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Abstract—We describe ongoing research in developing audio
classification systems that use a spiking silicon cochlea as the
front end. Event-driven features extracted from the spikes are
fed to deep networks for the intended task. We describe a
classification task on naturalistic audio sounds using a low-power
silicon cochlea that outputs asynchronous events through a send-
on-delta encoding of its sharply-tuned cochlea channels. Because
of the event-driven nature of the processing, silences in these
naturalistic sounds lead to corresponding absence of cochlea
spikes and savings in computes. Results show 48% savings in
computes with a small loss in accuracy using cochlea events.
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I. INTRODUCTION

Spiking ASIC cochlea chip designs [1]–[3] have gradually

matured over the years. These sensors implement circuits that

model partial functionality of the biological cochlea. Appli-

cations of this sensor modality are still relatively unexplored,

especially in comparison to the spiking visual Dynamic Vision

Sensor. Early work showed that cochlea spikes can be used

to measure an azimuthal audio source location with simi-

lar localization accuracy as the cross-correlation of binaural

microphone samples [4]. The localization comparison in [5],

showed that the number of computational operations from this

data-driven method can be more than an order of magnitude

lower than using cross-correlation of binaural samples.

A few studies have looked at the use of the spiking cochlea

output on classification tasks such as speaker verification and

digit recognition [6], [7]. These early investigations use SVM

classifiers on features created using constant time bins and

constant bin spike samples. These studies demonstrate that

the accuracy using the spike features is close to the accuracy

using conventional features such as log-filter banks or Mel

Frequency Cepstral Coefficient (MFCC) features.

Because deep networks have been very successful for many

machine learning tasks, they are also being tested together with

the spikes for classification tasks [8]. In this case, constant time

features or exponential features computed using a 5 ms time

window for a digit recognition task show similar accuracies

as the conventional log-filterbank or MFCC features usually

computed using a 10-20 ms time window [9]. The cochlea has

also been used as a front-end in a pipeline that incorporates the
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Fig. 1: Architecture of the DASLP. Adapted from [1].

localization model, keyword spotting and source separation in

the case of a speech mixture [10].

The latency of a data-driven system using an asynchronous

data-driven sensor such as the spiking cochlea can be lower if

processing is initiated only when cochlea spikes are generated

when sounds are present in an environment. The results of

these applications especially with the postprocessing of deep

networks can help to identify key building blocks that allow

one to construct a more general audio ASIC chip useful for

applications such as IoT. Prototyping systems on an FPGA

can be a useful intermediate step [11] especially with the

increasing chip fabrication costs. In the remainder of this

paper, we show an example of a sound classification task for

naturalistic audio environments. The cochlea used in this study,

the dataset, the input feature extraction and the architectures

are described in Section II and the results in Section III.

II. METHODS

A. DASLP silicon cochlea

The Dynamic Audio Sensor Low Power (DASLP) spiking

cochlea used in this work is the latest low-power (LP) ASIC

binaural design with 64 frequency channels per side and

asynchronous spiking outputs [1]. This cochlea design uses

a parallel bank of 64 filters ranging from best characteristic

frequencies of 20 Hz to 20 kHz. The best frequency of each

filter is generated by the 64 geometrically-scaled current block

in Fig. 1. The fourth-order bandpass filter (BPF) design in each

channel consists of two cascaded power-efficient second-order

source-follower-based BPFs, followed by an asynchronous

delta modulator (ADM) with on-chip asynchronous arbitration

circuits for transmitting events off chip.
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Fig. 2: Transfer function across the 64 channels. Adapted

from [1].

The filters model the functionality of the basilar membrane

of the biological cochlea. Each filter channel produces both

ON and OFF spikes unlike other DAS cochleas which do not

produce the dual polarity spikes. The dual polarity spikes are

produced by the send-on-delta scheme used for generating

the asynchronous spikes. These spikes are transmitted off-

chip through the asynchronous event representation (AER)

protocol. The AER block arbitrates among all the active

channels. The asynchronous handshaking signals Cack and

Creq are used to transmit the chosen channel address on Addr
to the external device. The analog block operates on a power

supply of 0.5V and consumes only 55µW. This design has

good matching properties of the quality factor, Q, of the filter

across the different channels, and Q > 10 can be achieved

across the entire array [1] as shown in Fig. 2.

The DASLP board that holds the chip is similar to the DAS

board [2]. It is USB powered and interfaces to our Java-based

jAER software [12] for setting the chip biases, recording,

and processing sensor output. On-board ADCs also sample

the output of the microphones to allow direct comparison

of cochlea versus sampled audio algorithms. Data packets

comprising both the output spike data and microphone samples

are transmitted to a computer via USB.

B. Dataset

The naturalistic sound classification task is performed on

a subset of AudioSet [13], a dataset consisting of about 2

million audio samples extracted from YouTube videos. Each

sample is 10 seconds long with a total of more than 5000

hours of audio recording. We used a subset of 5 classes,

from a total of 527 sound categories, for the classification

task, namely Wind, Siren, Gun, Dog, Car. The classes of this

dataset are not mutually exclusive, i.e., a sample can belong

to multiple classes. For this reason the task consists of 5

binary classifications, one for each considered class. In order

to evaluate the performance we use mean average precision

(mAP) as done in [14].

C. Input features

We evaluate classification accuracy and computational cost

for two different front ends: using analog-to-digital converter

(ADC) samples from the microphones and using the DASLP

spikes. In both cases, binned analog features are used.

The features extracted from the ADC samples are the log-

filterbank features as described by [14]. That is, the Short-
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Fig. 3: Sample from AudioSet of the class ’Dog’. Top left

panel shows the DASLP spike responses. Top right panel

shows the exponential features, the bottom left panel shows

the raw sampled audio waveform, and the bottom right panel

shows the log-filterbank features.

Time Fourier Transform (STFT) is computed using a frame

length of 25 ms and a frame step of 10 ms. A set of 64 Mel-

frequency filters is then applied to the STFT. For each sample

of length 10 s, we obtain a matrix of size 1000 × 64. The

features generated from the DASLP spikes consist of analog

exponential time bin features as described in [9] using a 10 ms

frame length, 10 ms frame step and an exponential decay

τ=5 ms. These features have been used in a digit recognition

task and are simple enough to implement on an ASIC chip as

a digital counter [15] or a real-time embedded system with an

FPGA [11]. For each sample of length 10 s, we get a matrix of

size 1000× 64 where each 1 s frame corresponds to a matrix

of size 100× 64.

Because the input feature dimension is the same for both

the spikes and ADC samples, we can process them with the

same network configuration (see Section II-D). This makes

the comparison fair, because the number of model parameters

is the same for both feature types. Figure 3 shows the

audio waveform of one sample from the dataset, the DASLP

spikes, and the features extracted from the ADC samples and

the DASLP spikes. The patterns of activity show the same

temporal evolution for both feature types. Note that there are

temporal periods in exponential feature plots where there are

no spikes in comparison to the dense log-filterbank plot.

D. Network architecture and training parameters

We compare different deep learning architectures in terms

of classification accuracy and number of operations required.

This knowledge is useful when considering scenarios where

computational requirements need to be low (e.g. detection of

environmental sound classes in an Internet of Things (IoT)

setting).

We investigate 3 architectures, namely a multilayer percep-

tron (MLP), a convolutional neural network (CNN), and a

recurrent neural network (RNN) with a CNN front end. Each

of the 3 architectures has two stages: a first stage that applies

the same network layers to each 1 s frame in the 10 s sample

and a second stage that takes the 10 concatenated processed



TABLE I: Classification accuracies of different models on

subset of environmental sounds using DASLP exponential

features or log-filterbank features.

Model Params MOp
mAP

Exp features Log-filterbank

MLP 3.6 M 34 66% 68%

CNN 0.8 M 38 70% 78%

RNN 1.0 M 39 73% 81%

frames as input and produces the predicted output for each of

the classes. The first architecture, i.e, the MLP, consists of 3

layers (512/256/128) in the first stage and 2 layers (128/5) in

the second stage where 5 is the number of classes considered.

The second architecture (the CNN) is similar to the architec-

ture presented in [14] and has a first stage with 4 convolutional

layers of filter sizes 11/7/5/3 and 3 channels followed by a

2-layered MLP (256/128), and a second stage that consists of

a 2-layered MLP (128/5). The third architecture (the RNN)

has the same first stage as the CNN, and a second stage that

consists of a recurrent layer with 128 long-short term memory

(LSTM) units, 5 attention heads [16] (one for each class) and

a 2-layered MLP (64/5). The attention mechanism produces

an embedding (used by the last MLP to classify) which is a

weighted sum over the frames. For all architectures, dropout

(p = 0.5) is used between every layer except for the last one.

Training was done over 100 epochs using Adam optimizer

[17] and learning rate 1e−4.

III. RESULTS

The results are shown in Table I. The MLP has the worst

performance and yields similar results for both feature types.

A better performing architecture is the CNN. As pointed

out in [14], the CNN is more successful than the MLP in

extracting meaningful features from the 1 s frames in the first

stage, making it easier for the second stage to classify the

full 10 s frame. With the CNN architecture, we start to see

that the log-filterbank features yield better results than the

DASLP features. The same trend, but with better results, can

be seen when using the RNN. The RNN is the architecture

that performs the best. This is due to the fact that the RNN

puts together the CNN feature extraction capabilities along

with the RNN power of dealing with sequences. In particular,

the attention mechanism of the RNN helps to filter out empty

frames or frames that are not useful for the final classification.

When comparing the architectures in terms of computational

cost, Table I shows that the MLP is again the worst choice.

Even though the number of operations is increased in the

CNN, there is a significant decrease in the number of stored

parameters and the classification accuracy increased by >
10%. In the RNN case, there is a small increase in both the

number of operations and parameters compared to the CNN

but the classification accuracy increased significantly.

Table II reports the RNN accuracy per class for the two

features. From the table, we can see that the overall higher

classification accuracy from the log-filterbank features is

TABLE II: Breakdown of the classification accuracy per class

for the two input features types. The RNN is used here.

Feat
Class

Total
Wind Siren Gun Car Dog

Exp features 67% 85% 65% 70% 75% 73%

Log-filterbank 70% 87% 74% 95% 75% 81%

mostly due to two classes, namely the Car and Gun classes.

By inspection of the samples in these classes, we noticed that

a lot of samples in the Gun class have gunshot sounds in the

background and with very low volume. For this reason, these

samples do not trigger cochlea spikes and therefore provide

no features for classifying the sample. The same is true for

the Car samples. Conversely, for the Siren and Dog classes,

results using the DAS features are on par with the results from

the ADC features. This is because the volume amplitude of

the samples led to the generation of enough spikes for creating

useful spike features.

Data-driven sensory processing means that processing is not

needed if no audio spikes are generated by the sensor. In this

dataset, there are periods of silence for the 10 s file. We first

compute the percentage of 10 ms frames where no spikes are

detected. The average is around 48%. If the spike features feed

into a hardware accelerator such as NullHop [18] where the

computation is skipped over zero pixels in a vector, 48% of the

computes will be saved. Moreover, if we compute the number

of full 1 s frames that are empty, this number goes down to

18%. Therefore, even without a specialized architecture, these

frames can be dropped completely by the model leading to

savings on the overall number of computes.

IV. DISCUSSION

Low-power spiking audio sensors can drive potential

always-on low-power smart audio technology for IoT ( [1],

[2]). These sensors including the spiking retinas drive the

field of data-driven processing where computation is only

carried out when the spikes are present. Data-driven sensor

processing systems demonstrate properties of low-latency low-

energy tradeoff. Systems using these sensors can be used to

do initial preprocessing for tasks that do not require much

complexity, e.g., detecting speech in a scene. This can then

be used to drive a more complex processing pipeline which

requires more computes and power. The deep network archi-

tectures investigated here can be implemented on low-power

hardware accelerators [19], [20] or the network circuits can be

combined with the spiking cochlea filter channel circuits for

an ASIC design that solves a particular task, e.g., the ASIC

for a VAD task dissipates only 1µW [21]. Using information

from multiple spiking modalities to better solve a task is one

future direction, e.g., by combining visual and audio spikes

for solving a task [22].
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