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Background
It is estimated that 300,000 children 0–19 years of age are diagnosed

with cancer worldwide each year (1). In high-income countries, cancer
is the leading cause of death due to disease in children. The absolute
risk of cancer in children is, however, quite low [183 cases per million
in the United States (2)], and this rarity limits attainable sample sizes
and types of studies. Childhood cancers are heterogeneous and display
a markedly different range of tumor types than in adults, including
several classes that are largely exclusive to children. Advances in
diagnostics have further split tumors into molecularly-defined sub-
types that inform prognosis, therapy, and increasingly etiology. Child-
hood cancer epidemiology has traditionally relied on interview-based
case–control studies but in recent decades has added laboratory
assessment of exposure, germline DNA analysis, and molecular clas-
sification of tumors to the research repertoire.

Descriptive Epidemiology
Worldwide incidence

Accurate estimates of worldwide childhood cancer incidence are
important for characterizing the impact of these malignancies and
informing policy decisions. However, many countries do not have
cancer registries that quantify the incidence of childhood cancer. It
is estimated that 300,000 children are diagnosed with cancer
annually. Data from GLOBOCAN are commonly used as a primary
source to estimate the global incidence of childhood cancer. Nota-
bly, the incidence of childhood cancer is highest in North America,
parts of South and Central America, Europe, and Australia with an
age-standardized incidence rate (ASR) of ≥15.4 per 100,000 person-
years for those 0–19 years of age (Fig. 1A). These patterns largely
hold true for leukemia diagnosed in those 0–19 years of age as well
(Fig. 1B). However, there are limitations to using GLOBOCAN
data. For instance, data are presented according to ICD site codes,
which do not reflect the major childhood cancer diagnostic groups.
It is also suspected that in middle- and low-income countries poor
pathology, misdiagnosis, and unascertained cases contribute to
underestimation of rates. Because of this, a recent report attempted
to estimate the total incidence of global childhood cancer using a
simulation-based approach. In this assessment, Ward and collea-
gues estimated that there were 397,000 children 0–14 years of age
diagnosed with cancer worldwide in 2015, a number much higher
than GLOBOCAN estimates (3).

International comparisons of rates between high-, middle-, and
low-income countries using standard registry data should therefore be
interpreted with the caveat that only diagnosed cancer is counted.
Overall, leukemia is themost common cancer among children ages 0 to
14 years regardless of the geographic area. However, leukemias
represent a slightly higher proportion of childhood cancers in Asia,
Oceania, and Central and South America, while slightly lower on the
African continent. In both North Africa and Sub-Saharan Africa,
lymphomas are more common than in other regions, due primarily to
the high rates of Burkitt lymphoma. Soft-tissue sarcomas are much
more common in Sub-Saharan Africa, due to the high incidence of
Kaposi sarcoma in the region. Other notable differences include a
lower proportion of CNS tumors but higher proportion of renal
tumors in Sub-Saharan Africa, and a higher proportion of germ cell
tumors in Asia.

U.S. incidence
Approximately 16,000 children 0–19 years of age are diagnosedwith

cancer in the United States (11,000 cases among children 0–14 years of
age and 5,000 cases among those 15–19 years of age; ref. 4). These
numbers correspond to anASR for all cancers of 16.4 cases per 100,000
person-years for 0–14 years and 23.3 per 100,000 person-years for
15–19 (2). Notably, the incidence of childhood cancer varies by year of
life (Fig. 2). In addition, the distribution of cancer types shifts
throughout childhood and adolescence. For example, non-CNS
embryonal tumors are more common in early life compared with
lymphomas, whereas lymphomas become relatively more common in
adolescence (Fig. 2).

As with many adult cancers, the incidence of childhood cancer
varies by race/ethnicity. However, while non-Hispanic black adults
often have a higher incidence of several cancers, non-Hispanic white
children often experience a higher incidence of cancer relative to non-
Hispanic black and Hispanic children. One notable exception is
Hispanic children have higher rates of both acute lymphoblastic
lymphoma (ALL) and acute myeloid leukemia (AML) compared with
non-Hispanic white and non-Hispanic black children (2). There is
emerging evidence that some of these disparities may be due to
underlying genetic ancestry (5). However, this information has not
been fully exploited (e.g., through admixture mapping) to better
understand the etiology of childhood cancer (6).

Worldwide survival
Worldwide, more than 100,000 children and adolescents younger

than 20 years of age die from cancer per year (75,000 cancer deaths
among children 0 to 14 years of age and 27,000 cancer-related deaths
among 15- to 19-year-olds; ref. 7). Survival is generally higher in high-
income countries (HIC). Specifically, survival has consistently
increased inmost of Europe,NorthAmerica, Japan, andOceania (8, 9).
Whereas, several countries in Eastern Europe, Southeastern Asia, and
Latin America have lagged behind. As with childhood cancer inci-
dence, it is difficult to ascertain survival in countries without robust
population-based cancer registries. International data presented in
The Cancer Atlas (10), which is based on data from the CONCORD
program, show that for roughly the same time period (1990s to early
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2000s), 5-year survival for childhood cancer overall was approximately
80% in high-income countries, roughly 55% in middle-income coun-
tries, and 40% in low-income countries (LIC). Furthermore, survival
also differed by cancer type across those countries. Leukemia and
lymphoma experience among the highest five-year survival in HICs
(80% and 90%, respectively); however, in LICs only, 36% and 55% of
children diagnosed with leukemia and lymphoma, respectively, sur-
vive five years after their diagnosis. The disparity is even greater for
CNS tumors and neuroblastoma (which were considered together as a
group in the Cancer Atlas Data). Five-year survival is reported at 71%
inHICs and only 27% in LICs. These trends were also demonstrated in

an assessment that used a simulation-based analysis to estimate
global childhood cancer survival trends. Specifically, Ward and col-
leagues reported that global 5-year net childhood cancer survival is
currently 37.4% (95% uncertainty interval, 34.7–39.8), with large
variation by region, ranging from 8.1% (4.4–13.7) in eastern Africa
to 83.0% (81.6–84.4) in North America (3).

U.S. survival
Childhood cancer remains the leading cause of disease-related

mortality among children 1 to 14 years of age, with approximately
1,200 cancer-related deaths annually in the United States among

Figure 1.

Worldwide estimated age-standardized incidence for childhood cancer in 2018; panel A displays all cancers; panel B displays leukemias.
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children younger than 15 years (4). The relative contribution of cancer
to overall mortality for 15- to 19-year olds is lower than for the younger
children, although approximately 600 deaths from cancer occur annu-
ally in this age group (11). Accordingly, death from cancer accounts for
12% of all deaths among children 1 to 14 years old, and 5% among
adolescents (15–19 years old). However, survival rates for children 0–
14 years of age have improved dramatically since the 1960s when the
overall 5-year survival rate after a cancer diagnosis was estimated as
28% (12). Improvements in survival rates have continued into the mid-
2000s in the United States, with the overall 5-year survival rate
exceeding 80% for children and adolescents diagnosed during this
period. In spite of this, survival does still lag for some cancer types
(Fig. 3). For instance, as recent data from Surveillance, Epidemiology,
and End Results (SEER) demonstrate, children diagnosed with CNS
tumors, bone tumors, some types of soft tissue sarcoma, and hepato-
blastoma have 5-year survival rates of <70%. While overall survival has
improved in theUnited States, there remain differences based on several
factors, including sex and race/ethnicity. In termsof sex, using data from
SEER, investigators demonstrated that males had worse survival com-
pared with females for several cancers, including ALL, ependymoma,
neuroblastoma, and osteosarcoma (13). In addition, while non-
Hispanic white children are more likely to be diagnosed with cancer,
these children often have the best survival compared with other race/
ethnicity groups. Specifically, data from SEER indicate that for most
subtypes, non-Hispanic blacks and Hispanics have inferior survival
compared with non-Hispanic whites (14–19). Differences in survival
are likely to be complex, arising from several factors, including but not
limited to socioeconomic status, adherence to therapy, differences in
treatment, underlying tumor biology, and genetic susceptibility (20).
Therefore, future studies evaluating disparities should employ a com-
prehensive approach to reducing the impact of these differences.

Risk Factors
Knowledge on the etiology of childhood cancers comesmainly from

case–control studies and must be interpreted within the limitations of
the study design. Settingmust also be considered as the vastmajority of
analytic epidemiology of childhood cancer have taken place in high
income countries and may not generalize to lower income areas with
different distributions of environmental and lifestyle risk factors.
Childhood cancers are heterogeneous, and it must be recognized that
each tumor has its individual risk factor profile. However there are
some commonalities. For instance, the incidence is higher in males in
nearly all cancers andmany are thought to originate in utero. Some risk
factors, like birth weight, cut across tumors but differ in the direction
and magnitude of association, while others [e.g., hernias and Ewing
sarcoma (21)] are unique to a particular cancer. It is also the case that
the literature on causes is roughly proportional to incidence, so that we
know far more about the etiology of ALL (36 cases per million) than
hepatoblastoma (2.1 cases per million). On the basis of a review of the
literature and overall impressions from the state of the field, we
summarize the risk factors for childhood cancer below and
in Table 1. In addition, as there have been some reviews specifically
focused on particular childhood cancers or the role of specific risk
factors on a range of childhood cancers, we have also provided a table
(Table 2) that outlines some of these efforts.

Demographics
Age, sex, and race/ethnicity each influence the risk of childhood

cancer. Figure 2 shows the distribution of tumors across the pediatric
age spectrum. Leukemias, primarily ALL, display a distinct peak in
incidence from age 2 to 5 years, while CNS tumors have fairly steady
incidence throughout childhood. Non-CNS embryonal tumors have

Figure 2.

Distribution of tumors across the pediatric age spectrum.
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peak incidence in infancy, which then falls to near zero by 10 years of
age. There is a peak in incidence of bone and soft-tissue sarcomas in
mid-adolescence, as well as increasing incidence of lymphoma and
other solid tumors that continues well into adulthood. Males have a
higher risk for most childhood cancers, with rate ratios ranging from 6
for Burkitt lymphoma to 1.2 for AML; Wilms tumor, extragonadal
GCT, thyroid carcinoma, and melanoma are notable for having
slightly higher rates in females (22). The United States published
cancer rates by race/ethnicity and so these data are often used to
compare incidence. With few exceptions, the rate of childhood cancer
is 25%–50% lower in black compared with white children, the rate of
ALL is higher among Hispanic children but for most solid tumors
lower than in white children, and incidence among Asian children is
roughly similar to white children although some (i.e., neuroblastoma
and Wilms tumor) have lower rates while germ cell tumors have
dramatically higher rates (23).

Gestational and perinatal
Because of the young age of onset, histologic resemblance of some

pediatric cancer cells to embryonal cells, and pre- or perinatal detec-
tion ofmultiple types of cancer, most childhood cancers are thought to
initiate in utero. Consequently, gestation is frequently examined as a
critical window of risk. Birth weight, alone or with consideration of
gestational age, has been most often studied (Table 1). Risk of most
childhood cancers riseswith increasing birthweight, from5%per 500 g
increase for astrocytomas to 17% per 500 g for Wilms tumor (24);
hepatoblastoma, which is strongly associated with low birth weight, is
the exception (25). Another consistent finding is that children with
structural birth defects without a reported genetic syndrome have an
elevated risk of pediatric cancer (26). Risk ratios for specific birth
defect–cancer combinations range from 1.5 to 6.0 and the associations
are apparent for most classes of birth defects and cancer (Table 1).

Parental age at birth of offspring is also consistently associated with
most types of childhood cancer, with between 5% and 10% higher risk
per 5 years of maternal age; paternal age may also be associated with
higher risk of pediatric cancer, although the tight correlation with
maternal age and the greater degree of missing data make it harder to
assess (27–31). There is some suggestive evidence that pathologies of
pregnancy, such as preeclampsia, gestational diabetes, and maternal
obesity increase risk of childhood cancers but the evidence base is
currently thin (32–37).

Environmental
While key environmental exposures have been identified for

adult cancers (e.g., smoking, benzene), much less is known in
relation to childhood cancer. A notable difference between adult
cancers and childhood cancers is the latency period associated with
these conditions. For instance, smoking usually starts during
adolescence or young adulthood, but associated malignancies do
not become apparent until many decades later. However, several
childhood cancers are predominantly diagnosed in infancy (e.g.,
embryonal neoplasms such as neuroblastoma) or in early childhood
(2–5 years of age), such as ALL. Therefore, the disruption in
molecular processes that may lead to childhood cancer are likely
different from those of adult cancers; at the least, the carcinogenic
process in children is necessarily much shorter in time. In addition,
because of the age of onset, it is reasonable to surmise that many
childhood cancers result from aberrations in early developmental
processes. The current evidence to support a major etiologic role for
environmental or other exogenous factors in childhood cancer is
minimal (Table 1). While there is extensive evidence that high doses
of ionizing radiation are associated with childhood cancer, the
prevalence of this exposure is very low (38). Relatively common
environmental exposures, including pesticides (39) and air

Figure 3.

Improvements in 5-year survival for childhood cancer, 1975–2010.
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pollution (40), have also been explored. While individual studies
and meta-analyses have indicated associations between these expo-
sures and some childhood cancers, effect sizes are relatively modest.
One problem with previous studies of environmental exposures
includes the limitations of using questionnaire data to estimate
exposure or the use of proxies for exposure assessment (e.g.,
residential information). While residential information is arguably
better than self-reported exposures, epidemiologic studies of child-
hood cancer must leverage novel approaches to better characterize
the role of environment in etiology. For example, correlating
information on environmental exposures to the landscape of somat-

ic mutations could provide novel insights into the carcinogenic
properties of these factors (41).

Genetic variation
Chromosomal abnormalities, subchromosomal structural varia-

tion, and pathogenic germline point mutations confer a sharply
increased risk of cancer but underlie a minority of cases of childhood
cancer (42–45). Next-generation sequencing studies have yielded
precise estimates of the prevalence of germline pathogenic variation
in most types of childhood cancer; for a few types such as adreno-
cortical carcinoma or hypodiploidALL, half ormore of cases have such
variation, while in most cancers the prevalence is 5%–10% (46, 47). In
fact, according to a large-scale effort by Zhang and colleagues, those
childhood cancers where >10% can be attributed to highly penetrant
pathogenic variants in known cancer predisposition genes include
osteosarcoma, retinoblastoma, and adrenocortical carcinoma (47).
Continued sequencing efforts have also yielded novel, rare, high-
penetrance predisposition genes (48) and moderately rare, medi-
um-penetrance variation (49–51). Importantly, there has been a recent
systematic effort to outline the guidelines for pediatric cancer predis-
position surveillance.While it is beyond the scope of this review to fully
outline those recommendations, they can be found at https://clincan
cerres.aacrjournals.org/pediatricseries (52).

Against expectations, genome-wide association studies (GWAS)
have succeeded in identifying common single nucleotide polymorph-
isms (SNP) associated with several childhood cancers despite sample
sizes that, at least initially, fell far short of recommendations. This is
likely due to the interesting and as yet unexplained fact that the
magnitude of association of common SNPs with childhood cancer is

Table 2. Selected reviews for childhood cancer and associated
risk factors.

Topic Authors Year PMID

Childhood cancers
ALL Williams et al. 2019 30770347
AML Puumala et al. 2013 23303597
Brain tumors Johnson et al. 2014 25192704
Hepatoblastoma Spector and Birch 2012 22692949
Rhabdomyosarcoma Skapek et al. 2019 30617281
Wilms tumor Chu et al. 2010 20670226

Risk factors
Pesticides Chen et al. 2015 26371195
Ionizing radiation Kendall et al. 2018 30131551
Genetic predisposition Plon and Lupo 2019 31082280

Table 1. Confirmed and suspected risk factors for selected childhood cancers.

amotycortsAamomydnepETENPBMTWBRBHBNLMALLA Strength of 
evidence 

Preconception/pregnancy 
Smoking  ++ 
Vitamins  ++ 
Occupational exposures  ++ 
Residential exposures  ++ 
Coffee  + 
Alcohol  ++ 
Ionizing radiation  +++ 

Birth 
Maternal age  ++ 
Paternal age  ++ 
Chromosomal birth defects  +++ 
Non-chromosomal birth defects  +++ 

 +++ 
 +++ 

C-section  + 
Gestational age  + 

Childhood 
Breastfeeding  + 
Allergies  ++ 
Residential chemical  + 
Passive smoke  + 
Irradiation  ++ 

Legend 
Positive, effect estimate <1.5 
Positive, effect estimate ≥1.5 
No association 
Negative, effect estimate >0.67 
Negative, effect estimate ≤0.67 
Inconclusive 

High birth weight
Low birth weight

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HB, hepatoblastoma; MB, medulloblastoma; NB, neuroblastoma; PNET, primitive
neuroectodermal tumor; RB, retinoblastoma; WT, Wilms tumor.

Note: Taken from refs. 25, 30, 31,103-266. For strength of evidence: + epidemiologic evidence with little mechanistic support; ++ can cross placenta or has 
developmental consequences but epidemiologicevidence is equivocal; +++ strong epidemiologic and mechanistic evidence.
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greater than in adults (23), which seems to be a general property of
pediatric diseases (53). The genetic architectures of ALL and neuro-
blastoma are mature, with multiple validated loci, subtype-specific
associations, transethnic replication, and ethnically-specific loci
(49–51, 54–59). Two GWAS of Ewing sarcoma in European popula-
tions have also identified multiple loci (60, 61), but genetic risk in non-
European populations has not been examined. Single GWAS of Wilms
tumor (62) and osteosarcoma (63) have also identified a limited number
of loci. More recently investigators have demonstrated associations of
childhood cancers with trait-related variation, such as genetically-
determined telomere length (64) and height (65). The most significant
variants found to be associated with childhood cancers in GWAS are
depicted in Fig. 4. While potential mechanisms for the genetic associa-
tions have been proposed (57–63), there have been few efforts to fully
elucidate the functional consequences of variants identified in GWAS of
childhood cancers. This is in part due to several variants being intronic or
intergenic (63).However, there are some emerging efforts to elucidate the
role of variants and genes identified in GWAS of childhood cancer,
including Ewing sarcoma–related loci (66), IKZF1 variants andALL (67),
andBMI1 variants and ALL (68). Many SNPs do appear to be associated
with lymphocyte development; however, additional work is needed to
explore the biological underpinnings of these associations. Lastly, while
small studies have examined transethnic replication of GWAS SNPs
discovered in Europeans, genome-wide discovery has mostly not been
performed in non-European populations despite many recent calls to
diversify genomic research.

Etiologic Heterogeneity
There is emerging evidence that etiologic heterogeneity within

childhood cancer subtypes may have limited previous epidemiologic
assessments of these conditions. Furthermore, our understanding of
subtypes continues to emerge. For example, ALL has traditionally been
classified as B-cell or T-cell, based on the cell type affected. However,
advances in cytogenetics has led to the latest version of the WHO
classification of ALL to include several subtypes defined by their

translocations and other cytogenetic features: BCR-ABL1, MLL rear-
ranged, TEL-AML1, hyperdiploidy, hypodiploidy, IL3-IGH, and E2A-
PBX1 (69). Another example is rhabdomyosarcoma, which was orig-
inally classified by histologic type, for example, embryonal versus
alveolar. However, through molecular advancements, further distinc-
tions due to specific gene fusions between either PAX3 or PAX7 and
FOXO1 that typically occur among the previously named alveolar types,
are preferred risk stratification strategies compared with histology
alone (70). Recent advances in genomics, epigenomics, and transcrip-
tomics have allowed formolecular subtyping for a number of childhood
malignancies. For example, at least four molecular subgroups of child-
hoodmedulloblastoma now exist (WNT, SHH, Group 3, and Group 4),
each exhibiting different molecular and clinical features (71); more
recent tumorphenotyping suggests even further subtypes (72). Likewise,
for other brain tumors, distinct molecular subgroups have now been
established for ependymoma (73), high-grade gliomas (74), low-grade
gliomas (75), and AT/RT (76). Recently, four molecular subtypes have
been suggested for diffuse large B-cell lymphoma: MCD (harboring the
cooccurrence of MYD88L265P and CD79B mutations), BN2 (harboring
BCL6 fusions and NOTCH2 mutations), N1 (harboring NOTCH1
mutations), and EZB (harboring EZH2mutations and BCL2 transloca-
tions; ref. 77). Less often, molecular analyses have suggested “lumping”
tumors previously thought to be dissimilar, as with Ewing sarcoma
and primitive neuroectodermal tumors (PNET), which both frequently
feature the EWS-FLI1 translocation (78). Also, GWAS of childhood
cancers (includingALL and neuroblastoma) have pointed to differences
in association between SNPs andmolecularly defined subtypes (79, 80).
These are just a few examples of the emerging landscape of tumor
subtypes based on molecular features. Future epidemiologic studies
must account for this information as etiologic factors could differ based
on these characteristics.

Screening and Prevention
The ultimate goal of etiologic research in childhood cancer is to

enable risk prediction, early detection, and, eventually, prevention.

Figure 4.

Genes and variants identified in
GWAS of childhood cancer; up to 5
of the top SNPs with P < 10–8 in the
GWAS catalogue (https://www.ebi.
ac.uk/gwas/home) are displayed,
with information for recent GWAS of
T-cell ALL and LCH added.
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However, these goals remain distant for most children. Population-
wide screening for pediatric cancer has, to our knowledge, only been
attempted for neuroblastoma. The basis for screening was homo-
vanillic acid, a catecholamine metabolite which serves as a bio-
marker for tumor burden in neuroblastoma and which is shed in
urine. Thus, in the late 1980s and 1990s, screening for neuroblas-
toma in infants was attempted in three areas with the capacity for
population-wide urine collection in infants: Quebec (81), Ger-
many (82), and Japan (83). While these programs succeeded in
identifying neuroblastoma earlier than clinical diagnosis, they did
not improve mortality as they primarily detected favorable cases
with a regressing phenotype, many of which would never have
come to clinical attention. Hence, these programs were abandoned
(84).

More recently, experts have issued recommendations in support
of surveillance for tumor development in children with most genetic
syndromes conferring high risk of cancer (85). Although there are
few preventive measures to implement, there is consensus that
surveillance can reduce morbidity and mortality through early
detection. Screening for cancer predisposition, as opposed to
screening for cancer in those with known predispositions, is more
controversial. Newborn screening increasingly involves genetic in
addition to metabolic testing (86), and thus could easily detect most
types of pathogenic variation in cancer-associated genes. However,
many screening programs prefer to include only conditions that are
early-onset and for which there are interventions proven to improve
outcome (87), which does not describe most pediatric cancers. Thus
to our knowledge only one area in the world has instituted newborn
screening for pediatric cancer predisposition, in the Brazilian state
of Paran�a where the R337H founder mutation in TP53 has an
especially high prevalence (88).

Prevention of pediatric cancer is not yet feasible for a number of
reasons. The first is simply that for diseases as rare as these the number
needed to “treat” with an intervention would be impractically large,
possibly population-wide, and consequently would be economically
unfavorable. A second reason is that, as discussed above, there are no
modifiable risk factors for childhood cancer that are strong and
prevalent enough to justify intervention. However, most of the mod-
ifiable risk factors for pediatric cancer (e.g., maternal smoking, obesity,
air pollution) are also associated with far more common diseases, thus
efforts to reduce exposure for other reasons may have the effect of
reducing childhood cancer incidence.

Future Directions
Molecular epidemiology

Initial epidemiologic studies of childhood cancer gathered data
mainly by parental interview and medical record abstraction. These
assessments relied on the case–control study design. However, the
focus of the past decade has largely been on the molecular epide-
miology of childhood cancers. This has been facilitated in part
through the case–parent trio study design. Case–parent trios allow
the estimation of inherited genetic effects, maternal genetic effects
(which can be used as a proxy or mediator of the intrauterine
environment), and gene–environment interactions. In addition, the
case–parent trio approach does not require the inclusion of a
control group, which is a practical advantage, as control selection
on the national scale has become increasingly difficult in recent
years. This is, in part, due to the reliance on random digit dialing for
control selection (89). Another option for control selection is
utilizing birth certificate controls, which have been leveraged for

two Children's Oncology Group (COG) studies (90, 91), as well as
studies of other pediatric and perinatal outcomes (92). This could be
a feasible approach for epidemiology studies of childhood cancer
that require a comparison group. However, the scientific and
practical appeal of the case–parent trio design for molecular epi-
demiology studies remains compelling. Because of this, several
recent COG epidemiology studies have relied on this approach.
This includes studies of osteosarcoma (93), neuroblastoma (94),
Wilms tumor, Ewing sarcoma, germ cell tumors (95), and rhab-
domyosarcoma. However, beyond genetic susceptibility to child-
hood cancer, few studies have explored using biological markers of
exposure in studies of childhood cancer, which is in part due to the
limited availability of samples collected prior to diagnosis. An
emerging and important population-based resource for molecular
epidemiology of childhood cancer is the use of dried blood spots
(DBS) collected and archived as part of newborn screening efforts.
DBS have been used in genetic epidemiology studies of childhood
cancer (67), as well as using metabolomics to reveal novel ALL
phenotypes (96). In addition, DBS can be used to estimate prenatal
exposures, including cotinine from tobacco smoke (97) and
benzene (98).

There are also methods for leveraging genetic data to address
questions not necessarily related to inherited genetic susceptibility.
Two primary examples are (i) evaluating maternal genetic effects (as
described earlier), which can be done using parental genetic data from
case–parent trios (99), and (ii) Mendelian randomization (100), which
is a method of using genetic variation to examine the effect of an
exposure (or another trait like birthweight) on disease in observational
studies. These methods are more recently being leveraged in epide-
miologic studies of childhood cancer. For instance, there has been an
exome-wide association study ofmaternal genetic effects onALL (101).
In addition, Mendelian randomization has been used to characterize
the role of height on osteosarcoma risk (65) and telomere length on
neuroblastoma risk (64).

A final underexplored area in the molecular epidemiology of
childhood cancer is leveraging epigenetics, especially as these mod-
ifications relate to germline DNA. Notably, environmental exposures
can lead to epigeneticmodifications that influence gene expression and
can modulate disease risk associated with genetic variation (101). For
example, there is emerging evidence that air pollution exposure (a
suspected risk factor for several childhood cancers) is associated with
changes in DNA methylation (102). Therefore, a novel approach in
better ascertaining the association between air pollution and particular
childhood cancers could be evaluating DNA methylation marks
associated with this exposure. Epigenetics therefore holds substantial
promise for identifying mechanisms through which genetic and
environmental factors jointly contribute to childhood cancer risk and
outcome. As the underlying etiologies of the vastmajority of childhood
cancers appear multifactorial, including both genetic and environ-
mental risk factors, molecular epidemiology will continue to be an
important component in the assessment of these conditions.

Tumor biology
As discussed, there is a growing awareness of the molecular

heterogeneity within childhood cancer subtypes. As this molecular
heterogeneity could point to etiologic heterogeneity, it will be vital
to incorporate information on somatic mutations in future epide-
miologic studies of childhood cancer. Furthermore, information on
somatic mutations could be leveraged to better understand biolog-
ical processes underlying etiology. For example, in an assessment by
Alexandrov and colleagues of over 7,000 tumors yielded more than
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20 distinct mutational signatures, which were associated with
various features including age, mutagenic exposures, and defects
in DNA maintenance (41). In addition, several of these mutational
signatures are of “cryptic” origin. Epidemiologic assessments that
characterize the exposures associated with these signatures could
yield novel insights into the mutational processes underlying the
development of cancer with potential implications for prevention
and therapy.

Global epidemiology
It should be noted that the overwhelming majority of etiologic

studies of ALL have been conducted in high-income countries, espe-
cially the United States and countries in Europe. It is critical that future
studies include populations in middle- and low-income countries as
exposures as well as genetic variation are likely to differ in these
populations and etiologic features may differ.

Conclusions
While there have been tremendous strides in improving outcomes

for children with cancer, there is still a great deal of work related to
disentangling the etiologic origins of these conditions. Future studies
should incorporate novel exposure methodologies, molecular features
of tumors, and a more complete assessment of gene–environment
interactions. Through these efforts, it is hoped that our understanding

of the causes of childhood cancer can be better ascertained, leading to
novel surveillance or prevention strategies.
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