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Abstract: Plant phenology is strongly interlinked with ecosystem processes and biodiversity. Like
many other aspects of ecosystem functioning, it is affected by habitat and climate change, with both
global change drivers altering the timings and frequency of phenological events. As such, there
has been an increased focus in recent years to monitor phenology in different biomes. A range of
approaches for monitoring phenology have been developed to increase our understanding on its
role in ecosystems, ranging from the use of satellites and drones to collection traps, each with their
own merits and limitations. Here, we outline the trade-offs between methods (spatial resolution,
temporal resolution, cost, data processing), and discuss how their use can be optimised in different
environments and for different goals. We also emphasise emerging technologies that will be the focus
of monitoring in the years to follow and the challenges of monitoring phenology that still need to be
addressed. We conclude that there is a need to integrate studies that incorporate multiple monitoring
methods, allowing the strengths of one to compensate for the weaknesses of another, with a view to
developing robust methods for upscaling phenological observations from point locations to biome
and global scales and reconciling data from varied sources and environments. Such developments
are needed if we are to accurately quantify the impacts of a changing world on plant phenology.
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1. Introduction

Phenology is the study of the timing of recurrent biological events (or phenophases),
the causes of these timings in regard to the biotic and abiotic drivers, and the connection
among phases of the same or different species [1]. Here, phenology is defined by both
describing observable events and also by describing the links and cascading indirect
effects that phenological events can have on an ecosystem [2]. This obvious interrelation
of phenology with so many aspects of an ecosystem is why it was hardly considered
a scientific discipline until the 1900s [3], despite the recording of phenological events
dating back thousands of years [4] (Figure 1). Nevertheless, the connection of phenology
with multiple facets of the ecosystem makes monitoring it critical for developing our
understanding of ecological processes and for managing resources in the face of climate
and habitat change [5,6]. As such, there has been a rapid acceleration in the study of
phenology and the associated development of new methods and technologies to aid this
endeavour (Figure 1). The past two decades in particular have seen increased effort to
build interdisciplinary phenological research frameworks that utilise developments in
technology to monitor phenology and its links with ecosystem function across species,
space and time [4,6,7].
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Figure 1. Timeline history of monitoring phenology. References for the specific time periods are: pre-1700 [4], 1700s [8], 
1853 [9], 1900s [10,11], 1920s [12], 1950s [13], 1960s [14,15], 1965-83 [16–19], 1900s [20], 2003 [21], 2000s [3,22], 2007 [23,24], 
2012 [2,25–27], 2016 [28,29], and 2020 [30]. 

1.1. The Ubiquitous Importance of Plant Phenology 
Most biological organisms follow certain life cycle events, but plant phenology is ar-

guably the most studied. Plant phenology includes processes such as leaf emergence, 
flowering, fruiting, seeding and leaf senescence, and these processes link strongly to eco-
system function and services (Figure 2; [6,31]). Therefore, change to phenological events 
may have implications for biogeochemical cycles, including that of carbon [32], and for 
the population dynamics of species connected at different trophic levels or in competitive 
and mutualistic interactions [33,34]. Plant phenology can further force temporal shifts in 
animal phenology [22,35], with the potential for phenological mismatching if the species 
involved do not respond similarly to environmental changes [35,36]. 

Leaf emergence (flush) phenology (the presence of new leaves on a tree canopy) is 
particularly important, as it directly controls processes such as primary productivity, car-
bon sequestration, nutrient cycling, water storage, and competition and coexistence dy-
namics (Figure 2; [37–42]). For example, when canopy trees flush their leaves it alters the 
water and light environments for coexisting organisms by intercepting more of the incom-
ing solar radiation and reducing throughfall from precipitation, increasing soil water up-
take and consequently reducing soil water and soil water evaporation rates (Figure 2; 
[38,43]). Indirectly, leaf flush can alter the presence of herbivorous insects and conse-
quently shift the presence of insectivorous birds and mammals (Figure 2). For instance, 
phenological change of oil-seed crops has resulted in changes in the abundance and type 
of herbivorous insects present in agricultural landscapes, in turn causing diet shifts in in-
sectivorous birds [44]. There is also a feedback loop to this process: some plant species aim 
to reduce herbivory by altering their phenological activity to flush before insects emerge, 
or by synchronising their leaf flushing with other plant species to reduce herbivory pres-
sure [31]. Tropical plants that flush their leaves later in the season can suffer significantly 
higher damage by insects compared to those that flush early or in synchrony during the 
peak flushing phase [45]. This is not always the case in temperate regions however, where 

Figure 1. Timeline history of monitoring phenology. References for the specific time periods are: pre-1700 [4], 1700s [8],
1853 [9], 1900s [10,11], 1920s [12], 1950s [13], 1960s [14,15], 1965-83 [16–19], 1900s [20], 2003 [21], 2000s [3,22], 2007 [23,24],
2012 [2,25–27], 2016 [28,29], and 2020 [30].

1.1. The Ubiquitous Importance of Plant Phenology

Most biological organisms follow certain life cycle events, but plant phenology is
arguably the most studied. Plant phenology includes processes such as leaf emergence,
flowering, fruiting, seeding and leaf senescence, and these processes link strongly to
ecosystem function and services (Figure 2; [6,31]). Therefore, change to phenological events
may have implications for biogeochemical cycles, including that of carbon [32], and for
the population dynamics of species connected at different trophic levels or in competitive
and mutualistic interactions [33,34]. Plant phenology can further force temporal shifts in
animal phenology [22,35], with the potential for phenological mismatching if the species
involved do not respond similarly to environmental changes [35,36].

Leaf emergence (flush) phenology (the presence of new leaves on a tree canopy) is
particularly important, as it directly controls processes such as primary productivity, carbon
sequestration, nutrient cycling, water storage, and competition and coexistence dynamics
(Figure 2; [37–42]). For example, when canopy trees flush their leaves it alters the water
and light environments for coexisting organisms by intercepting more of the incoming
solar radiation and reducing throughfall from precipitation, increasing soil water uptake
and consequently reducing soil water and soil water evaporation rates (Figure 2; [38,43]).
Indirectly, leaf flush can alter the presence of herbivorous insects and consequently shift the
presence of insectivorous birds and mammals (Figure 2). For instance, phenological change
of oil-seed crops has resulted in changes in the abundance and type of herbivorous insects
present in agricultural landscapes, in turn causing diet shifts in insectivorous birds [44].
There is also a feedback loop to this process: some plant species aim to reduce herbivory by
altering their phenological activity to flush before insects emerge, or by synchronising their
leaf flushing with other plant species to reduce herbivory pressure [31]. Tropical plants
that flush their leaves later in the season can suffer significantly higher damage by insects
compared to those that flush early or in synchrony during the peak flushing phase [45].
This is not always the case in temperate regions however, where variation in leaf flush
timing involves ecological trade-offs. For example, some Oak species (Quercus spp.) in
Eastern Europe flush early in the season to avoid summer droughts but consequently
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suffer from later spring frost and insect herbivory, whereas other Oak species flush up
to six weeks later in the season, avoiding insect herbivory but suffering from summer
droughts [46,47].
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Most of the world’s plants rely on animal pollination for successful reproduction, espe-
cially in the tropics where the proportion of animal-pollinated species has been estimated 
at 94% [51]. Flowering phenology has been demonstrated to positively structure mutual-
istic plant-flower visitor networks [57], as well as regulate their modularity—a measure 
of decoupling in densely connected networks [58]. In addition, fruiting and seeding can 
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Figure 2. Ecosystem processes and conditions that drive phenological events. References giving examples for the effect of
phenology on ecological processes are: increased interception [38], increased herbivory [48], increased pollination [49–51], in-
creased nectar feeding [52], increased soil water uptake [38–43], increased fruit feeding [53,54], increased seed hoarding [55],
increased seed dispersal [55], increased seed predation [56], decreased soil water uptake [38–43], decreased leaf decomposi-
tion [56], increased solar radiation [2,38,43], increased rain throughfall [38], and decreased solar radiation [2,38,43].

Flowering and fruiting phenologies are often overlooked, possibly because of the more
obvious and critical role played by leaf emergence cycles in many ecosystem processes,
however, they also remain key drivers of ecosystem processes [3]. Flowering phenology,
for example, can directly impact the diversity of both pollinators and plants (Figure 2).
Most of the world’s plants rely on animal pollination for successful reproduction, especially
in the tropics where the proportion of animal-pollinated species has been estimated at
94% [51]. Flowering phenology has been demonstrated to positively structure mutualistic
plant-flower visitor networks [57], as well as regulate their modularity—a measure of
decoupling in densely connected networks [58]. In addition, fruiting and seeding can
force ecosystem processes such as fruit hording and seed dispersal, which in turn affects
the diversity and distribution of taxa at higher trophic levels (Figure 2). For instance, a
change in fruiting phenology has influenced the reproductive performance of endangered
chimpanzees in Uganda [59], and the timing of mast seeding events in Borneo has led to
increases in insect [60] and nomadic vertebrate populations [55].

At a community level, phenological change can, in theory, have reverberating effects
on species distributions [61] and assemblages [2,62], as a result of the fine scale changes in
abundance and phenological events [4]. For example, a modelling study outlined how the
northern limit of plant species’ ranges in the Northern Hemisphere appears to be dictated
by the inability to undergo full fruit maturation [61]. Conversely, the southern limit of
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plant ranges of the South Hemisphere appears to be dictated by the inability to flower or
unfold leaves, owing to a lack of chilling temperatures that are necessary to break bud
dormancy [61]. However, to our knowledge the effect of fine scale phenological event
change on the community level distribution of higher taxa has not yet been tested.

1.2. Phenology in a Changing World

Habitat Change—Anthropogenic pressures on the environment have caused unprece-
dented rates of habitat loss, fragmentation, and degradation over the last half-century [63–70].
Forest loss, fragmentation, and the resulting edge effects produce fine-scale variations
in light, temperature and humidity, that can in turn induce phenological changes. For
example, in Southeastern Brazil there was a higher proportion of reproductive trees along
forest edges (59% flowering and 73% fruiting) than inside the forest (47% flowering and
29% fruiting) [71]. Moreover, in Costa Rica, flowering and fruiting events were more
common, and occurred 15 to 20 days earlier, in forest disturbed by fragmentation in com-
parison to undisturbed continuous forest [72], and peak flowering in trees isolated by forest
fragmentation increased by double but fruit production from those flowers was halved [73].
Although individual flowers in fragmented forests were less likely to produce a mature
fruit, at the scale of individual trees, the change in flowering and fruiting phenology in
fragmented forest combined to increase reproductive capacity [74]. Even in agricultural
landscapes, land-use intensification is the primary driver of variation in leaf flush onset
dates, accounting for 66% of the variation compared to 33% caused by climate change,
with an increase in leaf flush onset dates by up to 0.67 days per year caused by land-use
intensification [75]. The consequences of altered phenology in human-modified forest
habitats reverberate throughout ecosystems, transmitted via plant-animal interactions [76].
For example, in the tropical forests of Borneo, tree plots in logged forest were twice as likely
to contain fruits or flowers as in unlogged forest [56]. The resultant increase in resource
availability was considered a major factor causing correlated increases in the abundance
and functional importance of small mammals within logged forests [56].

Climate Change—Phenological events are especially sensitive indicators of global
environmental change because they display strong, thresholded responses to gradual
changes in abiotic conditions, such as the leaf emergence or senescence patterns defining
growth seasons in temperate forests [77]. Therefore, climate change magnifies the role
of phenology in the structure and function of ecological systems [5], where shifts in
phenology induced through climatic change can have reverberating effects across trophic
levels [78]. There are widespread reports of changes to the life cycles of plants and animals
in conjunction with climate variation [35,36,79–81]. During the past century, the phenology
of 10 bee species from Northeastern North America has advanced by a mean of 10.4 days
as a result of climate change altering the phenological timings of flowering plants [35].
In Europe, climatic shifts in the Netherlands have caused an increase in the strength of
asynchrony between the phenology of the Winter Moth (Operophtera brumata) and their
host plant Oak (Quercus robur) [82], and drier conditions over a 17 year period in Spain
resulted in higher asynchrony between pollinator butterfly species and their plants [83]. In
North America, 48 passerine species showed increasing phenological asynchrony between
their migratory arrival and leaf flush dates (a normal cue for migratory arrival) [84]. Even
in aquatic systems such as Argentinian lakes, zooplankton have undergone significant
shifts in phenological metrics following temperature increases over the last decade [85].

2. Monitoring Phenology
2.1. Synchrony, Asynchrony and the Challenge for Phenological Monitoring

Habitat and climate change are evidently impacting phenology in ways that generate
cascading ecosystem impacts, so there is self-evidently a need to monitor plant phenol-
ogy effectively if we are to understand and mitigate the ecosystem-level effects of these
changes [34,86]. This point is not new: Pereira et al. [87] included remotely sensed land-
surface plant phenology as one of the six Essential Biodiversity Variables to monitor global
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change, and the Intergovernmental Panel on Climate Change (IPCC) defined phenology
as “perhaps the simplest process to track changes in the ecology of species in response to
climate change” [23]. In light of such high profile calls for improved global monitoring of
phenology, there is a timely need for a consensus on the monitoring techniques used to
quantify phenological patterns and changes.

In most temperate and boreal biomes, plant phenology is seasonal, with individual
plant phenologies often synchronising twice annually (spring and autumn) to create com-
munity and landscape level changes [40]. In many tropical regions however, phenological
events can vary from complete intraspecific or interspecific synchrony (masting) to extreme
asynchrony, and from constant activity to recurrent short pulses [31,88]. Moreover, syn-
chronies in phenological events can be intra-annual or supra-annual such as that of the
multi-year cycles induced by El Niño Southern Oscillation events [89]. Together, this creates
a mosaic of individual and community level phenological events that vary across space
and through time. If we then add changes in spatial scales and other dependencies such as
changing environmental conditions, coexistence dynamics, individual tree characteristics,
and location that all influence phenology [90–92], it rapidly becomes apparent that the
simple-sounding task of monitoring phenology masks a challenging problem.

Multiple approaches have emerged over the years to monitor phenology including the
use of satellite-based sensors, airborne (plane) mounted sensors, UAV (drone) mounted sen-
sors, fixed digital phenological cameras, collection traps, accelerometers, eddy covariance
flux towers, micro-coring and dendrometers, visual assessment, citizen science networks,
and genetics (summarised in Table 1; historical introduction of each method outlined in
Figure 1). Each method has its own advantages and limitations, often making them more
applicable in certain environments and contexts. Here, we examine how each method
compares when considering key factors that influence the effectiveness of monitoring
phenology: spatial resolution, temporal resolution, cost in terms of equipment, acquisition
or labour, and data processing and interpretation requirements. Furthermore, we consider
each factor in the context of monitoring phenology in different environments or for different
purposes.

Table 1. Each phenological monitoring method in a table comparison of key decision factors. From top to bottom: satellites,
planes, helicopters, drones (UAVs), fixed digital cameras, human visual observations, accelerometers, eddy covariance flux
towers, micro-coring and dendrometers, collection traps. $ = US Dollars. Factors listed as categories can be Low, Medium,
or High. High showing the method performs well for the factor and low showing the method performs poorly for the factor.
NA indicates where data is not available, or the factor is not applicable for that monitoring method. A semicolon between
values indicates a split between equipment cost and set-up cost of the method when deploying it. * indicates the potential
cost of constructing a tower if needed.

Factor

Monitoring
Method Measurement

Spatial
Resolu-

tion
(m)

Temporal
Resolution

(h)
Deployment

Cost ($)

Acquisition
Cost per
km2 ($)

Mobility Spectral
Options Adaptability Durability

Acquiring
Man-

power

Data
Pro-

cessing

Key
Summary
Trade-offs
(Pro/Con)
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canopies for the presence of phenological events. In some areas of the tropics where can-
opies can be extremely high [93], this is sometimes done with binoculars. 

Spectral based assessments can be broadly split into three types that relate to the dis-
tance of the sensor from the ground, of which the first is remote sensing by satellites. This 
form of monitoring is best achieved using surface reflectance products that account for 
the effect of the atmosphere on the measured radiance by the satellite, including the bi-
directional reflectance effects (i.e., the fact that the angle of illumination and observation 
varies and affects measured radiances). These effects can be modelled with the Bi-Direc-
tional Reflectance Distribution Function (BRDF) and used to create nadir BRDF-adjusted 
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proach, and consists of walking transects within the forest and visually observing tree 
canopies for the presence of phenological events. In some areas of the tropics where can-
opies can be extremely high [93], this is sometimes done with binoculars. 

Spectral based assessments can be broadly split into three types that relate to the dis-
tance of the sensor from the ground, of which the first is remote sensing by satellites. This 
form of monitoring is best achieved using surface reflectance products that account for 
the effect of the atmosphere on the measured radiance by the satellite, including the bi-
directional reflectance effects (i.e., the fact that the angle of illumination and observation 
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opies can be extremely high [93], this is sometimes done with binoculars. 
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tance of the sensor from the ground, of which the first is remote sensing by satellites. This 
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canopies for the presence of phenological events. In some areas of the tropics where can-
opies can be extremely high [93], this is sometimes done with binoculars. 

Spectral based assessments can be broadly split into three types that relate to the dis-
tance of the sensor from the ground, of which the first is remote sensing by satellites. This 
form of monitoring is best achieved using surface reflectance products that account for 
the effect of the atmosphere on the measured radiance by the satellite, including the bi-
directional reflectance effects (i.e., the fact that the angle of illumination and observation 
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2.2. A Brief Description of Phenological Monitoring Methods

The monitoring methods we discuss fit into three broad categories: those that use
direct visual assessment, those that use spectral characteristics captured by camera, and
those that use a proxy such as biomass or gas flux. Visual assessment is the simplest
approach, and consists of walking transects within the forest and visually observing tree
canopies for the presence of phenological events. In some areas of the tropics where
canopies can be extremely high [93], this is sometimes done with binoculars.

Spectral based assessments can be broadly split into three types that relate to the
distance of the sensor from the ground, of which the first is remote sensing by satel-
lites. This form of monitoring is best achieved using surface reflectance products that
account for the effect of the atmosphere on the measured radiance by the satellite, in-
cluding the bi-directional reflectance effects (i.e., the fact that the angle of illumination
and observation varies and affects measured radiances). These effects can be modelled
with the Bi-Directional Reflectance Distribution Function (BRDF) and used to create nadir
BRDF-adjusted reflectance (NBAR) [21]. The NBAR bands are then used to calculate a
Vegetation Index (VI), mostly in the form of Enhanced VI (EVI) or Normalised Differ-
ence VI (NDVI) [30], which has been shown to correlate with Leaf Area Index (LAI), leaf
biomass and percent vegetation cover [21,94]. Besides broadband spectral satellite sensors,
multiple other sensors have been applied for phenology assessments, such as active and
passive microwave sensors, or sensors capable of assessing fluorescence [95–99]. Second,
sensors on board planes or UAVs can be used instead of satellites to capture plant spec-
tral characteristics [100]. Finally, cameras can be placed on observation towers above
forest canopies [42,101] or on the ground facing up [102]. Slightly different methods are
used to segment or isolate the focal plants or regions of interest (ROI) for analysis, and
the spectral resolution of the camera being used will determine the exact analysis being
conducted on these last two approaches to collecting spectral data. Many methods ex-
tract Red-Green-Blue (RGB) pixel channel data in the form of digital numbers (DNs) for
individual plants [103,104]. Further non-linear transformations are then made on these
DNs to reduce the effects of scene illumination, the result of which are individual RGB
chromatic coordinates (Rcc, Gcc, Bcc) [105]. Some studies also calculate an Excess Green
value, to emphasis the influence of phenological change on the green band [24]. These
chromatic coordinates and the excess green value are used to track changes in phenology
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through time as phenophases such as leaf flush or leaf senescence cause variations in these
chromatic coordinate values [42,106].

The third category consists of approaches that measure direct or indirect proxies of
phenology. Collection traps exist in many forms but generally consist of a net raised above
the ground under trees or plants that are being monitored [107]. They work by collect-
ing any fallen material from a focal tree, which is then weighed or counted to estimate
the quantity of phenology in the canopy. Collection traps have been used in a range of
environments to assess leaf phenology [108,109], fruit and seed phenology [107,110–112],
and their connections to other aspects of ecosystem function such as carbon fluxes [108].
Accelerometers, dendrometers, and micro-coring approaches monitor phenological activity
through the approximation of tree mass or growth at a given time [26,29,46]. Accelerom-
eters and dendrometers attach to trees and record movement and growth which can be
used to approximate the presence of a phenological change [26,29]. Leaf emergence and
leaf drop alter the aboveground tree mass, resulting in a change that is detectable by the
accelerometer or dendrometer [29]. Such measures correlate closely with visual assess-
ment of leaf emergence phenology, but to date have failed to accurately detect leaf loss
events [29]. Micro-coring consists of taking samples to measure xylem development which
is shown to correlate with leaf flush events [26,46]. Alternatively, eddy covariance flux
towers measure CO2 fluxes to calculate gross primary productivity (GPP) [113], which
can indicate the phenological start and end of season dates [27,114,115]. Fluxes recorded
from eddy covariance towers have also be used to validate satellite-based monitoring of
phenology [115].

2.3. Trade-Offs among Phenological Monitoring Techniques

Visual assessment from the ground, sometimes using binoculars, has historically
been the most common method for monitoring phenology [79], remains one of the most
commonly deployed methods, and is heavily relied upon for the validation of sensor
based monitoring [116]. Several long-term research studies have been set up using this
method, where a group or individual collects data at a single research site or within a single
habitat over an extended period of time [117]. Many of the long term visual assessment
studies focus on observing one aspect of phenology such as leaf emergence, flowering
or fruiting [112,118], rather than recording all phenological events from a representative
sample of plant species [3]. Most studies have also focused on temperate regions [119],
with phenology having been monitored for more than 10 years in only 26 sites across
tropical America, Africa, and Asia [112]. Visual assessment is time and labour intensive,
and of only limited effectiveness in environments where vegetation is dense, terrain is
steep and plants exceedingly tall such as that of many tropical forests (Table 1). Arguably,
however, the biggest limitation of ground surveys is the subjective bias of observers which
can reduce the strength of quantitative conclusions that might be made from visually
assessed phenology [116]. Nonetheless, ground surveys remain especially important as a
means for validating the data collected from other monitoring methods, and schemes and
guidelines do exist to help reduce observer bias [120]. Other methods provide alternatives
for visual assessment that monitor phenology both directly and indirectly. The following
sections summarise the trade-offs between these methods in relation to the decision factors
normally associated with choosing a method (Table 1).

2.3.1. Variation in the Spatial Resolution of Phenological Data

Spatial resolution describes the area that is monitored per unit, where the unit for
most sensor-based methods is an individual pixel. For non-sensor-based methods, spatial
resolution describes the area covered within an individual observation or by an individual
device (e.g., accelerometer or collection trap). Satellite mounted sensors form the backbone
of the remote sensing approach envisaged by Pereira et al. [87], but until recently they
provided relatively low spatial pixel resolution (0.31 to 1000 m) compared to drones or fixed
digital cameras (0.02 m) (Table 1). When monitoring at the landscape level, such as studies
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monitoring the temperate whole-forest seasonal change, satellites can be highly effective
for monitoring phenology as they can cover large areas in a few pixels. For example,
the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra
satellite possesses seven spectral bands that are specifically designed to monitor landscape
changes, including phenology [21].

Studies in temperate regions using satellites like Landsat (30 m resolution) and
MODIS (500 m resolution) have been effective in modelling leaf flush and senescence
dates [21,40,96,121,122]. A multisite study of temperate and boreal forest phenology using
Landsat’s phenology algorithm detected two-thirds of start of season and end of season
dates over the 32 years included in the analysis [123]. Furthermore, Zhang et al., [75]
successfully used Advanced Very High Resolution Radiometer (AVHRR) and MODIS to
observe changes in land surface phenology from 1984–2014 that were caused by land-
use change.

In the tropics, by contrast, there is a disparity between the scale of plant phenology—
often aseasonal and asynchronous—and that of satellite pixel resolution [25]. As phe-
nological changes often occur at the scale of individual tree crowns, most phenology is
undetectable by satellite mounted sensors (although see: [124]), and ground-based or UAV
mounted cameras can offer a better alternative [125] (Table 1).

A growing number of studies have used an approach based on fixed digital pheno-
logical cameras, in a mix of environments, to monitor phenology at high spatial res-
olution. Once the effective use of digital webcams to monitor spring green-up (leaf
flushing) dates was demonstrated in a deciduous forest in North-Central USA [24], the
approach has been extended to a wide set of ecosystems: savanna [126]; deciduous
broadleaf forest [24,105,127–129]; Evergreen Broadleaf Forest [130]; Evergreen Needle-
leaf Forest [131–133]; and a mix of several habitats [42,101,106,134,135]. Similarly, recent
studies have utilised UAV mounted cameras to monitor phenology in a variety of biomes,
ranging from polar vegetation [136] to tropical forests [137], with the majority of stud-
ies to date focused on temperate regions [125,138–143]. For example, Klosterman and
Richardson [140] found that in an oak-dominated deciduous forest, the Gcc derived from
individual-tree pixels within drone imagery increases in spring following budburst and
leaf flush, and decreases in autumn following leaf senescence and loss, with the opposite
trend occurring for the Rcc. A similar approach adequately recorded phenological change
in a multi-species, deciduous evergreen forest [142], and Berra, Gaulton and Barr [125]
consistently detected individual tree level leaf flush dates using chromatic coordinates
calculated from drone imagery.

2.3.2. Temporal Resolution and Revisit Frequency

Temporal resolution describes the smallest amount of time between site ‘visits’. As
with spatial resolution, in regions where phenology happens at low temporal resolutions, or
in synchrony, such as temperate and seasonal biomes, monitoring methods like sensors on-
board satellites, planes and helicopters, along with collection traps, can be used effectively
to monitor plant phenology, with revisit frequencies as low as a few days [125] (Table 1).
For example, Higgins et al., [100] used multispectral cameras on-board a helicopter to
track changes in the NDVI values of individual trees and grasses in sub-tropical savannah
on a greater than weekly basis, from which they inferred leaf flush timing. Collection
traps record phenology at a similar temporal resolution, as can micro-cores. The temporal
resolution of both techniques is dependent on the frequency at which samples are collected,
which may be daily but is typically longer [26,107].

For regions where asynchronous phenology occurs at high frequency (<1 week),
methods that have higher revisit frequencies (daily) may be more beneficial (Table 1). In
these regions, continuous high temporal resolution monitoring can feasibly be achieved
through the use of devices such as accelerometers, dendrometers, fixed digital cameras
or eddy covariance flux towers. Fixed digital cameras can take repeat images at temporal
resolutions of less than one day, but are limited by viewing angle (often close to horizontal),
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meaning they can be dominated by plants closest to the camera [125,129,144]. Eddy
covariance flux towers, often used in combination with digital cameras [135], can track
the changes in gross primary productivity at very high temporal frequency, commonly
30 min intervals [113]. These three methods—accelerometers, fixed digital cameras and
eddy covariance flux towers—have the potential to provide phenological data at very fine
temporal resolution, but the first two of these methods often monitor just one or a limited
number of plant individuals (Table 1). To get an idea of landscape or community level
phenology, multiple devices need to be operated in a network, which can be infeasible in
environments with challenging topography. Steep topography and its associated turbulence
also presents a challenge for the use of eddy-covariance flux towers [145].

UAV mounted cameras offer a good solution to overcome this limitation as they can
be flown at low altitude, close to the canopy, where they can resolve individual-level plant
phenology for many, potentially thousands, of individuals [146]. Furthermore, UAV revisit
times can be optimised to match the temporal resolution of target species [25] (Table 1).
Most consumer level UAVs are lightweight (<2 kg [138]), allowing relatively easy transport
to remote locations where they can monitor phenology by flying from accessible areas,
provided there are accessible areas within the UAV flight range that can be used as a
launching site. UAVs are, however, still limited by maximum survey area (<100 ha for
quadcopter or <1000 ha for fixed wing) and by battery life (~20 min per battery) which can
impact revisit frequency—realistically no more than daily.

2.3.3. Cost Implications of Competing Methods

In many phenological studies, cost represents a major and critical factor in the choice
of method. Costs range over several orders of magnitude depending on the price per unit
of monitoring equipment and the price of acquiring data from those units (Table 1). Single
time point panchromatic high resolution satellite imagery (50 cm) can cost around US$24
per km2 with a minimum order of 100 km2 (=US$2400) and medium resolution (150 cm)
around US$5 per km2 with a minimum order of 500 km2 (=US$2500) [147]. However, free
satellite data is also available at high spatial and temporal resolutions, especially if the
study area is located in North America or Europe [148], with the National Aeronautics
and Space Administration (NASA: ~30 m with ~16 day revisit frequency) and the Euro-
pean Space Agency (ESA: ~10 m with ~5 day revisit frequency) hosting freely available
datasets [149,150]. Generally, as the monitoring device decreases in size, so does the cost
and the area covered. Placing sensors on-board manned aircraft can also be excessively
expensive, ranging from several thousand to hundreds of thousands of dollars [25,125]. Per
device, fixed digital phenological cameras provide a near-ground (tower) or ground-based
remote sensing alternative to satellites or manned-aircraft for around US$1000 [151] or less,
depending on the quality of the digital camera being used [152], but will sometimes incur
the additional cost of building a tower to attach the camera to (Table 1). This can be avoided
by attaching cameras to trees [153], inexpensive poles or pre-existing towers such as those
used for eddy covariance flux [135], but this is not always a guaranteed option when
establishing new monitoring locations. Similarly, drones are relatively cheap in comparison
to the cost of acquiring satellite imagery or whole networks of digital cameras required
to survey a suitable area (<US$2000 per aircraft [154]). Yet, UAVs are still more expensive
per unit than collection traps, accelerometers, dendrometers, and visually observing plants
from the ground [25,125]. Moreover, losses from crashes are not uncommon. In terms of
equipment, the cheapest solutions for monitoring are visual assessment using binoculars,
dendrometers, or collection traps. Binoculars can cost as little as US$20 for a suitable focal
range to monitor canopy phenology, dendrometers can cost US$2 per unit, and collection
traps can cost <US$10 per unit. Despite these methods being cheap per unit, it should
be noted they can rapidly become costly when including the labour costs of carrying out
monitoring surveys, placing traps in the field and collecting material from those traps
(Table 1). This is especially true if you compared the cost per tree surveyed rather than the
cost per unit to survey. To monitor a whole landscape, labour costs could end up making
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visual assessment and traps more expensive than alternative options, such as using satellite
data of the region if available at a low price point, or to purchase a single UAV which could
survey the same area in a much shorter time.

2.3.4. Data Processing and Interpretation

The processing and interpretation of data can be a major factor in determining the
effectiveness of a method for monitoring (Table 1). Visually observed data from binoc-
ulars written down on paper require very little processing and interpretation; just the
transcription from paper to computer databases for analysis. However, the introduction
of cloud-based data collection applications such as EpiCollect [155] remove the need for
even this form of processing, allowing mobile phone-based data recording in the field that
is automatically stored and backed up online in a data table format. Data collected via
traps, accelerometers, dendrometers, and microcores is more time consuming to process
as it requires the initial collection of phenological samples or records stored in the traps,
followed by the processing of those samples and recording in either paper or digital form.
Overall, however, the process, apart from microcore samples, requires little expertise and
is straightforward to conduct.

By contrast, eddy covariance and remote sensing data—both satellite and near ground
(drones and fixed cameras)—typically requires more data processing and expertise to
interpret. Studies on phenology that utilise far or near ground remotely sensed data have
slightly different methods for data processing and interpretation (See Section 2.2. for
more details), but the general workflow includes turning image features into proxies for
phenological change. For example, for fixed cameras and UAV imagery this includes
identifying a region of interest in the image (often a tree crown), extracting the red-green-
blue pixel values from this region of interest, transforming the values into a spectral feature
that may indicate the high presence of a certain colour band, and then comparing the
spectral features in a time series to examine if there is a change in a specific colour band
which may indicate the presence of phenological change. For example, a leaf flush event is
characterized by an increase in greenness within the region of interest.

The remote sensing methods arguably require the skill to code in a programming
language such as Python, MATLAB or R, and expertise in coding, photogrammetry and
image processing as they mostly produce data in the form of images which require process-
ing to extract quantitative information from their pixel contents. Some applications make
these data more easily accessible, such as Google Earth Engine [156], where the remotely
sensed satellite data has be pre- collected and processed. Similarly, some software, such
as TIMESAT [157], reduce the programming requirements by helping with the analysis
of remotely sensed data for the user but does still require pre-processing and a thorough
understanding of the data to set parameters.

Determining the optimal metric(s) to use for quantifying phenology often requires
pre-existing knowledge of the environment. However, for near-ground remote sensing
such as fixed cameras and UAVs, most studies follow the standard set by Richardson
et al., [24] and Sonnetag et al., [105] of using chromatic coordinates to suppress influences
of scene illumination [105]. Similarly, for satellite-based sensing, most studies use the nadir
BRDF-adjusted reflectance (NBAR) bands to calculate different Vegetation Indices which
correlate with phenological change [21,30,121,144]. Both methods rely on changing spectral
characteristics to indicate a phenological event. Both methods are more quantitative than a
visual assessment from the ground and have the potential to pick up more subtle changes
in spectral characteristics that may be missed by the eye. However, in new environments
this method still requires validation using ground observed data, to ensure the correct
phenology is associated with the correct spectral change. Future applications that provide
easily accessible remotely sensed data, that require no pre-processing, or require no data
manipulation experience represent an important development avenue for the study and
monitoring of phenology.
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2.4. Multi-Mode Collaboration Networks as a Solution for Ground-Based Monitoring

Ground-based phenology monitoring techniques operate over relatively limited spa-
tial extents and are not suited for addressing large-scale questions around the phenological
impacts of global change. Collaboration networks—sometimes using citizen science—can
begin to alleviate this issue by increasing the number of sites being monitored, leading to
very high “collective resolution”.

Several long-term phenological networks have been set up to collect enormous
amounts of phenology data across large spatial scales (USA-NPN [22], NECTAR [158],
NEON [159]). For example, the NECTAR database encompasses phenological data for
over 5000 plant species with time-series data for over 1500 species [158], and the German
National Phenology Network has 474 sites with >50 years of data [160]. The data produced
from these studies is valuable because most use status monitoring (e.g., presence or absence
of leaves) rather than event-based monitoring (leaf flush), which provides explicit informa-
tion on presence, absence, and duration of phenophases, as well as enabling integration
of the phenology of sessile and mobile organisms [161]. Citizen scientists contribute to
phenological data in networks such as the USA-National Phenology Network [22], with the
benefit of producing datasets that are much larger—both spatially and temporally—than is
feasible from a single research group and for a fraction of the costs [117]. As with all visual
assessment monitoring, however, both citizen science and observer-based phenological
networks are potentially limited by the subjective bias of observers [116], although collec-
tion apps that store photos for future consolidation and validation could help resolve this
bias [155].

Networks of phenological cameras provide a quantitative alternative for phenological
monitoring networks. One such example is the Phenological Camera (PhenoCam) Net-
work, predominately in North America but continuously expanding, with cameras placed
above and within canopy at 440 sites in over 10 different biomes [24,133,151]. Similar large
scale studies have also been set up in Europe (EuroPhen [162]), Japan (Phenological Eyes
Network (PEN) [163]), and Brazil (e-Phenology Network [42]). Nevertheless, camera-based
networks remain costly to implement, particularly if a tower needs to be constructed to
mount the camera on and if this construction needs to be in a hard to reach location and/or
surrounded by trees and undergrowth. Moreover, camera-based monitoring over multiple
biomes with multiple cameras can suffer from the variation between environments in
exposure, spectral indices used and sensor specifications so the assurance of standard-
ised data requires multiple post hoc adjustments and editing, all of which can be time
consuming [151]. Some networks, like PhenoCam, have begun to address these issues by
categorising sites into standardised ‘types’, with Type 1 representing sites with cameras
using standardised settings regardless of biome or region of interest [164].

3. Emerging Technological Advancements
3.1. High Resolution Satellite Remote Sensing

Until recently, satellites were considered too coarse in their spatial and temporal
resolution for many phenological monitoring requirements—such as monitoring individual
tree crown changes in the tropics—but recent years have seen deployments of high spatial
and temporal resolution satellites that will put satellite based remote sensing at the forefront
of future phenological monitoring once more. Although not an emerging technology, the
integration of these high resolution remote sensing satellites into phenological monitoring
studies is an emerging process, especially in the tropics. Nevertheless, there are already
several recent studies that have shown the use of satellite constellations such as PlanetScope
and Sentinel-2 to monitor and map phenology at almost daily intervals and at a spatial
resolution of 3 to 10 m, respectively [152,165,166], including a study of phenology in an
Amazonian evergreen tropical forest [124]. We envisage that in the coming years we
will see the increased use of these satellites, alongside even higher resolution satellites
such as GeoEye-1 (0.41 m), WorldView-4 (0.31 m) and Pleiades (0.50 m), in phenological
monitoring studies.
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High resolution satellites can still limited by the high cost of acquiring their data,
the availability of on-the-ground validation data [28], the expertise often required for
processing and interpretation. However, the increased deployment and use of satellite
constellations will in time reduce the costs [167]. Furthermore, the opportunity for re-
searchers to access freely available data through organisations such as the ESA and NASA
will hopefully result in a greater body of trained practitioners that can interpret and analyse
the data.

3.2. Molecular Methods for Understanding Phenology

New molecular tools are being developed to monitor phenology and will become
integrated within larger scale monitoring frameworks in the coming years [89]. Molecular
phenology works through the quantification of gene expression from plant samples using
qPCR, microarray and RNA-sequencing methods, creating high-resolution molecular
phenology data [168]. For example, flowering phenology can be forecast by examining
the regulatory expression dynamics of flowering genes [169]. This allows the immediate
detection of ‘invisible’ plant phenological changes, rather than the delayed detection that
is gained from monitoring just the end phenology such as the presence of flowers [89,168].

Molecular techniques are expensive and require physical samples to be extracted from
individual plants, meaning they are unlikely to be widely applied for basic monitoring of
phenology. One approach may be using eDNA or eRNA sampling to collect molecular
information on phenology from the soil or air surrounding plants. eDNA sampling has
become widespread in ecology, with sample kits becoming relatively inexpensive in recent
years [170], and although RNA degrades faster in the environment, eRNA sampling kits are
being refined [171]. Therefore, eRNA could be used as a means for larger scale molecular
monitoring by sampling population level gene expression related to phenological change.

Where in situ molecular monitoring is not feasible, but collection of plant reproductive
material is, provenance trials—the process of taking seeds of species from different areas
and planting them together in an experiment—may offer a solution. Provenance trials allow
molecular monitoring to take place in controlled, easily accessible environments where
they can also help us understand and mitigate the effects of climate change on species
whose phenology put them at risk [172]. They can do this by providing experimental
information on which genotypes may be able to survive the changing climate and how
different phenological forms can arise due to variable responses to climate change [172,173].
In regions where tree species span vast areas of climate, provenance trials have been used
to examine the variation in phenological forms [172,173], although to date this approach
has largely been restricted to temperate species.

We expect, however, that the strength of molecular methods is their promise to provide
much clearer insight into the physiological processes driving phenology, rather than as
a direct contribution to directly monitoring phenology. These insights will be central
to providing the data needed to develop predictive models examining the abiotic and
biotic cues driving phenological events. Such understanding, will, in turn, be needed
to allow us to predict the evolutionary responses of phenological patterns as a result
of environmental change [89,168]. The higher accuracy and greater responsiveness of
molecular phenological data means it can be used to parameterise models with only
one or two years of data where more traditional, non-molecular methods may require
decades of data [168,169]. The construction of phenological models based on this molecular
understanding has potential to then inform other monitoring activities. For example, by
building more accurate predictive models, we can better direct expensive, high-resolution
satellite remote sensing towards locations that are expected to have change at a particular
location and time, saving both money and researcher time.

3.3. Beyond the Visible Light Spectrum

Remote sensing, be it far (satellite), intermediate (drone or plane) or near ground
(fixed camera), is not restricted to imaging in the visible spectrum alone (380–740 nm). The
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use of multispectral (380–2500 nm) and hyperspectral (10–12,500 nm) sensors can capture
additional phenological variables related to plant chemistry and health that are reflected
in the infrared and ultraviolet spectra [30]. Newly launched satellites such as GOSAT
(greenhouse gases observing Satellite), for example, can measure very weak, beyond visible
leaf spectral changes such as solar-induced chlorophyll fluorescence (SIF), a by-product
of photosynthesis [95,96]. Yang et al., [97] showed the use of a ground-based method to
correlate SIF with Gross Primary Productivity (GPP) measures, which can in turn be used
to monitor phenology change. Passive microwave sensors (0.01–31 cm) onboard satellites
have been used to monitor phenology by calculating vegetation optical depth (VOD), which
varies with canopy density and structure and correlates with phenological change [98].
Furthermore, Synthetic Aperture Radar (SAR) (~5.5 cm) onboard the Sentinel-1 has recently
been gaining traction as a method for monitoring phenology, having successfully mapped
the phenology of crops [99].

As sensors become smaller and more affordable, UAVs are becoming a viable alterna-
tives to satellites and planes when it comes to spectral range [174]. Miniature multispectral,
hyperspectral or narrowband cameras attached to UAVs are now being used to capture
phenological variables related to plant chemistry and health [174–177]. For example, Berni
et al., [175] used multispectral cameras on-board UAVs to estimate leaf area index, chloro-
phyll content, leaf water stress, and canopy temperature of crops. Similarly, Zarco-Tejada,
González-Dugo and Berni [176] used hyperspectral and thermal imaging cameras on-board
UAVs to examine water stress in agricultural crops. To date most of these studies have
focused on agricultural crops but, as the cost of sensors decreases, we will likely see them
used to assess the phenology of natural habitats.

Techniques that use a wider array of spectra have potential to provide a new avenue for
phenological monitoring. They will allow indirect measurement of the chemical quantities
within the plants, as opposed to relying on indirect measures of these quantities through
plant colour. For example, shifts in Gcc values of individual leaves are an indirect measure
of the altered concentrations of chlorophyll in new vs. old leaves [178], so we predict that
indirect measurement of leaf chlorophyll will improve the accuracy of leaf phenology data
beyond what is achievable through a reliance on leaf colour changes alone. Hyperspectral
imagery is beginning to be used for mapping leaf traits and chemistry over large forest
areas [95,179] and for automated mapping of species distributions [180], but to date this
approach has not been used to monitor phenology. We expect this will be an exciting
new direction of research in the future, especially with the recent and upcoming launches
of new hyperspectral imaging satellites in the EnMAP, PRISMA, and NASA HyspIRI
missions [181–184].

3.4. Automating the Process of Phenological Monitoring

Autonomous monitoring methods that alleviate the need for human labour are in
development and will allow phenology to be monitored in near real-time. Satellites require
little user input and satellite imagery has been used a lot for automated detection of events
such as fires [185] and volcanic activity [186]. Similar, automated methods for monitoring
phenology are becoming available. For example, the Harmonized Landsat Sentinel-2
gridded product, that provides radiometric and geometric corrected, near-daily, 30 m
resolution data [148], has the potential to be incorporated into autonomous phenology
monitor frameworks [165,187].

Automated analysis of phenological data from smaller devices is also feasible given
recent developments allowing fixed devices such as digital phenological cameras to con-
tinuously record and send data wirelessly over mobile networks or upload links [188].
Developments in autonomous software for flying UAVs also means they can be flown over
vegetative areas with little to no user input [189], and it is only a matter of time before
the image data from such flights are fed back for automated analysis. The parallel devel-
opments in image processing techniques such as Structure-from-Motion (SfM) [190–192]
and tree crown detection and delineation algorithms [193,194], allow imagery to be au-



Forests 2021, 12, 297 14 of 24

tonomously stitched and ROIs to be determined [195–199]. Similar approaches have been
used to autonomously detect and identify species [200,201], but have yet to be applied to
imagery collected for the purpose of monitoring phenology.

3.5. LiDAR

Light Detection And Ranging (LiDAR) is beginning to be applied in phenology stud-
ies [202], along with its more widespread uses in mapping above ground biomass [203]
and forest carbon stocks [204]. LiDAR data can estimate leaf area index (LAI) [205], thus
repeated measures could detect phenological events like leaf flush and senescence at the
scale of individual tree crowns. This method has potential to provide detailed information
about the intensity of phenological events that is unavailable through other methods. For
example, LiDAR could potentially be used to quantify the total biomass of new (or old)
leaves that have been flushed (or lost) per unit time.

Laser scanning equipment can be placed on-board aircraft [206], UAVs [207,208] or
conducted from the ground [202], but the cost of LiDAR equipment (~US$100,000) currently
leaves it out of reach for most studies as a method for monitoring. We expect, instead, that it
will be most usefully deployed in environments such as tropical forests where phenological
events vary in intensity at the scale of individual tree crowns.

4. Monitoring Challenges to Be Addressed
4.1. Expanding the Phenological Monitoring Networks

The next steps for phenological monitoring need to include collaborative, quantitative
and technology driven studies that incorporate multiple monitoring methods and focus on
long-term monitoring networks across a range of biomes. The majority of the long-term
phenological studies have been established in northern hemisphere, temperate biomes [159]
and there is a need for these long-term monitoring networks to continue expanding into
comparatively understudied systems such as southern hemisphere, ‘aseasonal’ tropical,
and arid/semi-arid water-limited environments (however, see [209–212]).

There are of course challenges in these systems that have prevented the effective
long-term monitoring of phenology previously, such as the asynchronous, individual tree
crown level patterns in tropical forest phenology. Yet, the emerging technological methods
of monitoring can overcome many of these limitations, so integrating these new methods
into existing networks should be a priority. There are, however, examples of linking
technologies and networks that can act as starting points. For example, the integration
of fixed cameras into citizen science networks has already occurred, with the partnership
of the PhenoCam network and the USA-NPN [151] and similar set ups in the NEON
network [159].

Expanding further into more localities and more data-heavy monitoring methods
will produce its own challenges with regard to ‘big data’, cross-platform support, the
reconciliation of data from varied sources and environments, and the upscaling of phe-
nological observations. Multi-mode, long term monitoring will require large cloud-based
data repositories, along with efficient methods to extract phenological metrics and then
archive large data files. Thus, a further step in phenological monitoring will need to include
options to integrate, process and store the large cross-platform datasets produced by these
networks. Developments in machine learning and high throughput processing power
should hopefully offer solutions to this problem.

4.2. Compiling and Reconciling Data across Monitoring Methods

A major challenge with long-term, multi-method, multi-biome monitoring is the
need to reconcile data from different sources. Simply compiling these data into a single
database represents a significant challenge. To start with, the basic formats of data vary
significantly and include everything from classified imagery (e.g., UAV photographs with
ROIs categorised into different phenological states) through to gene sequences (molecular
monitoring). Space and time represent the obvious axes that will allow data to be indexed
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in a searchable way, but phenological datasets also come in many different spatiotemporal
formats and resolutions. These include temporal snapshots in 1, 2 and 3 spatial dimensions
from collection traps, imagery and LiDAR, respectively, through to time series data from
accelerometers. An obvious starting point for combining the variable spatiotemporal di-
mensions of different monitoring methods into the same study is to establish pre-collection
criteria on the frequency and spatial arrangement for monitoring, but this will often not be
possible if data is collated from different sources. Summarising phenological observations
through statistical averaging is the next most obvious step for integrating observations from
multiple methods. This would require analysts to specify a common spatial and temporal
resolution to apply to all datasets and then either upscale or downscale the resolution of
individual datasets to meet this common resolution. This involves a trade-off, however, as
the most defensible resolution to aggregate data at is given by the resolution of the coarsest
dataset. This means users would lose the ability to examine fine-scale patterns obtained
from high resolution methods.

Datasets from alternative methods that overlap in space and time represent both an
opportunity and a challenge. Overlapping datasets are needed to validate phenological
observations made using competing methods, as is commonly achieved by pairing visual
observations with aerial or satellite imagery. There remains, however, an opportunity to
expand these validations to remove the need for visual observations through the formation
of ‘validation chains’, in which one validated product is used to validate the next. Key to
achieving this in a robust manner will be appropriate propagation of error to ensure data
uncertainty is accurately represented in the final set of classified observations. Classification
accuracy could then be used as a quantitative decision tool for deciding on phenology at
given sites where competing methods provide different phenological classifications. Such
a process would be aided by setting clear standards for phenological metrics that apply
across data sources, and by having database systems designed from the start to record
classification accuracy alongside observations.

4.3. Upscaling from Monitoring Sites to Biomes

Translating high resolution spatial data into landscape or biome level phenological
metrics is needed to take the step from describing site-specific phenology to understand-
ing the ecological impact of phenology at landscape and biome scales. At the simplest
level, upscaling happens via the aggregation of point location observations to generate
weighted means of phenological occurrences over larger areas, e.g., an average phenolog-
ical metric across 1 ha [142,159,213]. Other methods have been proposed such as using
Bayesian Hierarchical models that incorporate structure and model the uncertainties in
aggregated metrics to predict larger scale phenological trends. For example, modelling a
single taxa across multiple sites or multiple taxa at individual sites [214,215]. However,
many of the previously proposed methods have been for studies in temperate biomes
with relatively low diversity. A more significant challenge lies in upscaling phenological
metrics in highly diverse environments such as tropical forest systems. Fully automated
hierarchical monitoring systems and the construction of validation chains may help with
this. In-person observations or fixed camera imagery can be used to calibrate high spatial
resolution/intermediate spatial scale UAV imagery, and in turn this UAV data can be used
to calibrate medium or low spatial resolution/large spatial scale satellite imagery. This
framework could be adapted to the upscaling of temporal phenological patterns as well.
By exploiting hierarchies of temporal monitoring, observations made at high temporal
resolution can be used to understand the proportion of events that might be missed by
low resolution methods. Together, spatial and temporal upscaling provide a framework
to simultaneously exploit the outputs from multiple monitoring methods to provide the
information needed to more accurately quantify phenology across space and time.
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5. The Future for Forest Phenology Monitoring in a Changing World

The impacts of climate and habitat change on phenology will likely vary across
regional-to-continental scales and between biomes [2]. If we are to help mitigate these
changes, a greater understanding of the phenological dynamics across biomes and across
multiple scale is required. Detecting and quantifying the impacts of change on phenol-
ogy across regions demands an increase in the spatial scale of phenological monitoring
alongside an increase in spatiotemporal resolution. This will become possible through
judicious use of the different quantitative methods currently available and currently under
development. A key focus should be the increased incorporation of molecular methods
and hyperspectral sensors in monitoring frameworks, with the ultimate goal of developing
a mechanistic understanding of the phenological process. This ambition will be aided by
the simultaneous deployment of multiple monitoring methods, allowing the strengths of
one to compensate for the limitations of others, and the continued development of effective
approaches to upscaling phenological monitoring from point observations on the ground
to biome and global scale maps. This requires an expansion of monitoring approaches
already in use [22,159]; however, this is still heavily focused on temperate regions. Not all
methods developed in these regions translate to the tropics, where high plant diversity
and the asynchronous nature of phenology presents a more difficult challenge that is being
addressed, but remains an obvious frontier for further methods development.
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