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• A modelling framework allowing spatial
anddynamic analysis of carbonprocesses
and biodiversity aspects was developed.

• Modellingof forestrymeasures andemis-
sion reductions showed that carbon neu-
trality could be achieved in the area
by 2030.

• Application of space and airborne mea-
surements for mapping and monitoring
biodiversity and ecosystem processes is
described.

• Optimal allocation of set-aside areas for
conservation would contribute to pre-
serving both biodiversity and carbon
values.

• Biodiversity gain in the area can be in-
creased without a loss of carbon-related
benefits.
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The challenges posed by climate change and biodiversity loss are deeply interconnected. Successful co-managing
of these tangled drivers requires innovative methods that can prioritize and target management actions against
multiple criteria, while also enabling cost-effective land use planning and impact scenario assessment. This paper
synthesises the development and application of an integratedmultidisciplinarymodelling and evaluation frame-
work for carbon and biodiversity in forest systems. By analysing and spatio-temporally modelling carbon
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processes and biodiversity elements, we determine an optimal solution for their co-management in the study
landscape. We also describe how advanced Earth Observation measurements can be used to enhance mapping
and monitoring of biodiversity and ecosystem processes. The scenarios used for the dynamic models were
based on official Finnish policy goals for forest management and climate change mitigation. The development
and testing of the system were executed in a large region in southern Finland (Kokemäenjoki basin,
27,024 km2) containing highly instrumented LTER (Long-Term Ecosystem Research) stations; these LTER data
sources were complemented by fieldwork, remote sensing and national data bases. In the study area, estimated
total net emissionswere currently 4.2 TgCO2eq a−1, butmodelling of forestrymeasures and anthropogenic emis-
sion reductions demonstrated that it would be possible to achieve the stated policy goal of carbon neutrality by
low forest harvest intensity. We show how this policy-relevant information can be further utilized for optimal
allocation of set-aside forest areas for nature conservation, which would significantly contribute to preserving
both biodiversity and carbon values in the region. Biodiversity gain in the area could be increased without a
loss of carbon-related benefits.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The recent IPBES (Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services) assessment shows that humans
are increasing pressure on biodiversity (BD) and ecosystem services
(ES) at a truly planetary scale (Diaz et al., 2019). The incipient sixth
mass extinction has erased over 300 mammal species and, with them,
more than 2.5 billion years of unique evolutionary history (Davis et al.,
2018). Accelerating anthropogenic land use and greenhouse gas
(GHG) emissions -induced climate change is projected to cause further
significant deterioration and loss of natural ecosystems and BD, as well
as negatively impact regional carbon (C) budgets by depleting the C se-
questration and storage capacity of ecosystems (Le Quéré et al., 2018;
IPCC, 2019; Overland et al., 2019). Climate change will also severely im-
pact global climatic conditions needed for human thriving (Xu et al.,
2020). The challenges posed by climate change, BD loss, and harmful
land use are thus deeply interconnected problems (Diaz et al., 2019).

It is increasingly understood that effective combatting of, and
adaptation to, these detrimental trends requires development of
regional-scale multidisciplinary approaches. In such approaches,
spatially explicit data on valuable aspects of BD, and factors determining
the regional C budgets and the spatial variation in C processes, can be
jointly assessed with state-of-the-art methods. Due to the linkages
between BDandC processes, and the limited resources for conservation,
cost-effective land use planning also requires methods that can
optimally prioritize sites for the co-management of BD and C values.
An integrative approach based on multiple data sources, including
robust modelling tools to fill data gaps and rapidly updated and
ecologically meaningful Earth Observation (EO) applications, is thus
needed (Forsius et al., 2013; Kujala et al., 2018a; Holmberg et al.,
2019; Buotte et al., 2020; Heikkinen et al., 2020). Such multi-source
information enables detection of sites with maximal potential for
current and future BD conservation and C sequestration/storage.

In this context, a good understanding of the regional C budget, the
magnitude of C storage, and its vulnerability to change, is vitally impor-
tant (Nabuurs et al., 2015; Bustamante et al., 2016; Akujärvi et al., 2019;
Hutchins et al., 2020). Estimation of complete regional C budgets, con-
sistent with national accounting rules, for different land use classes is
an integral step to predict responses and potential feedbacks to a chang-
ing climate regime, and for the design of differentmanagement andmit-
igation actions/measures (Buffam et al., 2011; Morecroft et al., 2019).
Globally, the land sector (agriculture, forestry, and other land uses) is
responsible for 10–12 GtCO2eq a−1 (carbon dioxide equivalent), about
25% of net anthropogenic greenhouse gas (GHG) emissions, with ap-
proximately half from agriculture and half from land use, land-use
change and forestry (LULUCF) (Le Quéré et al., 2018; Roe et al., 2019).
LULUCF emissions represent the net balance between emissions from
soils, land-use change and C sequestration from the regeneration of veg-
etation and soils. Transforming the land sector and deployingmitigation
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measures in agriculture, forestry, wetlands and bioenergy could feasibly
and sustainably contribute 15 GtCO2eq per year (about 30%) of the
global mitigation needed in 2050 to deliver on the 1.5 °C target (Roe
et al., 2019). Recently, governments have also introduced concepts
such as ‘Cneutrality’, and ‘climate neutrality’where the aim is to achieve
a balance between sources and sinks of CO2 or GHGs by a target year
(e.g. EU Commission, 2018). Also, the term ‘net zero emission’ is in-
creasingly used to describe a broader commitment to climate action,
meaning that any GHG emissions are balanced by absorbing an equiva-
lent amount from the atmosphere by natural or technological options
(e.g. Rogelj et al., 2019).

There are great expectations on EO systems providing standardized,
spatially complete, and cost-effective information for detection, quanti-
fication, and forecasting of BD and C processes at large scale (Lausch
et al., 2016; Vihervaara et al., 2017). New concepts such as Essential Bio-
diversity Variables (EBVs) have stimulated progress to unify BD and ES
monitoring globally (Pereira et al., 2013; Pettorelli et al., 2016). EO tech-
niques are also in the core in EU policy processes for mapping the land-
use changes. Yet, the potential of EO data in BD conservation and other
ecological research remains underutilized (Pettorelli et al., 2016). Cur-
rent EO-based systems provide accurate information on, e.g., forest re-
sources in terms of growing stock, annual growth and distribution of
main tree species (Tomppo et al., 2008). However, this information is
designed mainly for the needs of forest sector, which greatly affects
its usability in other fields. The estimates rely on common features
of forest environment that are rather evenly dispersed within the
landscape. Focusing on the common forest metrics, the current
methods provide reliable data on abundant species, but are unable
to provide accurate information on rare species which is essential
for BD assessment.

As intensive species-level mapping of BD is infeasible at large scale,
various surrogates are usedwhen assessing the state of BD. For example,
in boreal forests the amount of dead wood and presence of keystone
species have shown to indicate the overall level of BD (Siitonen, 2001;
Kouki et al., 2004). The surrogates are typically rare and unevenly dis-
persed in forest landscape, and mapping their distribution introduces
special challenges for EO-based systems. Spatial resolution of a sensor
must be detailed enough to capture small details like individual trees.
On the other hand, spectral resolution must be sufficient for classifying
individual species by spectral reflectance. Finally, temporal resolution
needs to be suitable for monitoring the surrogates over time. Thus,
new thinking and technologies are needed to capture and detect differ-
ent features andmonitor their changes to support landuse andmanage-
ment planning at landscape-level. For example, new EO methods can
provide detailed regional information on boreal keystone species such
as European aspen (Populus tremula L.) trees (Kivinen et al., 2020;
Viinikka et al., 2020). Furthermore, biophysical and biochemical proper-
ties, and genetic diversity of trees can be studied with recent EO
methods (Madritch et al., 2014).
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A key challenge for spatial planning is to find a balance between the
use of land resources, BD conservation, actual and potential future C se-
questration/storage in the ecosystems, and other environmental im-
pacts. A solution to this task is to apply integrated adaptive land use
and conservation planning methods which can support sustainable re-
source management, and lead to win-win situations regarding both
conservation and mitigation. Such methods use mathematical formula-
tions and optimization to analyse large amounts of spatial data, and to
identify sets of locations that jointly meet the different objectives
(Thomas et al., 2013; Moilanen et al., 2014; Kujala et al., 2018a; Buotte
et al., 2020; Reside et al., 2020). By identifying areas with high present
and future BD values, C storage and C sequestration rates, forestry and
other management actions can be planned around these areas to mini-
mize negative impacts on the regional BD and to maximize climate
change mitigation. The BD and C storage and sequestration policies
can be implemented by a combination of anthropogenic emission miti-
gation actions,municipal and regional land-use planning, and voluntary
actions by private land-owners. The latter can be incentivised by devel-
oping economic instruments for joint BD protection and C-storage/
sequestration (Kangas and Ollikainen, 2021; Kosenius, 2021).

The aim of this study is to (i) describe the development of a quanti-
tative, spatially explicit modelling and evaluation framework that inte-
grates results on C storage/sequestration and C neutrality in the forested
landscape, mapping of BD values, and joint spatial planning and priori-
tization of BD and C benefits; (ii) advance the use of diverse EO tech-
niques in producing improved spatial datasets for assessing and
monitoring the state of BD; (iii) give an overview of the background as-
sumptions, methodology, data derivation and calculation and mapping
of the selected ecosystem variables and BD indicators; (iv) demon-
strate the approach and methods using data from an intensively
studied large region in southern Finland (Kokemäenjoki river
basin), and (v) synthesize key results and discuss uncertainties as
well as needs for further developments.

We focus on the forested ecosystems because they cover the largest
part of our study area and have the highest potential for C sequestration
Fig. 1. Location of Kokemäenjoki river basin (left) and its land cover (right, source: Corine Lan
intensive data collection are also shown.
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and management. We use spatio-temporal C- and GHG-modelling and
future scenarios based on formal national forestry policies and climate
change mitigation strategies for anthropogenic emissions. High-
resolution EOdatawas collectedwith a particular aim to improve detec-
tion of the keystone species European aspen and explore methods for
upscaling this information for large-scale spatial prioritization and
monitoring.

2. Materials and methods

2.1. Study area

The Kokemäenjoki river basin (27,024 km2), located in south-
western Finland, has mixed land-use with forest and seminatural
areas covering about 68% of the area (Fig. 1, Table 1). The mean and
maximumelevation for the study area is 118m and 254m, respectively.
The geomorphology of the region has mainly been formed by the latest
Ice Age processes. Superficial deposits are mainly composed of gravelly
and sandy till (56%), clay and silt deposits (17%) together with pre-
Quaternary bedrock exposures, peat and glaciofluvial deposits (GTK,
2014).

The dominant tree species are Norway spruce (Picea abies), Scots
pine (Pinus sylvestris), silver birch (Betula pendula) and downy birch
(Betula pubescens). Approximately 83% of forest land is on mineral
soil, 14% on peatland, and 3% on rocky soil (SYKE, 2019a). Protected
areas (PAs) cover 1.8% of the region. Lakes and other water bodies
form an important part of the landscape (ca. 11% of total area). The sec-
ond largest city region of Finland, Tampere,with ca. 330,000 inhabitants
is located within the area.

There are two LTER (Long-TermEcosystemResearch) heavily instru-
mented research stations located within the area, and data from these
stations (e.g. C flux data from eddy covariance tower of Hyytiälä
SMEAR II station) has been used for model calibration/validation
(Fig. 1). The detailed EO-based studies were conducted at Evo test site,
which belongs to Lammi LTER area.
d Cover 2018, SYKE). Location of Evo test site and the two main LTER research stations for



Table 1
Main characteristics of Kokemäenjoki area.

Climatea

Annual mean air temperature (°C) 4.4
January mean air temperature (°C) −6.4
July mean air temperature (°C) 16.9
Annual precipitation sum (mm) 598

Land cover (% of the total area)b

Artificial surfaces 5.1
Agricultural areas 14.8
Coniferous forest 42.2
Mixed forest 13.8
Broadleaved forest 2.5
Transitional woodland/shrub 9.1
Inland marshes 0.6
Peatbogs 1.1
Water bodies 10.7

Protected areas (% of the total area)c

State-owned 1.2
Privately-owned 0.6

Populationd 817,500
Population density (per km2) 30

a Tampere-Pirkkala airport 1981–2010 (Pirinen et al., 2012).
b CORINE Land Cover 2018 (SYKE, 2019a).
c SYKE (2019b).
d Statistics Finland (2018).
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2.2. Conceptual framework for modelling and evaluation

Our integrated conceptual framework connects different databases,
GIS, EO data sets, models and tools, scenarios and socio-economic eval-
uations, and facilitates the flow of data between different sections
(Fig. 2). The methodology, model systems and databases for each sec-
tion are summarised below (Sections 2.3.1–2.3.4). A large effort was de-
voted to collect the required input and background information by
intensive field studies and from the research sites in the study region
(Fig. 1), national and regional databases, and literature sources (e.g.
for emissions coefficients and model parameters). The dynamic model
systems were calibrated using site-specific data and other data sources,
C pools and flu
• PREBAS modelling
• FRES modelling
• Empirical coefficien
• GIS-data and mode
• C-neutrality assess

Spa�al BD-data
• Na�onal BD-database
• BD-proxies
• Land-use data
• Maxent modelling
• GIS modelling

EO data and indicators
• Satellite data
• Land-use data
• EO based indicators
• Monitoring schemes

Economic and p
analysis

• Stakeholder surveys
• Compensa�on mec

Dissemina�on of results and interac�

Fig. 2. Conceptual framework and flow of data for modelling and evaluation. Result
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and the impacts of the different scenarios on the C budget/processes
assessed.

We focused here on the methodological development and inte-
grated application on four main sectors: i) scenario-based modelling
of C processes/neutrality, ii) derivation and mapping of BD data, iii) in-
tegrated land-use and conservation planning based on the derived
spatial BD and C data, and iv) the use of EO-based technologies for
enhanced data derivation, assessment and monitoring of changes
(Fig. 2). The fifth sector, development of economic incentives for land
owners is described in detail elsewhere (Kangas and Ollikainen, 2021;
Kosenius, 2021). Utilizing our integrated conceptual framework, we
show how a systematic approach linked with spatial and quantita-
tive multi-source information can assist in finding optimal landman-
agement solutions for climate change mitigation and conservation
planning.

2.3. Methodology for C- and biodiversity modelling and EO-based
indicators

2.3.1. Derivation of main C and GHG fluxes and modelling of C neutrality
Calculation of present-day C pools and fluxes for the different land-

use classes of the study area is described in detail in Holmberg et al.
(2021). Here, we focus on describing the scenario-based modelling for
assessing C and GHG fluxes and the concept of C neutrality. The net
emissions of C from the forested areas in Kokemäenjoki basin were
based on the results of the forest growth and gas exchange model
PREBAS, which combines a process-based forest growth model
(Valentine and Mäkelä, 2005), and a daily canopy gas exchange model
(Peltoniemi et al., 2015). The model has been calibrated using informa-
tion fromNordic eddy covariance sites and Finnish growth experiments
(Minunno et al., 2016, 2019). PREBAS was used to simulate forest C bal-
ance, growth andmanagement in the study area. The initial state of for-
ests in forest C balance simulations was determined based on MS-NFI
(Multi Source – National Forest Inventory) maps, which describe the
forest parameters in the form of thematic maps across Finland at
16 × 16 m resolution. MS-NFI maps are developed by combining the
xes

ts
lling
ment

s

Spa�al priori�za�on
• Zona�on modelling
• Spa�al C and BD-data
• Integrated land use and 

conserva�on planning 

olicy

hanisms

on at different spa�al scales

s on the economic and policy analysis are not presented in detail in this paper.
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information from NFI field measurements, satellite imagery and digital
mapdata (Tomppo et al., 2008). To decrease computational load, similar
forest areas were segmented, with the size of segmented area varying
between 256 and 505,008 m2 and a mean size of 3926 m2.

PREBAS was used to calculate the net ecosystem exchange (NEE, gC
m−2 a−1) for current climate conditions, and the amount of harvested
biomass (gC m−2 a−1). The harvested amount for each simulation
year was specified by realized removals statistics. Removals data de-
fined the total amount of harvests in the study area. Regarding forests
growing on mineral soils, the PREBAS model is linked to the soil C
model YASSO07 (Tuomi et al., 2009), which estimated soil respiration.
For forests on drained peatland soils, soil respiration estimates were
based onmeasured soil respiration,which includes both peat decompo-
sition and litter decomposition (or accumulation) (Minkkinen et al.,
2018). Total NEE was calculated as a sum of stand and soil fluxes, and
it acquired positive values when the C flux from the decomposition of
soil organic matter was larger than the assimilation of C into growing
vegetation, and negative when the assimilation of C into growing vege-
tation was larger than the C flux from decomposing soil organic matter.
The net emissions of forests were calculated by adding the NEE to the
amount of harvested biomass. Net emissions are positive when the for-
est acts as a source of CO2 to the atmosphere, and negativewhen the for-
est is a sink.

The forest harvesting scenarios and their assumptions were based
on the national climate and energy strategy (Koljonen et al., 2017)
and forestry planning, where total annual removal of biomass in the
three main scenarios at the country-scale amount to: Low ca. 40 Mm3

a−1, Policy ca. 80 Mm3 a−1 and Maximum Sustainable Cuttings
(MaxSust) ca. 85 Mm3 a−1. The scenarios and related forest modelling
have been described in Kalliokoski et al. (2019). The PREBAS scenario
results for the Kokemäenjoki region were extracted from these
national-scale simulations and aggregated using GIS-techniques.

Emissions from other ecosystems (arable land, surface waters and
undrained mires) were also estimated although we here focus on for-
ests which are by far the most important ecosystem for C pools and
fluxes. A detailed description of methodology regarding the processes
and net emissions from other land-use classes is given in Holmberg
et al. (2021; see also Supplementary information S.1.1).

The anthropogenic CO2, CH4 and N2O emissions of the study area
under current and future conditions were calculated with the Finnish
Regional Emission Scenario (FRES) model (Karvosenoja, 2008). The
emissions are given separately for point sources on municipal level
and area sources on 250 m × 250 m resolution. The point source emis-
sions indicate the emissions from major energy production and indus-
trial plants, calculated based on several year average emissions. The
point sources were aggregated to municipal level, including only
sources within the Kokemäenjoki basin for each municipality. The
FRES model uses several proxies to estimate the spatial distribution of
the area source emissions (Paunu et al., 2013; Karvosenoja et al.,
2018). The area sources are aggregated to 5 sectors: traffic exhaust
(CO2), machinery and off-road (CO2), small scale wood combustion
(CH4, N2O), other small-scale combustion (CO2) and agriculture (CH4,
N2O). The emissions from agriculture originate from fertilization
(N2O) and cattle (CH4 as enteric emissions). The emissions of methane
(CH4) and nitrous oxide (N2O) were converted to CO2eq to account
for the climate warming impact of each substance. Results of two sce-
narios for future conditions, based on assumptions on energy use and
mitigation measures of the national climate and energy strategy were
used and derived for the Kokemäenjoki area:WEM (with existingmea-
sures) andWAM (with additional measures). Assumptions of these sce-
narios are described in detail in Koljonen et al. (2017).

2.3.2. Assessing biodiversity values
We developed three types of spatially explicit data on forest BD

values in the study area: (i) distribution of forest stand types likely to in-
clude valuable BD elements, (ii) observation frequency of National Red
5

List forest species, and (iii) modelled nesting suitability for four forest-
dwelling bird species indicative of forest stands with conservation
value. In addition, we included (iv) spatial data on the dead wood po-
tential of forest stands, described in Mikkonen et al. (2018) and
Mikkonen et al. (2020). All the source data for these different BD data
layers were converted or resampled using ArcGIS 10.5.1 tools (Esri) to
a uniform 96 × 96 m grid covering the study area.

The distribution of four types of valuable forest stands was deter-
mined based on the spatial distribution of ecologically important forest
features. The data for this mapping were extracted from three national
sources of forest survey data, The Finnish Forest Centre, Metsähallitus
Parks & Wildlife and the multi-source forest inventory conducted by
Natural Resources Institute Finland. These three data were combined
to cover the whole study area at 16 × 16 m resolution, providing de-
tailed data on the mean forest stand age and key forest structure ele-
ments such as stand volume and dominant tree species (for details see
Supplementary information S.1.2.1.). The first three forest types in-
cluded mature and old-growth forests, delimited using the following
age and main tree species criteria: 1) pine-dominated forests with
stand age > 120 years, 2) spruce-dominated forests with stand
age > 100 years and 3) deciduous-tree-dominated forests with stand
age > 60 years. Due to the slow growth rate of boreal forests and inten-
sive forestmanagement in Finland,where stands are clear-cut at the age
of 60–100 years, old-growth forests and their species have become na-
tionally rare and/or endangered. The three mature and old-growth for-
est layers were derived in two steps. First, a 96-m grid cell was assigned
into the respective dominant tree category if at least half (18/36) of the
16-mpixelswithin itmet one of the above criteria (e.g., if ≥18pixels had
spruce as dominant tree species and average age > 100 years, it was
assigned as spruce-dominated mature and old-growth forest cell). Sec-
ond, the final value of the 96-m cell was calculated as the summed age
of those 16-m pixels meeting the age criteria (e.g., for a spruce-
dominated cell, we summed the age of all pixels >100 years). This ap-
proach allowed us to identify those 96-m cells that had large proportion
of old forest stands, while also differentiating between the ecological
value of mature and the even rarer old-growth forests.

As the fourth type of forest stands, we delineated the locations of the
96-m grid cells which were spruce-dominated with a mean stand
age > 60 years, but which also included deciduous trees higher than
20 m. Such forest stands represent sites where large deciduous trees
of conservation importance, such as European aspen (Kivinen et al.,
2020), occur as mixed stands within coniferous forest. Such forests are
potentially valuable to many red-listed species, such as the Siberian fly-
ing squirrel (Pteromys volans) (Santangeli et al., 2013).

To assess the observation frequency of forest-dwelling threatened
species in the study area, we extracted records of Critically endangered
(CR), Endangered (EN), Vulnerable (VU), Near threatened (NT) and
Data deficient (DD) species from the national HERTTA database for en-
dangered species maintained by Finnish Environment Institute (see
S.1.2.2.). We excluded records of extinct species and those made before
the year 1990. In addition, we only included records with spatial accu-
racy of 100 m or finer. Each occurrence was assigned to a 96-m grid
cell, and then a weighted sum of species observations, using the follow-
ing weights: DD 1, NT 2, VU 5, EN 10, CR 20, was calculated for each cell.

For the third measure, we used species distribution modelling
(SDM) software Maxent (v. 3.4.1.; Elith et al., 2011; Merow et al.,
2013) to develop maps of potentially valuable forest stands across the
study area.We used ringing data from1990 to 2017 for four bird species
considered as indicators of forest BD values (e.g. occurrences or richness
of rare forest species, species of conservation importance, and species
dependent on mature and old-growth forests): European honey buz-
zard (Pernis apivorus), common buzzard (Buteo buteo), northern gos-
hawk (Accipiter gentilis) and Eurasian three-toed woodpecker (Picoides
tridactylus) (Burgas et al., 2014; Pakkala et al., 2014; Björklund et al.,
2015; Mononen et al., 2018). Nesting sites that had been substantially
logged after the ringing were excluded (S.1.2.3.). After these exclusions,
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the number of breeding sites remainingwere: European honey buzzard,
N=126, commonbuzzard,N=458, northern goshawk,N=1222, Eur-
asian three-toed woodpecker, N = 128.

For each species, we selected a set of explanatory variables that de-
scribed (i) forest stand structure and quality, and (ii) type of land use
at the focal cell, together with (iii) landscape level forest structure-
quality and land use around the nest (500-m and 1-km buffer for the
Eurasian three-toed woodpecker and the three hawk species, respec-
tively) (S.1.2.3.). We accounted for observation bias by building a den-
sity layer of all bird ringing points and used this to weight sampling of
backgroundpoints.We ranMaxentwith auto-features and 10,000 back-
groundpoints, using a one-timedata-splittingmodel validation and cal-
culated the area under the ROC curve (AUC) in test data to measure
model performance. We used the logistic output of final (full) model
as predictions of nesting suitability for the four species.

There are well known dependencies between threatened forest BD
and the amount, type and composition of dead wood parcels in boreal
forests (Siitonen, 2001; Junninen and Komonen, 2011; Lassauce et al.,
2011). Thus, dead wood volume provides a useful indicator of both for-
est naturalness and the presence of rare and threatened species. Dead
wood potential (DWP) was estimated for each forest stand using a
mechanistic forest growth model (MOTTI v 3.3, Salminen et al., 2005;
Hynynen et al., 2014; Hynynen et al., 2015) and spatial data on forest
site type and tree species (diameter at breast height (DBH) and vol-
ume), resulting in 20 combinatory data layers across 5 forest site
types (herb-rich, herb-rich like, mesic, semi-xeric, xeric) and 4 tree spe-
cies (Scots pine, Norway spruce, birches, other broad-leaved trees).
These describe the potential DBH corrected volume of dead wood on
site, summed across tree species and aggregated (summed) to each
96-m cell (Fig. 4C). The data have been used together with information
on forest condition to identify important forests for BD conservation and
have been shown to correspond well with ecological forest indicators
(Lehtomäki et al., 2015; more details see Mikkonen et al., 2018 and
Mikkonen et al., 2020).

2.3.3. Landscape prioritization for integrated biodiversity and C evaluation
We used the spatial prioritization tool Zonation (v.4.0) (Moilanen

et al., 2005; Moilanen et al., 2014) to identify jointly important areas
for BD protection and C processes. The premise of such analysis is that
tree harvesting in a currently forested location has negative impacts
for both BD and C processes through the destruction of habitat and re-
sources for forest-dwelling species, reduction of local C storage, and by
shifting C net ecosystem exchange (NEE) from a sink to a source.

As input data, we used maps of C pools and fluxes (Section 2.3.1) and
the different BD values (Section 2.3.2, Fig. 4). In the prioritization, we fo-
cused only on forests onmineral grounds (Supplementary S.1.4.1), as im-
pacts of forestry actions on the net C fluxes of peatland forests are more
complex and currently less well understood (despite these uncertainties,
peatland forests were considered in the PREBAS modelling of the C-
processes for the whole study area, Section 2.3.1). Here, to introduce the
prioritization approach, we focussed in our analyses on data on C stored
in forest trees (including roots) and the net ecosystem production
(NEP), which includes soil respiration (role of stored soil C will be exam-
ined in futurework).NEPdescribes the total amount of organic C available
for storage (gCm−2a−1) after accounting for gross primary production
and ecosystem respiration in the PREBAS model. We only included posi-
tive values for NEP (setting negative values to zero) as we are only inter-
ested in including C sinks, not sources, to the priority areas. In total, we
included 31 data layers: two for carbon (storage andNEP), and 29 for bio-
diversity values. As our aim is to demonstrate a joint prioritization for C
and BD values, we weighted all input data equally.

Zonation produces a hierarchal priority ranking of each spatial unit
(here 96 × 96 m grid cells) through an iterative process in which, at
each iteration, the value of retaining (not harvesting) a unit is assessed
based on input data, and the least important remaining spatial unit is re-
moved from the analysis. The removal order defines the priority rank of
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each unit, the most important units being removed last. The amount of
values remaining for each input feature is tracked throughout the prior-
itization, so that all features are captured in the solution in a balanced
manner (Moilanen et al., 2011; Moilanen et al., 2014). Consequently, a
set of top ranked priority areas together typically capture high value
areas for all input features (Supplementary S.1.4.1).

In the prioritization, we accounted for past forestry actions (logging
and management, Supplementary S.1.4.2) at each pixel by penalizing
locations where forest management and drainage of wet forests have
changed tree volume and the naturalness of forest. The penalty values
(a multiplier with values 0–1) were constructed separately for C stor-
age, NEP and two groups of BD values, i) dead wood potential on
herb-rich soils; ii) all other BD values and were based on the intensity
and frequency of management and time since management actions
(Supplementary S.1.4.2). The ecological connectivity of sites was
accounted for in twoways: For all features, we used kernel connectivity
transformation at a 400mmeandecay distance to highlight areaswhere
many high value sites occur near each other.We also accounted for con-
nectivity between similar forest habitats, based on the spatial patterns
of deadwood potential in different forest types (Section 2.3.2) (Supple-
mentary S.1.4.1). The prioritization focused on unprotected areas, but
we also included information from protected areas, so to identify
those priority forests onmineral grounds that best complement the cur-
rent reserve network.

2.3.4. Derivation of EO-based indicators for spatial assessment and
monitoring

A large variety of EO data were acquired with different sensors and
platforms and in different scales to produce species level information
of forest BD (Table 2). Comprehensive field data were collected from
the Evo test site (83 km2), located in the south-eastern part of the
Kokemäenjoki basin (Fig. 1), to support the EO approaches. These data
consist of 400 circular sample plots, 2256 RTK-GNSS positioned trees,
and leaf and soil samples, used as ground truth when developing
methods for tree species detection and recognition of their biochemical
characteristics.

Particular attention was given to detecting the keystone species
European aspen, together with three main tree species (Norway spruce,
Scots pine, birch).Weused three different data sourceswith different spa-
tial scales: Unmanned aerial Vehicles (UAV), aeroplane-operated sensors,
and satellite data. First, the tree-level detection with highest spatial reso-
lution was conducted using high-resolution photogrammetric point
clouds and combination of spectral features derived from two different
multispectral UAV cameras using linear discriminant analysis (LDA) and
support vector machine. The results were validated with the field-
measured reference data. Second, to extend the geographical area for
aspen detection, we used high-resolution airborne hyperspectral imaging
and airborne laser scanning (ALS) data that have earlier been successfully
utilized for individual tree detection and species classification in different
forest environments (Dalponte et al., 2014; Fassnacht et al., 2016;
Tuominen et al., 2018). Here, we assessed the role of different wavebands
(455–2500 nm), principal component analysis (PCA) and vegetation indi-
ces (VI) in tree species classification based on canopy spectral reflectance
using two machine learning classifiers: support vector machine (SVM)
and random forest (RF) (Viinikka et al., 2020). In addition, the usability
of convolutional neural networks (3D-CNNs) in tree species classification
was assessed (Mäyrä et al., 2021). Third, we tested area-based estimation
of species occurrence using Sentinel-2 satellite imagery that further ex-
tends the spatial scale of the study.

3. Results

3.1. Regional C budget and estimation of C neutrality of the study area

Regional C budget patterns for forested areas were simulated
with PREBAS, under both present and future conditions (Fig. 3,



Table 2
Key EO datasets available and used for integrated carbon and biodiversity assessment within the Kokemäenjoki river basin. UAV = Unmanned Aerial Vehicle, MS = multispectral,
HS = hyperspectral, ALS = airborne laser scanning. For sources: SYKE = Finnish Environment Institute, NLS = National Land Survey, UEF = University of Eastern Finland.

Platform Spatial
resolution

Sensor Data
type

Temporal
resolution

Input data for ecosystem indicators and
biodiversity variables

Input data
for models

Source

Satellite 10–20 m Sentinel-2A/2B
MSI

MS 5 days Habitat structure, ecosystem extent,
fragmentation and disturbance, tree species
richness and diversity, land surface
phenology

Land cover models (CORINE), Species distribution
models (Maxent), Species abundance models,
Statistical models for drivers of BD indicators
(EBVs)

nsdc.
fmi.fi

Airplane 0.5–1 m HySpex
VNIR-1800 and
SWIR-384

HS On demand, for
Evo site in July
2018

tree species classification, species richness
and diversity, canopy biochemistry

Habitat suitability models, e.g., for epiphytic
species

SYKE

0.5
pulses/m2

Various ALS Varies between
sites, whole
Finland,
2008–2019

Large scale elevation and surface modelling,
tree species detection, distribution and
vertical structure of vegetation

Species distribution models (Maxent), Species
abundance models

NLS

10.2
pulses/m2

Leica ALS70P ALS On demand, for
Evo site in July
2018

Same as above but in local scale, deadwood Species abundance models, Dynamic species
population models

SYKE

UAV 3.9–14.5 cm Fixed wing
Ebee plus RTK,
Phantom RTK
Pro
Matrice 210

MS On demand, for
Evo site in July
2018

tree species classification Small-scale distribution of species, specialized on
specific tree species

UEF

10 cm Specim FX-10 HS On demand, for
Evo site in July
2018

tree species classification Small-scale distribution of species, specialized on
specific tree species

UEF
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Tables 3 and 4). These results were used also for the landscape prior-
itization for integrated BD and C evaluation (see Sections 2.3.3 and
3.3). FRES model results for anthropogenic emissions for both pres-
ent and future (WEM and WAM mitigation scenarios) were also de-
rived for the area (Tables 3 and 4).
Fig. 3. Example on PREBAS model results from the Kokemäenjoki area for present day
conditions. Net C emissions (gCO2eq m−2 a−1) for segmented forest areas are shown.
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Forested areas formed the largest sinks in the present-day GHG-
budget of the study area (Table 3). Forests were also the largest source
together with anthropogenic emissions from artificial surfaces, while
other ecosystems (arable land, surface waters and undrained mires)
were lesser but quantitatively important sources. Lakes and rivers
form a source of about 1.1 TgCO2eq a−1 (Holmberg et al., 2021; Tg =
1012 g), due to decomposition of terrestrially derived C in the waters
and are thus affecting the regional C budget (Kortelainen et al., 2006).
Emissions from agricultural areas were estimated at ca. 0.6 TgCO2eq
a−1 (Holmberg et al., 2021). Forests dominate estimated present-day
sinks of the area and form a sink even after accounting for harvesting
removals and decomposition/respiration processes (net emissions
−3.7 TgCO2eq a−1). However, the anthropogenic emissions from artifi-
cial surfaces, emissions from forests (harvesting + decomposition/
respiration) and other ecosystems greatly exceed the total sinks in the
area at present, with estimated total net emissions of ca. 4.2 TgCO2eq
a−1 (Table 3). Thus, the Kokemäenjoki area is far from C neutrality, a
general policy target set to be reached by 2035. Note that we do not ac-
count for C stored in wood-based products because our analysis does
not include life-cycle calculations.

Mitigating anthropogenic emission sources indicated a limited po-
tential for significant reductions by year 2030, with net emission of 5.1
and 4.8 TgCO2eq a−1 for the WEM (with existing measures) and
WAM (with additional measures) scenarios, respectively. Longer-term
policy scenarios for the anthropogenic emissions were currently not
available. However, the study areas' forests presently provide a large
theoretical sink of −11.5 TgCO2eq a−1 (Table 3). Under the Low
harvesting intensity scenario, net emissions for forests amount to
−5.8 TgCO2eq a−1 by themid-century (Table 4), compared to the Policy
(base) scenario outcome of −1.4 TgCO2eq a−1. The net sink of all sce-
narios is affected by changes in the forest age structure caused by al-
ready implemented cuttings in the area. Harvesting according to the
MaxSust scenariowould convert forests into an emission source already
by 2026–2033 (net emissions 1.6 TgCO2eq a−1, Table 4).

3.2. Assessing biodiversity values

The three types of old forest stands (spruce, pine and deciduous for-
ests) occur sporadically in the study area and their cover is very low (see
Supplementary information S.2.2.4). The most abundant type of the
three, spruce-dominated forests with mean age > 100 years, covers

http://nsdc.fmi.fi
http://nsdc.fmi.fi


Table 3
Estimated current GHG emissions and sinks (TgCO2eq a−1) by land use in theKokemäenjoki area (modified fromHolmberg et al., 2021). Positive numbers indicate emissions and negative
numbers sinks. Emissions from forests are due to cutting removals and decomposition and respiration processes. The land use class ‘Other ecosystems’ refers to arable land, surfacewaters
and undrained mires.

Land use Area (km2) Area (%) Emissions TgCO2eq a−1 Emis. wrt total (%) Sinks TgCO2eq a−1 Sinks wrt total (%) Net emissions TgCO2eq a−1

Forests 17,782 66% 7.8 50% −11.5 99.8% −3.7
Other ecosystems 8013 30% 1.8 11% −0.02 0.20% 1.8
Artificial surfaces 1331 5% 6.1 39% 0 0% 6.1
Total 27,125 100% 15.7 100% −11.5 100% 4.2
Leaching to the sea 0.3 2%
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approximately 225 km2, thus accounting only for 1.15% of the forested
land in Kokemäenjoki basin (Fig. 4A). Moreover, in all the three forest
types, their overall cover decreases drastically towards older age catego-
ries indicating a severe general loss of oldest forests from the study area
(S.2.2.4). Examination of the forest stand age data inside vs. outside PAs
further highlights the sparsity of oldest forests outside PA network, as
more than 70% of the spruce forests >160 years old, and of the pine for-
ests >180 years old, respectively, are situated within PAs (S.2.2.4). Over
>60 years old spruce forestswith tall (>20m)deciduous trees aremore
common and cover ca. 13% of the forested land.

The total number of threatened forest-dwelling species included in
the analysis was 235 (4 DD; 120 NT; 66 VU; 34 EN; 11 CR). The mean
number of occurrences across all species was 49.2, ranging from one oc-
currence (67 species) to 7494 (Siberianflying squirrel, VU). The number
of occurrences among critically endangered species (CR) varied from
one (Scapania apiculate and Fuscocephaloziopsis catenulate) to 20
(Nephroma laevigatum), and in endangered (EN) from one (12 species)
to 1915 occurrences (eastern pasque flower Pulsatilla patens), respec-
tively. The summed Red List species index varied among the 96-m
cells from zero with no records of the Red List species to 65 (Fig. 4 B).
The spatial patterns in the summed Red List index are notably driven
by the occurrences of twowell-surveyed species, Siberianflying squirrel
and eastern pasque flower.

The final Maxent models predicting the nesting site suitability for
our four focal bird species (see S.1.2.3.) included 6–9 predictor variables
depending on species (S.2.2.5). The most important variables (with
>10% contribution) predominantly described forest stand characteris-
tics at 96-m resolution, including age, height and volume of trees,
with predicted suitability showing a positive relationship with these
variables (S.2.2.2 and S.2.2.3). Of the landscape level variables, cover of
urban areas showed a notable negative relationship with nesting suit-
ability for common buzzard and northern goshawk, whereas stand
suitability for the Eurasian three-toed woodpecker increased with in-
creasing mean tree volume and cover of forested peatlands in the
surrounding 500 m buffer. Spruce was typically the dominant tree spe-
cies in stands suitable for the three-toed woodpecker.
Table 4
Impact of forest cutting scenarios (PREBASmodel) and scenarios of anthropogenic emissions (ar
Kokemäenjoki area. The forest harvesting scenarios are based on the national climate and energ
Policy (base scenario) ca. 80 Mm3 a−1 and Maximum Sustainable Cuttings (MaxSust) ca. 85 M
amount of harvested biomass. Positive numbers indicate emissions and negative numbers sinks
caused by changes in climate conditions. FRES model results for theWEM (with existing measu
shown. These scenarios are based on assumptions of the national climate and energy strategy.

Land use Area (km2) Scenario Years Em

Forests 17,782 Policy (base) 2017–2025 7.
Policy (base) 2026–2033 7.
Policy (base) 2034–2050 7.
Low 2017–2025 4.
Low 2026–2033 4.
Low 2034–2050 4.
MaxSust 2017–2025 9.
MaxSust 2026–2033 9.
MaxSust 2034–2050 9.

Artificial surfaces 1331 Present 2015 6.
WEM 2030 5.
WAM 2030 4.
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The predictive discrimination performance of the models, as mea-
sured by Maxent's test AUC statistics, was clearly better than random
(i.e. 0.5; see Phillips et al., 2009) for all four species, varying from 0.78
(common buzzard) to 0.91 (Eurasian three-toed woodpecker) (Supple-
mentary Table BD2). The maps of predicted nesting suitability showed
spatial differences between species. For the common buzzard and the
northern goshawk, the most optimal sites were relatively widely and
evenly spread (S.2.2.1) whereas for the European honey buzzard
nesting suitability decreased towards coastal areas (Fig. 4 C). Suitable
nesting sites were spatially most limited for the Eurasian three-toed
woodpecker (S.2.2.1). For all four species, only 3.5–6% of their total pre-
dicted values were estimated to reside in protected areas (S.2.2.5). This
suggests that theway how the optimal sites for the four bird species are
managed outside PAs can have an important impact on the regional per-
sistence of these species.

3.3. Landscape prioritization for integrated biodiversity and C evaluation

Integrating information about the regional C budget (Section 3.1)
and BD values (Section 3.2), we explored how BD values and C storages
and sinks could be retained within the Kokemäenjoki area under four
optional conservation scenarios: i) only currently protected forests on
mineral ground are retained, or; in addition to protected areas, harvest-
ing would not be allowed in the top 10% ranked unprotected locations
(~190,000 ha) identified using ii) biodiversity values only; iii) C values
only, or; iv) both BD and C values (called ‘balanced’ here onwards)
(Fig. 5 A, C–D). In total, the currently protected forests on mineral soils
store approximately 2.6 Tg of C and assimilate another 0.06 Tg each
year (0.22 TgCO2eq a−1), representing ~2.4% of the total C pools and
fluxes of mineral soil forests in the region. On average, the protected
areas capture ~10% of BD features' values on mineral soil forests (see
Section 3.2 for more on protection).

With optimal allocation of no-harvest areas, the amount of both BD
and C values retained in the study region could be significantly im-
proved (Fig. 5B). However, using either BD or C values to identify
these priority forests resulted in spatially divergent patterns (Fig. 5C–
tificial surfaces, FRESmodel) on aggregatedGHG emissions and sinks (TgCO2eq a−1) in the
y strategy,with total annual country-scale harvest removal quotas of: Low ca. 40Mm3 a−1,
m3 a−1.The net emissions of forests have been calculated by adding NEE estimates to the
. Results for forests are shown as averages for several years to reduce the annual variability
res) andWAM-scenarios (with additional measures) for the anthropogenic emissions are
See text for details.

issions TgCO2eq a−1 Sinks TgCO2eq a−1 Net emissions TgCO2eq a−1

8 −11.5 −3.7
8 −9.0 −1.2
9 −9.3 −1.4
7 −12.9 −8.2
7 −11.3 −6.6
7 −10.5 −5.8
4 −10.8 −1.4
4 −7.8 1.6
5 −8.4 1.1
1 0 6.1
1 0 5.1
8 0 4.8



Fig. 4. Spatial patterns in (A) occurrences of spruce dominated forests>100years old,measured as the sumofmean ages (years) of all 16-mresolution pixelswithin a 96-mpixel thatmeet
the age criteria, and displayed here on a log10-scale, (B) summed Red List species index (for visibility, shown as points), (C) the predicted nesting suitability of forest stands for the
European honey buzzard (Pernis apivorus), and (D) the summedDBH (diameter at breast height) corrected index of deadwood potential (DWP) on Scots pine (Pinus sylvestris) dominated
semi-xeric site fertility type. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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D), indicating that best locations for conservation and climate change
mitigation do not necessarily overlap. Despite spatial differences,
using either C or BD values to prioritize areas made relatively little dif-
ference to how much more C pools and fluxes could be increased
(Fig. 5B). On the other hand, BD values are poorly captured by areas
prioritised only for C, in comparison to the BD only scenario. The bal-
anced solution (Fig. 5A) closely mimics the BD only solution: this is be-
cause options for increasing C pools and fluxes are numerous in the
region, whereas many of the BD values have restricted distributions
(Fig. 5) and hence constrain the solution more (Kujala et al., 2018b).
The priority areas identified in the balanced solution nevertheless con-
tain similar C pool as the C only solution (12.1 vs 13.2 TgC, respectively),
whereas C fluxes are smaller in the balanced solution (0.20 vs. 0.43 TgC
a−1 in the C only solution) but still considerably higher than fluxes in
just protected areas (0.06 TgC a−1).

3.4. EO-based tree species detection for indicator development and
monitoring

For providing new datasets of biodiversity indicators, EO techniques
can be utilized. UAV-based remote sensing proved to be very efficient in
providing ultra-high spatial and temporal resolution RGB, multispectral
or hyperspectral imagery for a detailed forest properties assessment in
boreal forests at individual tree and stand-level. The best classification
results were obtained with linear discriminant analysis which gave
82% accuracy for the recognition of the keystone species European
aspen. Similarly, European aspen could be detected with high accuracy
9

using high-resolution airborne hyperspectral and airborne laser scan-
ning (ALS) data. To extend the geographical area from the UAV based,
tree level aspen discrimination, we used high-resolution airborne
hyperspectral imaging and ALS. The best classification accuracy of 92%
for aspen from the other dominant species was reached using the sup-
port vector machine (SVM) classifier with mean spectral reflectance
values together with selected vegetation indices (cf. Viinikka et al.,
2020). Overall, the best method for tree species classification consider-
ing all species was 3D convolutional neural network (3D-CNN) utilizing
250 spectral bands, with overall accuracy of 86% (cf. Mäyrä et al., 2021).

Very-High-resolution EO data enabled the identification of the spe-
cies at tree-level with reliable and accurate results (Viinikka et al.,
2020). However, data obtained from satelliteswith lower spatial resolu-
tion is mainly suitable for area-based estimation of species occurrence.
Therefore, upscaling of the tree species detection using satellite data
to large geographical areas seems challenging. The spatial resolution af-
fects the identification of individual trees, which is demonstrated in
Fig. 6. Whereas canopies can be delineated in Lidar data and individual
trees can be recognized from UAV and airborne imagery, in Sentinel-2
data, each pixel consists of several trees which makes it difficult to de-
tect the spectral traits of a single scarcely occurring tree species. Our
preliminary results on tree species detection with Sentinel-2 data
showed that correlations between spectral bands and species propor-
tions are rather weak, especially in case of species with scarce occur-
rence, such as aspen and larch (Larix spp.).

At current state,we have been able to produce estimates of aspen oc-
currence and abundance on an 83 km2 area from fusion of airborne



Fig. 5. Examples from landscape prioritization for biodiversity and carbon in the Kokemäenjoki river basin. All maps show the currently protected areas (in dark grey) and the best 10% of
forests on mineral soils, where harvesting should be avoided (in colour). Panel A) gives the integrated balanced priority areas (in orange) that maximize both biodiversity values and
carbon pools and fluxes. Panels C) and D) show priority areas for biodiversity only (in blue) and carbon only (in red), respectively. Boxplots in panel B) show how much these priority
areas capture of the total values within mineral soil forests, shown separately for biodiversity (dead wood potential, old forests, threatened species and focal birds) and carbon (pool
and fluxes) features (x-axis), and for currently protected areas and the three different priority solutions (A,C,D) (boxplots). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of EO datasets covering the same area at different spatial resolutions. A: ALS-derived Canopy Height Model (CHM) at 0.5 m resolution, with delineated aspen canopies
overlaid. B: False-colour composite (Near Infrared-Red-Green) of UAV imagery at 0.07m resolutionwith aspen treetopsmarked. C: False colour composite of hyperspectral aerial imagery
at 0.5 m resolution with aspen treetops marked. D: False colour composition of Sentinel-2 imagery at 10 m resolution with aspen treetops marked. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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hyperspectral and Lidar data (Fig. 7; Viinikka et al., 2020). This indicates
the potential of the derived methodology for spatial BD mapping and
identification of new areas for protection.

4. Discussion

Fig. 2 presents the integrated modelling and evaluation framework
of our study and shows how the different sectors are linked. Our discus-
sion is structured based on this conceptual framework and we describe
how it can be used for finding optimized solutions for co-management
of C and BD in the landscape.

4.1. Assessing C pools and fluxes and C neutrality

Estimation of C budgets is a key necessity in assessingwhether and by
which means warming can be constrained to the limits of global average
temperature increase, as set out in the United Nations Paris Agreement
(1.5 °C andwell below2 °C, Rogelj et al., 2019). Reaching this goal requires
both rapid transformation of national energy, industrial and land-use sec-
tors and large-scale deployment of negative emissions technologies
(NETs) and other land-based measures (Smith et al., 2016; Roe et al.,
2019). These NETs and land-based mitigation include techniques
such as increased use of bioenergy combinedwith C capture, reduced
forest deforestation and degradation, less intensive forest manage-
ment, and afforestation. These measures are also central for reaching
‘net zero emissions’ in climate mitigation target setting. Forests thus
play a major role in the global and regional climate change mitiga-
tion efforts.

In Finland, forests cover ca. 70% of the land area, and the forest indus-
try is an important part of the national economy. Total Finnish GHGs
emissions were 52.8 TgCO2eq in 2019 and the LULUCF sector was a
sink, varying from approximately 19 to 50% of the total annual emis-
sions from other sectors during 1990 to 2017 (Statistics Finland,
2020). Forests (trees and soil) thus absorb a significant proportion of
Fig. 7. Percentage of the predicted aspen occurrence in 100 m grid based on the Support Vecto
current protected areas are marked.
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Finland's CO2 emissions. C budget calculations are therefore of impor-
tance for decisions on land-use policies and management at different
spatial scales.

Our results show the large importance of forests in the regional C
budget also of our study area (estimated present net emissions
−3.7 TgCO2eq a−1, Table 3; negative number indicating a sink)
and, subsequently, the potential for using management measures
of forests, other land-use sectors and anthropogenic emission reduc-
tions in mitigation. The possibilities for reaching policy goals of C
neutrality are clearly demonstrated (Table 4), indicating that C neu-
trality could be achieved but would require significant reductions in
the current forest cutting levels. As shown in Table 4, the estimated
mitigated anthropogenic emissions in the area by year 2030 amount
to 5.1 (WEM scenario, planned existing measures) and 4.8 TgCO2eq
a−1 (WAM scenario with stringent additional measures), respec-
tively. The net emissions of forests in the area according the Low
intensity harvesting scenario by around 2030 are estimated to
−6.6 TgCO2eq a−1 (sink) but would be significantly lower for the
Policy (base) scenario for the same period (−1.2 TgCO2eq a−1,
Table 4). Cuttings close to a Low scenario could thus compensate
for mitigated anthropogenic emissions by around 2030. Forest har-
vesting according to the high-intensity MaxSust scenario would con-
vert forests into an emission source (Table 4). Our model system can
therefore be used to assess the impacts of different scenario combi-
nations for different time frames, allowing long-term planning and
adaptation. Municipalities and other regional actors can use this
information to make decisions that affect local GHG emissions and
sinks, in particular via land use planning and management
(Vanhala et al., 2016). Importantly, after clear-cutting, a boreal forest
stand becomes a source for C and other GHG emissions for several
decades (Grant et al., 2010; Korkiakoski et al., 2019), indicating the
long time-frame involved. Our results also clearly demonstrate the
potential for integrated C and BD management (see Section 3.3 and
discussion below).
r Machine classifier, mean spectral reflectance values and selected vegetation indices. The
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4.2. Enhancing mapping of BD values for landscape-level analyses

Compiling comprehensive spatial data for BD has well-known chal-
lenges. Although forest attributes provide useful and relatively accessi-
ble proxies for BD at larger scales, conserving BD values often requires
data on the exact distribution of individual species. Observation records
of species are becoming rapidly available and are increasingly used in
various BD assessment (GBIF Secretariat, 2019). However, the point-
nature of most species data limits their use in landscape level analyses,
such as integrated land-use optimizations, as they include large
unsurveyed areas where species presence is unknown. One option is
to combine records of species within relevant BD groups, as done here
for the forest-dwelling threatened species, which allows exploration
of BD patterns in broad terms (Section 3.2). Such approach is particu-
larly suitable for including very rare, elusive or taxonomically cryptic
species for which data quality is typically low (Edenius and
Mikusiński, 2006; Becker andEncarnação, 2012). Combiningdata across
species may alleviate data gaps and biases, thereby enabling identifica-
tion of valuable forest stands for poorly known species (Mikusinski
et al., 2001; Wiens et al., 2008; Burgas et al., 2014).

For species with enough observations (>30), Species Distribution
Models (SDMs) offer a powerful tool for filling data gaps in unsurveyed
parts of the landscape. There are numerous established SDM methods
and their use in a range of conservation decisions is proliferating
(Guisan et al., 2013). Here we modelled the nesting suitability of forest
stands for four bird species. Earlier research has suggested that these
species are dependent on the presence of old, mature forests with
high stand volume, and their optimal nesting sites can indicate high-
quality mature forest in terms of BD value (Pakkala et al., 2014;
Burgas et al., 2014; Björklund et al., 2015). Our results, based on nest
data and fine-grained forest data accumulated across the whole
Kokemäenjoki basin (Section 3.2), are in line with these earlier
findings with respect to the study species ecology. Important to
acknowledge is that most BD observation data are spatially biased
towards easily-accessible and frequently visited locations and that it is
central to account for these biases when building SDMs (Phillips et al.,
2009).

In our Kokemäenjoki study, we used complementary BD measures
known to be relevant for forest BD conservation, and which reflect
more than just one element of forests (i.e., forest maturity, mixed tree
composition, amount of dead wood and forest characteristics at local
and landscape scale). From forest conservation planning perspective,
more data on ecological forest attributes is needed, as e.g. many threat-
ened forest species are epiphytes, favoring old stands or stands with
large aspen trees. Inmanaged forests thesemature forest stands are sys-
tematically harvested and clear-cut (Björklund et al., 2020; Virkkala
et al., 2020), causing declines in mature and old-growth forest associ-
ated species, such as our focal forest birds, three of which are already
regarded as red-listed (Hyvärinen et al., 2019). In the study region, the
remaining old mature forests appear to be retained predominantly in
protected areas.

4.3. Improving spatial BD data compilation using EO techniques

The diverse structure of naturemakes it difficult to identify andmap
surrogates that accurately represent themany levels of BD and ES values
(Rodrigues and Brooks 2007). Combining EO and field-measured train-
ing data, some surrogates, such as standmean age, are particularly chal-
lenging to define, whereas others (i.e., stand volume) can be mapped
reliably from appropriate data sets (Vastaranta et al., 2016). Large-
scale data on BD relevant forest attributes can be, to some degree,
sourced fromnational forest inventories (Section 2.3.1), which combine
remote sensing data with intensive field surveys (Tomppo et al., 2008;
Pukkala, 2020a). However, the maximum level of detail depends on
the amount of field data and the EOmaterial used in the process. Scarce
tree species (e.g., European aspen) and stochastic phenomena
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(e.g., deadwood) that are not directly linked to visible canopy cannot
bemapped reliably at large scale. In Finland, current approach provid-
ing forest resource data for operational forestry struggles in discrim-
inating European aspen and other deciduous trees as the field data
are typically targeted for mapping the dominant and economically
significant tree species (Scots pine, Norway spruce and birch) and
stands.

Our results showed that EO data with very high spatial and spectral
resolution provide spatially accurate information of tree species that can
help to target BD conservation efforts in boreal forests (Section 3.4). Pre-
vious studies have made similar conclusions (Säynäjoki et al., 2008;
Dalponte et al., 2014; Puliti et al., 2015; Fassnacht et al., 2016;
Nevalainen et al., 2017; Alonzo et al., 2018; Tuominen et al., 2018).
According to our results in the Evo test site, UAV data, airborne
hyperspectral reflectance and ALS data enable the tree-level detection
of ecologically important tree species, such as European aspen
(Viinikka et al., 2020; Mäyrä et al., 2021). However, spatial coverage of
UAV data is often limited, and airborne data are overly expensive to ac-
quire for large areas. Thus, there are still obvious challenges in gathering
of ecologically useful data over wide geographical regions. In the future,
linking highly detailed UAV data with high resolution satellite imagery
is a viable option for tackling these challenges (Kattenborn et al., 2019).

The spatial and spectral resolution of EO data greatly affects what
kind of attributes may be mapped. Low-density (≈ 1 pulse/m2) ALS
data accompanied with aerial images and extensive field data can pro-
duce robust area-based estimates of features such as standmean height
and volume (Næsset, 2002; Hyyppä et al., 2008), whereas higher den-
sity ALS data supplementedwith fieldmeasurements are often required
for detecting single trees (Hyyppä et al., 2001), or to describe the verti-
cal structure of forests (Lindberg et al., 2012; Vastaranta et al., 2016).
Multispectral data fromhigh spatial resolution commercial satellite sen-
sors have been available for two decades, but their high cost and limited
spectral resolution limit their operational use. Currently, Sentinel-2 is
the most suitable freely available satellite data in terms of spatial
(10m) and spectral (13 bands) resolution. Our preliminary results indi-
cate that the high classification accuracies obtained at tree-level cannot
be easily repeated using Sentinel-2 data for area-based estimation of
species occurrences (see also Stratoulias et al., 2015; Immitzer et al.,
2016; Radoux et al., 2016), particularly when trying to detect scarcely
occurring tree species among the dominant species. Moreover, the
broader spectral bandwidths of Sentinel-2 cannot capture the subtle dif-
ferences in spectral reflectance which are important in accurately dis-
criminating between tree species. To overcome the issue, efforts of
multi-temporal monitoring by Sentinel-2 data have given promising
improvement (Bolyn et al., 2018; Persson et al., 2018). There are also
other satellites either in the orbit or satellite missions in preparation
with very high spatial (e.g. WorldView-3) or spectral (e.g. GaoFen5,
PRISMA) resolution which could enable more accurate large-scale de-
tection of rare tree species. The data from these missions, however, is
not yet openly available, or requires heavy processing to be usable.
Our results clearly demonstrate the potential for fusion of different EO
based data for spatial BD mapping and identification of new areas for
protection (Fig. 7).

4.4. Enhancing joint spatial planning and prioritization of BD and C benefits

There is a great need for integrative research and conservation plan-
ning in forest environments to identify feasible options, environmental
risks and sustainable policies. A key objective of the national strategy
and action plan for BD conservation is to halt BD loss in Finland. The
strategy includes several measures such as consideration of climate
change impacts, halting the decline in forest species and habitats, en-
hancing the network of protected areas and accounting for the mainte-
nance of BD and ecosystem services (ES) in land use planning. The
recent EU BD strategy has similar objectives. According to Hyvärinen
et al. (2019), 2667 species in Finland (11.9% of the assessed species)
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are classified as threatened (CR, EN, VU), and only some 2% of the for-
ested area in southern Finland is protected.

Considering BD conservation is essential also for GHG management
strategies. A key aspect in reaching BD and C policy targets is landscape
and regional level land-use planning (Thomas et al., 2013; Moilanen
et al., 2014; Kujala et al., 2018a; Buotte et al., 2020; Reside et al.,
2020). With optimized planning, intensive commercial forestry can be
directed to locations less valuable for BD and C storage/sequestration,
and BD-friendly management and local conservation actions applied
in areas with notable BD and ES values. In addition, different sets of ap-
proaches, including varying intensity of forestry actions alongwith pro-
tection and nature management, can be applied, accommodating
consideration of other land-use aspects (e.g. limited conservation bud-
gets, private land owner interest). In the Kokemäenjoki basin, for exam-
ple, the reduced forest cuttings needed to reach the C neutrality target
(Table 4) could be allocated to areas with high conservation and C
values (integrated solution, Fig. 5A), whichwould significantly improve
the amount of both BD and C values retained in the study region. To
achieve this outcome by the choices of private landowners requires
reshaping current economic incentives, such as METSO programme
(Forest Biodiversity Programme for Southern Finland), to account for
both BD and C values (see below).

As our results on spatial BDmapping and EO based approaches indi-
cate, gathering robust data for detailed landscape-level spatial optimi-
zations is not a trivial task. Our study also demonstrates how C
measurements from intensive research sites can be extrapolated to
larger regions using modelling tools and national forest inventory
data. Similar approach has been used, for example, in the design of re-
search infrastructures for ecosystem research where intensive sites
with heavy instrumentation are integrated into larger sites for socio-
ecological research (so-called LTSER sites, Mirtl et al., 2018). Neverthe-
less, it would be valuable to improve the existing extensive measuring
schemes with simple but informative additional measures such as soil
C and additional BD indicators.

4.5. Using economic incentives for enhanced BD conservation and C
sequestration

Implementing an integrated approach for the enhancement of BD
conservation and C sequestration requires support from economic in-
centives, and active voluntary participation of forest owners is key for
the success when forest land is privately owned. In Finland forest
owners accept economic incentives for voluntary BD conservation
(e.g. Horne, 2006; Juutinen and Ollikainen, 2010). Inclusion of climate
targets in the incentives provides, however, a special challenge requir-
ing co-creating through forest owners' participation to ensure social ac-
ceptance. An ideal participatory payment mechanism provides an
extension of the existing METSO compensation scheme for BD conser-
vation to C storage/sequestration (Kangas and Ollikainen, 2021;
Kosenius, 2021). At the heart of the process, there is a need to develop
economic mechanisms of joint ES provision (Lankoski et al., 2015;
Ollikainen, 2016) and the associated trading rules, as well as means to
assess the coherence of various environmental policies and their accep-
tance among the stakeholders. It has previously been shown that subsi-
dizing forest C sequestration by 50 € t−1 (metric ton) would increase
the C sequestration of Finnish forestry by 50%, andwith higher subsidies
even more (Pukkala, 2020b).

4.6. Potential for fully integrated multi-objective spatial prioritization

There are also apparent challenges in developing and successfully
applying multi-objective plans for regional land use and conservation.
Prioritization methods can be tailored to find optimal “win-win” solu-
tions, accounting for several factors such as expected climate change,
land-use change, land cost, area size, ecological connectivity, and
other ESs, and willingness of land owners to participate in conservation
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schemes. However, the diversity of elements and how they are valued
and traded-off against each other make it a highly complex issue
(Moilanen et al., 2014; Kujala et al., 2018a, 2018b). Our study showed
that it is possible to optimise for both C and BD values in a landscape,
but also that the best locations for conservation and climate changemit-
igation do not necessarily overlap (Section 3.3, Fig. 5). Similar results
have been obtained in other studies (Buotte et al., 2020; Repo et al.,
2020), indicating the need for diverse strategies. These should accom-
modate a range of actions that can promote multiple goals, including
continuous-cover silviculture, lengthening of harvest cycles and conser-
vation of managed landscapes (Forsius et al., 2016; Buotte et al., 2020;
Eyvindson et al., 2020; Repo et al., 2020). Indeed, the next step in devel-
oping themulti-objective spatial prioritization approach used here is to
include different types of BD-friendly forest management measures as
well as land owner-based socio-economic elements into one analysis.
Despite their complexity, such analyses have been demonstrated to be
very useful for uses such as zoning, conservation planning, or impact
avoidance in development (Whitehead et al., 2017; Jalkanen et al.,
2020).

5. Conclusions

Climate change and loss of biodiversity are massive global chal-
lenges and deeply interconnected problems. Efforts to develop common
solutions at different scales and in different ecosystems are therefore re-
quired. As demonstrated in this paper, developing a detailed integrated
multidisciplinarymodelling and evaluation framework, where different
carbon processes and biodiversity aspects can be analysed simulta-
neously and where optimized solutions in the landscape are sought
for, can assist in these efforts. We link these analyses to formal environ-
mental policy goals of the society. The next step will be to expand the
tested methodologies to the national scale, thereby further increasing
the policy-relevance of our approach. Still, it is likely that much of the
real progress aiming at finding integrated solutions to these problems
will be achieved at the local and regional scale where the actual land-
use decisions are made, and anthropogenic emission mitigation efforts
are planned and implemented. For the data needs of these actions, the
detailed spatial scale of our approach is well suited.

Our results show that it would be possible to achieve the stated pol-
icy goal of carbon neutrality in our study area by mitigating anthropo-
genic greenhouse gas emissions and substantially decreasing the level
of forest harvesting, and that one can further utilise this information
to optimise for retaining both biodiversity and carbon values in the
landscape. Such a policy can be implemented by a combination of an-
thropogenic emission mitigation actions, municipal and regional land-
use planning, and voluntary actions by land-owners, incentivised by
economic instruments for joint biodiversity protection and carbon stor-
age/sequestration. The impacts of these actions in the landscape can be
studied and monitored by utilizing advanced Earth Observation-based
techniques and indicators.

However, our study also shows the complexity of the issues and the
large data needs and heavy computing resources required to carry out
the detailed analyses. Moreover, we recognise the large uncertainties
involved in the ecosystem processes studied, in the model simplifica-
tions made, and in the data extrapolation efforts carried out. Continued
intensive research, data collection and mapping efforts are therefore
needed. The long time-scales involved also necessitate frequent
updating of the different impact and management scenarios to mini-
mize uncertainties and keep the results relevant for the end-users.
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