in Zhang et al. (2015)

with 4 variables and 3 labels. The blue labeling, corresponding to

X1 = 1, X2 = 3, X3 = 2, X4 = 1, is valid. The yellow labeling,

corresponding to X2 = 2, X3 = 1, 3, X4 = 3, is invalid since X3 has

been assigned multiple labels and X1 has been assigned none.

One example of an encoding scheme is the 1-of-L encod-

ing, illustrated in Figure 1. Let each variable Xa take one of

L possible labels. In this scheme, we represent the set of pos-

sible assignments for Xa by the set Va = {va1, va2, . . . , vaL}.

If Xa is assigned label i, then we select the element

vai. Extending to all variables, our ground set becomes

V = ∪N
a=1Va. A valid assignment A ⊆ V assigns each

variable exactly one label, that is, |A ∩ Va| = 1 for all

Va. We denote the set of valid assignments by M where

M = ∩N
a=1Ma and Ma = {A : |A ∩ Va| = 1}.

Using our ground set V , we can define a submodular

function F which equals E(x) for all sets corresponding

to valid labelings, that is, F (Ax) = E(x), x ∈ LN where

Ax is the set encoding of x. We call such a function F a

submodular extension of E(x).

Upper-Bound on Log-Partition Using a submodular

extension F and given any s ∈ EP (F ), we can obtain an

upper-bound on the partition function as

Z =
�

A∈M
exp(−F (A)) ≤

�

A∈M
exp(−s(A)), (8)

where M is the set of valid labelings. The upper-bound

is the partition function of the distribution Q(A) ∝
exp(−s(A)), which factorises fully because s(.) is mod-

ular. We can minimise this upper-bound, and the corre-

sponding optimum s can help us obtain good approximate

marginals of the distribution P (·). After taking logs for

easy factorisaton, we can equivalently write our optimisa-

tion problem as

min
s∈EP (F )

g(s), where g(s) = log
�

A∈M
exp(−s(A)). (9)

Conditional Gradient Algorithm The conditional

gradient algorithm (Algorithm 1) (Frank and Wolfe, 1956)

is a good candidate for solving problem (9) due to two

reasons. First, problem (9) is convex. Second, as solving

an LP over EP(F) is computationally tractable (property

1), the conditional gradient can be found efficiently. The

algorithm starts with an initial solution s0 (line 1). At

each iteration, we compute the conditional gradient s∗

(line 3), which minimises the linear approximation g(sk) +

∇g(sk)T (s − sk) of the objective function. Finally, s is

updated by either (i) fixed step size schedule, as in line 7

of algorithm 1, or (ii) by doing a line search and setting

sk+1 = min0≤γ≤1 g(γs∗ + (1 − γ)sk).

Algorithm 1 Upper Bound Minimisation using Condi-

tional Gradient Descent
1: Initialize s = s0 ∈ EP (F )

2: for k = 1 to MAX_ITER do

3: s∗ = argmins∈EP (F )�∇g(sk), s�
4: if �s∗ − sk, ∇g(sk)� ≤ � then

5: break

6: end if

7: sk+1 = sk + γ(s∗ − sk) with γ = 2/(k + 2)

8: end for

9: return s

4. Overview: Accurate Submodular Extensions

from LP Relaxations

Different extensions F change the domain in problem

(9), leading to different upper bounds on the log-partition

function. How does one come up with accurate extensions

for different classes of CRF energy? Is it possible to identify

optimal extensions which yield the tightest bound?



5

If we introduce a temperature parameter in P (x) (equa-

tion (7)) by using E(x)/T and decrease T , the resulting

distribution starts to peak more sharply around its mode.

We assume that P (x) is unimodal, and there aren’t multi-

ple solutions with the same minima. As T → 0, marginal

estimation becomes the same as MAP inference since the

resulting distribution P 0(x) has mass 1 at its mode x∗ and

is 0 everywhere else. Given the MAP solution x∗, one can

compute the marginals as P (Xi = j) = [x∗
i = j], where [.]

is the Iverson bracket. We point out that the notion of a

temperature parameter T in a probability distribution and

indeed variational methods for approximating complicated

distributions have their origins in statistical physics litera-

ture - the interested reader is referred to MacKay (2003,

chapter 33). Motivated by this connection, we ask if one

can introduce a temperature parameter to our problem (9)

and transform it to an LP relaxation in the limit T → 0?

We can then use accurate LP relaxations of MAP problems

known in literature to find good submodular extensions for

different classes of energy functions.

We answer this question in the affirmative. Specifically,

in the following two sections we show how one can select the

set encoding and submodular extension to convert problem

(9) to accurate LP relaxations for Potts, hierarchical Potts

and higher-order diversity models. When the LP relaxation

has tightness guarantees, we obtain worst-case optimal

submodular extensions - a notion we elucidate shortly.

In this work, we focus on obtaining submodular exten-

sions with closed-form analytical expressions for different

classes of energy functions. Formally, for a specific en-

ergy class (such as the Potts model) E , we derive a family

of submodular functions F(.). Given an instance of the

energy function E(.) from the class E , the corresponding

submodular extension is F(E).

5. Worst-case Optimal Submodular Extensions

Worst-case Optimality

Our extensions are derived from LP relaxations belong-

ing to the first-level of the Sherali-Adams hierarchy. This

level yields LP relaxations having O(N) relaxed variables

for N variables in the CRF. In principle, these LP relax-

ations can be made tighter by introducing more variables

and constraints, thereby moving to higher levels in the hi-

erarchy (O(Nk) relaxed variables for k-th level). However,

in practice, working with these higher-order relaxations

is computationally infeasible for large-scale vision prob-

lems. In the discussion that follows, we assume that the

LP relaxations belong to the first-level of Sherali-Adams

hierarchy. When the LP relaxation is the tightest possible,

the extension family Fopt we obtain is worst-case optimal.

That is, there does not exist another submodular extension

family F that gives a tighter upper bound for problem

(9) than Fopt for all instances of the energy function in E .

Alternatively, for any other submodular extension family

F , we can find at least one instance of energy function E(.)

such that Fopt results in a tighter upper-bound. Formally,

Fopt is worst-case optimal if

�F : min
s∈EP (F(E))

g(s) ≤ min
s∈EP (Fopt(E))

g(s) ∀ E(.) ∈ E .

(10)

Note that the notion of worst-case optimality does not

guarantee that the extension is best for every instance

of the energy function. It may be possible to solve an

optimisation problem to obtain the best extension for every

given instance of energy E(.). However, in this paper, we

do not take that approach, and instead provide a general

solution for a given class of energy functions.

In subsection 5.1, we prove the worst-case optimality of

the submodular extension used in literature for the Potts

model. In subsection 5.2, we obtain worst-case optimal

submodular extension for the more general hierarchical

Potts model. Finally, in subsection 5.3, we provide a way

to make our inference algorithm efficient for the dense

CRF model. Using our approach, the inference algorithm
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has linear time-complexity per iteration in the number of

variables and labels.

5.1. Pairwise Potts Model

The pairwise Potts model, also known as the uniform

metric, specifies the pairwise potentials φab(xa, xb) in equa-

tion (5) as follows:

φab(xa, xb) = wab · [xa � xb], (11)

where wab is the weight associated with edge (a, b). There

are no higher-order potential terms in this model as in equa-

tion (5). We note that the Potts model is non-submodular

according to the popular encoding used in Ishikawa (2003).

However, we use the 1-of-L encoding to construct the sub-

modular extension.

Tightest LP Relaxation Before describing our set

encoding and submodular extension, we briefly outline

the LP relaxation of the corresponding MAP estimation

problem. To this end, we define indicator variables yai

which equal 1 if Xa = i, and 0 otherwise. The following is

the tightest possible LP relaxation (among first-level LP

relaxations) for Potts model in the worst-case, assuming the

Unique Games Conjecture is true (see (EM-LP) for metric

labeling in Manokaran et al. (2008) and its connection to

(P-LP) in Chekuri et al. (2004)):

(P-LP) min
y

E(y) =
�

a

�

i

φa(i)yai+

�

(a,b)∈N

�

i

wab

2 · |yai − ybi|

s.t y ∈ Δ. (12)

The set Δ is the union of N probability simplices:

Δ = {ya ∈ RL|ya ≥ 0 and �1, ya� = 1}, (13)

where y is the vector of all variables and ya is the compo-

nent of y corresponding to Xa.

Set Encoding We choose to use the 1-of-L encoding for

Potts model as described in Section 3. With the encoding

Fig. 2: An illustration of the worst-case optimal submodular extension

for Potts model for a chain graph of 4 variables, each of which

can take 3 labels. The figure shows how to compute extension for

A = {v1,1, v4,1, v3,2}.

scheme for Potts model above, g(s) can be factorised and

problem (9) can be rewritten as:

min
s∈EP (F )

N�

a=1
log

L�

i=1
exp(−sai). (14)

(See Remark 1 in appendix A for proof).

We note that the gradient ∇g(s) can be computed effi-

ciently as [∇g(s)]ai = − exp−sai /
�L

i=1 exp−sai , these be-

ing the marginals of the fully-factorised distribution Q(A).

Marginal Estimation with Temperature We now in-

troduce a temperature parameter T > 0 to problem (14)

which divides E(x), or equivalently divides s belonging to

EP (F ). Also, since T > 0, we can multiply the objective

by T leaving the problem unchanged. Without changing

the solution, we can transform problem (14) as follows

min
s∈EP (F )

gT (s) =
N�

a=1
T · log

L�

i=1
exp(−sai

T
). (15)

Worst-case Optimal Submodular Extension We

now connect our marginal estimation problem (9) with LP

relaxations using the following proposition.

Proposition 1. In the limit T → 0, problem (15) becomes:

− min
y∈Δ

f(y) (16)

where f(.) is the Lovasz extension of F (.).
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1-1 1-2 1-3 2-1 2-2 2-3

s

t

φ1(1) φ1(2) φ1(3) φ2(1) φ2(2) φ2(3)

Fig. 3: An st-graph specifying the worst-case optimal submodular

extension for Potts model for 2 variables with 3 labels each and

connected to each other. There is a node for each variable and each

label, that is, for all elements of the ground set. The nodes have been

labeled as ‘variable-label’, hence node 1-1 represents the element v11

and so on. The solid blue arcs model the unary potentials, and the

dotted red arcs represent the pairwise potentials. Each dotted red arc

has weight w12/2.

Proof. In the limit T → 0, we can rewrite problem (15) as

min
s∈EP (F )

N�

a=1
max

i
(−sai). (17)

In vector form, the problem becomes

min
s∈EP (F )

max
y∈Δ

−�y, s� (18)

= − max
s∈EP (F )

min
y∈Δ

�y, s� (19)

where Δ is the domain as defined as in equation (13). By

the minimax theorem Boyd and Vandenberghe (2004) for

LP, we can reorder the terms:

− min
y∈Δ

max
s∈EP (F )

�y, s� (20)

Recall that maxs∈EP (F )�y, s� is the value of the Lovasz

extension of F at y, that is, f(y). Hence, as T → 0,

the marginal inference problem converts to minimising the

Lovasz extension under the simplices constraint:

− min
y∈Δ

f(y) (21)

The problem (21) is equivalent to an LP relaxation of

the corresponding MAP estimation problem (see Lemma 1

in appendix). Indeed, gT (s) in problem (15) becomes the

objective function of an LP relaxation in the limit T →
0. We seek to obtain the worst-case optimal submodular

extension by making gT (s) same as the objective of (P-

LP) as T → 0. We note that problems (15) and (14)

become equivalent at T = 1, and our worst-case optimality

guarantee was derived in the limit T → 0. However, it is

possible to derive such a guarantee only in the limit case,

and we claim the worst-case optimality in this sense.

The question now becomes how to recover the worst-case

optimal submodular extension using E(y). The following

proposition answers this question.

Proposition 2. The worst-case optimal submodular exten-

sion for Potts model is given by FP otts(A) =
�L

i=1 Fi(A),

where

Fi(A) =
�

a

φa(i)[|A ∩ {vai}| = 1]+

�

(a,b)∈N

wab

2 · [|A ∩ {vai, vbi}| = 1] (22)

Also, E(y) in (P-LP) is the Lovasz extension of FP otts.

Proof. Since FP otts is sum of Ising models Fi, we first focus

on a particular label i and then generalize. Consider a graph

with only two variables Xa and Xb with an edge between

them. The ground set in this case is {vai, vbi}. Let the

corresponding relaxed indicator variables be y = {yaj , ybj},

such that yai, ybi ∈ [0, 1] and assume yai > ybi. The Lovasz

extension in this case is:

f(y) = yai · [Fi({vai}) − Fi({})]

+ ybi · [Fi({vai, vbi}) − Fi({vai})]

= yai · [
�

φa (j) + wab

2

�
− 0] + ybi · [(φa (j) + φb (j))

−
�

φa (j) + wab

2

�
]

= φa (j) · yai + φb (j) · ybi + wab

2 · (yai − ybi) (23)

In general for both orderings of yab and ybi, we can write

f(y) = φa(j) · yai + φb(j) · ybi + wab

2 · |yai − ybi| (24)
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Extending the Lovasz extension of equation (24) to all

variables and all labels gives us E(y) in (P-LP).

Proposition 2 paves the way for us to identify the worst-

case optimal extension for hierarchical Potts model. Figure

2 shows an example where we compute FP otts(A) for a small

graph and a given set A representing an invalid labeling.

As an alternate representation, Figure 3 shows the st-graph

corresponding to FP otts for a small instance. Each st-cut

corresponds to a labeling, and the cost of each cut matches

FP otts (subsection 4.1 of Wang et al. (2013)).

5.2. Hierarchical Potts Model

Potts model imposes the same penalty for unequal as-

signment of labels to neighbouring variables, regardless of

the label dissimilarity. In some scenarios, a more natural

approach is to vary the penalty based on how different the

labels are. A hierarchical Potts model (Kleinberg and Tar-

dos, 2002) permits this by specifying the distance between

labels using a tree with the following properties:

1. The vertices are of two types: (i) the leaf nodes

representing labels, and (ii) the non-leaf nodes,

except the root, representing meta-labels.

2. The lengths of all the edges from a parent to its

children are the same.

3. The lengths of the edges along any path from the

root to a leaf decreases by a factor of at least r ≥ 2

at each step.

4. The metric distance between nodes of the tree is

the sum of the edge lengths on the unique path

between them.

A subtree T of an hierarchical Potts model is a tree

comprising all the descendants of some node v (not root).

Given a subtree T , lT denotes the length of the tree-edge

leading upward from the root of T and L(T ) denotes the

Fig. 4: A hierarchical Potts model instance illustrating notations with

2 meta-labels (blue) and 4 labels (yellow). All labels are at the same

level. r = 2, that is, edge-length decreases by 2 at each level. Also,

distance between labels 1 and 3 is d(1, 3) = 0.5 + 1 + 1 + 0.5 = 3.

set of leaves of T . We call the leaves of the tree as labels

and all other nodes of the tree expect the root as meta-

labels. Figure 4 illustrates the notations in the context of a

hierarchical Potts model.

We note that the hierarchical Potts model is non-

submodular according to the popular encoding used in

Ishikawa (2003). However, we use the 1-of-L encoding to

construct its submodular extension.

Tightest LP Relaxation We use the same indicator

variables yai that were employed in the LP relaxation of

Potts model. Let ya(T ) =
�

i∈L(T ) yai. The following LP

relaxation is the tightest known (among the LP relaxations

of first-level Sherali-Adams hierarchy) for hierarchical Potts

model in the worst-case, assuming the Unique Games Con-

jecture is true (Manokaran et al., 2008)

(T-LP) min
y

�E(y) =
�

a

�

i

φa(i)yai+

�

(a,b)∈N
wab

�

T

lT · |ya(T ) − yb(T )|

such that y ∈ Δ. (25)

where we sum T over all subtrees. The set Δ is the same

domain as defined in equation (13).

Transformed Tightest LP Relaxation We take (T-

LP) and rewrite it using indicator variables for all labels

and meta-labels. Let R denote the set of all labels and

meta-labels, that is, all nodes in the tree apart from the
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root. Also, let L denote the set of labels, that is, the leaves

of the tree. Let Ti denote the subtree which is rooted at the

i-th node. We introduce an indicator variable zai ∈ {0, 1}

zai =





yai if i ∈ L

ya(Ti) if i ∈ R − L
(26)

We need to extend the definition of unary potentials to

the expanded label space as follows:

where φ�
a(i) =





φa(i) if i ∈ L

0 if i ∈ R − L

(27)

We can now rewrite problem (25) in terms of new indicator

variables zai:

(T-LP-FULL) min �E(z) =
�

i∈R

�

a∈X
φ�

a(i) · zai+

�

i∈R

�

(a,b)∈N
wab · lTi

· |zai − zbi|

such that z ∈ Δ� (28)

where Δ� is the convex hull of the vectors satisfying

�

i∈L
zai = 1, zai ∈ {0, 1} ∀a ∈ X , i ∈ L (29)

and zai =
�

j∈L(Ti)

zaj . ∀a ∈ X , i ∈ R − L (30)

Constraint (30) ensures consistency among labels and meta-

labels, that is, if a label is assigned then all the meta-labels

which lie on the path from the root to the label should be

assigned as well.

Set Encoding For any variable Xa, let the set of

possible assignment of labels and meta-labels be the set

Va = {va1, . . . , vaM }, where M is the total number of nodes

in the tree except the root. Our ground set is V = ∪N
a=1Va

of size N · M .

A consistent labeling of a variable assigns it one label,

and all meta-labels on the path from root to the label. Let

us represent the set of consistent assignments for Xa by

the set Pa = {pa1, . . . , paL}, where pai is the collection of

elements from Va for label i and all meta-labels on the

path from root to label i. The set of valid labelings A ⊆ V

assigns each variable exactly one consistent label. This

constraint can be formally written as M = ∩N
a=1Ma where

Ma has exactly one element from Pa. Let s�
ai be the sum

of the components of s corresponding to the elements of

pai, that is,

s�
ai =

�

t∈pai

st. (31)

Using our encoding scheme, we rewrite problem (9) as:

min
s∈EP (F )

N�

a=1
log

L�

i=1
exp(−s�

ai). (32)

Marginal Estimation with Temperature Similar to

Potts model, we now introduce a temperature parameter

T > 0 to problem (32). The transformed problem becomes

min
s∈EP (F )

gT (s) =
N�

a=1
T · log

L�

i=1
exp(−s�

ai

T
). (33)

Worst-case Optimal Submodular Extension The

following proposition connects the marginal estimation

problem (9) with LP relaxations:

Proposition 3. In the limit T → 0, problem (33) becomes:

− min
z∈Δ�

f(z) (34)

(Proof in appendix).

The above problem is equivalent to an LP relaxation of

the corresponding MAP estimation problem (see Lemma 2

in appendix). Hence, gT (s) becomes the objective function

of an LP relaxation in the limit T → 0. We seek to make

this objective same as �E(z) of (T-LP-FULL) in the limit

T → 0. The question now becomes how to recover the

worst-case optimal submodular extension from �E(z).

Proposition 4. The worst-case optimal submodular ex-

tension for hierarchical Potts model is given by Fhier(A) =
�M

i=1 Fi(A), where

Fi(A) =
�

a

φ�
a(i)[|A ∩ {vai}| = 1]+

�

(a,b)∈N
wab · lTi

· [|A ∩ {vai, vbi}| = 1] (35)

Also, �E(z) in (T-LP-FULL) is the Lovasz extension of

Fhier. (Proof in appendix)
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Since any finite metric space can be probabilistically

approximated by mixture of tree metric (Bartal, 1996),

the worst-case optimal submodular extension for metric

energies can be obtained using Fhier. Note that Fhier

reduces to FP otts for Potts model. One can see this by

considering the Potts model as a star-shaped tree with edge

weights as 0.5.

5.3. Fast Conditional Gradient Computation for Dense

Conditional Random Fields

Dense CRF Energy Function A dense CRF is speci-

fied by the following energy function

E(x) =
�

a∈X
φa(xa) +

�

a∈X

�

b∈X ,b�a

φab(xa, xb). (36)

Note that every random variable is a neighbour of every

other random variable in a dense CRF. Similar to previous

work (Koltun and Krahenbuhl, 2011), we consider the

pairwise potentials to be Gaussian, that is,

φab(i, j) = µ(i, j)
�

m

w(m)k(f (m)
a , f (m)

b ), (37)

k(f (m)
a , f (m)

b ) = exp
�−||fa − fb||2

2

�
. (38)

The term µ(i, j) is known as label compatibility function

between labels i and j. Potts model and hierarchical Potts

models are examples of µ(i, j). The other term is a mixture

of Gaussian kernels k(., .) and is called the pixel compati-

bility function. The terms f (m)
a are features that describe

the random variable Xa. In practice, similar to Koltun

and Krahenbuhl (2011), we use x, y coordinates and RGB

values associated to a pixel as its features.

Algorithm 1 assumes that the conditional gradient s∗

in step 3 can be computed efficiently. This is certainly

not the case for dense CRFs, since computing s∗ involves

NL function evaluations of the submodular extension F ,

where N is the number of variables, and L is the number

of labels. Each F evaluation has complexity O(N) using

the efficient Gaussian filtering algorithm of Koltun and

Krahenbuhl (2011). However, computation of s∗ would

still be O(N2), which is clearly impractical for computer-

vision applications where N ∼ 105 − 106.

However, using the equivalence of relaxed LP objec-

tives and the Lovasz extension of submodular extensions in

Proposition 1, we are able to compute s∗ in O(NL) time.

Specifically, we use the algorithm of Ajanthan et al. (2017),

which provides an efficient filtering procedure to compute a

subgradient of the LP relaxation objective E(y) of (P-LP).

Proposition 5. Computing a subgradient of E(y) in (P-

LP) is equivalent to computing the conditional gradient for

the submodular function FP otts.

Proof. For the Potts model, we derived the worst-case

optimal extension FP otts by making its Lovasz extension

f(y) same as the objective function E(y) of the worst-case

optimal LP relaxation. Hence, we have

E(y) = f(y)

= max
s∈EP (F )

�y, s�.

The subgradient of E(y) at y0 is an ‘active’ linear func-

tion at y0. Hence,

∂E(y)|y=y0 ∈ argmax
s∈EP (F )

�y0, s� (39)

Equation (39) is equivalent to s∗ computation in line 3 of

algorithm 1, with y0 = −∇g(sk).

A similar observation can be made in case of hierarchical

Potts model. Hence we have the first practical algorithm to

compute upper bound of log-partition function of a dense

CRF for Potts and metric energies.

6. Accurate Submodular Extension for Higher-

order Diversity Model

The pairwise Potts model often fails to capture useful

image statistics because it restricts the order of the po-

tentials to be at most two. Higher order clique potentials

can model complex interactions of random variables, and

thereby overcome this difficulty.
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A higher-order model useful in real-world applications is

the diversity model, which favours labeling where variables

in a clique have fewer number of unique labels. For instance,

in semantic segmentation we often first obtain superpixels

from a clustering method (Comaniciu and Meer, 2002),

which we consider as cliques in our model. We expect the

labeling in a superpixel to be homogeneous. As a result, it

is preferable to have pixels belonging to a superpixel to be

incorrectly labeled with two class labels rather than three

or more class labels. Let Γ(xc) be the set of unique labels

assigned to variables in the clique c, and ωc be the weight

associated with the clique. In our case, we take the clique

potentials as proportional to the number of unique labels

in the clique c:

φc(xc) = ωc|Γ(xc)| (40)

where the notation |A| denotes the cardinality of a set A.

LP Relaxation First, let us consider the IP formulation

of the MAP problem for our diversity model. Using the

same set of indicator variables yai = {0, 1} as for the Potts

model, which are binary now, the clique potential φ(xc)

can be represented as

φc(xc) = ωc ·
L�

i=1
max

(a,b)∈c
|yai − ybi| (41)

For example, let the set of unique labels in a clique be

Γ = {l1, l2, l3}. This implies that yai = 1 for some, but

not all, variables in the clique for i = {1, 2, 3}. Hence,

|yai − ybi| = 1 for some pairs (a, b) ∈ c for i = {1, 2, 3}.

Also, for any other label i, |yai − ybi| = 0 for all (a, b) ∈ c

since yai = 0 for all variables a for these labels i. For binary

variables, the maximum possible value of |yai − ybi| is 1.

Hence, φc(xc) = ωc · (1 + 1 + 1) = 3 · ωc = ωc|{l1, l2, l3}|.

We now relax the indicator variables yai to lie in [0, 1].

Assuming the pairwise potentials in equation (6) to be

Potts, an accurate LP relaxation for the higher-order di-

versity model is given by:

(HOD-LP) min
y

E(y) =
N�

a=1

L�

i=1
φa(i)yai

+
�

(a,b)∈N

�

i

wab

2 · |yai − ybi|

+
�

c ∈C
wc ·

L�

i=1
max

(a,b)∈c
|yai − ybi|

s.t y ∈ Δ. (42)

where the label (HOD-LP) stands for LP relaxation for

higher-order diversity model. The objective function is

similar to that for the Potts model along with the addi-

tional terms corresponding to higher-order potentials. The

constraints for (HOD-LP) are the same as for (P-LP). The

above LP has not been formally analysed in literature,

and we do not make any optimality claims. However, its

similarity in form to (P-LP) is an indication of its accuracy.

We establish its accuracy empirically in section 7.

LP-based Submodular Extension We use the same

1-of-L encoding scheme as for Potts model. Problem 9 then

factorises as:

min
s∈EP (F )

N�

a=1
log

L�

i=1
exp(−sai). (43)

We introduce a temperature parameter T to problem (43)

to obtain the following new problem:

min
s∈EP (F )

gT (s) =
N�

a=1
T · log

L�

i=1
exp(−sai

T
). (44)

In the limit T → 0, problem (44) becomes

− min
y∈Δ

f(y) (45)

where f(.) is the Lovasz extension of F (.). We are interested

in making this LP the same as (HOD-LP) of equation (42),

thereby enabling us to obtain the submodular extension

for the higher-order diversity model. We will make use of

the following lemma in our proof.

Lemma 1. The Lovasz extension of the set function

FHOD(A) =

FP otts(A) +
�

c∈C
wc ·

L�

i=1
max

(a,b)∈c
[|A ∩ {vai, vbi}| = 1]
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is the objective function E(y) of the LP relaxation referred

to as (HOD-LP).

Proof. Making use of Proposition 2, it suffices for us to show

that the Lovasz extension of the i-th Ising model Fi(A) =

max(a,b)∈c[|A ∩ {vai, vbi}| = 1] is max(a,b)∈c |yai − ybi|.
Let the clique c have M variables. Given y ∈ [0, 1]M , let

us order its components in decreasing order yj1 > · · · > yjM

, where (j1, . . . , jM ) is a permutation. Then the Lovasz

extension of Fi() is:

fi(y) =
M�

k=1
yjk

[Fi({j1, . . . , jk}) − Fi({j1, . . . , jk−1})]

We note that when A = {} or {j1, . . . , jM }, that is, when

A represents homogeneous labelings, Fi(A) = 0. For any

other A ⊂ {j1, . . . , jM }, Fi(A) = 1. Hence, the Lovasz

extension simplifies to

fi(y) = yj1 − yjM

= max
(a,b)∈c

|yai − ybi|

This proves our lemma.

We are now in a position to state our main result:

Proposition 6. The set function FHOD of lemma 1 is the

submodular extension of our higher-order diversity model

whose Lovasz extension is E(y) in problem (HOD-LP).

Proof. Note that ∀y ∈ LN , that is, for all valid labelings,

FHOD(Ay) equals E(y). Hence, FHOD is an extension.

Lemma 1 showed that the Lovasz extension of FHOD is

E(y) in problem (HOD-LP). E(y) being a sum of terms

corresponding to maximum of linear functions, is convex.

The convexity of Lovasz extension implies submodularity of

the set function Bach (2013). Hence, FHOD is submodular.

We now show the effectiveness of the accurate submodu-

lar extensions for different classes of models by means of

experiments on synthetic and real-world datasets.

1-1 1-2

1-3

2-1 2-2

2-3

s

t

φ1(1)

φ1(2)φ1(3)

φ2(1)

φ2(2)φ2(3)

Fig. 5: Alternate extension for synthetic experiments: An st-

graph specifying the alternate submodular extension for Potts model

for 2 variables with 3 labels each and connected to each other. The

convention used is same as in figure 3. Each dotted red arc has

weight w12/2. This alternate extension was also used to derive the

extension for hierarchical Potts model.

7. Experiments

Using synthetic data, we show that our upper-bound

compares favorably with TRW for both Potts and hierar-

chical Potts models. For comparison, we restrict ourselves

to sparse CRFs, as the code available for TRW does not

scale well to dense CRFs. We also perform stereo matching

using dense CRF models and compare our results with

the mean-field-based approach of Koltun and Krahenbuhl

(2011). All experiments were run on a x86-64, 3.8GHz

machine with 16GB RAM. In this section, we refer to our

algorithm as Submod and mean field as MF.

7.1. Upper-bound Comparison using Synthetic Data

Data We generate lattices of size 100 × 100, where each

lattice point represents a variable taking one of 20 labels.

The pairwise relations of the sparse CRFs are defined by

4-connected neighbourhoods. The unary potentials are

uniformly sampled in the range [0, 10]. We consider (a)

Potts model and (b) hierarchical Potts models with pairwise

distance between labels given by the trees of Figure 6. The

pairwise weights are varied in the range {1, 2, 5, 10}. We

compare the results of our worst-case optimal submodular
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(a) Tree A (b) Tree B

Fig. 6: Trees for synthetic experiments: The hierarchical Potts models defining pairwise distance among 20 labels used for upper-bound

comparison with TRW. Blue nodes are the meta-labels and yellow nodes are labels. All the edges at a particular level have the same edge

weights. The sequence of weights from root level to leaf level is 1, 0.5 for tree A and 1, 1, 0.5 for tree B. The yellow node is shown to clump

together 4 and 5 leaf nodes for tree A and B respectively.
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Fig. 7: Upper-bound comparison using synthetic data: The plot shows the ratio (Submod bound - TRW bound)/|TRW bound| averaged

over 100 unary instances as a function of pairwise weights using the worst-case optimal and alternate extension for Potts and hierarchical

Potts models. We observe that the worst-case optimal extension (solid) results in tighter bounds as compared to the respective alternate

extensions (dotted). Also, the worst-case optimal extension bounds are in similar range as the TRW bounds.
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extension with an alternate submodular extension as given

in Figure 5.

Method For our algorithm, we use the standard schedule

γ = 2/(k+2) to obtain step size γ at iteration k. We run our

algorithm till convergence - 100 iterations suffices for this.

The experiments are repeated for 100 randomly generated

unaries for each model and each weight. For TRW, we used

the MATLAB toolbox of Domke (2013). The baseline code

does not optimise over tree distributions. We varied the

edge-appearance probability in trees over the range [0.1 -

0.5] and found 0.5 to give tightest upper bound.

Results We plot the ratio of the normalised difference

of the upper bound values of our method with TRW as

a function of pairwise weights. The ratios are averaged

over 100 instances of unaries. Figure 7 shows the plots

for Potts and hierarchical Potts models for the worst-case

optimal and alternate extension. We find that the optimal

extension (solid) results in tighter upper-bounds than the

alternate extension (dotted) for both models. This is be-

cause the representation of the submodular function using

Figure 5 requires that φa(i) be non-negative. This im-

plies that F (A) values are larger for the worst-case optimal

extension of Figure 3 as compared to the alternate exten-

sion. Hence the minimisation problem 9 has larger domain

EP (F ) for the optimal extension, thereby resulting in bet-

ter minima. Figure 7 indicates that our algorithm does not

provide as tight upper-bounds as TRW, however they are

of similar magnitude. TRW makes use of the standard LP

relaxation (Chekuri et al., 2004), from the second-level of

Sherali-Adams hierarchy (having O(N2) number of relaxed

variables), and is tighter than Kleinberg-Tardos relaxation,

resulting in better approximation. However, TRW does

not scale well with neighborhood size, thereby prohibiting

its use in dense CRFs.

7.2. Stereo Matching using Dense CRFs

Data We demonstrate the benefit our algorithm for

stereo matching on images extracted from the Middlebury

stereo matching dataset (Scharstein et al., 2001). We

use dense CRF models with Potts compatibility term and

Gaussian pairwise potentials. The unary terms are ob-

tained using the absolute difference matching function of

Scharstein et al. (2001).

Method We use the implementation of mean-field algo-

rithm for dense CRFs of Koltun and Krahenbuhl (2011) as

our baseline. For our algorithm, we make use of the modi-

fied Gaussian filtering implementation for dense CRFs by

Ajanthan et al. (2017) to compute the conditional gradient

at each step. The step size γ at each iteration is selected by

doing line search in [0, 1] (we try step sizes at 0.1 interval

and pick the one that decreases the objective most). We

run our algorithm till 100 iterations, since the visual quality

of the solution does not show much improvement beyond

this point. We run mean-field up to convergence, with a

threshold of 0.001 for change in KL-divergence.

Results Figure 9 shows some example solutions obtained

by picking the label with maximum marginal probability

for each variable for mean-field and for our algorithm. We

also report the time and energy values of the solution

for both methods. Though we are not performing MAP

estimation, energy values give us a quantitative indication

of the quality of solutions. For the full set of 21 image

pairs (2006 dataset), the average ratio of the energies of

the solutions from our method compared to mean-field

is 0.943. The average time ratio is 10.66. We observe

that our algorithm results in more natural looking stereo

matching results with lower energy values for all images.

However, mean-field runs faster than our method for each

instance.The set of hyperparameters that we used can be

found in the appendix.

7.3. Stereo Matching using Higher-order Diversity Model

Data Next, we use the higher-order diversity model for

stereo matching on the Middlebury dataset. A higher-

order model is suitable to be used for only some images in

the dataset, since others have gradually sloping surfaces.
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(a) Ground truth disparity (b) Superpixels

Fig. 8: An example for stereo matching that is unsuitable to be used with higher-order model. Figure (a) shows the ground truth disparity for

this example. The image has gradually sloping surfaces, and hence gradually varying disparity values. Figure (b) shows the superpixels for

this example. Using these superpixels as higher-order cliques will force pixels on gradually sloping surfaces to take similar disparity values.

Higher-order cliques will force all pixels on gradually sloping

surfaces to take similar disparity values and we want to

avoid this (Figure 8). We take a dense CRF model with

Potts compatibility term and Gaussian pairwise potentials,

and augment it with higher-order diversity term. We obtain

higher-order cliques by using super-pixels obtained from

the mean-shift algorithm (Comaniciu and Meer, 2002).

Method We again use the modified Gaussian filtering

implementation for dense CRFs by Ajanthan et al. (2017)

to compute the conditional gradient at each step. To

compute the contribution of the higher-order model, we

make use of an efficient strategy to reuse computation.

Recall that computing the conditional gradient coordinates

s∗
σ(i) requires us to obtain differences of the nested sets

F (Si) − F (Si−1). We store the clique state at each i, and

this enables us to compute the difference for each coordinate

in a constant amount of time. In this case, computation of

conditional gradient takes O(cNL) where c is the number

of higher-order cliques. The step size γ at each iteration is

selected by doing line search in [0, 1] (we try step sizes at

0.1 interval and pick the one that decreases the objective

most).We ran our algorithm for 200 iterations.

Results Figure 10 shows some example solutions ob-

tained by picking the label with maximum marginal proba-

bility for each variable. Our method gives results that are

reasonably close to the ground-truth. The set of hyperpa-

rameters that we used can be found in the appendix.

7.4. Semantic Segmentation using Higher-order Diversity

Model

Data We evaluate our approach on the task of semantic

segmentation on the MSRC-21 dataset (Shotton et al.,

2009). It consists of 591 color images of size 320×213 with

corresponding ground truth labelings of 21 object classes.

We made use of the unary features from the TextonBoost

classifier (Shotton et al., 2009). As for stereo matching

(subsection 7.3), we augment the dense CRF with Gaussian

pairwise potentials with our higher-order diversity model.

Superpixels for higher-order modeling were obtained from

the mean-shift algorithm (Comaniciu and Meer, 2002).

Method As for stereo matching, we used the modified

Gaussian filtering implementation (Ajanthan et al., 2017)

for the contribution of the dense pairwise terms to the

conditional gradient. We used the same strategy as in

subsection 7.3 to compute the higher-order component of

the conditional gradient in O(cNL) time-complexity. We

ran our algorithm for 100 iterations.

Results The ground-truth labelings provided with the

MSRC-21 dataset are coarse. We evaluate our algorithm

on the set of 94 images for which fine-grain annotations

are available (Koltun and Krahenbuhl, 2011). On this

subset, our method correctly labeled 81.18% of pixels. It

took 275.02s on average per instance to run our method

for 100 iterations. Some representative results are shown
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(a) Venus GT (b) MF solution (c) Submod solution

60.32s, 1.83e+07 469.75s, 1.55e+07

(a) Tsukuba GT (b) MF solution (c) Submod solution

14.93s, 8.21e+06 215.22s, 4.12e+06

(a) Cones GT (b) MF solution (c) Submod solution

239.14s, 2.68e+07 1082.72s, 1.27e+07

(a) Teddy GT (b) MF solution (c) Submod solution

555.30s, 2.36e+07 1257.86s, 1.58e+07

Fig. 9: Stereo matching using dense CRFs with Potts compatibility and Gaussian pairwise potentials. We compare our solution with the

mean-field algorithm of Koltun and Krahenbuhl (2011). We observe that our method gives better-looking solutions with lower energy value at

the cost of higher computational time.
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in Figure 11 where we label each pixel with the label

having the maximum marginal probability. Our set of

hyperparameters can be found in the appendix.

8. Discussion

We have established the relation between submodular

extension and the LP relaxation for MAP estimation using

Lovasz extension for various CRF models. This allowed us

to identify the worst-case optimal submodular extension

for Potts as well as the general metric labeling problems.

In addition, we obtained an accurate submodular exten-

sion for a higher-order model based on label-diversity in

cliques. It is worth noting that it might still be possible

to obtain an improved submodular extension for a given

problem instance. The design of a computationally feasible

algorithm for this task is an interesting direction of future

research. While our work focused on one class of higher-

order model, there is potential for our approach to be used

to identify accurate submodular extensions for other energy

families, such as truncated max-of-convex models (Pansari

and Kumar, 2017).
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(a) Tsukuba GT (b) Submod solution

1582.04s

(a) Baby1 GT (b) Submod solution

2476.82s

(a) Flowerpots GT (b) Submod solution

2471.58s

Fig. 10: Stereo matching using dense CRFs with higher-order diver-

sity term in addition to Potts compatibility and Gaussian pairwise

potentials.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 11: Sample results from semantic segmentation on the MSRC-21 dataset using dense CRFs with higher-order diversity term in addition

to Potts compatibility and Gaussian pairwise potentials. (a)-(d) show the input image, and (e)-(f) show the corresponding results using our

method. We observe that our method is able to segment out objects with complex boundaries fairly accurately.
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Appendix: Worst-case Optimal Submodular Extensions for

Marginal Estimation

1 Proofs for Potts Model Extension

Remark 1 We show using induction over the number of variables that with 1-of-𝐿 encoding
for Potts,

∑︁
𝐴∈ℳ

exp(−𝑠(𝐴)) =

𝑁∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖) (1)

Proof. Let 𝑡 be the number of variables, 𝑉 𝑡 be the corresponding ground set and ℳ𝑡 be the sets
corresponding to valid labelings. Equation (1) clearly holds for 𝑡 = 1.

Let us assume that the relation holds for 𝑡 = 𝑁 , that is,

∑︁
𝐴𝑁∈ℳ𝑁

exp(−𝑠(𝐴𝑁 )) =

𝑁∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖) (2)

For 𝑡 = 𝑁 + 1,

∑︁
𝐴𝑁+1∈ℳ𝑁+1

exp(−𝑠(𝐴𝑁+1)) =

𝐿∑︁
𝑖=1

∑︁
𝐴𝑁∈ℳ𝑁

exp(−𝑠(𝐴𝑁 ) − 𝑠𝑁+1,𝑖)

=

𝐿∑︁
𝑖=1

exp(−𝑠𝑁+1,𝑖)
∑︁

𝐴𝑁∈ℳ𝑁

exp(−𝑠(𝐴𝑁 ))

=

𝐿∑︁
𝑖=1

exp(−𝑠𝑁+1,𝑖)

𝑁∏︁
𝑎=1

𝐿∑︁
𝑗=1

exp(−𝑠𝑎𝑗)

=

𝑁+1∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖) (3)

Lemma 1. Given any submodular extension 𝐹 (.) of a Potts energy function 𝐸(.), its Lovasz
extension 𝑓(.) defines an LP relaxation of the MAP problem for 𝐸(.) as

min
y∈Δ

𝑓(y). (4)

1



Proof. By definition of a submodular extension and the Lovasz extension, 𝐸(x) = 𝐹 (𝐴x) =
𝑓(1𝐴x) for all valid labelings x. Also, from property 1, 𝑓(y) is maximum of linear functions.
Hence, 𝑓(y) is a piecewise linear relaxation of 𝐸(x).

The domain ∆ is a polytope formed by union of 𝑁 probability simplices

∆ = {y𝑎 ∈ R𝐿|y𝑎 ⪰ 0 and ⟨1,y𝑎⟩ = 1} (5)

With objective as maximum of linear functions and domain as a polytope, we have an LP
relaxation of the corresponding MAP problem.

2 Proofs for Hierarchical Potts Model Extension

Lemma 2. Given any submodular extension 𝐹 (.) of an hierarchical Potts energy function 𝐸(.),
its Lovasz extension 𝑓(.) defines an LP relaxation of the corresponding MAP estimation problem
as

min
z∈Δ′

𝑓(z) (6)

Proof. By definition of a submodular extension and the Lovasz extension, 𝐸(x) = 𝐹 (𝐴x) =
𝑓(1𝐴x) for all valid labelings x. Also, from property 1, 𝑓(y) is maximum of linear functions.
Hence, 𝑓(y) is a piecewise linear relaxation of 𝐸(x).

We can write the domain ∆′ as

∆′ = {y𝑎 ∈ R𝑀 |y𝑎 ⪰ 0, ⟨1,y𝑙𝑎𝑏𝑒𝑙
𝑎 ⟩ = 1, y𝑎(𝑝𝑎𝑖) = 1 or y𝑎(𝑝𝑎𝑖) = 0∀𝑖 ∈ [1, 𝐿]} (7)

where y𝑎 is the component of y corresponding to the 𝑎-th variable, y𝑙𝑎𝑏𝑒𝑙
𝑎 is the component of y𝑎

corresponding to the 𝐿 labels, and y𝑎(𝑝𝑎𝑖) is the component of y𝑎 corresponding to the elements
of 𝑝𝑎𝑖.

Since ∆′ is defined by linear equalities and inequalities, it is a polytope. With objective
as maximum of linear functions and domain as a polytope, we have an LP relaxation of the
corresponding MAP problem.

Proposition 1. In the limit 𝑇 → 0, the following problem for hierarchical Potts energies

min
s∈𝐸𝑃 (𝐹 )

𝑔𝑇 (s) =

𝑁∑︁
𝑎=1

𝑇 · log

𝐿∑︁
𝑖=1

exp(−𝑠′𝑎𝑖
𝑇

). (8)

becomes:

− min
z∈Δ′

𝑓(z) (9)

Proof. In the limit of 𝑇 → 0, we can rewrite the above problem as

min
s∈𝐸𝑃 (𝐹 )

𝑁∑︁
𝑎=1

max
𝑖

(−𝑠′𝑎𝑖). (10)
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In vector form, the problem becomes

min
s∈𝐸𝑃 (𝐹 )

max
z∈Δ

−⟨z, s′⟩ (11)

= − max
s∈𝐸𝑃 (𝐹 )

min
z∈Δ

⟨z, s′⟩ (12)

where ∆ = {z𝑎 ∈ R𝐿|z𝑎 ⪰ 0 and ⟨1, z𝑎⟩ = 1} (13)

where z𝑎 is the component of z corresponding to the 𝑎-th variable. We can unpack s′ using

𝑠′𝑎𝑖 =
∑︁
𝑡∈𝑝𝑎𝑖

𝑠𝑡. (14)

and rewrite problem (12) as

− max
s∈𝐸𝑃 (𝐹 )

min
y∈Δ′

⟨y, s⟩ (15)

The new constraint set ∆′ ensures that the binary entries of labels and meta-labels is consistent:

where ∆′ = {y𝑎 ∈ R𝑀 |y𝑎 ⪰ 0, ⟨1,y𝑙𝑎𝑏𝑒𝑙
𝑎 ⟩ = 1,

y𝑎(𝑝𝑎𝑖) = 1 or y𝑎(𝑝𝑎𝑖) = 0∀𝑖 ∈ [1, 𝐿]} (16)

where y𝑎 is the component of y corresponding to the 𝑎-th variable, y𝑙𝑎𝑏𝑒𝑙
𝑎 is the component of y𝑎

corresponding to the 𝐿 labels, and y𝑎(𝑝𝑎𝑖) is the component of y𝑎 corresponding to the elements
of 𝑝𝑎𝑖.

By the minimax theorem for LP, we can reorder the terms:

− min
y∈Δ′

max
s∈𝐸𝑃 (𝐹 )

⟨y, s⟩ (17)

Recall that maxs∈𝐸𝑃 (𝐹 )⟨y, s⟩ is the value of the Lovasz extension of 𝐹 at y, that is, 𝑓(y). Hence,
as 𝑇 → 0, the marginal inference problem converts to minimising the Lovasz extension under
the constraints ∆′:

− min
y∈Δ′

𝑓(y) (18)

Proposition 2. The objective function ̃︀𝐸(z) of (T-LP-FULL) is the Lovasz extension of 𝐹𝑟−HST(𝐴) =∑︀𝑀
𝑖=1 𝐹𝑖(𝐴), where

𝐹𝑖(𝐴) =
∑︁
𝑎

𝜑′
𝑎(𝑖)[|𝐴 ∩ {𝑣𝑎𝑖}| = 1]+∑︁

(𝑎,𝑏)∈𝒩

𝑤𝑎𝑏 · 𝑙𝑇𝑖
· [|𝐴 ∩ {𝑣𝑎𝑖, 𝑣𝑏𝑖}| = 1] (19)

Proof. We observe that 𝐹𝑟−HST is of exactly the same form as 𝐹𝑃𝑜𝑡𝑡𝑠, except that the Ising
models 𝐹𝑖 are defined over not just labels, but meta-labels as well. Using the same logic as in
the proof of Potts extension, each 𝐹𝑖 is the Lovasz extension of

̃︀𝐸𝑖(z) =

⎛⎝∑︁
𝑎∈𝒳

𝜑′
𝑎(𝑖) · 𝑧𝑎𝑖 +

∑︁
(𝑎,𝑏)∈𝒩

𝑤𝑎𝑏 · 𝑙𝑇𝑖 · |𝑧𝑎𝑖 − 𝑧𝑏𝑖|

⎞⎠ (20)

and the results follows.
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𝑤(1) 𝜃𝛼 𝜃𝛽 𝑤(1) 𝜃𝛾 𝑤𝑐

Stereo matching (dense pairwise, Submod) 1.64 12.99 50.84 1.51 1.10 0
Stereo matching (dense pairwise, MF) 12.43 22.38 17.26 4.59 8.75 0
Stereo matching (higher-order, Submod) 12.43 22.38 17.26 4.59 8.75 10.00
Semantic Segmentation (higher-order, Submod) 1.00 1.00 50.84 1.51 1.10 10.00

Table 1: List of hyperparameters used in experiments

3 List of Hyperparameters

For pairwise dense CRFs, following Koltun and Krahenbuhl [2011], we use constrast-sensitive
two-kernel potentials for both stereo matching and semantic segmentation. These are defined in
terms of the color vectors 𝐼𝑎 and 𝐼𝑏 and positions 𝑝𝑎 and 𝑝𝑏 as:

𝑘(f𝑎, f𝑏) = 𝑤(1) exp

(︃
−|𝑝𝑎 − 𝑝𝑏|2

2𝜃2𝛼
− |𝐼𝑎 − 𝐼𝑏|2

2𝜃2𝛽

)︃
+ 𝑤(2) exp

(︂
−|𝑝𝑎 − 𝑝𝑏|2

2𝜃2𝛾

)︂
(21)

For the higher-order diversity model, we have a clique weight 𝑤𝑐 that is the same across all
cliques. We give the set of hyperparameters for our experiments in table 1.

4 Entropy Plots for Stereo Matching using Dense CRFs
with Potts Model

We plotted the entropy of the marginals obtained from mean-field Koltun and Krahenbuhl [2011]
and our inference algorithm for the Potts models for all stereo matching instances. The entropy
values are scaled to lie between 0-255 for visualisation. We observe that mean-field marginal
inference results in almost 0/1 marginals, and there is not enough uncertainty information.
Our method on the other hand yields more meaningful marginals to indicate uncertainity in
prediction. For instance, in dark regions with not enough detail, the entropy for our method
is high. However, we also observe that in some cases our method yields marginals with high
uncertainty even in homogeneous regions, such as object interior.
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(a) Venus left image (b) MF entropy (c) Submod entropy

(a) Tsukuba left image (b) MF entropy (c) Submod entropy

(a) Cones left image (b) MF entropy (c) Submod entropy

(a) Teddy left image (b) MF entropy (c) Submod entropy

Figure 1: Entropy (scaled to lie in 0-255) plots for stereo matching using dense CRFs with Potts compatibility
and Gaussian pairwise potentials for the mean-field algorithm of Koltun and Krahenbuhl [2011] and our method.

5



References

Koltun, V. and Krahenbuhl, P. (2011). Efficient inference in fully connected crfs with gaussian
edge potentials. NIPS. 4, 5

6


