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Recognition of human activities is an essential field in computer vision. )e most human activity consists of the interaction
between humans and objects. Many successful works have been done on human-object interaction (HOI) recognition and
achieved acceptable results in recent years. Still, they are fully supervised and need to train labeled data for all HOIs. Due to the
enormous space of human-object interactions, listing and providing the training data for all possible categories is costly and
impractical. We propose an approach for scaling human-object interaction recognition in video data through the zero-shot
learning technique to solve this problem. Our method recognizes a verb and an object from the video and makes an HOI class.
Recognition of the verbs and objects instead of HOIs allows identifying a new combination of verbs and objects. So, a new HOI
class can be identified, which is not seen by the recognizer system. We introduce a neural network architecture that can un-
derstand and represent the video data. )e proposed system learns verbs and objects from available training data at the training
phase and can identify the verb-object pairs in a video at test time. So, the system can identify the HOI class with different
combinations of objects and verbs. Also, we propose to use lateral information for combining the verbs and the objects to make
valid verb-object pairs. It helps to prevent the detection of rare and probably wrong HOIs. )e lateral information comes from
word embedding techniques. Furthermore, we propose a new feature aggregation method for aggregating extracted high-level
features from video frames before feeding them to the classifier.We illustrate that this feature aggregationmethod is more effective
for actions that include multiple subactions. We evaluated our system by recently introduced Charades challengeable dataset,
which has lots of HOI categories in videos. We show that our proposed system can detect unseen HOI classes in addition to the
acceptable recognition of seen types. )erefore, the number of classes identifiable by the system is greater than the number of
classes used for training.

1. Introduction

Humans play a significant role in most of the activities that
take place in the world. Human action recognition is one of
the fundamental problems in computer vision and has many
applications, such as video navigation, human-robot col-
laboration, and predicting human behavior for security
purposes. Many human activities are made up of two parts: a
verb and an object.)e verb is what a man does on an object.
In fact, a verb represents the movement of the human body.
)is type of activity is referred to as human-object inter-
action (HOI). For example, “opening the door” or “reading a
book” has a verb and an object. )erefore, recognizing HOI

is as important and challenging as recognizing human ac-
tivities in the field of machine vision.

Many researchers have been working on human-object
interaction (HOI) understanding [1–6]. HOI understanding
can be followed in images or videos (sequence of frames).
Distinguishing the full range of human activities in real
environments is a significant challenge in computer vision.
Some problems are as follows: large intraclass variation in
actions, high variability in spatiotemporal scaling, human
pose variations, occlusions, and, most importantly, the vast
space of human activities. )e most effective HOI recog-
nition task methods are methods based on deep learning
approaches that need a lot of labeled data [6–11]. )e
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existing machine learning approaches for action under-
standing require fully annotated datasets. Some datasets
have been prepared for this purpose, such as the “Humans
Interacting with Common Objects” dataset for action
classification (HICO) [3] and action detection (HICO-DET)
[5] that are image benchmark. For HOI analysis in videos,
not many datasets are provided. Charades dataset [12] was
recently supplied for the HOI understanding tasks in video
data. It has many human-object interaction categories and is
suitable for action detection, HOI recognition, and video
captioning purposes.

One of the essential HOI recognition challenges is the
high number of possible categories in the real environment.
Since the space of possible HOIs in real situations is
enormous, list all possible HOI classes and obtain enough
data for each group, and annotating the collected data is
impractical. How can we reduce the need for training data
for training an HOI recognizer model? Can a recognition
model be taught with data from only part of the target
classes? We focus on this question and tackle it through
zero-shot learning for scaling HOI recognition in video data.
In the recognition approaches based on zero-shot learning,
the main class is decomposed into its components, and
recognizing the main class components is applied instead of
understanding the main category. So, the recognizer model
learns the components of unseen classes that probably ap-
pear in other seen classes. In this case, if components of the
novel HOI class appeared in other seen HOI classes, the
model can recognize them and identify the new HOI class.
Zero-shot learning for scaling HOI recognition is used
previously for image data [13]. Our previous work presented
a simple structure for zero-shot recognizing of HOI in video
data [14].

In this work, we expand our previous work [14] and
address the scaling of human-object interaction in video
data through zero-shot learning. In this approach, the HOIs
decompose into verbs and objects as the components of an
HOI. For each input video containing an HOI, the detection
system recognizes a verb and an object. For this purpose, the
central proposed scheme has a two-branch deep neural
network structure consisting of object recognition and verb
recognition branches. A convolutional neural network
(CNN) is used to extract the feature maps of each frame. We
use recurrent neural networks (RNNs) in the verb recog-
nition branch due to the video’s temporal information.
RNNs can represent the long dependencies in video data,
which can help recognize verbs in the video.

We propose using lateral information to combine the
verbs and the objects better to make valid verb-object pairs.
It helps to prevent the detection of rare and probably wrong
HOIs. )e lateral information comes from word embedding
techniques.

We also propose a new feature aggregation method for
aggregating extracted high-level features from video frames
before feeding them to the classifier. We use a local feature
aggregation method that does not turn the entire extracted
features space into a single space. We illustrate that this
feature aggregation method is more effective for actions that
include multi subactions.

We evaluate our proposed algorithm on the Charades
dataset [12] and illustrate that our model can identify the
novel HOI categories not seen by the model before. )e
Charades dataset has many human-object interaction cat-
egories and is suitable for action detection, HOI recognition,
and video captioning purposes. )is dataset contains 9848
video clips of HOIs captured in real environments. It has 157
categories of human activities, including some actions with “no
interaction,” 149, which can be considered valid verb-object
pairs. )is 149 category consists of 34 verbs and 37 objects.
Also, we compare our model in a fully supervised manner with
the best-reported methods on this dataset and show that our
method’s performance can be comparable to them.

)is study’s primary purpose is to reduce the need for
data to train an HOI recognition system by increasing the
number of identifiable HOIs without increasing HOIs in
training data. We focus on this purpose through zero-shot
learning, in which we decompose the HOI into a verb
(human action) and an object and recognize them in the
video. We use CNNs and RNNs for implementing our
proposed algorithm.

In the rest of the paper, we review some related works in
part 2. )e model architecture and proposed algorithm are
presented in Section 3. We present the experimental results,
evaluations, and discuss the results in Section 4, and con-
clude in Section 5.

2. Related Works

2.1. Human Action and HOI Recognition. Initial works on
understanding human activities were in modeling actions.
Many works can be found that used semantics for modeling
and understanding of activities [15]. )e HOI modeling
started with the affordances idea introduced by J. Gibson
[16], and then some works were done in the field of func-
tionality understanding of objects and verbs [17]. Several
approaches have been used to model semantic relationships
[18, 19] for HOI understanding. Modeling humans and
objects’ spatial relationships using the interactional features
are introduced by Delaitre et al. [20]. Also, learning dis-
tributed representations of humans and objects by poselet
[21] and phraselets [22] are proposed for HOI recognition.
Most of these efforts require costly-labeled data (pose, body
parts, and object segmentation, etc.), making it difficult to
collect data for any type of activity andmake them applicable
for cases with a limited number of classes. In fact, they fail
for cases with more classes.

Recently, with providing large datasets [3, 5, 23] and the
success of neural network-based approaches in classification
and recognition tasks, the problem of understanding and
recognizing HOIs has received a lot of attention. Inspired by
this impressive progress, the researchers tried to develop
deep networks for video analysis applications such as action
recognition [24–28] and HOI understanding [23, 29].

)e recognition in video is more complicated than
recognition in still images because of the complexity of video
sequences’ motion patterns. )erefore, the mere use of
appearance cues for successful recognition may not be
enough. Most existing approaches have introduced a two-
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stream framework that considers both temporal and spatial
domains [25, 30–37]. Classifiers operate on the two streams
of inputs, the RGB and the optical flow, as spatial and
temporal cues, respectively. Motion cues are used separately
from appearance cues for final representing in the video.
Two streams are trained individually in the training phase,
and the outputs of them fuse to predict the output class in
the testing phase.

Some approaches use 3D networks that work by spa-
tiotemporal convolutions [26]. )ese networks usually
consider a short video interval with a predefined number of
frames and encode the local and short-termmotion patterns.
For example, 15, 7, 16, and 2 frames are used in
[26, 30, 38, 39]. Also, other types of spatiotemporal networks
like RNNs [26] and the extended versions of them which are
called Long Short-Term Memory (LSTM) [40] are used to
describe the temporal cues for video classification. )e
approaches based on spatiotemporal networks have a huge
amount of computing due to many trainable parameters
tuned in the training phase. A component-based approach is
proposed to represent the video content, weakly supervised
learning (WSL) method [41], and requires less annotated
data. A three-stream CNN is suggested that receives two
representations and were fused with the motion-encoding
stream. )e LSTM block models each of the three streams’
temporal relationship. For the fusion of the three streams
and the final prediction generation, an fc layer is used.

)e literature study showed that the best methods for
activity understanding are the deep learning-based ap-
proach. An essential issue in these methods is much data for
all recognizable classes required for model training.)ey are
only able to detect activities seen by the model. Providing the
training data for all possible HOI categories is costly and
impractical. We focus on this problem and try to solve it
through the zero-shot learning approach.

2.2. Zero-Shot Learning. Zero-shot learning is an exciting
approach in different areas [42–45]. Most new methods
based on zero-shot learning have two stages and focus on
attributes [46–50]. )e attributes are predicted in the first
step and then infers class labels in the second step. )e
compositional learning for Visual Question Answering
(VQA) has been explored [51], in which the VQA task
breaks down into a sequence of modular subproblems. Each
subproblem is modeled by one neural network.

For zero-shot action recognition, simultaneous object-
action detectors training in the videos is suggested to identify
object-action pairs [52], which uses the two-stream faster
R-CNN [53], and one fc layer operates on both streams’
concatenated features. )is approach is not just for human
action recognition and includes actions, such as “cat eatings”
or “dog jumping.” )e attributes have also been used to
understand human activities in an independent learning
framework for recognizing objects and actions [54, 55]. )e
strong relationship between the objects and the actions is
used for zero-shot recognition of action [56, 57].

HOI recognition through zero-shot learning is proposed
in [13] that predicts the verb-object pairs from a still image.

)is method used a two-branch neural architecture that
jointly trained for simultaneous recognition of objects and
verbs. A similar approach is presented to zero-shot HOI
recognition in video data [14]. An external knowledge graph
is suggested [58] to validate predicted verb-object pairs and
identify the most valid pairs. )e external knowledge graph
is made by extracting subject, verb, and object (SVO) triplets
from knowledge bases [23, 59]. Each node in the graph is a
verb or a noun (object), and its word embedding is the
node’s feature.

Our work is also scaling HOI recognition through zero-
shot learning, but we focus on video data, which has more
challenges. We present a neural architecture that can un-
derstand videos and detect objects and verbs in videos
containing an HOI activity. We also proposed the use of side
information to prevent predicting the invalid verb-object
pairs (see Section 3.6).

2.3. Object Detection. Our proposed zero-shot learning
method is compositional learning, in which the HOI de-
composes into two components, verbs and objects. In other
words, there are two components for recognition, verbs
(human action) and objects. Recent advances in object
detection have been achieved by the successful methods of
region proposal [60] and region-based convolutional neural
networks (R-CNN) [61]. Some works focused on processing
time that is appropriate for real-time object recognition
tasks. Only one processing step for recognizing the object in
the image is suggested (YOLO) that concentrates on pro-
cessing time [62]. Single-shot detector (SSD) [63] presented
high-speed multiobject detection that uses different feature
maps extracted from different layers of CNN to detect
objects and their location in the image with varying sizes.

3. Proposed Approach

)e primary purpose of this work is the ability to identify a
novel HOI. We use the zero-shot learning approach because
it increases identifiable HOIs without increasing HOI cat-
egories in training data. In other words, to train a recognizer
model for a given number of classes, part of the target
classes’ data is sufficient. It is not necessary to have the data
of all categories. )erefore, the need for training data is
reduced. In this work, the input is a video (sequence of
frames) containing a human-object interaction, and the
output is a pair of “verb, object” as an HOI label.

Reducing the number of invalid predicted HOI classes,
which are probably incorrect, is another goal of this work.
For this purpose, the use of external information is
suggested.

3.1. Zero-Shot on HOI Recognition. In zero-shot learning,
the main class is decomposed into its components, and
components recognition is applied instead of recognizing
the main category. Identifying a new class in the zero-shot
learning approaches is done by recognizing the class’
components, which have been present separately in other
classes seen by the model. In the test phase, the class
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components are recognized, and the predicted class is
identified as a combination of the predicted components.
)us, a new combination of components, which the model
did not see at the time of training, indicates the identification
of a new class and is not labeling as a more similar existing
class. Decomposing an HOI into a verb and object is pre-
viously introduced to identify the limited number of HOIs in
still images [13]. Each HOI class decomposes into a verb and
an object as its components. A particular verb can be per-
formed on several different objects, for example, “writing on
the whiteboard,” and “writing on the notebook.” Different
verbs can also be performed on the same objects, such as
“writing on the notebook” and “ reading a notebook.” If the
system learns verb and object classes separately instead of
HOI classes, it can recognize those verbs and objects in seen
and unseen HOI classes and make verb-object pairs as an
HOI class at test time. Suppose a particular object learned by
a model from an HOI (with a specific verb) and that object
exist in another HOI (with a different verb). In that case, the
model can identify it, and it is not necessary to learn this
object to model by second HOI class. )e same applies to
verbs. In other words, it is not required to feed all HOI
categories to model for understanding all of them, and it
only needs to have a training dataset, which includes all
verbs and all objects. In other words, the problem of HOI
recognition is decomposed into two recognition issues: verb
recognition and object recognition. )erefore, the designed
system must include two separate parts: verb recognition
and object recognition.

Suppose the available HOI dataset includes ν verbs and o
objects. So, the identification system can recognize ν verbs
and o objects. Since an HOI class consists of a verb and an
object, this system theoretically can identify |ν|.|o| categories.
Training a recognizer system for understanding |ν|.|o| classes
in a fully supervised manner needs to labeled training data for
|ν|.|o| HOI classes. But in the proposed approach, we only
need labeled data for |ν| + |o| categories. Also, since an HOI
has one verb and one object, it can train both verb and object.

According to the above, the central system has two
branches due to recognizing two components, namely, verb
and object. )e output of one branch is the predicted verb
applied to the object, and the production of another branch is
the object(s), which a verb is applied to it. )e combination of
the two outputs can be considered as a predicted HOI class.

)e zero-shot learning methods have two stages: (1)
predicting the components and (2) inferring the class label
from predicted parts. )e first stage in our problem is
predicting the verb and objects, and the second is combining
object and verb to infer HOI class. For the first stage, we use
a two-branch structure that predicts the verb and objects.
)e second stage is done using side information to form an
HOI class with verbs and objects obtained in the first stage.

)e main idea of zero-shot on HOI recognition is in-
troduced for the limited number of classes in still images
[13]. Understanding video and, in particular, understanding
HOI in video data is more challenging and more applicable
than still image data, since, in this work, the zero-shot on
HOI recognition in the video data is desired. Since the HOI
is decomposed into two components (verb and object), the

central recognizer system includes twomain branches as two
recognition tasks: one branch for verb recognition and one
branch for object recognition. In this work, each recognition
task is implemented by a neural structure. Figure 1 shows the
simple architecture for the mentioned system. )e verb
recognition branch uses the RGB frames and optical flow of
input video, while the object recognition branch uses only
RBG frames for detection. In each branch, the input video
(RGB frames and/or optical flow) feeds to the CNN module
for extracting high-level features, and then these features are
used for the corresponding recognition tasks. )e object
recognition branch is more straightforward because it can be
recognized from a single frame. So, we use a typical CNN-
based object recognition structure. But the nature of verb
recognition is more complicated than the object. To rec-
ognize the verb, we use a three-stream structure based on
CNNs and RNNs.

3.2.ObjectRecognitionBranch. Our focus and innovation are
on the verb recognition branch. )e object recognizer’s de-
sired output is the recognized objects from the input video
and their reliability score. )e objects of each frame of the
input video are recognized by the existing successful object
recognition method, SSD [63]. )e SSD approach is based on
the feed-forward CNN that produces a fixed-size collection of
bounding boxes. After that, the score of object class instances
in those boxes is predicted, and a nonmaximum suppression
step makes the final detections. SSD is a fast object detection
method because of eliminating bounding box proposals and
subsequent feature resampling stage.)e early network layers
are based on standard architecture used for high-quality
image classification. Some convolutional feature layers are
added to the previous layers, which decrease in size pro-
gressively and allow predictions of detections at multiple
scales. SSD uses separate predictors (filters) for different
aspect-ratio detections. )ese filters apply to multiple feature
maps to perform detection at multiple scales. So, the location
of objects in an image and their reliability scores are predicted
in a short time. See reference [63] for more details. In this
work, we have not used the location information of the
objects, and we have considered only the detected objects
along with their score. Still, in future works, we can use the
location information of the objects and salience areas of
action to distinguish the target object from the background
objects.

After detecting objects in each frame by SSD, the objects
are obtained in the whole video. )ese objects combine with
the recognized verb using side information (see Section 3.6)
and reliability scores to make a valid verb-object pair, and
the HOI class is identified.

3.3. Verb Recognition Branch. Verb recognition or, in
general, activity understanding in video space is different
from single image space. For activity-based video classifi-
cation in deep learning approaches, usually, the features of
each frame of input video extracted with a neural structure
and class of video clip predicted by a set of features came
from all frames.)e use of two-stream structures is common
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for this purpose, in which one stream considers appearance
cues (from RGB frames) and the other considers temporal
cues (from optical flow). One input to activity understanding
systems usually is a sequence of RGB frames of an input
video clip. Much of an RGB image is the background and is
not necessarily related to the activity. Hence, the features
extracted from it are strongly affected by the background.
Estimating susceptible areas to activity and extracting fea-
tures from them can help us solve this problem. On the other
hand, the background can also contain information about
the event that occurred, and completely removing it can lead
to performance degradation. Estimating the region related to
activity and blurring the background can be useful.)us, the
RGB stream is split into two streams. )e first stream es-
timates activity region patches and extracts features from
them as patch-based representation. )e second stream
estimates the activity region, blurts other areas, and extracts
features from the new RGB image as focal representation.
)e video data includes temporal information of what is
happening, which is not in still images. )e short-time
temporal information can be represented by optical flow.
)erefore, a common input to activity understanding sys-
tems can be an optical flow of input video for motion
representation.)ese processing streams are described more
detail in Section 3.5.

Given the above and that the nature of the verb’s rec-
ognition is a subset of the action, we propose to use three
inputs for the verb recognition task. )ese three inputs are
estimated activity region patches, RGB image with blurred
background, and the optical flow. So, the central system’s
verb recognition branch is a three-stream structure, in-
cluding patch-based representation, focal representation,
and motion representation. )is three-stream structure was
previously introduced for action recognition in the video
[41]. We use this structure with a new feature aggregation
technique to recognize the verb in the video.

3.4. Feature Aggregation. )e final step in the recognition
system is classification on a feature vector derived from three
processing streams. Features obtained from each stream
must aggregate to produce the final feature vector of each
stream, and then the ultimate features of the overall system
for classification are obtained. Conventional feature ag-
gregation methods, such as average or max-pooling, rep-
resent the entire space of features as a single descriptor.

)ese methods may be suboptimal to representing a video
containing several subactions. Locally aggregation features
were introduced in [64] and extended to spatiotemporal
feature aggregation for action recognition as Action VLAD
[7]. In this scenario, the features are clustered to K cluster
and pooled jointly across space and time. Figure 2 shows the
difference between spatiotemporal and average or max-
pooling aggregation. In the average and max pooling sce-
narios (Figures 2(a) and 2(b)), the entire space of the feature
map is represented as a single descriptor. But in the Action
VLAD scenario (Figure 2(c)), the feature space is repre-
sented by several (K) descriptors. With this technique, if the
nature of the action consists of several sub-actions, we hope
that it will be described more optimally.)erefore, it is more
likely to recognize the correct action because the feature
space is represented by multiple descriptors instead of one,
and the deletion of information is less in the feature ag-
gregation step.

Consider the extracted descriptors from each frame of
the video in each spatial location be xi.tϵRD, where
iε 1 . . . N{ } is related to spatial location and tε 1 . . . T{ } is the
frame index. For spatiotemporal aggregation, the descriptor
space RD is divided into K cells using K anchor points ck 

(stars in Figure 2(c)). )en, each descriptor xi.t was assigned
to one of the cells due to its distance from the anchor. )e
new descriptor is presented by the difference vectors cal-
culated across the entire video as follows.

V[j, k] � 
T

t�1


N

i�1

e
− α xi,t− ck‖ ‖

2

k′e
−α xi,t−c

k′

����
����
2 xit[j] − ck[j]( , (1)

where xit[j] and ck[j] are the j-th component of the de-
scriptor vector xi,t and anchor ck. Parameter α is a tunable
hyperparameter.)e output is a matrix V where each column
shows an aggregated descriptor related to one cell. )ematrix
intranormalized across columns, stacked, and L2-normalized
[65] into a single descriptor of the entire video.

)e difference vectors record the differences of extracted
descriptors from subactions represented by anchors ck. So,
this aggregating scenario can help to recognize the verbs that
consist of some subactions.

3.5. Details of Each Stream in Verb Recognition. Our pro-
posed model for verb recognition is a three-stream RNN-
based structure. Each stream has three main processing

Verb-object
pair

Optical
flow

Input video

3-stream verb
recognition

Object recognition

Predicted HOIRecognizers

RGB
frames

Figure 1: A simple overview of the main system architecture. )e verb recognition branch uses the RGB frames and optical flow of input
video, while the object recognition branch uses only RBG frames for detection.
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steps, which are shown in Figure 3. )e processing flow of
the three streams is almost similar. Each stream’s input is a
sequence of frames in the form of RGB and/or optical flow.
CNN extracts the convolutional features of each frame.
)en, the extracted features of the T consecutive frames of
video feed to LSTM blocks to represent the temporal in-
formation. )e output is several spatiotemporal feature
vectors. )ese vectors are then locally aggregated, and the
final representation vector of each stream is prepared for the
final classification. )e following is a detailed description of
each shown module in Figure 3.

3.5.1. Path-Based Representation. )is stream aims to find
areas related to the target verb and use it to identify the verb.
)ese regions are appropriate to represent the video clip
based on the event that occurred in it. Figure 4 shows the
structure and processing process in this stream. )e prob-
able areas are selected using the method proposed by
Papazoglou et al. [66], which uses the RGB frame and its
optical flow. Other proposed regions are taken from the
region proposal network (RPN) offered by Ren et al. [53].
)e RPN extracts the areas that are prone to the presence of
objects or entities. )e RPN processes a still image and

(a) (b) (c)

Figure 2: Difference pooling scenario for aggregate features. Different colors points correspond to different subactions in the video. (a) and
(b) are good for similar features, but they do not adequately capture the complete distribution of features if the input video contains several
subactions. Scenario (c) clusters features in spatiotemporal manner [59].

Input frames
(RGB/optical flow)

Extract convolutional
features of each frame

Video representing
with LSTM

Local feature
aggregation

Figure 3: Block diagram of the process in each processing stream in the verb recognition branch shown in Figure 1. First, the convolutional
features of each frame were extracted. )en, the whole input video is represented by the LSTM block. Finally, the elements are locally
aggregated.

Feature

CNN

So�max

T × 4096 T × 1024
LSTM Action

VLAD

RPN

T-frames
Dense

4096

4096

Figure 4: Patch-based representation. At first, the areas related to the target verb are detected, and the patches are extracted from the input
frame. )en, the features of each patch in each frame are extracted. )e LSTM block represents the whole input video. Finally, the elements
are locally aggregated, and the class scores for each verb class are estimated.
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outputs lots of proposal windows, many of which are ir-
relevant. )e final action patches were selected by merging
the already and previously extracted regions. We see Al-
gorithm 1 in [41] to choosing actionness patches process (see
Algorithm 1 for more details). After selecting each frame’s
actionness patches, these are fed to CNN, and the con-
volutional features are extracted. All of these processes are
related to the second block in Figure 3. After obtaining
convolutional features of all T frames of the input clip, T
feature vectors are fed to the RNN block and outputs T time-
distributed feature vectors as the input video’s temporal
representation (third block in Figure 3). Of course, we use
the LSTM block as an RNN for the video’s temporal rep-
resentation in all three streams. )e final step in this stream
is local feature aggregation (see Section 3.4). )e time-
distributed features are locally aggregated to the K de-
scriptor, and the target activity is represented as its sub-
actions. )e output vectors are used to classify the occurred
verb in the video clip, and the classification scores are
predicted for each verb class.

3.5.2. Focal Representation. As previously stated, much of an
RGB image is the background and is not necessarily related
to the event. So, it may lead to overfitting in the training
phase if the background is not discarded. On the other hand,
completely removing the background can lead to perfor-
mance degradation because it can also contain information
about the event. To handle this issue, after finding the
foreground (selecting the probable area in patch-based
representation stream), the background of the RGB image is
blurred by a Gaussian low pass filter, and the other areas
remain unchanged. )e idea is inspired by the human focal
vision system [41].)e resulting image is a focused image on
the area prone to activity, which also retains background
information. Subsequent steps, including convolutional
feature extraction from all T frames, obtain time-distributed
feature vectors using LSTM block, local feature aggregation,
and predicting the classification scores, are quite similar to
patch-based representation stream’ steps. Figure 5 shows the
structure of this processing stream.

3.5.3. Motion Representation. According to the contents of
Section 3.3, the short-term temporal information in the
video clip can be represented by optical flow.)e RNN block
can obtain long-term temporal information. So, the third
stream of the verb recognition branch can be motion rep-
resentation by optical flow (Figure 6). Each frame’s con-
volutional features are extracted from optical flow by a CNN.
)e structure used for this stream is the motion-CNN
proposed in [31]. )e optical flow is computed between each
consecutive frame using the Brox algorithm [67], which
assumes the camera is static. As shown in Figure 6, the next
steps are exactly like the two other streams.

As observed, the processing flow is the same in all three
streams. Only the inputs of these streams are different. )e
first stream uses the salience patches of the input image, the
second stream uses a focal image whose background is
blurred, and the third stream uses optical flow.)e output of

each stream is classification scores for verb classes. Finally,
these three streams’ results are merged to recognize the
target verb in the input video.

3.6. Side Information for Reducing Invalid HOIs. )e zero-
shot learning approach has two stages: (1) predicting the
components and (2) inferring the class label from predicted
parts. )e first stage of this approach in our work is to
recognize the verbs and objects done by the central system
(two-branch HOI recognition system). )e second stage is
not complicated. It is enough to put the recognized verb and
the object together and create the “verb-object” pair as a
predicted HOI. But is any combination of verb-object ac-
ceptable? For example, the “eating a laptop” is a presumable
verb-object combination that may be the central system’s
output. Is it acceptable? Of course not. So, there is a need for
a scenario to solve this problem. We also tackle this problem
in this work.

Many of our interactions with objects are based on our
prior knowledge. We know that a s “laptop” is not edible,
and we cannot eat it. Hence, we argue that the detected pair
of verb-object (eating a laptop) is invalid. )is argument is
based on our prior knowledge. If the system has prior
knowledge like humans, it can validate the output pairs and
identify invalid states. In this case, the system realizes that
“eating a laptop” is an incorrect HOI and seeks another verb
or object to create a valid HOI.

)e use of an external information graph is proposed for
compositional learning for HOI [58]. )e idea of using the
side information comes from the concept of word embed-
ding. )e external graph encodes two essential types of
knowledge: (1) the “affordance” of objects, such as “laptop
can be held,” and (2) the semantic similarity between verbs
or objects. SVO triplets define objects’ affordance from the
external knowledge base [59], and the similarity between
verbs or objects is defined by lexical information from
WordNet [68].

We propose a simple graph to modeling and using side
information (Figure 7). )e graph has three categories of
nodes: verb, object, and interaction. Each verb and object is
modeled as a separate node, and their attributes are pro-
vided from nltk [69] based on the concept of word em-
bedding [70, 71]. )ese attributes are conceptual
representations of words so that words with close meanings
have similar attributes. For example, both the words
“Sandwich” and “pizza” are related to a type of food, so they
have a similar concept and are used in a similar sense. A
verb node can only connect to an object node via a valid
interaction node and create a graph path. So, each path in
this graph shows a valid HOI. Valid HOIs are HOIs that
exist in the dataset. )ere is no path between verbs together
or objects together. Also, conceptually similar verbs (or
objects) are connected with a link. )e similarity between
verbs (or objects) is computed by nltk [69]. )e links help
in finding the valid secondary HOIs. For example, let “hold
a laptop” is a valid HOI (it existed in the database and its
path exists in the graph), and “take a laptop” has not a path
in the graph (it did not exist in the dataset), but there is a
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link within the “hold” and “take” nodes. )erefore, “take a
laptop” can be a valid HOI (it is a valid secondary HOI).
)is rule also applies to object nodes.

)e side information graph is used to validate the central
system’s results and enhance the overall performance. )e
central system’s output is the classification score for the verb
classes and the identified objects with their reliability score.
)e three verb classes with the highest classification score are
combined with the identified objects to form possible “verb-
objects ” pairs and are sorted by score. )e validity of the
obtained pairs is then checked using the side information
graph, and the first valid pair is selected as the final predicted
HOI class. In fact, this is the second stage of the zero-shot
learning approach.

4. Results and Discussion

We present the results of our method in this section and
compare it to some other works. )e used dataset is in-
troduced first, and then the implementation setups are
described. Finally, we report our results and compare the
proposed approach against state-of-the-art methods.

4.1. Dataset. For human action understanding in videos,
several appropriate datasets have been provided and pub-
lished, such as UCF101 [72], HMDB51 [73], and Actor-
Action Dataset (A2D) [74]. Most of these datasets involve
many human activities, not just HOIs. So, they are not
suitable for the evaluation of HOI understanding tasks.

)e recently published challengeable dataset for human
activity understanding is Charades [12]. )is dataset con-
tains 9848 video clips of HOIs captured in real environ-
ments. It has 157 categories of human activities including
some actions with “no interaction.s ” After excluding cat-
egories with “no interaction,s ” there are 149 valid HOI
categories defined as verb-object pairs. )is 149 category
includes 34 verbs and 37 objects. Clips of this dataset cover
both the third and first person’s actions. We use the third
person’s clips of these 149 categories as our Charades
benchmark.

We have two scenarios for evaluating our system. First,
we assess the model for fully supervised HOI recognition
and compare model performance with some state-of-the-art
approaches. Afterward, we present the performance of the
proposed model on the zero-shot detection of HOIs. For
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with a lowpass Gaussian filter. )en, the features of each blurred frame are extracted. )e whole input video is represented by the LSTM
block. Finally, the elements are locally aggregated and the class scores for each verb classes are estimated.

CNN

Feature

4096

So�max

T × 4096 T × 1024
LSTM Action

VLAD

T-frames
Dense

4096

CNN

Feature

4096

So�max

T × 4096 T × 1024
LSTM Action

VLAD

T-frames
Dense

4096

Figure 6: Motion representation. )e short-term temporal information in the video clip can be represented by optical flow. In first, the
features of each optical flow of each frame extracted.)en the whole input video is represented by the LSTM block. Finally, the elements are
locally aggregated, and the class scores for each verb classes are estimated.

8 Computational Intelligence and Neuroscience



zero-shot analysis, we split each set of verbs and objects into
two subsets. )e object set is divided into subsets 1 and 2,
and the verb set is divided into subsets A and B. So, we can
provide four subgroups of HOI, including 1A, 1B, 2A, and
2B. For example, subgroup 1A consists of 49 HOIs whose
verbs are in the verb subset A, and their objects are in the
object subset 1. )e same applies to the other three sub-
groups. Subgroup 1B includes 22 HOI classes, 2A includes
47 HOIs, and 2B includes 31 HOIs.

If we train the model with 1A+ 2B, it does not see all
HOIs but see all verbs and objects. So, it can identify the
unseen HOIs that are in the subgroups of 1A and 2B. In
other words, we are using 80 HOI classes (1A+ 2B) to train a
system that can recognize 149 HOI classes of the used
dataset.

4.2. Implementation Details. )e proposed system has three
processing streams for verb recognition and one stream for
object recognition. For the two spatial CNN streams of the
verb recognition branch, an AlexNet architecture that
pretrained on UCF sports, JHMDB, and HMDB51 datasets,
is used. )e first spatial network inputs are the action
patches, and for the second spatial network, the proposed
focal representation is fed. Moreover, a VGG16-RPN, which
is trained on the ImageNet dataset, is used for region
proposal to select the actionness patches process. For the 3rd
stream of the verb branch as motion representation, we used
the CNN network like the network architecture used by
Gkioxari et al. [31]. )is motion-CNN is pretrained on the
optical flow images of UCF sports and JHMDB datasets. )e
optical flow is computed between each consecutive frame
using the Brox algorithm [67]. For motion-CNN input, a 3D
image is created by stacking the x-component, y-compo-
nent, and optical flow magnitude. )e FC7 layer of three
CNNs extracts a 4096-dimensional feature vector for each
input video frame. After obtaining feature vectors for all T
frames of input clip in three CNNs, these feature vectors are
fed to the RNN block and outputs T time-distributed feature
vectors. For the RNN block, the LSTM module with 1024
hidden units is used. )e last step before the final classifi-
cation is local feature aggregation (see Section 3.4), in which
the value 64 is selected for parameterK.)e time-distributed

features are locally aggregated with ActionVLAD, and the
target activity is represented as its subactions. )e output of
this step is used to classify the occurred verb in the video clip.
Two FC layers with the number of neurons equal to 256 and
the number of verbs (here 34) are used as a classifier in each
stream. For training the LSTM and its following dense
network, a stochastic gradient descent optimizer (SGD) is
utilized. )e last FC layer determines the final prediction
with a Softmax activation. For preventing overfitting, the
flipping video frames technique is used for data augmen-
tation. )e learning rate is set to value 5 × 10− 5. Also, we use
T� 25 frames per video for both optical flow and RGB for
learning and evaluation. )e final verb class scores are
obtained by averaging the three streams’ results.

Another processing branch of the main system is the
object recognizer. In this branch, the objects of each frame of
input video are recognized by the existing successful object
recognitionmethod, SSD [63]. So, the objects are obtained in
the whole input video. )e results are objects with their
reliability scores. )ese results combine with the recognized
verb by using side information (see Section 3.5), and a valid
verb-object pair is identified as the HOI class. Our deep
learning system is implemented in python based on the
Tensorflow open-source toolbox and Keras library.

4.3. Experimental Results. We start the experiments by
comparing the zero-shot recognition accuracy of our initial
model and the state of the art. )e initial model has two
spatial processing streams in the verb recognition branch
(without motion representation). Table 1 shows the results.
)e effect of using side information has also been investi-
gated. )e two last rows in Table 1 show the results of our
simple system with or without side information (SI). )e
compared methods are all in the field of zero-shot learning,
and, like us, they have tried to identify unseen classes. Our
previous model [14] has one stream in verb branch recog-
nition. )e method [58] uses the convolutional graph net-
works, which learn how to compose classifiers for verb-noun
pairs. )e SES [68] and DEM [75] use the verb and noun
embeddings, which are matched to visual features using L2
loss. CC [76] does not combine word embeddings but
considers the composition of classifiers.

Our model better represents the video due to RNN blocks’
use, which leads to better verb recognition. So, it has had better
results. )e use of side information graphs also had a positive
effect on the results in Table 1. In Figure 8, two samples showed
that they were misclassified without using the side information
and were classified correctly after using the side information.
)e patterns of the right verbs and the false detected verbs are
similar. )erefore, the model may classify incorrectly, but
using the side information can correct such errors.

We propose using local feature aggregation to aggregate
the feature maps extracted from input frames (Section 3.4).
)e proposed model for this evaluation is named
2Stream+WE+VLAD.)e effect of this technique is shown
in Table 2.)e reported results indicate a slight performance
improvement. We used the local aggregation after the RNN
module, but it is possible to apply this technique to the

Hold

Eat

Take

Laptop

Tablet

Sandwich

Figure 7: Side information graph. )e green ellipse shows the verb
nodes, the blue ellipse shows the object nodes, and the yellow ball
shows an interaction. Each valid HOI is specified by the triple
connected nodes (verb, interaction, and object). )e conceptually
similar verbs or objects nodes connected by a link (dashed lines).
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outputs of the CNNs.)e results show that its application to
the RNN module has a slight performance improvement.

For the representation of the temporal information in
the input video, the potential of recurrent neural networks
(RNNs) has been exploited. Furthermore, the use of the
optical flow of the input video as the 3rd stream in the verb

recognition branch has been investigated. )e impact of
using this stream is shown in Table 3. )e model named
3Stream+WE+VLAD(rnn) is our final proposed system,
which uses the LSTM block as the RNN module. According
to the results, using optical flow is observed in the slight
improvement of system performance.

We used the RNNs for the representation of the tem-
poral information in the input video. In previous evalua-
tions, the LSTM block is used for the RNNmodule. Another
choice is the GRU blocks, which are simpler than LSTMs

Figure 8: Two samples were misclassified without using side information and were classified correctly after using the side information. In
the first row, the true HOI class is “smiling at a book.“ Without using the side information, the predicted class was “playing, book.” After
using the side information, the predicted class is “smiling, book.” In the second row, the true HOI class is “making a sandwich.s ” Without
using the side information, the predicted class was “fixing, sandwich.” After using the side information, the predicted class is corrected as
“making, sandwich.”

Table 2: )e effect of local feature aggregation on HOI recognition
performance. )e model was trained with 1A+ 2B and tested on
2A+ 1B and all data.

Method
mAP (%)

ALL data Unseen data (2A+ 1B)
2Stream–WE - VLAD 17.8 14.83
2Stream+WE - VLAD 19.5 16.08
2Stream–WE+VLAD (rnn) 18.7 15.33
2Stream+WE+VLAD (rnn) 20.96 16.96
2Stream+WE+VLAD (cnn) 20.65 16.65

Table 3: )e impact of the optical flow on the proposed system’s
performance. )e model trained with 1A+ 2B and tested on
2A+ 1B and all data.

Method
mAP (%)

ALL data Unseen data (2A+ 1B)
2Stream–WE-VLAD 17.8 14.83
3Stream–WE-VLAD 19.21 16.65
2Stream+WE-VLAD 19.5 16.08
3Stream+WE-VLAD 20.84 17.32
2Stream+WE+VLAD (rnn) 20.86 16.96
3Stream+WE+VLAD (rnn) 21.27 17.63

Table 4: )e impact of the RNNs (LSTM/GRU) on the proposed
system’s performance. Training and testing are performed on the
same subset (averaged on four subsets).

Method
mAP (%)

LSTM GRU
2Stream+WE - VLAD 20.28 20.33
3Stream+WE - VLAD 20.94 20.94
2Stream+WE+VLAD (rnn) 20.74 20.78
3Stream+WE+VLAD (rnn) 21.31 21.35

Table 1: Zero-shot HOI recognition mAP on Charades dataset. )e model trained with 1A+ 2B and tested on 2A+ 1B and all data.

Method
mAP (%) on the test set

All data Unseen data (2A+ 1B)
Chance 1.43 1.45
Compositional [58] 14.32 10.48
SES [68] 13.12 9.56
DEM [75] 11.78 8.97
CC [76] 14.31 10.13
1stream [14] 16.48 11.23
2Stream– SI 17.8 14.83
2Stream+ SI 19.5 16.08

Table 5: )e impact of the RNNs (LSTM/GRU) on the proposed
system’s performance.)emodel is trained with 1A+ 2B and tested
on all data.

Method
mAP (%)

LSTM GRU
2Stream+WE - VLAD 19.5 19.42
3Stream+WE - VLAD 20.84 20.63
2Stream+WE+VLAD (rnn) 20.86 20.64
3Stream+WE+VLAD (rnn) 21.27 21.19
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and have a similar function. )e GRU blocks are used with
1024 hidden units. )e comparison between the use of the
LSTMs and GRUs is made, taking into account the volume
of training data. )e results are shown in Tables 4–6. )e
values reported in Table 4 indicate that the GRU has a slight
improvement to the LSTM. But looking at the results of
Tables 5 and 6 shows the opposite. )e difference is the
amount of training data. In other words, the GRUs are
simpler than the LSTMs, and they converge faster. So, we
conclude that the GRU is appropriate for cases that the
amount of training data is small (due to the rapid con-
vergence), and the LSTM is the right choice for cases with a
large amount of training data due to its excellent
performance.

For the last evaluation, we examine our proposed system
in a fully supervised scenario. In other words, the model sees
all HOI classes in the training phase. 80% of all videos were
used as training data, and the remaining 20% of videos were
used for testing. Also, 10% of the training data are used as the

validation set. We compared our model’s performance to
three other state-of-the-art action recognition methods on
the Charades dataset. )ese three approaches are
ActionVLAD [7], Sigurdsson et al. [8], and CoViAR [9],
which are DNN-based. Our method in this evaluation for
RGB input is 2Stream+WE+VLAD and for RGB+ optical
flow is 3Stream+WE+VLAD. According to the result of the
previous evaluation, the LSTM has been selected for the
RNN module. )e results are reported in Table 7, which
shows our method’s better performance compared to the
other three methods.

5. Discussion

)is work’s primary goal is to identify HOI classes that the
model had not seen before. )e main idea is to decompose
the HOI into verb-object pairs and recognize them inde-
pendently. Tables 1–3 compare our proposed system to the
state of the art from the perspective of the intended

Table 7: HOIs recognition results (mAP(%)) on Charades dataset. )e model sees all HOI classes in the training phase.

Method
mAP (%)

RGB RGB+optical flow
ActionVLAD [7] 17.6 21.0
Sigurdsson et al. [8] 18.3 22.4
CoViAR [9] 21.9 24.1
Ours 23.64 24.73

Figure 9: Such samples of incorrect classification of our final model. In the first row, the true class is “opening a laptop” but predicted as
“fixing a laptop.” In the second row, the class of “fixing a vacuum” was predicted as “holding a vacuum.” Row 3 shows the “working at a
table” that is predicted as “watching at a book,” and the final row shows the “grasping onto a doorknob,” which is predicted by our model as
“fixing a door.”

Table 6: )e impact of the RNNs (LSTM/GRU) on the proposed system’s performance. Training and testing are performed on all data.

Method
mAP (%)

LSTM GRU
2Stream+WE - VLAD 22.45 22.20
3Stream+WE - VLAD 23.76 23.52
2Stream+WE+VLAD(rnn) 23.64 23.43
3Stream+WE+VLAD(rnn) 24.73 24.58
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purpose. Using the side information, representing the
video by 3-stream structure and the RNN blocks, and using
the local feature aggregation have ultimately led to our
system’s better performance. Using the side information
has corrected some invalid misclassifications (see Fig-
ure 8.). Using the local feature aggregation technique leads
to a better representation of some of the classes that consist
of several subactions.

Figure 9 shows some misclassified samples of our final
system. Observing these misclassified examples shows the
visual patterns of the predicted classes are similar to the
actual classes.)ese errors indicate that a lack of educational
data for different categories has made the model unable to
learn a general pattern. For example, the “opening” class has
several patterns: opening the door, opening the refrigerator,
opening the cabinet, and opening the laptop. If the model
learns the pattern of “opening” for the class of opening the
door, it can predict the “opening” in opening the cabinet
without observing it during training. But the visual pattern
of the “opening” of opening a laptop is different, and the
model cannot predict correctly. If the training data for a verb
exists in other cases, the model can learn a more general
pattern and perform better during testing.

In addition to the zero-shot performance, which was the
primary purpose of the work, we evaluate our method in a
fully supervised scenario and compare it to some methods
(Table 7). In this case, the model sees all HOI classes in the
training phase. Our system’s performance is slightly better
due to its potential in video representation and the cor-
rection of some errors.

6. Conclusion

In this research, we propose a CNN-based system for HOI
understanding in video data through a zero-shot learning
approach, which can identify new classes that have not been
seen before. So, the proposedmethod can identify more HOI
classes than available HOIs for training and partly resolve
data unavailability for all possible HOI classes. Our approach
decomposes the HOIs to verbs and objects and addresses the
problem as verb and object recognition in the videos. )e
model has a two-branch neural structure for two recognition
tasks, and it uses a CNN for feature extraction. We showed
that we could use 80 HOI classes (1A+ 2B) to train a system
that can recognize 149 HOI classes of the used dataset
(1A+ 2B+ 2A+ 1B). Of course, there can be more predict-
able classes in the real world because not all possible real-
world combinations of objects and objects are in this used
dataset. In other words, the information and potential of the
available data can be better used.

We proposed using a local feature aggregation to better
represent verbs (actions), especially verbs with multi-
subaction, before final classification. Conventional feature
aggregation methods represent the entire space of features as
a single descriptor, whichmay be suboptimal to representing
a video containing several subactions. )e used local feature
aggregation technique prevents the deletion of information
when merging features. So, the recognition of verbs with
several subaction is improved.

We also proposed using side information to reduce the
prediction of invalid verb-object combinations. Because of
the separate recognition of verb and object, predicting the
invalid verb-object pairs is possible. )e side information
shows the relations between verbs and objects defined by
lexical information.

We showed the effect of each proposed technique on
HOI recognition system performance. We also showed that
our method could work slightly better than some fully su-
pervised HOI recognition methods that reported the best
results on the used dataset, although this improvement is
tiny.

A more appropriate structure can be provided with
better accuracy in recognizing the verb from the input video
for future work.)e distinction between background objects
and activity-related objects can be used in future work,
taking into account the location of the detected objects. We
will also work on updating the system to learn new verbs or
object classes without the need for data from previous
classes. In other words, it is possible to apply incremental
learning to the proposed system.
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