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NOTATION 
 
 
 The following is a list of acronyms, abbreviations, and units of measure used in this 
document. Some acronyms used only in tables may be defined only in those tables. 
 
 
GENERAL ACRONYMS AND ABBREVIATIONS 
 
AIM Assessment, Inventory, and Monitoring 
Argonne Argonne National Laboratory 
 
BLM Bureau of Land Management 
BSCI biological soil crust index  
 
CI crust index 
 
DOE U.S. Department of Energy 
DSM digital surface model 
DTM digital terrain model 
 
ERI erosion resistance index 
EVI enhanced vegetation index 
 
GNDVI green normalized difference vegetation index 
GPS global positioning system 
 
ISO iterative self-organizing 
 
LiDAR Light Detection and Ranging 
LTMP long-term monitoring plan 
 
MAE mean absolute error 
ME mean error 
MSAVI modified soil-adjusted vegetation index 
 
NDVI normalized difference vegetation index 
NHD National Hydrography Dataset 
NIR near-infrared 
NPV nonphotosynthetic vegetation 
 
PC1 first principal component 
 
RMSE root mean squared 
RVI ratio vegetation index 
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SEZ solar energy zone 
SVI spectral vegetation index 
 
USGS U.S. Geological Survey 
 
VARI visible atmospherically resistant index 
VHSR very high spatial resolution 
 
 
UNITS OF MEASURE 
 
cm centimeter(s) 
 
km kilometer(s) 
km2 square kilometer(s) 
 
m meter(s) 
m2 square meter(s) 
 
nm nanometer(s) 
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LONG-TERM MONITORING OF UTILITY-SCALE SOLAR ENERGY 
DEVELOPMENTAND APPLICATION OF REMOTE SENSING TECHNOLOGIES 

 
by 

 
Yuki Hamada, Mark A. Grippo, and Karen P. Smith 

 
 

EXECUTIVE SUMMARY 
 
 
 In anticipation of increased utility‐scale solar energy development over the next 20 to 
50 years, federal agencies and other organizations have identified a need to develop 
comprehensive long‐term monitoring programs specific to solar energy development. 
Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of 
the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long‐term 
monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in 
developing an effective long-term monitoring plan as required by the BLM Solar Energy 
Program to study the environmental effects of solar energy development. The monitoring data 
can be used to protect land resources from harmful development practices while at the same time 
reducing restrictions on utility-scale solar energy development that are determined to be 
unnecessary. The development of a long-term monitoring plan that incorporates regional 
datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and 
integrates cost-effective data collection methods (such as remote sensing technologies) will 
translate into lower monitoring costs and increased certainty for solar developers regarding 
requirements for developing projects on public lands. This outcome will support 
U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided 
funding for the work presented in this report. 
 
 Argonne developed remote sensing methodologies for characterizing landscape features 
and properties and identified effective remote sensing metrics to support BLM’s development of 
effective, financially sustainable long-term environmental monitoring strategies for desert 
regions of the Southwestern United States, where increased utility-scale solar development is 
anticipated in the coming decades. The effectiveness of remote sensing technologies, particularly 
very high spatial resolution (VHSR) imagery, was examined for three land resource categories: 
surface hydrologic features, vegetation, and soil (or surface). For vegetation and soil, the study 
focused on four of BLM’s monitoring indicators for the Riverside East Solar Energy Zone (SEZ) 
pilot long-term monitoring plan (LTMP)—amount of bare ground, vegetation composition, 
vegetation height, and soil and site stability.  
 
 The algorithm for extracting ephemeral stream channels was developed by translating 
landscape associations into a series of spectral transformation and statistical operations. The 
algorithm is capable of extracting a range of channel types and mapped the distributions of 
ephemeral stream networks in much greater detail than the commonly used U.S. Geological 
Survey (USGS) National Hydrography Dataset (NHD) (USGS 2008). The algorithm detected 
900% more ephemeral streams than were mapped in the study area in the NHD. The additional 
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detailed data about the ephemeral stream network would enhance local and landscape-scale 
hydrological modeling, which is necessary for monitoring the impacts of utility-scale solar 
development. The optimal remote sensing metrics for mapping vegetation distribution and 
fractional cover of vegetation types and bare ground were also identified, and vegetation height 
information was obtained from an image-derived point-cloud layer, a digital surface model 
(DSM), and a digital terrain model (DTM). Vegetation height was generally underestimated by 
30 cm. The method reliably mapped fractional cover of two vegetation types and bare ground 
that indicated landscape composition. In addition, to accommodate the unique challenges in 
desert soil, a new remote sensing metric, the erosion resistance index (ERI), was developed, and 
the effectiveness of remote sensing metrics for estimating soil properties (e.g., moisture and 
organic matters) and biological soil crust distribution were investigated. While it is preliminary, 
ERI values reflected the erosive potential of the surface types examined in general. Although it 
was not feasible for this study because of the unavailability of reference data, a formal accuracy 
assessment that yields quantitative performance measures using appropriate validation data 
would provide conclusive evaluation of the remote sensing metric. Distribution of biological soil 
crusts was identified within a small range of biological soil crust index (BSCI). The effectiveness 
of that remote sensing metric is needed in order to draw conclusive outcomes. 
 
 At least six remote sensing metrics were shown to be effective for obtaining information 
about ephemeral stream channel networks, vegetation, and soil resources: spectral reflectance 
(i.e., red, green, and near-infrared bands), visible atmospherically resistant index, DSM, DTM, 
the principle component of the reflectance values, and ERI. In addition, three resource types 
shared a few common remote sensing metrics, and output for one resource type served as input 
for another resource type. This linkage suggests the possibility that independent remote sensing 
methodologies can be integrated into a single tractable workflow to optimize the efficiency of 
information extraction. If so, a single VHSR image would serve as a common data source for 
cost-effectively assessing multiple resources. The output from the remote sensing methodologies 
could also be used to study other resource types, such as vegetation patterns, which are indicative 
of the health and distribution of wildlife habitat. Thus, the remote sensing methodologies 
developed in this study can potentially be applied to monitoring a broad range of plant and 
animal resources. 
 
 Although the resource characterization methodologies described in this report show great 
promise for long-term monitoring applications, additional work is needed before integrating 
these remote sensing methodologies into BLM’s long-term monitoring framework and/or into 
the monitoring plan required for an existing or planned utility-scale solar energy development. 
Because of changes in environmental conditions (e.g., sun angle and cloud cover) between image 
collection dates, it is essential to test the robustness of remote sensing algorithms across images 
from multiple dates. Therefore, several steps are necessary to facilitate the use of the remote 
sensing methodologies developed in this study. These include determining the (1) types and 
magnitude of environmental changes that can be detected and quantified using the 
methodologies, (2) robustness and sensitivity of the methodologies for anticipated natural 
environmental variability across a time series of remotely sensed images, and (3) required types 
and levels of image data preparation for automated, systematic analysis to produce consistent 
output.  
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 In addition to being a cost-effective monitoring approach, the methods developed in this 
study could ultimately reduce soft-costs for developers by accurately characterizing the 
ecological resources at potential development sites, thereby potentially reducing permitting and 
mitigation costs and speeding up the siting process. 
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1  INTRODUCTION 
 
 
 Given the current and anticipated future number of utility-scale solar energy projects, 
numerous federal agencies (e.g., the U.S. Department of the Interior Bureau of Land 
Management [BLM], National Park Service, and U.S. Fish and Wildlife Service) and 
nongovernmental organizations (e.g., The Nature Conservancy, The Wilderness Society, and 
Defenders of Wildlife) have identified a need to develop comprehensive long‐term monitoring 
programs specific to solar energy development. The basis for their concern is that the nature and 
magnitude of adverse impacts of widespread deployment of utility‐scale solar technologies are 
not well understood, particularly at the landscape or cumulative scale. It is intended that 
comprehensive long‐term monitoring, if designed appropriately, will assist public land managers 
in assessing and responding to impacts.  
 
 Long‐term monitoring of utility-scale solar energy projects is needed to evaluate (1) the 
actual direct, indirect, and cumulative impacts compared with predicted environmental impacts; 
(2) the effectiveness and/or appropriateness of measures taken to avoid or minimize impacts at 
the project site; and (3) the effectiveness of regional, compensatory mitigation investments. 
Information on these factors must be integrated into the project authorization programs, policies, 
and requirements that ensure development occurs in an environmentally responsible manner. 
That is, long‐term monitoring data should support adaptive management of solar development 
(e.g., adjustments to operating conditions and mitigation measures). In addition, these data 
should allow for timely identification of adverse impacts to allow effective action to restore, 
rehabilitate, and prevent further damage to affected resources. 
 
 Federal agencies like the BLM have an obligation to manage lands to protect the full 
array of natural, cultural, and social resources and values on those lands. Increasingly, 
stakeholders are requesting that the agencies develop rigorous and comprehensive long‐term 
monitoring programs. The BLM has committed to doing so as part of its new Solar Energy 
Program approved in 2012 (http://blmsolar.anl.gov). Long‐term monitoring programs must be 
based upon scientifically valid protocols that quantify the effects of solar development, verify 
that those effects are associated with solar development rather than other sources of 
environmental change, support analysis of impacts at multiple scales, and maximize data- and 
cost-sharing opportunities. Such programs need to be designed specifically to meet agencies’ 
objectives for resource management and renewable energy development. They should promote 
interagency coordination, as well as engagement with developers and other stakeholders. And, 
they must maximize investment of limited financial and staff resources in order to be sustainable. 
 
 Argonne National Laboratory (Argonne) has supported the BLM in its Solar Energy 
Program through preparation of the programmatic environmental impact statement (PEIS) (BLM 
and DOE 2012), which established 17 solar energy zones (SEZs) (i.e., areas of public lands 
prioritized for utility-scale solar development) across six southwestern states. Since issuance of 
the Solar Energy Program Record of Decision (BLM 2012), the BLM has engaged Argonne to 
develop and implement components of the new program, including regional mitigation strategies 
and long-term monitoring and adaptive management strategies. As part of this effort, Argonne is 
currently assisting the BLM in developing a pilot long-term monitoring plan (LTMP) for the 
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Riverside East SEZ, located in Riverside County, California. The monitoring objectives will 
focus on detecting landscape-level solar-related impacts on natural resources, as required by the 
Solar Energy Program Record of Decision. The Riverside East SEZ LTMP incorporates 
recommendations from BLM’s Assessment, Inventory, and Monitoring (AIM) strategy for 
multiscale long-term monitoring on public lands. The AIM strategy identifies and emphasizes 
the importance of remote sensing, in addition to traditional field-based environmental monitoring 
methods, in meeting the significant data collection needs across expansive and remote public 
lands (Toevs et al. 2011). To assist the BLM in this effort, the U.S. Department of Energy (DOE) 
has concurrently funded Argonne’s research of the application of remote sensing technologies 
for monitoring conditions in the desert environment surrounding the Riverside East SEZ. 
 
 In recent years, the use of remote sensing has become widespread, with emergent sensor 
and platform technologies and advanced modeling and data management infrastructure. While 
numerous remote sensing methodologies have been developed for collecting land surface 
information, there are unique challenges in applying remote sensing to desert environments. 
Desert landscapes are characterized by the scarcity of water, highly reflective soils, and sparse 
and less vigorous vegetation. This combination seems to violate fundamental assumptions in 
remote sensing, including (1) spectral reflectance signals from elements on the ground are 
isolated from environmental and instrumental noise, (2) targets are spectrally separable from 
background, and (3) different target types have unique spectral signatures (Friedl et al. 2001; 
Stow 1995). In addition, surface characteristics such as subtle topographical gradient and limited 
exposed soils make existing data collection and processing tools (e.g., Light Detection and 
Ranging [LiDAR] and soil stability index) inadequate for reliably characterizing monitoring 
indicators in desert regions. Therefore, there is a need to develop remote sensing methods 
applicable to monitoring environmental features in desert regions. 
 
 Resource managers are interested in monitoring desert landscapes using information that 
determines locations, abundance, spatial patterns of priority resources and key ecosystem 
components, as well as their status, condition, and trends, which are meaningful to land 
management decisions (Taylor et al. 2014). Sustainable and successful long-term monitoring 
methods will likely require the ability to cost-effectively collect information about multiple 
resource types or monitoring indicators. Characterizing many of the parameters indicative of 
resource types and monitoring indicators in desert regions, such as small plant canopies and 
narrow ephemeral stream channels, requires very-fine-scale remotely sensed data (e.g., < 50 cm). 
Very high spatial resolution (VHSR) multispectral images collected with high overlaps between 
adjacent image frames has a great potential to meet the requirements relatively inexpensively by 
(1) resolving fine-scale landscape features (e.g., shrub canopies and narrow ephemeral stream 
channels), (2) providing height information for vegetation and microtopography via an aerial 
triangulation technique, and (3) overlaying multiple data types (e.g., spectral and height 
information) with precise spatial and temporal fidelity. Thus, investigating the effectiveness of 
VHSR multispectral remote sensing for characterizing desert landscapes and developing VHSR 
remote sensing methodologies specific to desert environments are necessary to incorporate 
VHSR into BLM’s sustainable, long-term solar energy monitoring strategies.  
 
 The goal of this project was to identify remote sensing metrics, using VHSR remotely 
sensed imagery, that are correlated with monitoring indicators and to develop cost-effective 
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remote sensing methods for detecting, identifying, and mapping land surface features and 
properties that are relevant for environmental monitoring. Cost-effectiveness is gauged in general 
terms in the context of developing methods that collect data sets across large areas of land more 
efficiently than traditional field-based methods and developing methods that use a single data set 
(VHSR) as opposed to multiple and more expensive remote sensing data types. To better support 
solar energy development on public land, the project focused on the three land resource types 
that correspond to ecosystem attributes emphasized in BLM’s AIM strategy—surface hydrology, 
biotic integrity, and soils (or surface) (Toevs et al. 2011). Specific objectives were to (1) develop 
a cost-effective remote sensing methodology for mapping ephemeral stream networks in desert 
landscapes using VHSR multispectral imagery, (2) examine the effectiveness of VHSR remote 
sensing and of using spectral information to characterize vegetation distribution and land cover 
types in desert environments, and (3) explore spectral reflectance of the VHSR image and 
develop a new spectral index that would indicate erosion risks in desert environments. The cost-
effective remote sensing methods developed for this study can be integrated into environmental 
monitoring programs such as the Riverside East SEZ LTMP, thereby meeting the needs of 
authorizing agencies, developers, and stakeholders.  
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2  STUDY AREA 
 
 
 The study area is in the Palo Verde Mesa in eastern Riverside County, California 
(Figure 1). The area is a part of the Riverside East SEZ, the largest of the SEZs designated by the 
BLM (BLM and DOE 2012). The total area designated for utility-scale solar energy projects 
within the SEZ is 598.6 km2. As of September 2014, four solar projects had been authorized and 
three project applications were pending; these proposed projects cover an area of about 124 km2, 
which equates to approximately 21% of the SEZ. 
 
 The study area extends approximately 170 km2 for the 2012 data collection and 90 km2 
for the 2014 data collection, both of which contain at least one solar energy project area. The 
area is primarily covered by bare ground, with sparsely distributed vegetation that consists of 
desert scrub species (e.g., creosotebush [Larrea tridentata] and desert sunflower [Ambrosia 
dumosa]), microphyll trees (e.g., blue palo verde [Parkinsonia florida] and ironwood [Olneya 
tesota]), and annual herbs. The area exhibits typical desert stream networks made up of single-
thread and braided channels mixed with discontinuous forms. The ground surface primarily 
consists of erodible soils formed by silt and sand, desert pavement, and sparsely distributed 
biological soil crust. Approximately a quarter of the area to the west exhibits rugged 
topography—it has about 130 m of elevation gain from 185 to 315 m above mean sea level—and 
the rest of the study area has a subtle topographic gradient toward the foothills. 
 
 

 

FIGURE 1  Study Area (McCoy Wash, which runs in a northwest-southeast direction, is visible; it 
runs parallel to the northeast boundary of the study area. Irrigated fields are visible in the 
southeast corner of the study area.) The upper left hand inset image shows a close-up view of the 
ephemeral channels. 
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3  METHODOLOGY OVERVIEW 
 
 
3.1  DATA 
 
 VHSR multispectral images of the study area were collected November 12 and 13, 2012, 
and January 15 and 16, 2014, using a lightweight fixed-wing sport aircraft approximately 
1,350 m above the ground (Table 1). The VHSR images consist of four spectral bands within the 
visible and near-infrared (NIR) spectral regions and 15-cm spatial resolution. A total of 
1,572 image frames were collected, with at least 50% forward image overlap and 60% side 
overlap, during the November 2012 flight; 2,699 frames were collected, with at least 85% 
forward overlap and 70% side overlap, during the January 2014 flight. For both flights, images 
were acquired between 11:30 a.m. and 1:30 p.m. to minimize illumination effects. The image 
frames were radiometrically corrected, mosaicked, orthorectified, and clipped to the study extent. 
For each data collection, a digital surface model (DSM) and a digital terrain model (DTM) were 
generated from the VHSR image frames having considerable spatial overlap using an automated 
aerial triangulation method by the vender. Refinements of image collection specifications from 
the first to the second image collection resulted in DSMs and DTMs with varying spatial 
resolutions, 70 cm and 5.15 m for 2012 and 73 cm and 2.5 m for 2014, which were the finest 
horizontal scales attainable using the VHSR images with the image collection specifications.  
 
 Field data were collected on September 25 and 26, 2012, and January 21–23, 2014 
(Table 2). Occurrence of vegetation and bare ground (e.g., exposed soil and desert pavement) 
and plant life-form types were observed during the 2012 field work at locations selected, based 
on accessibility and relative representativeness, and because of a lack of detailed knowledge 
about composition and spatial patterns of land cover types in the study area. During the 2014 
field work, ground cover surveys were conducted at 19 sites along three 30-m transects 
configured in a spoke design that was suggested by Herrick et al. (2005). Canopy diameter was 
measured directly from each plant canopy or patch during 2012, and it was later calculated using 
canopy gap measurements for 2014. Cover and bare ground estimates were computed using both 
transect survey data for 2014 and using a dot-grid sampling method applied to the VHRS image 
mosaic (Duncan et al 1993; Hamada et al. 2010). 
 
 Although it was outside the scope of the project, spectral reflectance values were 
collected during the 2012 field work with in-kind support from the San Diego State University, 
Geography Department. The spectral reflectance data were primarily used to understand overall 
spectral characteristics of vegetation and bare ground and to calibrate the VHRS image data 
values into reflectance values. The spectral reflectance values were not collected during the 2014 
field work largely because the data from the 2012 field work would serve as reference data for 
standardizing the 2014 dataset, but also because of budget and schedule constraints.  
 
 We planned to collect survey-grade global positioning system (GPS) data during the 2014 
field work based on the insufficient positional accuracy of the hand-held GPS data from the 2012 
field work. Because of unforeseen instrument malfunction during data collection and/or data 
transfer, we could not retrieve the data despite all possible attempts.  
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TABLE 1  Summary of Remotely Sensed Data 

 
Specification Dataset 1 Dataset 2 

   
Date of image collection November 12–13, 2012 January 15–16, 2014 
   
Camera system Canon 5D Mark II digital single-lens reflex camera (21-megapixel) 
   
Platform Fixed-wing lightweight aircraft 
   
Time of data collection 11:30 a.m.–1:30 p.m. 
   
Forward/side overlap 60%/50% 85%/70% 
   
Mean flight altitude 1,350 m 1,315–1,437 m 
   
Total frames 1,572 2,699 
   
Spectral band Blue, green, red, near-infrared  
   
Image spatial resolution 15 cm 14.7 cm 
   
Radiometric quantization 8 bit (orthorectified image) 

Floating point (DSM, DTM) 
Floating point 

   
Point-cloud data type Not applicable .XYZ 
   
DSM spatial resolution 70 cm 73 cm 
   
DTM spatial resolution  5.15 m 2.5 m 
   
Extent 170 km2 90 km2 
   
Coordinate system and projection UTM N11, WGS84 
   
Data format GeoTIFF BigTIFF 

(orthorectified image mosaic) 
GeoTIFF 

(tiles, DTM, DSM) 
 
Abbreviations: DTM = digital terrain model, DSM = digital surface model, UTM = Universal Transverse 
Mercator, N = north, WGS = World Geodesic System, TIFF = tagged image file format. 

 
 
 Using the field observation, additional locations of vegetation, exposed soil, and desert 
pavement were manually digitized in the VHSR imagery in order to generate sufficient reference 
data. This approach was taken because of the insufficient amount of observation due to time 
constraints and inclement weather during the fieldwork. The 15-cm resolution VHSR imagery 
was more than enough to resolve relatively small individual canopies in the scene, supporting 
reliable identification of vegetation and other land surface features across the landscape. 
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TABLE 2  Summary of Field Survey and Sample Data 

 
 

Dataset 1 Dataset 2 
   
Date of survey September 25–26, 2012 January 21–23, 2014 
   
Ephemeral stream 
channel location 

Recorded by walking along segments of 
ephemeral stream channels with a GPS 
device 

Attempted to record using survey-grade GPS; 
not recorded due to instrument malfunction 
and/or data during data transfer 

   
Vegetation 
occurrence 

Recorded at selected areas; sampled using 
a dot-grid method applied to the VHSR 
imagery 

Recorded using a line-point intercept method 
along three 30-m transects with a spoke 
design from preselected survey areas 

   
Bare ground 
occurrence 

Recorded at selected areas; sampled using 
a dot-grid method applied to the VHSR 
imagery 

Recorded using a line-point intercept method 
along three 30-m transects with a spoke 
design from preselected survey areas 

   
Occurrence of plant 
life-form type 

Recorded at selected areas; sampled using 
a dot-grid method applied to the VHSR 
imagery 

Recorded using a line-point intercept method 
along three 30-m transects with a spoke 
design from preselected survey areas 

   
Vegetation height Measured directly from canopies or 

patches at selected areas 
Measured the tallest vegetating height within 
a 30-cm-diameter area at each location in a 
line-point intercept method  

   
Canopy diameter Measured directly from canopies or 

patches at selected areas 
Calculated from the canopy gap survey 
(conducted using a canopy gap intercept 
method along the same transect above) 

   
Spectral reflectance Collected from vegetation and bright soil 

with the 380–1,000 nm (blue-NIR) spectral 
range using FieldSpec Pro (PANalytical 
Boulder).  

Not collected 

   
Field photo Collected for vegetation and bare ground; 

served as ancillary data to aid confirmation 
of data and interpretation of results 

Collected for vegetation and bare ground; 
served as ancillary data to aid confirmation of 
data and interpretation of results 

   
Soil stability Not collected Collected from limited locations; found the 

method unsuitable for the study area due to 
lack of exposed surface soil and lack of soil 
aggregates 

   
Soil sample Not collected Collected from two depths: 0–5 cm and  

5–10 cm; analyzed for soil texture (% sand, 
% silt, and % clay), chemistry (% total 
carbon, % total organic carbon, % total 
inorganic carbon, and % total nitrogen), 
% moisture, and pH  
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3.2  DATA PROCESSING  
 
 Table 3 shows the BLM’s core and contingent monitoring indicators for which remote 
sensing metrics were considered in this study. In addition to the spectral bands, 12 remote 
sensing metrics and 1 transformation metric were examined for their effectiveness at 
characterizing surface hydrologic features, vegetation, and soil (or surface) in the study area. The 
monitoring indicators selected for this study were relatively amenable for remote sensing and 
were of interest to the Riverside East LTMP. The indicators included surface types (vegetation 
types and bare ground), vegetation height, photosynthesis, surface stability (indicative of soil 
aggregate stability), and soil properties such as texture and relative abundance of moisture, and 
organic carbon.  
 
 
3.2.1  Extraction of Surface Hydrological Features 
 
 A methodology was developed for extracting ephemeral stream networks from remotely 
sensed imagery on the basis of features associated with ephemeral channels that are recognizable 
to humans. Ephemeral stream channels are associated with relatively bright surface and dense, 
linear vegetation growth in the landscape. This simple association was translated into 
information about landscape features and structure that can be characterized using remote 
sensing (Figure 2, Conceptual Workflow). The landscape information was translated into a series 
of spectral transformation and spatial statistical operations using remotely sensed imagery in 
order to develop an image processing algorithm (Figure 2, Image Processing Workflow). 
 
 The algorithm was formulated to systematically analyze pixel values in the VHSR image 
to capture the landscape associations and map ephemeral channel features, as well as to delineate 
channel centerlines. 
 
 The modified soil-adjusted vegetation index (MSAVI) (Qi et al. 1994) was computed to 
characterize vegetation. To map vegetation canopies and patches, the minimum index value 0.14  
(−1.4 standard deviation from the mean) was interactively determined and applied to the MSAVI 
layer. Vegetation density was calculated by applying a 5-m-radius circular moving window to 
the vegetation map in order to identify riparian corridors and characteristic vegetation patterns 
along narrow channels.  
 
 A principal component analysis was performed on the VHSR imagery. To enhance the 
characteristic brightness heterogeneity that resulted from the complex mixture of loose erodible 
soils and adjacent vegetation, local variability of the first principal component (PC1) layer was 
calculated using a 1.5-m-radius area.  
 
 The two layers that represent vegetation density and spatial heterogeneity of surface 
brightness were combined to generate a single-layer stack, which provided a physical basis for 
characterizing ephemeral stream channels, and 50 classes were generated on the basis of 
similarity in vegetation density and surface brightness heterogeneity. Classes in the output map 
that corresponded with ephemeral stream channels were identified by a visual comparison with  
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TABLE 3  Monitoring Indicators and Relevant Remote Sensing Metrics Considered 

 
BLM Indicatorsa Remote Sensing Metrics Definitions Reference 

 
Core indicators 

• Amount of bare ground  
• Vegetation composition 
• Non-native invasive species 
• Plant species of management concern 
• Vegetation height 
• Proportion of site in large intercanopy 

gaps 
• Land cover (habitat) amount, location, 

and pattern 
• Aquatic indicators 

 
Contingent indicators 

• Soil and site stability 
• Soil toxins 
• Others (e.g., stand density index, 

wildlife metrics)  
 

Normalized difference vegetation index 
(NDVI) 

  Tucker 1979 

Green normalized vegetation index 
(GNDVI) 

  Unknown 

Visible atmospherically resistant index 
(VARI) 

  Gitelson et al. 
2002 

Ratio vegetation index (RVI)   Unknown 

Green-red ratio vegetation index 
(GRRVI) 

  Unknown 

Enhanced vegetation index (EVI) 2.5 ∗
∗ ∗

 

6, 7.5, 1

Huete et al. 2002

Enhanced vegetation index 2 (EVI2) 2.5 ∗
2.4 ∗ 1

 Jiang et al. 1998 

Soil-adjusted vegetation index (SAVI) 
∗ 1

 

0.5

Huete 1988 

Modified soil-adjusted vegetation index 
(MSAVI) 

2 1 2 1 8
2

 
Qi et al. 1994 

Optimized soil-adjusted vegetation index 
(OSAVI) 0.16

 Rondeaux and 
Baret 1996 

Spectral reflectance values Spectral reflectance values of the blue, green, 
red, and NIR spectral regions. 

Not applicable 
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TABLE 3  (Cont.) 

 
BLM’s Indicatorsa Remote Sensing Metrics Definitions Reference 

 
Crust index (CI) 1  Karnieli et al. 

1997 

Biological soil crust index (BSCI) 1 | |

/3
 

2 

Chen et al. 2005 

Principal components (PCs) Orthogonal transformation of spectral reflectance 
values of blue, green, red, and NIR spectral 
bands.  

Jensen 2000 

 
a Source: Taylor et al. (2014). 
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FIGURE 2  Workflow Overview of Ephemeral Stream Channel Extraction Using Very High 
Spatial Resolution Multispectral Image (The output and intermediate products that could inform 
land and resource management decisions are shown in dark grey.) 
 
 
the reference map. Statistical properties of vegetation density and brightness heterogeneity were 
extracted from each of these classes to obtain training data in order to have comprehensive 
ephemeral stream channel characteristics with which to develop an algorithm. Using these 
training data, maximum likelihood classification was performed on the layer stack to generate a 
preliminary ephemeral stream channel map. To fill holes and remove isolated fragments in the 
map, a morphological closing operation with a 1.5-m-radius moving window was applied to the 
preliminary map. A cluster of candidate channel pixels smaller than 30,000 pixels 
(approximately 675 m2) was eliminated to exclude spatially incohesive clusters, and the final 
ephemeral channel classification map was generated. Having spatially incohesive clusters of 
pixels in remote sensing products is a typical consequence when using VHSR images. Minimum 
size filtering and majority filtering are the most commonly utilized image processing techniques 
for target detection and image classification, respectively.  
 
 To extract channel centerlines, the groups of pixels that represent ephemeral stream 
channels in the classification map were converted to polygons. The channel polygons were 
further converted to points, and additional vertices were generated every 5 m along the polygon 
edges. Thiessen polygons were then created around the channel edge vertices, creating a network 
of lines. Among the Thiessen polygons, edges corresponding to channels were identified, and 
centerlines of the channels, which were represented as one edge of the polygons, were extracted. 
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Irrelevant lines connecting to the centerline were removed to finalize the ephemeral channel 
centerline map.  
 
 Both ephemeral channel classification and centerline maps were examined to evaluate the 
performance of the algorithm for extracting stream channels in desert landscapes. Overall 
abundance and spatial patterns of the extracted channels in both maps were analyzed by 
comparing them with the National Hydrography Dataset (NHD) (USGS 2008). Quantitative 
analysis was performed using two 6-km2 areas (or assessment areas) that contained varying 
drainage types in the landscape. For the classification map, accuracy metrics, including overall 
accuracy, producer’s accuracy indicating a false negative,1 and user’s accuracy indicating a false 
positive were computed using more than 10,000 randomly selected pixels.  
 
 To evaluate the channel centerline map, the abundance and spatial distributions of 
channels were first qualitatively compared with the coarse-scale NHD to examine the level of 
detail the aerial remote sensing product represents. The local-scale accuracy of channel 
centerlines was evaluated based on the proportion of the length of the extracted channel to the 
length of the corresponding reference channel (i.e. 100% delineation means that extracted 
channel length equals reference channel length) represented the highest accuracy. The analysis 
included all channel segments longer than 150 m in both assessment areas. Then the number of 
reference channels with ≥70% and ≥50% of their channel delineated by the algorithm were 
identified and examined by independent analysts in order to determine whether the delineated 
channel centerlines could be visually recognized as channels regardless of the proportion 
delineated. To minimize bias, the independent analysts were not involved in developing the 
algorithm or generating the reference data. This qualitative method was employed in order to 
gain an understanding of the spatial patterns of extracted channel segments.  
 
3.2.2  Vegetation Characterization 
 
 

3.2.2.1  Characterization of Vegetation Distribution and Fractional Cover of 
Surface Types 

 
 In support of two core monitoring indicators, amount of bare ground and vegetation 
composition, the development of remote sensing methods for vegetation characterization aimed 
to map accurate vegetation distribution and fractional cover of trees, shrubs, herbaceous plants 
(known as plant life-form or growth-form types), and bare ground (Table 3). The remote sensing 
methods strategically integrated a range of information that was derived from high-resolution 
multispectral imagery, including remote sensing metrics (known as spectral vegetation indices, 
or SVIs), DSM, and DTM (Figure 3). These spectral transformations and model were carefully 
examined and selected based on a rigorous, exhaustive analysis to optimize the characterization 
of desert vegetation.  

                                                 
1  Producer’s accuracy indicates how many targets in the reference data were correctly detected. User’s accuracy 

indicates how many targets in the map product were actually present in the reference. If producer’s accuracy is 
higher than user’s accuracy, the map product tends to underestimate targets. If user’s accuracy is higher than 
producer’s accuracy, the map product tends to overestimate targets. 
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FIGURE 3  Workflow Overview of Vegetation Distribution and Cover Estimation 
Using the Very High Spatial Resolution Multispectral Image (Output products are 
shown in dark grey.) 

 
 
 A total of 10 SVIs that are widely used for vegetation studies (Table 3) were computed 
using the VHSR image mosaic. Nine small plots with known composition of surface types were 
selected, and their pixel values of vegetation were examined. The minimum threshold value was 
interactively selected for each SVI layer independently, and 10 vegetation maps were generated. 
Accuracy of the vegetation maps was assessed using more than 2,000 vegetation canopies and 
patches in three selected areas. In addition to visual assessment, kappa coefficient, false positive 
rate, and false negative rate were calculated as performance measures. 
 
 The optimal SVI, selected on the basis of the accuracy measures, was combined with the 
original VHSR image mosaic. Iterative self-organizing (ISO) classification (Tou and Gonzalez 
1974) was performed to the combined-layer stack, and a total of 50 classes were identified based 
on the similarity in pixel values across layers. Among the resultant 50 classes, five 
ecologically/environmentally meaningful and spatially cohesive classes (or surface types)—
vegetation, nonphotosynthetic vegetation (NPV), light soil, dark soil, and desert pavement—
were identified based on the comparison with the VHSR image mosaic and field data. Training 
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data were extracted from at least 10 groups of pixels and correlated to the 4 surface types. Using 
the training data, maximum likelihood classification was performed for the entire extent. 
 
 A canopy height layer was generated by subtracting the DTM values from the DSM 
values. Height information was computed using only the 2014 data because of the insufficient 
overlap between frames in the 2012 data. The height layer was combined with the preliminary 
surface type map, and the vegetation class was separated into trees from shrubs. In the resultant 
surface type map, the light soil, dark soil, and desert pavement were merged into a single bare 
ground class according to BLM’s AIM Program criteria (Toevs et al. 2011). The final map 
delineated trees, shrubs, NPV, and bare ground. 
 
 Fractional cover of each surface type was computed for a 15-m  15-m area using the 
surface type map to accommodate to spatial scales of 30 m for our field data and 60 m 
recommended by the BLM AIM Program. Accuracy of fractional cover of surface types was 
examined using 10 rectangular plots. Mean error (ME), mean absolute error (MAE), and root 
mean squared error (RMSE) were calculated for all cover types to assess accuracy in cover 
estimates. 
 
 

3.2.2.2  Estimation of Vegetation Height 
 
 Vegetation height was estimated using two approaches: (1) plant height along the field 
survey transect and (2) the maximum height of individual plant canopies or patches (Figure 4). 
For both approaches, vegetation height was estimated from the image-based point-cloud data 
indicating height information, which were derived from the highly overlapped VHSR image 
frames (Table 1). The data values in the point-cloud data were interpolated to generate a spatially 
continuous layer.  
 
 To examine the effectiveness of the remote sensing approach for estimating plant height 
along transects, the field survey locations having vegetation height measurements were identified 
in the interpolated point-cloud layer. The minimum and maximum height values within a 1.5-m 
radius area were calculated for each point. Applying the small area for extracting minimum and 
maximum values provides elevation on the ground adjacent to a vegetation feature, as well as 
compensates for positional uncertainty in the survey points in the interpolated point-cloud layer. 
The minimum value was subtracted from the maximum value to obtain vegetation height for 
each of the survey locations. The vegetation-height estimates were compared with the recorded 
plant height to examine the potential for remote-sensing-based plant height estimation. Based on 
the data quality information provided by the vender, the survey points having an estimated height 
< 6 cm were excluded from the validation. Out of remaining 49 survey points, 40 points were 
used to develop a linear function, and the function was applied to the whole interpolated point-
cloud layer. ME, MAE, and RMSE were calculated using the 9 points that were not used to 
develop the function to assess the accuracy of the function.  
 
 To estimate plant height for vegetation features, height of individual plant canopies and 
patches was estimated using the interpolated point-cloud layer in conjunction with the vegetation 
layer generated in Section 3.2.2.1. Boundaries of vegetation polygons were expanded outward by  
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FIGURE 4  Workflow Overview of Vegetation Height Estimation 
Using the Very High Spatial Resolution Multispectral Image (Output 
products are shown in dark grey.) 

 
 
50 cm in order to include ground around the canopies and patches. For each expanded polygon, 
the minimum and maximum values of the interpolated point-cloud layer were extracted. The 
minimum and maximum values of each polygon were assumed to correspond to surface 
elevation and elevation at the highest point of each vegetation feature, respectively. Vegetation 
height was obtained by subtracting the minimum value from the maximum value. Because 
validation data were unavailable, only qualitative assessment was performed based on visual 
interpretation of the output.  
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3.2.3  Surface Stability and Soil Properties 
 
 

3.2.3.1  A New Remote Sensing Metric for Assessing Soil and Site Stability, 
the Erosion Resistance Index 

 
 Bare ground, the primary surface type of the study area, consists of a mixture of soil 
(e.g., sand and silt), gravel of varying size and color, and rock fragments. The method for 
measuring soil stability recommended in the AIM protocols was developed for grassland, 
shrubland, and savanna ecosystems (Herrick et al. 2005) and was not effective for most of the 
desert bare ground surveyed during the 2014 field work. This prevented direct comparison 
between soil stability and remote sensing metrics. Therefore, a new remote sensing metric 
(or spectral index) was developed that would indicate surface stability, which equates to the risk 
of erosion of desert landscape land surfaces. 
 
 Spectral reflectance values of the 2012 VHSR image set were extracted from six surface 
types: stream beds mostly covered with loose sandy soil and silt that were deposited by surface 
runoff, unpaved roads dominated by sand that was mechanically disturbed by traffic, desert 
scrublands, bare ground containing noticeable gravels/rock fragments, disturbed desert 
pavement, and intact desert pavement. These surface types were expected to correspond to a 
gradient of surface stabilities ranging from low (stream beds) to high (desert pavement). Two-
dimensional scatter plots were generated using all possible pairs of spectral band-ratios, and the 
band-ratio combination that exhibited the greatest separability between the surface types was 
identified. A new index of surface stability, the erosion resistance index (ERI), was derived by 
applying simple trigonometry to the band-ratio combination in order to identify the upper 
bounding line of the scatter plot, which corresponded to the most stable surface type. The 
perpendicular distance from the upper bounding line was calculated using the geometric equation 
developed by Perry and Lautenschlager (1984):  
 

 							
√

		,										 (1) 

 
where a is the intercept of the upper line, and b is the slope of the upper line. The values ρ1–ρ4 
are reflectance values of the VHSR imagery at given spectral bands. The equation was applied to 
the entire image, and the ERI was computed using both the 2012 and 2014 image sets. To 
evaluate the index, ERI values were extracted from areas of known surface types. At least 
26 locations were sampled for each surface type. The ERI values were plotted by surface type, 
and summary statistics of the ERI values for each surface type were calculated. Box plots were 
generated to visualize overlap and/or separability between surface types. 
 
 Of all scatter plots of possible pairs of spectral band-ratios, the plot of the red/NIR band-
ratio versus the green/red band-ratio showed the best separation between the surface types, that 
is, stream beds and unpaved roads, desert scrublands, bare ground with gravels, disturbed desert 
pavement, and intact desert pavement (Figure 5). The data space consisted of a lower line 
corresponding to the surface types that are most resistant to erosion (e.g., desert pavement) and  
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FIGURE 5  Scatter Plot of a Green/Red Band-Ratio versus a Red/NIR Band-Ratio by 
Surface Type for Correspondence to a Range of Erosion Risks  

 
 
an upper line representing the most erodible surface materials (e.g., stream beds and unpaved 
roads). Applying Equation 1, the index was formulated as:  
 

 										
. .

√ .
				,																					 (2) 

 
where ρgreen, ρred, and ρNIR are reflectance values of the green, red, and NIR spectral bands, 
respectively.  
 
 

3.2.3.2  Soil Properties and Remote Sensing Metrics 
 
 Optical remote sensing is not typically used to investigate soil properties because 
electromagnetic radiation in the spectral range penetrates only 50 μm of surface soil. Thus, there 
is no precedent study for such an application. Compared with soils in other ecosystems, such as 
forests and wetlands, desert soil would be relatively stable or change relatively slowly. Surface 
characteristics (e.g., abundance of vegetation, plant litter, and gravels) that are attainable using 
optical remove sensing may indicate subsurface soil properties. Therefore, exploratory statistical 
analysis was conducted with the premise that if any relationships were found, a hypothesis could 
be constructed and the soil sampling method could be amended as needed. 
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 Two spatial scales, 15 cm and 1.5 m, were used to investigate the potential of VHSR 
remote sensing for studying soil properties. The original VHSR image mosaics from 
November 2012 and January 2014 were spatially aggregated into 1.5 m by averaging pixel 
values over a 1.5-m  1.5-m area in order to compensate for high-frequency noise typical in 
high-resolution imagery. The following properties were computed using the 1.5-m resolution 
image remote sensing metrics: biological soil crust index (BSCI), crust index (or cyanobacteria 
index, CI), MSAVI, ERI, PC1, PC2, spatial heterogeneity of PC1 and PC2 within a 3-m-radius 
area, and vegetation density within a 5-m-radius area. Spectral reflectance values of the blue, 
green, red and NIR bands; the eight remote sensing metric values indicated in Table 3; and 
image-derived vegetation density were extracted from the soil sampling locations during the 
2014 field work.  

 A total of nine soil properties were examined, including percentage moisture, percentage 
total carbon, percentage total organic carbon, percentage total inorganic carbon, percentage total 
nitrogen, percentage sand, percentage silt, percentage clay, and pH. The soils parameters were 
available at two depths, 0 to 5 cm (shallow, 12 sample locations) and 5 to 10 cm (deep, 8 sample 
locations) only from January 2014. These soil parameters were analyzed with the 2012 and 2014 
remote sensing metrics because desert soil conditions do not change rapidly enough to be 
significantly different over a 2-year period. The inadequate sampling size and the lack of soil 
properties measurements in 2012 limited us to performing the task as an exploratory analysis.  
 
 Among the data, an outlier was identified using a matrix of correlation scatter plots. This 
outlier was excluded from further analysis following confirmation that its geographic location 
was inaccurate. Using the remaining data, Pearson and Spearman correlation matrices were 
produced for four stratified datasets independently: shallow soil at the 15-cm scale, shallow soil 
at the 1.5-m scale, deep soil at the 15-cm scale, and deep soil at the 1.5-m scale. For each 
stratified data set, the correlation outputs were grouped into one of the following categories: very 
weak (−0.19 to 0.19), weak (−0.39 to −0.20; 0.20 to 0.39), moderate (−0.59 to −0.40; 0.40 to 
0.59), strong (−0.79 to −0.60; 0.60 to 0.79), or very strong (−1.00 to −0.80; 0.80 to 1.00). For 
remote sensing metrics that showed strong and very strong correlations, the significance of their 
relationship was tested using a simple t-statistic. For those indicating strong or very strong 
correlations, functions to predict the soil properties were developed using the remote sensing 
metrics. For the linear relationships, simple linear regression was used. For the relationships that 
were identified as nonlinear but monotonic, simple linear regression was conducted on the log-
transformed variables. 
 
 

3.2.3.3  Biological Soil Crust and Remote Sensing Metric, the Biological Soil 
Crust Index 

 
 BSCI (Chen et al. 2005) was computed using the January 2014 image mosaic (Table 1). 
Three locations that contain biological soil crust were used for the analysis. The locations 
selected during the 2014 fieldwork contained sparsely distributed cyanobacteria-dominant 
biological soil crust, which was typical of biological soil crust distribution in the study area 
(Nagy et al. 2005). BSCI values were extracted from total of 27 pixels (i.e., one set of nine pixels 
at each of the three locations): one pixel at the center of each location plus eight surrounding 
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pixels. Summary statistics were calculated from each location for each dataset. The BSCI layer 
was classified into five classes that would correspond to likelihood of biological soil crust 
occurrence using the following thresholds: < −10% of the sample BSCI range (BSCI <3.05), 
≥−10% of the sample BSCI range (BSCI = 3.05-3.09), minimum and maximum values of sample 
data (BSCI = 3.09–3.54), ≤+10% of the sample BSCI range (BSCI = 3.54—3.58), and >+10% of 
the sample BSCI range (BSCI >3.58). 
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4  RESULTS AND SYNTHESIS 
 
 
4.1  SURFACE HYDROLOGIC FEATURES 
 
 The algorithm identified a large number of narrow ephemeral stream channels at the 
landscape scale across the study area (Figure 6). The channel classification map indicated the 
accurate identification of McCoy Wash, the largest stream feature, extending northwest to 
southeast of the study area (Figure 1). Numerous narrow tributaries occurred along the hill slope 
on both sides of the wash. The algorithm captured a range of channel widths and forms in both 
the west and east assessment areas. Underclassification (or false negatives) was often observed 
near stream headwaters and areas characterized by braided channel networks; overclassification 
(or false positives) often occurred around wide channels. 
 
 The majority of accuracy measures (i.e., overall, producer’s, and user’s) exceeded 75% 
across the assessment areas (Table 4), which is considered more than satisfactory for a fully 
automated procedure. Accuracy ranged from 48.5% to 91.8%. Producer’s accuracy was higher 
than user’s accuracy in both areas, which indicated false positive detection or overclassification 
in the ephemeral channel map. This overclassification was intentionally created during the raster 
processing as a part of the strategy for increasing the connectivity of ephemeral stream channels 
during the channel centerline extraction.  
 
 A considerable number of channel centerlines were delineated by the algorithm across the 
study area (Figure 6). The algorithm detected 900% more ephemeral streams than were mapped 
in the study area in the NHD. Channel centerlines of McCoy Wash and other major tributaries 
were correctly delineated. Minor or narrow channels and those occurring in areas with even, 
sparse vegetation growth were frequently undetected. Channel features near stream headwaters 
were often missing from the final channel map. Although the algorithm correctly delineated wide 
channels consisting of well-defined braided forms, it exhibited difficulty delineating wide 
channels with single-threaded forms when they contained heterogeneous vegetation growth.  
 
 The difference between channel length delineated by the algorithm and that present in the 
reference data varied by the assessment areas (Table 4). The difference ranged from 8% for the 
east area in the November 2012 data to 27% for the west area in the January 2014 data. While 
the extracted channel areas were generally similar to the reference channel areas, approximately 
45% fewer channels were extracted compared with the reference data. This considerable 
discrepancy in channel length was mostly explained by the differences between the reference 
data and algorithm in how channels were defined. For example, a wide tributary consisting of 
braided channels separated by a small distance may be delineated as multiple channels in the 
reference data, but may be identified as a single broad channel by the algorithm. Surface patterns 
across desert scrublands that were created by unstructured surface low or sheet-flow may be 
defined as channels in the reference data but may not be recognized as channels by the algorithm 
because of the lack of typical characteristics of ephemeral channels. Establishing a definition of 
ephemeral stream channels that are meaningful  
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FIGURE 6  Maps of Ephemeral Stream Channels Derived from the Very High Spatial 
Resolution Image Overlain with the NHD (McCoy Wash, which runs in a northwest-southeast 
direction, is visible running parallel to the northeast boundary of the study area.) 
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January 2014
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TABLE 4  Accuracy of Ephemeral Stream Channel Maps Derived from Remotely Sensed 
Imagery 

 

* Values in parentheses indicate reference data. 

 
 
for ecological and management perspectives (e.g., active versus inactive, a single aggregated 
tributary versus a set of individual braided channels) is needed in order to generate reliable 
reference data and to refine the algorithm. This would help provide valuable detailed 
distributions of ephemeral stream channels for local or landscape-scale hydrological modeling 
and inform resource management decisions.  
 
 The accuracy of the channel width estimated was considerably different between the 
2012 and 2014 datasets. While channel width was estimated with approximately 5% error for the 
2012 data, channel width for the 2014 data was overestimated by approximately 130% of the 
reference data (Table 4). This overestimation is more significant for the west assessment area 
than the east area. This considerable overclassification (or false positive) indicated as very low 
user’s accuracy for the January 2014 classification has resulted in significant overestimation of 

 
Classification Accuracy    

 
 

November 2012 
 

January 2014 

 
 

Pooled West East 
 

Pooled West East 
        
Overall accuracy (%) 77.0 91.1 79.8  79.9 72.2 86.8 
Producer’s accuracy (%) 85.8 91.8 88.2  86.8 99.6 84.8 
User’s accuracy (%) 52.2 48.5 51.4  51.6 18.0 79.1 
        
Centerline Extraction Accuracy 

 
 

November 2012* 
 

January 2014* 

Length Delineated 
 

Pooled West East 
 

Pooled West East 
        
Total channel length (km) 146.0 

(154.0) 
50.9 

(66.3) 
95.1 

(87.7) 
 79.5 

(96.2) 
51.6 

(70.8) 
27.9 

(25.4) 
Accurate channel area (km2) 2.0 

(2.7) 
0.8 

(1.3) 
1.2 

(1.5) 
 1.0 

(1.0) 
0.4 

(0.4) 
0.6 

(0.5) 
Accurate channel length (km) 92.3 

(153.7) 
37.7 

(66.0) 
54.6 

(87.7) 
 44.0 

(96.2) 
28.8 

(70.8) 
15.2 

(25.4) 
Channel density (km/km2) 8.5 

(13.3) 
6.4 

(11.2) 
9.7 

(15.3) 
 10.4 

(21.5) 
10.5 

(25.8) 
10.3 

(17.28) 
Average channel width (m) 33.7 

(32.0) 
19.7 

(18.1) 
47.6 

(45.9) 
 31.6 

(19.1) 
16.9 
(4.3) 

46.3 
(33.9) 

Accurate delineation ≥70% (%) 56.3 53.0 59.5  38.1 38.6 37.5 
Accurate delineation ≥50% (%) 66.5 65.5 67.5  60.9 84.2 37.5 
Recognized (%) 89.0 86.0 92.0  87.4 89.5 87.5 
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channel width for the assessment area. The recalibration of the algorithm based on the 2014 data, 
which had higher quality than the 2012 data, would mitigate the discrepancy.  
 
 Within the west and east assessment areas, ≥70% and ≥50% of channel lengths were 
delineated for more than a half of the reference channel segments in most cases examined with 
some exception (e.g., delineation ≥70% for the January 2014 data) (Table 4). For the 2012 data, 
the two assessment areas showed nearly identical accuracy in channel centerline delineation 
while centerline delineation accuracy for the west area was considerably higher than for the east 
area in the 2014 data. The discrepancy in accuracy of the east area may be due to edge-effects 
that stemmed from the insufficient image coverage in the 2014 data. The assessment area was 
defined based on the 2012 image extent. The 2014 image did not fully include the east 
assessment area because of the adjustments/optimization of image collection parameter prior to 
the 2014 image collection. Although the accuracy calculation for the 2014 data was only limited 
to its image extent, the influence of potential edge-effects was inevitable.  
 
 In contrast to the modest accuracy of the criteria-based assessment, which is defined by 
percentage of length of the delineated channel, the analyst-based method indicated that 
approximately 90% of the reference segments were correctly extracted based on the combination 
of the delineated channel lengths in each segment and the distribution or delineated line 
fragments within a validation segment. For example, when 40% of the channel length for a 
reference segment was delineated by the algorithm, the segment detection was not considered a 
success based on the 70% or 50% criterion. However, it may have been considered a success in 
the analyst-based assessment when the analyst recognized the segment from the delineated 
centerlines, which may consist of small channel fragments linearly distributed across the 
validation segment. This high recognition rate result suggests that the channel segments 
extracted using the algorithm were spatially cohesive and had strong association with ephemeral 
stream channels present in the study area. This result indicates that inclusion of a pattern 
recognition routine to the algorithm could further improve channel extraction accuracy, as well 
as effectiveness of the current algorithm. 
 
 
4.2  CHARACTERIZATION OF VEGETATION AND VEGETATED SURFACE  
 
 
4.2.1  Vegetation Distribution and Fractional Cover of Surface Types 
 
 Vegetation maps generated from SVIs accurately characterized vegetation distributions in 
desert lands (Figure 7). There were two distinct patterns exhibited in a riparian habitat type. The 
normalized difference vegetation index (NDVI), green normalized vegetation index (GNDVI), 
and visible atmospherically resistant index (VARI), which apply a normalized difference ratio 
using varying band combinations, showed nearly identical detection patterns and tended to 
slightly overestimate vegetation. The rest of the SVIs tended to underestimate vegetation cover, 
particularly for shaded parts of canopies. In areas having vegetation over desert pavement, 
GNDVI, VARI, and the ratio vegetation index (RVI) accurately detected vegetation. Pronounced 
overestimation was observed in the maps derived from NDVI and enhanced vegetation index 
(EVI). GNDVI and VARI appeared to perform best among the SVIs tested. 
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FIGURE 7  Close-Up Views of Vegetation Distribution Maps Derived from the Very High 
Spatial Resolution Image  

 
 
 Kappa values ranged from 0.69 to 0.88 and from 0.36 to 0.87 for the November 2012 and 
January 2014 image mosaics, respectively (Table 5). Most SVIs performed considerably better 
than random assignment, as kappa values were much greater than 0.5 (exceptions were NDVI, 
RVI, and EVI). Between the two image sets, detection accuracy was higher in the November 
2012 products (average kappa = 0.825) than that in the January 2014 products (average kappa = 
0.648), which may be influenced by the phenology of landscape due to the difference in the 
image collection season. Regardless of the image set, SVIs often overestimated vegetation, as 
indicated by the higher false positive rate than false negative rate. While a number of SVIs 

EVI                                       EVI2                                      SAVI                        MSAVI                                  OSAVI

VHSR image                              NDVI                                   GNDVI                                   VARI                                      RVI

EVI                                       EVI2                                      SAVI                        MSAVI                                    OSAVI    

VHSR image                             NDVI                                    GNDVI                                     VARI       RVI                

A transitional zone of a dry riparian habitat and adjacent land with sparsely distributed creosotebush.

Area containing ephemeral stream channels running through desert pavement.

Accurate detection                                      False positive                                    False negative
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TABLE 5  Accuracy of Vegetation Distribution Map Derived from Remotely Sensed Imagery 

 
Metric NDVI GNDVI VARI RVI EVI EVI2 SAVI MSAVI OSAVI 

          
November 2012          
Threshold value 0.19 0.27 0.24 1.61 0.15 0.16 0.28 0.15 0.16 
Kappa 0.85 0.69 0.87 0.78 0.78 0.88 0.84 0.87 0.87 
False positive 24.6% 46.5% 16.1% 12.1% 34.2% 10.8% 16.5% 16.8% 17.7% 
False negative 3.5% 1.0% 14.1% 14.3% 4.2% 13.5% 15.4% 9.0% 6.6% 
          
January 2014          
Threshold value 0.13 0.34 0.22 1.45 0.11 0.11 0.22 0.12 0.13 
Kappa 0.53 0.87 0.85 0.36 0.36 0.71 0.63 0.71 0.80 
False positive 63.1% 14.1% 14.0% 9.5% 70.8% 34.5% 41.1% 28.8% 16.1% 
False negative 3.3% 11.9% 10.3% 19.0% 51.6% 22.0% 32.8% 29.3% 22.9% 
 
Abbreviations: NDVI = normalized difference vegetation index, GNDVI = green NDVI, RVI = ratio vegetation 
index, GRRVI = green-red ratio vegetation index, EVI = enhanced vegetation index, SAVI = soil-adjusted 
vegetation index, MSAVI = modified soil-adjusted vegetation index, OSAVI = optimized soil adjusted 
vegetation index. 

 
 
clearly performed better in the 2012 image than in the 2014 image, VARI performed well for 
both image sets according to all three measures (Kappa = 0.86; false positive = 15.0%; and false 
negative = 12.2%). VARI is superior to GNDVI because its accuracy was more consistent 
between the two data collection dates than that of GNDVI (e.g., Kappa = 0.87 and 0.85 for VARI 
and kappa = 0.68 and 0.87 for GNDVI). In addition, threshold values of VARI from the two 
datasets differed by only 0.02; this indicates that the index is stable for detecting vegetation in 
dry lands, as well as robust in various environmental conditions in desert regions. On the basis of 
both these qualitative and quantitative assessments, VARI would be the optimal vegetation index 
for mapping vegetation distribution in our study area, and possibly other desert regions. 
 
 Fractional cover of the four surface types is shown in Figure 8. Overall, bare ground was 
the dominant cover type in the study area, and the four surface types exhibited different 
abundance and spatial distributions across the landscape. Relatively high vegetation cover 
formed linear features in the west-east direction, which appear to follow along ephemeral stream 
channels in the study area. Tree cover was greater along the upstream riparian habitats located in 
the southwest (or lower left quadrant. While shrub cover was evenly distributed over the 
landscape with a relatively systematic pattern, a greater cover of NPV was present in areas from 
the north and northwest to west (or top to left half of the area). 
 
 The remote sensing method estimated fractional cover accurately, with error less than 9% 
across nearly all plots, except for Plot 7, which overestimated NPV and underestimated bare 
ground by 22.2% and 28.9%, respectively. Overall error was considerably reduced by excluding 
Plot 7 from the analysis. The ME indicated a shift in overall trend in error for NPV estimation 
from positive (overestimation) to negative (underestimation). MAE and RMSE were 
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FIGURE 8  Close-Up Views of Fractional Cover Maps of Surface Types Derived from the 
Very High Spatial Resolution Image 

 
 
approximately 2% lower for NPV and bare ground, and RMSE of bare ground noticeably 
dropped from 20.8% to 6.0% when excluding Plot 7 from calculation. 
 
 Plot 7 was located in a large, less defined wash that exhibited mixed ground color 
(Table 6). Some portion of bare ground resembled dry plant litter and/or senesced herbaceous 
plants at the time of image collection. This spectral similarity likely caused confusion in 
classification and resulted in the misclassification of bare ground as NPV. Differentiating NPV 
from background soil is often challenging when mapping land cover in arid and semiarid 
environments (Hamada et al. 2011, 2013; Okin et al. 2001). The confusion between senesced 
herbaceous plants and bare ground may be alleviated by collecting imagery shortly after a rain 
event when herbaceous plants are more photosynthetically active. 
 
 The SVIs appeared to have slightly underestimated trees and shrub cover. 
Underestimation of trees often resulted from less illuminated tree canopies being classified as 
shrubs. Underestimation of shrubs was caused by bare branches or portions of canopies having 

VHSR image

Surface type map NPV cover Bare ground cover

Tree cover Shrub cover

Tree               Shrub              NPV
Bare ground

0  100%
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TABLE 6  Accuracy of Surface Type Fractional Cover Maps Derived from Remotely Sensed 
Imagery 

 
Reference Remote Sensing Estimate (RSE) RSE – Reference 

             
 

Plot 
Tree 
(%) 

Shrub 
(%) 

NPV 
(%) 

Bare 
(%) 

Tree 
(%) 

Shrub 
(%) 

NPV 
(%) 

Bare 
(%) 

Tree 
(%) 

Shrub 
(%) 

NPV 
(%) 

Bare 
(%) 

               
1 3.1 12.5 12.5 71.9 2.5 7.6 15.4 72.1 -0.6 -4.9 2.9 0.2 
2 4.7 12.5 20.3 62.5 5.0 7.9 16.9 67.9 0.3 -4.6 -3.4 5.4 
3 7.8 3.1 9.4 79.7 3.3 5.0 4.9 85.6 -4.5 1.9 -4.5 5.9 
4 0.0 10.9 4.7 84.4 0.1 6.6 3.3 88.2 0.1 -4.3 -1.4 3.8 
5 0.0 10.9 9.4 79.7 0.0 8.0 2.9 86.3 0.0 -2.9 -6.5 6.6 
6 0.0 14.1 6.3 79.7 0.0 9.5 3.2 86.2 0.0 -4.6 -3.1 6.5 
7 0.0 3.1 10.9 85.9 0.0 7.8 33.1 57.0 0.0 4.7 22.2 -28.9 
8 0.0 10.9 9.4 79.7 1.6 4.2 5.0 88.3 1.6 -6.7 -4.4 8.6 
9 0.0 3.1 14.1 82.8 0.0 2.0 18.5 79.2 0.0 -1.1 4.4 -3.6 

10 0.0 10.9 3.1 85.9 0.1 3.0 1.9 94.2 0.1 -7.9 -1.2 8.3 
               

 
 

All Plots 
 

Excluding Plot 7     
             

 
Tree 
(%) 

Shrub 
(%) 

NPV 
(%) 

Bare 
(%) 

Tree 
(%) 

Shrub 
(%) 

NPV 
(%) 

Bare 
(%)     

               
ME -0.3 -3.1 0.5 1.3 -0.3 -3.9 -1.9 4.6     
MAE 0.7 4.4 5.4 7.8 0.8 4.3 3.5 5.4     
RMSE 1.5 4.8 7.9 10.8 1.6 4.8 3.9 6.0     
 
Abbreviations: ME = mean error, MAE = mean absolute error, RMSE = root mean squared error. 

 
 
little green foliage being identified as NPV. However, while this is technically accurate, 
classification as shrub would be most informative for management purposes because bare 
branches are part of live vegetation. 
 
 The estimated fractional cover of surface types has positive linear correlation with the 
reference cover (Figure 9). The correlation ranged from 0.11 to 0.70 when analyzing all plots and 
from 0.46 to 0.77 when excluding Plot 7 from analysis. Gentle slopes of trees (0.53–0.54) and 
shrubs (0.26–0.43) suggested underestimation of green vegetation cover, as recognized in the 
accuracy statics (Table 6). When excluding Plot 7 from calculation, the corrections for NPV and 
bare ground considerably improved, from 0.34 to 0.73 for NPV and from 0.11 to 0.77 for bare 
ground. Improving the differentiation between NPV and bare ground would significantly 
enhance the indicative power of remote sensing for estimating fractional cover of land cover 
types.  
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FIGURE 9  Correlation between Reference Cover and Cover Estimated Using Remote 
Sensing, Calculated Using All Plots (top) and Excluding Plot 7 (bottom) 

 
 
4.2.2  Vegetation Height Estimate 
 
 Vegetation height estimated using the image-based point-cloud data was moderately 
correlated with the vegetation height recorded in the field (R 2 = 0.24) (Figure 10). Based on data 
from the 40 survey points, the following linear function was developed and applied to all survey 
locations: 
 
 		 	 	 PointCloudValue ∗ 1519 13.047		, (3) 
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FIGURE 10  Correlation between Recorded Vegetation Height and Plant Height Estimated 
Using Remote Sensing (left) and Modeled Vegetation Height with Accuracy Measures 
(right) 

 
 
The correlation between the modeled vegetation height and the recorded vegetation height was 
weak to moderate (R2 = 0.20) (Figure 10 right). According to the accuracy measures, the model 
had a negative bias in height estimate (ME = −15.46). The average error was approximately 
30 cm, and validation samples did not appear to have substantial outliers based on the relatively 
comparable magnitude of error between MAE and RMSE (MAE = 27.76, RMSE = 31.17).  
 
 The vegetation height map of individual vegetation features is shown in Figure 11. 
Clusters of trees and tall shrubs that form large vegetation patches along ephemeral channels 
indicated higher height values than small shrubs (i.e., scrubs) that were shown as small 
individuals scattered across the area. While the distribution of vegetation height across the area 
appears spatially cohesive and reasonable, quantitative evaluation of height estimates is 
warranted in order to substantiate the effectiveness of the approach. 
 
 The image-based point-cloud data should ideally indicate the actual height of ground or 
surface features. That requires highly accurate elevation and height measurement of features 
using a survey-grade GPS instrument from a large number of survey locations. We attempted to 
collect survey-grade GPS data during the 2014 field work, but because of unforeseen instrument 
malfunction during data collection and/or data transfer, we could not retrieve the data despite all 
possible attempts. Collecting high-density, highly accurate and precise data from ground and 
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FIGURE 11  Close-Up Views of Very High Spatial Resolution Image (left) 
Feature-Based Vegetation Height Map Derived from Image-Based Point-Cloud 
Data (right) 

 
 
surface features that are invariant over time, in conjunction with identifying a sufficient number 
of surface features that can be used to generate tie points for height calculation for the aerial 
triangulation approach, would significantly increase the utility of the image-based point-cloud 
data for extracting vegetation height. 
 
 
4.3  SOIL AND SURFACE PROPERTIES 
 
 
4.3.1  A New Remote Sensing Metric for Assessing Surface Stability, the Erosion 

Resistance Index 
 
 The ERI maps that were derived from Equation 2 showed spatially cohesive distributions 
of relatively high and low ERI values across the study area. Figure 12 shows close-up views of 
output from the 2012 and 2014 images that represent a range of surface types. In Figure 12 
(Desert Pavement), intact portions of desert pavement had high index values (warm colors: red, 
orange, and yellow), while mechanically disturbed surface materials from recreational activities 
appeared as linear features with lower index values than the intact areas (cool colors: blue and 
magenta). The range of colors appeared to correspond to the severity of degradation. In 
Figure 12 (Desert Scrubland), stream beds in a large ephemeral wash, which often contain 
scattered scrubs in the study area, showed extremely low index values (cool colors). As 
expected, scrub canopies in Figure 12 (Desert Scrubland), denoted by warm colors, were 
indicated to have high resistance to erosion. 
 

Vegetation Height    Low                                        High
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FIGURE 12  Close-Up View of Surface Stability Index Maps Derived from the Very High Spatial 
Resolution Image 
 
 
 Box plots of ERI values from the 2012 and 2014 layers showed a trend of increasing 
index values from more erodible sandy soil-dominant surface types to more stable rock 
fragment-dominant surface types, suggesting the index accurately characterized soil stability. 
However, some differences were apparent between the 2012 and 2014 results. In the 2012 ERI 
plot, the six surface types can be classified into four groups: surface dominated by loose sandy 
soil, surface with noticeable nonsoil materials, surface containing substantial rock fragments, and 
surface completely covered by rock fragments. The first group is represented by stream beds and 
unpaved roads. The second group contains mixtures of soil, vegetation, and gravels. The third 
and fourth groups correspond to disturbed and undisturbed desert pavement, respectively. 
Pairwise t-tests indicated no significant differences in the index values of stream beds and 
unpaved roads in 2012 (Table 7; p = 0.642), while the ERI values for the rest of the surface types 
were significantly different from each other (p<0.05). In contrast, in 2014, the difference in ERI 
values between stream beds and unpaved roads was statistically significant (p = 0.019; Table 7), 
despite some overlap in index values. In addition, unpaved roads were indistinguishable from 
scrubland and bare ground containing substantial amounts of gravels. The two desert pavement 
surface types showed good separation from each other and the other three surface types in both 
2012 and 2014 (p <0.05). 
 
  

November 2012                                                              

January 2014                                                            

Desert Pavement                                     Desert scrubland                                  

Erosion Resistance Index       Low                                                                High

Desert Pavement                                     Desert scrubland                              
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TABLE 7  Pairwise t-Test Results for the Comparison of the Erosion Resistance 
Index Values for Five Land Surface Cover Types 

Surface Type Stream Bed 

 
Unpaved 

Roads Scrubland 
BG with 
Gravels 

DP 
(disturbed) 

      
November 2012      

Unpaved roads 0.642 – – – – 
Scrubland 4.60E-09 5.60E-09 – –   – 
BG with gravels 8.60E-12 1.10E-13 0.028 – – 
DP (disturbed) 2.00E-16 2.00E-16 2.00E-08 2.30E-06 – 
DP (intact) 2.00E-16 2.00E-16 1.30E-12 3.60E-13 3.90E-08 

      
January 2014      

Unpaved roads 0.0019 – – – – 
Scrubland 0.0024 0.4706 – – – 
BG with gravels 4.50E-06 0.1473 0.0012 – – 
DP (disturbed) 1.30E-10 1.30E-07 1.60E-11 6.60E-08 – 
DP (intact) 1.20E-15 9.00E-14 2.00E-16 4.80E-16 1.60E-12 

 
Abbreviations: BG = bare ground, DP = desert pavement. 

 
 
4.3.2  Soil Properties and Remote Sensing Metrics 
 
 Most combinations of soil properties and remote sensing metrics were significantly 
correlated, suggesting the remote sensing metrics were powerful indicators of soil properties 
(Table 8). The equations for each relationship in Table 8 are presented in Table 9. The equations 
relating the percentage of total carbon and percentage of inorganic carbon to vegetation density 
were nearly the same for both the 15-cm- and 1.5-m-resolution remote sensing metrics. The 
similarity was likely due to the fact that total inorganic carbon accounted for nearly two-thirds of 
all the carbon present in the soil samples. All of the relationships, except one, that are identified 
in Table 8 come from the lower (5–10 cm) soil sample dataset. One hypothesis to account for 
this fact is that the first 5 cm of soil is highly variable due to aeolian or other sedimentation 
processes. 
 
 Using the equations in Table 9, one can potentially map soil properties for the whole 
study area, providing information about the soil over a much larger area than the physical 
samples alone. However, a significant number of additional soil samples are needed to achieve 
greater certainty regarding the accuracy of these equations. Despite the uncertainty, these results 
are exciting and provide a potential new way in which to use remote sensing data. If the 
additional sampling and analysis indicate that the equations are robust, this analysis could be 
extended to other desert environments and locations to see if these correlations and relational 
functions are location and environment specific. 
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TABLE 8  Correlation Analysis Results for the Relationships between Remote Sensing Metrics and 
Soil Properties 

Depth and 
Resolution Correlation Relationshipa 

 
Pearson 

Corr. 
Coeff. 

Spearman 
Corr. 
Coeff. 

Linear or 
Monotonic P-value 

      
Shallow, 15 cm pH vs. pc1_tex 0.641 0.684 Linear 0.000 
      
Deep, 15 cm TotalCarb_Pcnt vs. pc1_tex -0.681 -0.675 Linear 0.003 
 TotalCarb_Pcnt vs. veg_dense -0.736 -0.953b Monotonic 0.000 
 TotalOrganCarb_Pcnt vs. pc1_tex -0.599 -0.675 Monotonic 0.004 
 TotalInorganicCarb_Pcnt vs. pc1_tex -0.600 -0.503 Linear 0.014 
 TotalInorganicCarb_Pcnt vs. 

veg_dense 
-0.712 -0.911 Monotonic 0.000 

 TotalNitrog_Pcnt vs. pc1_tex -0.632 -0.710 Linear 0.009 
 Sand_Pcnt vs. veg_dense 0.688 0.543 Linear 0.003 
 Clay_Pcnt vs. veg_dense -0.516 -0.644 Monotonic 0.012 
      
Deep, 1.5 m TotalCarb_Pcnt vs. MSAVI -0.602 -0.644 Linear 0.013 
 TotalCarb_Pcnt vs. pc1_tex -0.723 -0.770 Linear 0.002 
 TotalCarb_Pcnt vs. SSI -0.620 -0.644 Linear 0.010 
 TotalCarb_Pcnt vs. veg_dense -0.690 -0.810 Monotonic 0.000 
 TotalInorganicCarb_Pcnt vs. MSAVI -0.622 -0.655 Linear 0.010 
 TotalInorganicCarb_Pcnt vs. 

veg_dense 
-0.735 -0.894 Monotonic 0.000 

 TotalNitrog_Pcnt vs. pc1_tex -0.717 -0.825 Monotonic 0.000 
 TotalNitrog_Pcnt vs. ρgreen 0.451 0.607 Monotonic 0.013 
 TotalNitrog_Pcnt vs. ρred 0.385 0.600 Monotonic 0.014 
 
a Abbreviations: pc1 = first principal component, TotalCarb_Pcnt = % total carbon, veg_dense = vegetation 

density, TotalOrganCab_Pcnt = % total organic carbon, TotalInorganicCarb_Pcnt = % total inorganic carbon, 
TotalNitrog_Pcnt = % total nitrogen, Sand_Pcnt = % sand, Clay_Pcnt = % clay, MSAVI = modified soil-
adjusted vegetation index, ρgreen = spectral reflectance value of the green band, ρred = spectral reflectance value 
of the red band. 

b Statistically significant correlations are represented by coefficients in bold.  
 
 
4.3.3  Biological Soil Crust and Remote Sensing Metrics 
 
 According to the sample data, the area containing biological soil crust was confined to a 
small range of the BSCI value (BSCI = 3.09–3.54) (Figure 13). Areas having low BSCI values 
were often channel beds or areas that were covered with loose sandy soils. Areas having high 
BSCI values corresponded to vegetation, dark soils, and desert pavement. Extremely large BSCI 
values (BSCI>5) corresponded to shadows caused by the topographic relief. 
 
 Biological soil crusts in the study area were predominantly Cyanobacteria-dominated. 
Field validation and further examination are warranted for better understanding of the 
relationship between the occurrence of biological soil crusts and BSCI because of (1) insufficient 



 

41 

TABLE 9  Equations Describing the Relationship of Remote Sensing Metrics to Soil 
Properties 

 
Depth and 
Resolution Relationship Function 

Significance 
Levela 

   
Shallow, 15 cm 8.37 3.95 1_  * 
   
Deep, 15 cm _ 0.684 2.337 1_ 100 * 
 _ 0.494 _ . 100 ** 
 _ 0.102 _ . 100 *** 
 _

0.532 2.041 1_ 100
** 

 _
0.361 _ . 100

** 

 _ 0.017 0.062 1_ 100 * 
 _ 0.794 0.135 _ 100 * 
 _ 0.080 0.068 _ 100 ** 
   
Deep, 1.5 m _ 0.688 1.456 100 ** 
 _ 0.718 2.800 1_ 100 * 
 _ 0.648 1.334 100 * 
 _ 0.502 _ . 100 ** 
 _

0.514 1.195 100 
* 

 _
0.360 _ . 100 

** 

 _ 0.004 1_ . 100 * 
 _ 0.037 . 100 *** 
 _ 0.028 . 100 n.s. 
 
a * = Coefficients and exponents are significant at α = 0.01; ** = coefficients and exponents are 

significant at α = 0.05; *** = coefficients and exponents are significant at α = 0.1; 
n.s. = coefficients and exponents not significant at α = 0.1. 

 
 
field survey data, (2) potential incompatibility in spatial scale between BSCI and input images, 
(3) type of biological soil crusts (moss and lichen versus cyanobacteria), (4) extremely sparse 
and discontinuous distribution of biological soil crusts in the study area, and (5) incompatibility 
in band positioning between Landsat and the VHSR images.  
 
 
4.4  EFFECTIVE REMOTE SENSING METRICS FOR EXTRACTING AND 

CHARACTERIZING DESERT LANDSCAPE FEATURES AND PROPERTIES  
 
 Several remote sensing metrics were identified to be effective for extracting and 
characterizing landscape features and properties that were important for long-term environmental 
monitoring in desert regions (Table 10). Spectral reflectance values of the green, red, and NIR 
spectral regions were found to be essential for obtaining information about desert landscapes. Of 
all the SVIs tested, VARI was the most useful for detecting desert vegetation with small canopy 
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FIGURE 13  Close-Up Views of Biological Soil Crust Index Maps Derived from 
the Very High Spatial Resolution Image 

 
 

TABLE 10  Monitoring Indicators Tested and Remote Sensing Metrics Identified in 
This Study 

BLM Core Indicators Tested in 
This Study 

 
Supplemental Indicators 

Tested in This Study Remote Sensing Metrics 
 
Vegetation 
• Amount of bare ground cover 
 

• Photosynthesis Visible atmospherically resistant 
index (VARI) 

• Vegetation composition 
 

 
 
Spectral reflectance values 
Digital surface model (DSM) 
Digital terrain model (DTM) 

• Vegetation height 
 

 
Soil (or surface) 
• Soil aggregate stability 
 

• Particle size distribution 
• Soil moisture 
• Soil organic carbon 

Erosion resistance index (ERI) 
First principal components (PC1) 
Spectral reflectance values 

VHRS Image

Biological Soil Crust Index (BSCI)

< ‐10%  (<3.05)             ≥‐10%  (3.05‐3.09)               Within Sample BSCI Range  (3.09‐3.54)
≤+10% (3.54‐3.58)              > +10% (>3.58)
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size with sparse foliage cover. Its robustness to environmental variability makes VARI a very 
desirable metric for long-term monitoring using time-series remotely sensed datasets. Relative 
height information obtained from the image-based DSM and DTM provided useful information 
for differentiating trees (mostly consisting of microphyll tree species) and shrubs (creosotebush 
and white bursage), each of which have different functions in ecosystems. Precise spatial fidelity 
between spectral and height information achieved by deriving information from a common 
dataset would be extremely beneficial for fine-scale landscape characterization, which is 
problematic when using LiDAR data. Improving the accuracy of DTM will further increase the 
accuracy of canopy height measurement. 
 
 Overall brightness was the primary characteristic used to understand the distribution and 
categories of surface in desert landscape. The output from the principal component analysis is 
dependent on the spectral variation of the input data, which may affect the repeatability of the 
algorithm because environmental conditions (e.g., sun angle and cloud cover) influence incident 
and reflected energy level. However, the principal component analysis is considered useful 
because spectral characteristics within the study area are expected to be relatively stable or often 
remain unchanged.  
 
 Directly linking remote sensing metrics to monitoring indicators was quite challenging 
because of the lack of typical soil aggregate needed for calibration and validation and the limited 
exposed soil in the study area. A new remote sensing metric, ERI, was developed to quantify the 
resistance of soil and non-soil surface to erosion. Although the robustness of the index is 
warranted, ERI indicated its ability to examine bare ground in dry land comprehensively.  
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5  CONCLUSIONS AND FUTURE WORK 
 
 
 Argonne developed scientifically valid, cost-effective remote sensing methodologies for 
characterizing landscape features and properties, and identified remote sensing metrics to support 
BLM’s development of financially sustainable long-term environmental monitoring strategies for 
desert regions where multiple utility-scale solar developments are anticipated. The effectiveness 
of remote sensing technologies, particularly VHSR imagery, was examined for three land 
resource categories: surface hydrologic features, vegetation, and soil (or surface). For vegetation 
and soil, the study directly or indirectly examined eight monitoring indicators—amount of bare 
ground, vegetation composition, vegetation height, photosynthesis, soil stability, soil moisture, 
soil organic carbon, and particle distribution. Our results indicate that the monitoring method 
accurately characterized the fractional cover of tree, shrub, NPV, bare ground, and soil stability, 
all of which are core indicators used for the long-term monitoring plan for BLM’s Riverside East 
SEZ.  
 
 Argonne developed an algorithm capable of extracting a range of channel types to 
generate detailed distributions of ephemeral stream networks in greater detail than the commonly 
utilized USGS NHD. The algorithm detected 900% more ephemeral streams than were mapped 
in the study area in the NHD. While well-defined channels were detected with high accuracy, 
channels having a weak association with dense vegetation growth had varying detection success. 
In conjunction with spatial filtering operation, PC1 and an SVI (MSAVI was used in the 
prototype development) were determined as useful remote sensing metrics during the algorithm 
development. Despite the modest accuracy of the quantitative assessment, the high recognition 
rate from the qualitative assessment suggests spatial cohesiveness of extracted ephemeral 
channel segments and their strong association with ephemeral channels present in the study area. 
This result indicates that inclusion of a pattern recognition routine to the algorithm could further 
improve channel extraction accuracy, as well as effectiveness of the current algorithm.  
 
 The ephemeral channel extraction algorithm also generates intermediate products 
(e.g., vegetation greenness and vegetation density) that could be useful for understanding other 
resource types. While the detailed mapping of ephemeral stream networks is a necessary first 
step, the value of these data to land managers would be enhanced by identifying remote sensing 
metrics that indicated whether the channels were hydrologically active or inactive. 
 
 A combination of spectral reflectance values, VARI, and height information derived from 
the VHSR multispectral imagery was capable of accurately differentiating two vegetation 
types—trees, which primarily consisted of microphyll species, and shrubs mostly creosotebush 
and white bursage—and two bare ground types—mixed surface and desert pavement—in desert 
landscapes. NPV and bright or light-colored soil that consisted of silt and sand were a source of 
confusion due to their spectral similarity and intricate combinations across the landscape. One 
possible solution to this problem would be to collect images shortly after a rain event so that 
herbaceous plants are green and separable from soil. However, distinguishing dry plant litter 
from soil would likely remain a challenge.  
 



 

46 

 Height information obtained from the image-based DTM and DSM was particularly 
effective for differentiating between trees and shrubs, which have similar spectral responses in 
dry lands. Although two soil types and desert pavement were merged into a single bare ground 
class in this study, these surface types can be treated independently. In particular, mapping desert 
pavement would be useful for assessing surface disturbance and degradation from recreational 
activities or natural causes. During the analysis, VARI that was not necessarily formulated to 
account for impacts from bright soil background yielded the highest accuracy among 10 SVIs 
examined. VARI also showed potential robustness to environmental variability in desert regions 
because the difference of threshold values between two datasets was only 1% of its possible 
range (from −1 to 1). The SVI used in the ephemeral channel extraction algorithm, MSAVI, will 
be replaced with VARI in future analysis in order to improve the accuracy of extraction.  
 
 The function that was developed from the image-based point-cloud data showed weak to 
moderate correlation with the recorded vegetation height in the field. Error in vegetation height 
estimate was approximately 30 cm and generally underestimated. The aerial triangulation 
technique should ideally yield the actual height of ground or surface features to be most useful. 
To accomplish the goal, collecting high-density, highly accurate and precise data from ground 
and surface features that are invariant over time, in conjunction with a sufficient number of 
identifiable surface features, would significantly increase the utility of the image-based point-
cloud data for estimating vegetation height.  
 
 Various exploratory analyses were performed to examine the effectiveness of remote 
sensing for the monitoring metrics of potential use in the Riverside East LTMP—the 
development of a new remote sensing metric for surface stability, the development of functions 
for soil properties, and the examination of BSCI. In addition, a remote sensing metric, the ERI, 
was developed by analyzing ratios of spectral reflectance values extracted from a range of 
surface types having varying surface stability. Index values were generally greater for the surface 
types that were expected to be more stable (e.g., desert pavement) and lower for those surface 
types that are likely unstable (e.g., stream beds and unpaved roads). Confusion between surface 
types observed in output from both 2012 and 2014 data could largely be explained by the 
arbitrary nature of surface type definition. Identifying a parameter for surface stability is needed 
to directly link ERI to erosion risks and evaluate true predictive power of the index. Although the 
ERI needs further refinement, it shows promise as a tool for mapping surface stability and 
erosion risks. By mapping susceptibility to surface stability change, the ERI can be used to 
determine solar development avoidance areas and to identify monitoring priority areas based on 
their high risk of erosion. In addition, the ERI can be used to monitor future solar energy related 
surface change and disturbance. For example, a significant change in the index value could 
indicate the shift of land cover from one state to another (e.g., from desert pavement to exposed 
soil), which may be linked to increased erosion from solar construction activities. 
 
 The BSCI indicated that the area containing sparsely distributed biological soil crust was 
found within a small range of the BSCI value (BSCI = 3.09–3.54). Further field validation and 
examination are warranted to draw conclusive outcomes for the relationship between presence of 
biological soil crusts and BSCI for several reasons, including (1) insufficient field survey data, 
(2) potential incompatibility in spatial scale between BSCI and input images, (3) type of 
biological soil crusts (moss and lichen versus cyanobacteria), (4) extremely sparse and 
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discontinuous distribution of biological soil crusts in the study area, and (5) incompatibility in 
band positioning between Landsat and the VHSR images.  
 
 This study revealed that a few common remote sensing metrics are useful for more than 
one resource type, and that output from a method for one resource type can serve as input for 
another resource type. For example, the output layer that indicated that a photosynthetic rate was, 
in fact, the input for mapping vegetation distribution, and the vegetation map was then used as 
input for mapping vegetation composition (or fractional cover of surface types) and identifying 
distribution and abundance of riparian corridors for extracting ephemeral stream channels. This 
linkage suggests that it is possible to integrate independent image processing algorithms and 
methods into a single tractable workflow to optimize the efficiency of information extraction. If 
so, a single VHSR image set could serve as a common data source to produce numerous types of 
information cost effectively. In addition to the monitoring indicators examined in this study, the 
output from the remote sensing methodologies can be used to study other resource types. For 
example, remote sensing metrics that characterize vegetation density provide a basis for 
understanding the distribution and conditions of critical wildlife habitat. Thus, the remote 
sensing methodologies developed in this study can potentially be applied to monitoring a broad 
range of plant and animal resources. 
 
 The remote sensing algorithms developed in this study were applicable to multiple 
resources that will be monitored under the Riverside East LTMP. Although the resource 
characterization algorithms described in this report show great promise for long-term monitoring 
applications, additional work is needed before integrating these remote sensing methodologies 
into BLM’s long-term monitoring framework and/or the monitoring plan required for an existing 
or planned utility-scale solar energy development. For example, because of changes in 
environmental conditions (e.g., sun angle and cloud cover) between image collection dates, it is 
essential to test the robustness of remote sensing algorithms across images from multiple dates. 
Therefore, to facilitate operational use of the remote sensing methodologies developed in this 
study, examining their applicability for multi-date remotely sensed imagery is essential. The 
examination should include determining (1) types and magnitude of environmental changes that 
can be detected and quantified using the methodologies; (2) robustness and sensitivity of the 
methodologies for anticipated natural environmental variability across a time series of remotely 
sensed images; and (3) required types and levels of image data preparation for automated, 
systematic analysis to produce consistent output. In addition to providing a cost-effective 
monitoring approach, the methods developed in this study can ultimately reduce soft-costs for 
developers by accurately characterizing the ecological resources at a potential development site, 
which would potentially reduce permitting and mitigation costs and speed up the siting process. 
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