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As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232

confirmed or probable COVID-19-related deaths in the US. This was more than twice the

number of deaths reported in the next most severely impacted country. We jointly model the

US epidemic at the state-level, using publicly available death data within a Bayesian hier-

archical semi-mechanistic framework. For each state, we estimate the number of individuals

that have been infected, the number of individuals that are currently infectious and the time-

varying reproduction number (the average number of secondary infections caused by an

infected person). We use changes in mobility to capture the impact that non-pharmaceutical

interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2.

We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7%

[3.4%–4.0%] of the total population of the US had been infected, with wide variation

between states, and approximately 0.01% of the population was infectious. We demonstrate

good 3 week model forecasts of deaths with low error and good coverage of our credible

intervals.
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The first death caused by COVID-19 in the United States is
currently believed to have occurred in Santa Clara County,
California on the 6th February1. Throughout March 2020,

US state governments implemented a variety of non-
pharmaceutical interventions (NPIs), such as school closures
and stay-at-home orders, to limit the spread of SARS-CoV-2 and
ensure the number of severe COVID-19 cases did not exceed the
capacity of the health system. In April 2020, the number of deaths
attributed to COVID-19 in the United States (US) surpassed that
of Italy2. Courtemanche et al.3 used an event-study model to
determine that such NPIs were successful in reducing the growth
rate of COVID-19 cases across US counties. We similarly seek to
estimate the impact of NPIs on COVID-19 transmission, but
through a semi-mechanistic Bayesian model that reflects the
underlying process of disease transmission and relies on mobility
data released by companies such as Google4.

Mobility measures revealed stark changes in behaviour fol-
lowing the large-scale government interventions in the first stage
of the epidemic, with individuals spending more time at home
and correspondingly less time at work, at leisure centres, shop-
ping, and on public transit4,5. As states continued to ease the
stringency of their NPIs in the end of June, policy decisions relied
on the interaction between mobility and NPIs and their sub-
sequent impact on transmission, alongside other measures to
track and curtail SARS-CoV-2 transmission.

We introduced a new Bayesian statistical framework for esti-
mating the rate of transmission and attack rates for COVID-19 in
Flaxman et al.6. In that paper, we inferred the time-varying
reproduction number, Rt, or the average number of people an
infected person will infect over time. We calculated the number of
new infections through combining previous infections with the
generation interval (the distribution of times between infections)
and chose the number of deaths to be a function of the number of
infections and the infection fatality ratio (IFR). We estimated the
posterior probability of our parameters given the observed data,
while incorporating prior uncertainty. This made our approach
empirically driven, whilst incorporating uncertainty. This
approach has also been implemented for Italy7 and Brazil8.

In this paper, we extend the Flaxman et al.6 framework to
model transmission in the US at the state-level and include
reported cases in our model. We parameterise Rt as a function of
several mobility types and include an autoregressive term to
capture changes in transmission that are decoupled from mobi-
lity, for example hand-washing, social distancing and changes in
transmission that are decoupled from mobility. We utilise partial
pooling of parameters, where information is shared across all
states to leverage as much signal as possible, but individual effects
are also included for state and region-specific idiosyncrasies. In
this paper, we infer plausible upper and lower bounds (Bayesian
credible interval summaries of our posterior distribution) of the
total population that had been infected by COVID-19 on 01 June
2020 (also called the cumulative attack rate or attack rate) and
estimate the effective number of individuals currently infectious
given our generation distribution. We also present effect sizes of
the mobility covariates and make short-term forecasts, which we
compare with reality throughout June. Details of the data sources
and a technical description of our model are found in sections
“Methods” and “Data”, respectively. General limitations of our
approach are presented in the conclusions.

Results
Infections. The percentage of the total population across the US
infected by COVID-19 was 3.7% [3.4%–4.0%] on 01 June 2020.
However, this low national average masked a stark heterogeneity
across the states (Table 1). New York and New Jersey had the

highest estimated cumulative attack rates, of 15.9%
[12.4%–19.9%] and 14.8% [11.2%–18.2%] respectively, and
Connecticut and Massachusetts both had cumulative attack rates
over 10%. Conversely, other states that have drawn attention for
early outbreaks, such as California, Washington, and Florida, only
had cumulative attack rates of around 2% and states that were
only in the early stages of their epidemics, like Maine, had esti-
mated cumulative attack rates of <1%.

Figure 1 shows the effective number of infectious individuals
and the number of newly infected individuals on any given day
up until 01 June 2020 for each of the 8 regions in our model,
which are based on US census regions (see Supplementary Note 1
for further descriptions of our groupings). The effective number
of infectious individuals is calculated using the generation time
distribution, where individuals are weighted by how infectious
they are over time, see section “Generated quantities” for more
information. The fully infectious average includes asymptomatic
and symptomatic individuals. On 01 June 2020, we estimate that
there were 41,100 [34,500–46,800] infectious individuals across
the US, which corresponds to 0.01% of the population. Table 1
shows estimates of the number of new infections across each
states on 01 June 2020. By this date, the estimated number
infections were beginning to increase in the Pacific (Alaska,
California, Hawaii, Oregon and Washington) and Mountain
(Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah
and Wyoming) regions.

Our model includes a state-level parameter for the infection
ascertainment ratio, IAR, which we define as the number of
reported cases divided by the true number of infections
(including asymptomatic infections). We only estimate this
parameter from 11 May 2020 when more than 375,000 tests are
done each day, see Supplementary Note 2 for further information.
Column 3 of Table 1 shows the value of the infection
ascertainment ratio in our model (see section “Methods”) and
varies significantly between state. We would not expect the
infection ascertainment to be 100% because our model includes
asymptomatic individuals who may not know they have COVID-
19. The mean value of this ratio varies between 43% (Missouri) to
74% (Kansas and Tennessee), which suggests that states are doing
very different levels of testing.

Reproduction number. The mean estimate for Rt was below one
in 23 states on 01 June 2020 and the 95% credible intervals did
not exclude one in any state (see Supplementary Note 3 for Rts by
state). Figure 2 depicts the geographical variation in the posterior
probability that Rt was <1 using a shape file from the US Census
Bureau9. The closer a value is to 100%, the more certain we were
that the reproduction number was below 1, indicating that new
infections were not increasing. The probability was <40% that
Rt < 1 in 20 states. There was substantial geographical clustering;
most states in the Midwest and the South had reproduction
numbers that suggested that the epidemic was not under control.
We include figures of Rt, infections and deaths over time for each
state in Supplementary Note 4.

Model effect sizes. We find that decreases in the overall average
number of visits to different places had a significant effect on
reducing transmission. If mobility stopped entirely (100%
reduction in average mobility) then Rt would be reduced by 55.1%
[26.5%–77.0%]. The country effect size estimates are given in
Fig. 3, with regional and state-level effects given in Supplementary
Note 5. However, in the US, the average mobility covariate never
approached a 100% reduction, and only about half the states had
reductions below 50% of the baseline. We define the baseline as
the pre-epidemic mobility for each state4. As an example,
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consider the largest reduction observed, −62% of the baseline
(Minnesota on 12 April 2020). The effect on Rt was a reduction of
37% [16%–56%] from the country level effect.

Increased time spent in residences also reduced transmission; if
time spent in residences increased to 100% of the baseline, Rt
would be reduced by 15.3% [−27.5% to 54.6%]. Time spent in
residences increased by 20% or more from the baseline in
36 states. As an example, consider the largest reduction observed,
a 33% increase from the baseline (New Jersey on 10 April 2020).

The effect on Rt from this was a reduction of 5% [−10% to 20%]
in New Jersey from the country level effect.

Average mobility and residential mobility are no doubt
correlated—when people spend less time in public spaces,
captured by our average mobility metric, they conversely spend
more time at home. Owing to this collinearity, our model is
unable to distinguish between the independent contributions of
these covariates, with most of the effect assigned to the average
mobility coefficient, due to its greater explanatory power. As a

Table 1 Posterior model estimates of percentage of total population ever infected, mean new infections per day over week
ending 01 June 2020, and infection ascertainment ratio as of 01 June 2020. We present the mean and the 95% credible intervals
in square brackets.

States % of total population infected Estimated mean new infections per day over week ending 01
June 2020

Infection ascertainment ratio

Alabama 1.8% [1.4%–2.3%] 1065 [300–2400] 59% [35%–80%]
Alaska 0.1% [0.0%–0.2%] 20 [0–100] 69% [46%–88%]
Arizona 1.6% [1.2%–2.0%] 1003 [400–1800] 55% [35%–81%]
Arkansas 0.7% [0.5%–1.0%] 451 [100–900] 66% [45%–86%]
California 1.5% [1.1%–1.9%] 4863 [2100–10,600] 59% [37%–80%]
Colorado 3.2% [2.6%–4.1%] 674 [200–1400] 54% [33%–79%]
Connecticut 11.4% [9.1%–14.5%] 520 [200–1200] 53% [32%–78%]
Delaware 4.4% [3.4%–5.6%] 153 [0–300] 68% [45%–87%]
District of Columbia 9.7% [7.6%–12.3%] 134 [0–300] 60% [39%–83%]
Florida 1.2% [0.9%–1.5%] 1350 [600–2700] 61% [39%–83%]
Georgia 2.7% [2.1%–3.4%] 1528 [600–3600] 46% [25%–70%]
Hawaii 0.1% [0.0%–0.3%] 2 [0–100] 69% [49%–89%]
Idaho 0.6% [0.4%–0.9%] 47 [0–100] 70% [48%–88%]
Illinois 5.2% [4.1%–6.5%] 2198 [800–4500] 63% [40%–84%]
Indiana 3.8% [3.1%–4.9%] 779 [300–1700] 61% [36%–82%]
Iowa 2.3% [1.7%–2.8%] 542 [200–1100] 58% [36%–81%]
Kansas 1.1% [0.8%–1.4%] 189 [0–400] 74% [58%–91%]
Kentucky 1.2% [0.9%–1.6%] 359 [100–800] 58% [36%–81%]
Louisiana 7.1% [5.7%–9.0%] 660 [300–1400] 63% [38%–86%]
Maine 0.7% [0.5%–1.0%] 78 [0–200] 64% [42%–85%]
Maryland 5.5% [4.3%–6.7%] 1675 [600–3200] 60% [38%–83%]
Massachusetts 11.2% [9.0%–14.0%] 3387 [1,300–7000] 43% [23%–68%]
Michigan 5.8% [4.5%–7.2%] 641 [200–1500] 54% [30%–76%]
Minnesota 2.6% [1.9%–3.2%] 1110 [400–2400] 57% [36%–80%]
Mississippi 3.1% [2.5%–4.1%] 687 [300–1600] 48% [27%–73%]
Missouri 1.5% [1.1%–1.9%] 504 [200–1100] 43% [24%–69%]
Montana 0.2% [0.0%–0.3%] 11 [0–100] 71% [47%–87%]
Nebraska 1.5% [1.2%–2.0%] 379 [100–900] 73% [53%–90%]
Nevada 1.8% [1.4%–2.3%] 197 [0–400] 62% [40%–84%]
New Hampshire 2.0% [1.5%–2.6%] 152 [0–400] 54% [30%–78%]
New Jersey 14.8% [11.2%–18.2%] 1493 [500–3200] 52% [31%–79%]
New Mexico 2.0% [1.6%–2.6%] 176 [0–400] 61% [36%–81%]
New York 15.9% [12.4%–19.9%] 2056 [800–4200] 59% [37%–81%]
North Carolina 1.3% [1.0%–1.7%] 1859 [800–4100] 56% [34%–78%]
North Dakota 1.2% [0.8%–1.7%] 49 [0–200] 71% [47%–88%]
Ohio 2.1% [1.7%–2.7%] 1141 [400–2700] 48% [28%–75%]
Oklahoma 1.1% [0.8%–1.4%] 117 [0–300] 66% [43%–85%]
Oregon 0.4% [0.3%–0.6%] 85 [0–200] 72% [50%–89%]
Pennsylvania 4.4% [3.4%–5.5%] 1310 [400–2600] 51% [28%–78%]
Rhode Island 7.5% [5.8%–9.4%] 246 [0–700] 51% [27%–74%]
South Carolina 1.3% [0.9%–1.8%] 743 [200–1400] 51% [30%–78%]
South Dakota 1.1% [0.7%–1.5%] 110 [0–300] 69% [48%–87%]
Tennessee 0.8% [0.6%–1.1%] 406 [100–800] 74% [54%–90%]
Texas 0.9% [0.7%–1.2%] 2,208 [1000–4400] 65% [44%–86%]
Utah 0.8% [0.6%–1.1%] 420 [100–800] 66% [45%–86%]
Vermont 0.9% [0.5%–1.3%] 6 [0–100] 69% [46%–87%]
Virginia 2.3% [1.8%–2.9%] 1879 [800–3900] 62% [40%–83%]
Washington 1.8% [1.4%–2.3%] 533 [200–1200] 62% [38%–83%]
West Virginia 0.5% [0.3%–0.7%] 70 [0–200] 65% [43%–86%]
Wisconsin 1.3% [1.0%–1.7%] 846 [300–1900] 61% [37%–80%]
Wyoming 0.3% [0.1%–0.6%] 15 [0–100] 65% [39%–85%]
National 3.7% [3.4%–4.0%] 41,100 [34,500-46,800]
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check that our overall findings were not biased by this
collinearity, we verified that the posterior estimates of these
coefficients were not correlated.

Short-term forecasts. We used our model to produce short-term
death forecasts. Figure 4 compares our forecasts for the 3 weeks
after 01 June 2020 (blue line with shaded uncertainty intervals)
with the recorded daily number of deaths during this period
(coral bars). As expected from our Rt values, deaths were
noticeably declining in the Northeastern Corridor, where Rt > 1,
with particularly low error between our forecasts and reality in
New York and Connecticut. In the South, we forecast a flattening
or slight increase of deaths, especially in Arkansas, Texas and
Florida.

We investigated the numerical accuracy of our forecast using
three metrics: mean absolute error, continuous ranked probability
score (CRPS) and coverage of credible intervals. We fitted our
model to three end points: 1 May, 15 May and 1 June and
performed 3-week forecasts from each end point. We compared
the metric scores with a log-linear “null” model fit to 31 days of
data prior to the three specified end points (see Supplementary

Note 6 for further information). We find our model performs
similarly to the null model (1 June) or better (15 May), however,
our model fit to 1 May is worse than the null model because we
only include cases after 11 May in our models. This suggests that
including cases improves the forecasting ability of our model and
further justifies our inclusion of them. The coverage of our
credible intervals is good for all models, in particular our model
and the null model fit to 1 June.

Model selection and sensitivity. Mobility data provided a proxy
for the behavioural changes that occur in response to non-
pharmaceutical interventions. Supplementary Note 7 shows the
mobility trends for the 50 states and the District of Columbia up
until 01 June 2020 (see section “Data” for a description of the
mobility dimensions). The median correlation between the
observed average mobility and the timing of the introduction of
major NPIs (represented as step functions) was ~86% (see Sup-
plementary Note 8). We make no explicit causal link between
NPIs and mobility because this relationship is plausibly causally
linked by other factors. The mobility trends data suggests that
substantial early outbreak in New York state may have led to
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Fig. 1 Daily estimates of the number of infectious (those still able to transmit) individuals and newly infected individuals. The light purple band is the
95% credible interval (CI) of the number of infected individuals, dark purple the 50% CI of the number of infected individuals, light blue the 95% CI of the
newly infected individuals and dark blue the 50% CI of the newly infected individuals.
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substantial changes in mobility in nearby states, like Connecticut,
prior to any mandated interventions in those states, which sup-
ports including regions in our model. Including both mobility
trends and the timing of imposition and lifting of “stay-at-home”
orders did not affect the estimated cumulative attack rates (see
Supplementary Note 9).

Mobility alone cannot fully capture how transmission evolves
over time. In particular, it cannot capture the impact of case-
based interventions (such as testing and tracing) or behaviour

changes (such as mask wearing or hand-washing). We use a
second-order, weekly, autoregressive process to allow our changes
in transmission to be decoupled from mobility. This autoregres-
sive process is an additional term in our parametric equation for
Rt and accounts for residual effects by capturing a correlation
structure where current Rt is correlated with previous weeks Rt.
This means that our forecasts were equally good whatever
combination of mobility covariates were used because this term
could capture the unexplained behaviour. The learnt random
effects from this process are shown in Supplementary Note 10 for
all states along with the contributions to Rt from the mobility and
autoregressive terms for three example states. The autoregressive
term increases Rt before lockdown in New York, which could be
explained by behaviour such as panic buying. In contrast, the
autoregressive term reduces Rt in Montana and could reflect
behavioural changes such as hand-washing and self isolation,
which can reduce transmission with maintained mobility levels.
The autoregressive term remains mostly constant in Washington
and suggests that mobility is sufficient to capture the
behaviour there.

Discussion
We developed a Bayesian semi-mechanistic modelling approach
to investigate the impact of NPIs on the spread of SARS-CoV-2 in
the United States through changes in mobility. Our model relies
on death data from the start of the epidemic and recently
reported case data to inform our predictions. This enabled us to
estimate a realistic infection ascertainment ratio for the 3 weeks
before 01 June 2020 for each state, which could help inform
policy as to where testing may be lacking. The mean value of this
ratio varies between 43% (Missouri) to 74% (Kansas and Ten-
nessee). Our epidemiological grounded mechanistic model links
unobserved infections to reported cases and deaths, all within a
principled Bayesian statistical framework. This is a significant
advancement over curve-fitting models fit directly to
reported cases.

Probability Rt < 1

x < 20%

20% ≤ x < 40%

40% ≤ x < 60%

60% ≤ x < 80%

x ≥ 80%

Fig. 2 Estimates of the probability that the time-varying reproduction number Rt is less than one in each state. This plot shows the certainty that the
rate of transmission is under control. These values are an average over the week ending 01 June 2020.
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(Ends transmissibility)
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Fig. 3 Country level covariate effect sizes assuming mobility stopped
entirely (100% reduction in average mobility) and residential mobility
was increased fully (100% increase in residential mobility). Average
mobility combines “retail & recreation”, “grocery & pharmacy”,
“workplaces”. The error bars show 95% credible intervals and the dots
show the mean estimate. The sample size n= 105,006 deaths across the
50 states and the District of Columbia up until 1 June and 479,422 cases
from 11 May to 1 June.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19652-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6189 | https://doi.org/10.1038/s41467-020-19652-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Our model suggests that although initial reductions in the daily
infections had plateaued in most states by 01 June 2020, the
reservoir of infectious individuals still remained large with
approximately 0.01% of the population being infectious on that
date. Despite this, the cumulative attack rate across the US still
remained low. We found our attack rate for New York was in line
with those from recent serological studies10. There is now evi-
dence that mild infection is able to lead to robust immunity (via
T cells) but potentially not induce antibody production, which are
detected in serosurveys11. Therefore, serosurveys might under-
estimate exposure, particularly in mild cases, and our model may
provide an alternative way to measure population exposure. Our
cumulative attack rates are, however, sensitive to the assumed
values of infection fatality rate (IFR). We account for each indi-
vidual state’s age structure, and further adjust for contact mixing
patterns12, but age-specific modelling may be necessary to capture
potential changes in the demographics of cases in states such as
Texas, Florida and South Carolina where there is evidence that
younger people than were infected at the start of the epidemic are
being infected13,14.

We estimated that 23 states had a posterior mean reproduction
number Rt below one on 01 June 2020 and in no states were we
more than 95% confident that Rt was below one. We compared
our estimates with predictions made by rt.live15 who use a
method that fits the most likely Rt curve to the daily new daily

cases (see Supplementary Note 11). Overall, our estimates were
weakly correlated (ρ= 0.42) with both of us estimating Rt > 1 in
23 states (red points), including Montana and Alaska. However,
the rt.live estimates are slightly more pessimistic because they
predict Rt > 1 in ten states where we predict Rt < 1 (blue points).
In contrast we predict Rt > 1 in five states where they predict Rt <
1 (green points). Both sets of reproduction numbers strongly
implied that the US epidemic was not under control in many
states, and that in the presence of continued migration and the
loosening of interventions seen in June, increased infections were
to be expected with high probability. We found that state with
high reproduction numbers on 01 June 2020 were geographically
clustered in the west and south US, whilst the states that had
suffered high COVID-19 mortality (such as the Northeast Cor-
ridor) in the early phase of the epidemic had lower reproduction
numbers. After the period covered by this study, reported cases
began to increase in the US, and seven states (Arizona, Arkansas,
California, North Carolina, South Carolina, Tennessee and Texas)
had recorded higher levels of hospitalisations in early July than
before16,17. This suggests our estimates that Rt was not less than
one were accurate. More recent estimates of Rt, the number of
infections, and the number of people currently infectious are
presented on our website https://mrc-ide.github.io/covid19usa/.

Our 3-week forecasts of daily deaths were highly accurate,
confirming the predictive validity of our modelling approach,

Hawaii

Texas Louisiana Florida

California Arizona New Mexico Oklahoma Arkansas Mississippi Alabama Georgia South Carolina

Nevada Utah Colorado Kansas Missouri Tennessee Kentucky West Virginia North Carolina Maryland

Oregon Idaho Wyoming Nebraska Iowa Illinois Indiana Ohio Virginia District of Columbia Delaware

Washington Montana North Dakota South Dakota Minnesota Wisconsin Michigan Pennsylvania New Jersey Rhode Island

New York Connecticut Massachusetts
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Fig. 4 Three-week death forecasts for model fitted up until 01 June 2020. The coral bars show the reported number of deaths for the 3 weeks after 01
June 2020, and the blue line and ribbon show the mean and 95% CI for our forecast estimates.
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despite our having kept mobility constant during our forecasts.
These forecasts, alongside our Rt values, show that the epidemic
was not under control at the end of May. The accuracy of our
forecasts varied during the epidemic and could be due to our
assumption that mobility is kept constant over these 3 weeks. Our
forecast would perform worse in weeks where mobility was sig-
nificantly different to the last week of our model fit. When we
include cases in our model, we are able to get similar results to a
simple “null” model whilst also being about to estimate effect
sizes of different mobility trends. We also compared our cumu-
lative death forecasts with those presented by Friedman et al.18.
Friedman et al. compared the median absolute percentage error
(MAPE) for SEIR and dynamic growth rate types of models for
models fit to some point in June. Unlike those models, we find the
MAPE of our cumulative death forecasts did not increase sig-
nificantly over time and our 3-week median cumulative death
MAPE across all states (9.9%) was similar to the US estimate from
Friedman et al. (4.1–8.6), see Supplementary Note 12 for more
information.

Our model uses mobility to predict SARS-COV2 transmission.
We find that the timings that non-pharmaceutical interventions
were implemented was strongly correlated to changes in mobility.
This is similar to findings in Abouk and Heydari5 who find that
statewide stay-at-home orders had the strongest causal impact on
reducing social interaction and that these orders significantly
increase the presence of individuals at home by about six fold
(our “residential mobility trend”). This supports our choice of
using mobility instead of the timings of NPIs in this study instead
of the times of interventions as in Flaxman et al.6. We find that
magnitude of the reductions in average mobility, and the resulting
increases in residential mobility, are important in determining the
size of reduction in Rt. This agrees with Wang et al.19 who use a
stochastic age- and risk-structured susceptible-exposed-asymp-
tomatic-symptomatic-hospitalised-recovered (SEAYHR) model
to considered the effect of various levels of social distancing. They
found that social distancing measures, which reduced non-
household contacts by <50%, would not prevent a healthcare
crisis and that only their 75% and 90% contact reduction sce-
narios were projected to enable metropolitan areas to remain
within healthcare levels.

While mobility, or social distancing measures, will explain a
large amount of the trend in Rt, there is likely to be substantial
residual variation from other behavioural changes such as mask
wearing and hand-washing. We accounted for this residual var-
iation through a second-order, weekly, autoregressive process.
This stochastic process captures changes in Rt reflected in the
data, but is unable to attribute these changes to other determi-
nants of transmission or interventions. We pool parameters in
our model to leverage as much signal in our data as possible and
to reflect the conjoined nature of some states, in particular in the
Northeastern Corridor. While this sharing can potentially lead to
over or under estimation of effect sizes, it also means that a
consistent signal for all states can be estimated before that signal
is presented in an individual state with little data, such as Alaska
and Hawaii. Pooling also increases the robustness of our models
to under reporting and time lags6–8.

Methods
Flaxman et al.6 introduced a Bayesian model for estimating the transmission
intensity and attack rate (percentage of the population that has been infected) from
COVID-19 from the reported number of deaths. This framework used the time-
varying reproduction number Rt to inform a latent function for infections, and
then these infections, together with probabilistic lags, were calibrated against
observed deaths. Observed deaths, while still susceptible to under reporting and
delays, comprise a more consistent time series than the reported number of con-
firmed cases, which are susceptible to changes in the probability of ascertainment
over the course of the epidemic as testing strategies changed. Our model code is

available on GitHub. Analysis was done using RStan20 version 2.19.3 within R
version 3.6.3.

We adapted the original Bayesian semi-mechanistic model of the infection cycle
to all the states in the US and the District of Columbia to infer the reproduction
number over time (Rt), plausible upper and lower bounds (95% Bayesian credible
intervals) of the total populations infected (attack rates) and the number of people
currently infected on 01 June 2020. In this paper, we also include the reported
number of cases after 11 May 2020, see Supplementary Note 13. This reflects the
point in time when over 375,000 tests were being done each day across the US. We
include this in our likelihood but do not use them to calculate transmission
directly. We parametrise Rt as a function of Google mobility data and include an
autoregressive term to capture non-mobility driven behaviour. We fit our model
jointly to COVID-19 data from all states to assess the attack rates and number of
people who were currently infected. Finally, we use our model to forecast for
3 weeks from 01 June 2020 and compare our estimates of deaths to those recorded
in the US for each state. We assume mobility remains constant at the previous
value of mobility on the same day the previous week in our forecasts and the
autoregressive term remains constant.

Data. Our model uses daily real-time state-level aggregated data published by New
York Times (NYT)21 for New York State and John Hopkins University (JHU)2 for
the remaining states. We include 105,006 deaths in our model up until 1 June and
479,422 cases from 11 May to 1 June. Age-specific population counts were drawn
from the U.S. Census Bureau in 201822 to estimate state-specific infection fatality
ratio reflective of the population age structure. The timing of NPIs were collated by
the University of Washington23. We used Google’s COVID-19 Community
Mobility Report4, which provides data on movement in the US by states and
highlights the percent change in visits to:

● Grocery & pharmacy: mobility trends for places like grocery markets, food
warehouses, farmers markets, speciality food shops, drug stores, and
pharmacies.

● Parks: mobility trends for places like local parks, national parks, public
beaches, marinas, dog parks, plazas, and public gardens.

● Transit stations: mobility trends for places like public transport hubs such as
subway, bus, and train stations.

● Retail & recreation: mobility trends for places like restaurants, cafes, shopping
centres, theme parks, museums, libraries, and movie theatres.

● Residential: mobility trends for places of residence.
● Workplaces: mobility trends for places of work.

The residential data includes length of stay at different places compared to a
baseline, whereas the other mobility trends are based on number of visits to a
certain place. These trends are, therefore, relative, i.e., mobility of −20% means
that, compared to normal circumstances individuals are engaging in a given activity
20% less.

Model specifics. The true number of infected individuals, i, is modelled using
a discrete renewal process. We specify a generation distribution g with density
g(τ) as:

g � Gammað6:5; 0:62Þ: ð1Þ
Given the generation distribution, the number of infections it,m on a given day t,
and state m, is given by the following discrete convolution function:

it;m ¼ St;mRt;m

Pt�1
τ¼0 iτ;mgt�τ ;

St;m ¼ 1�
Pt�1

j¼0
ij;m

Nm
;

ð2Þ

where the generation distribution is discretised by gs ¼
R sþ0:5
s�0:5 gðτÞdτ for s=

2, 3, . . . , and g1 ¼
R 1:5
0 gðτÞdτ. The population of state m is denoted by Nm. We

include the adjustment factor St,m to account for the number of susceptible indi-
viduals left in the population.

Both deaths and cases are observed in our model. We define daily deaths, Dt,m,
for days t ∈ {1, …, n} and states m ∈ {1, …, M}. These daily deaths are modelled
using a positive real-valued function dt;m ¼ E½Dt;m� that represents the expected
number of deaths attributed to COVID-19. The daily deaths Dt,m are assumed to

follow a negative binomial distribution with mean dt,m and variance dt;m þ d2t;m
ψ1
,

where ψ1 follows a positive half normal distribution, i.e.,

Dt;m � Negative binomial dt;m; dt;m þ d2t;m
ψ1

 !
; t ¼ 1; ¼ ; n ð3Þ

ψ1 � Nþð0; 5Þ: ð4Þ
Here, Nðμ; σÞ denotes a normal distribution with mean μ and standard deviation
σ. We say that X follows a positive half normal distribution Nþð0; σÞ if X ~ ∣Y∣,
where Y � Nð0; σÞ.

We link our observed deaths mechanistically to transmission as in Flaxman
et al.6. We use a previously estimated COVID-19 infection fatality ratio (IFR,
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probability of death given infection) together with a distribution of times from
infection to death π. Details of this calculation can be found in24,25. From the
above, every region has a specific mean infection fatality ratio ifrm (see
Supplementary Note 13). To incorporate the uncertainty inherent in this estimate
we allow the ifrm for every state to have additional noise around the mean.
Specifically we assume

ifr�m � ifrm � Nð1; 0:1Þ: ð5Þ
We believe a large-scale contact survey similar to polymod12 has not been collated
for the USA, so we assume the contact patterns are similar to those in the UK. We
conducted a sensitivity analysis, shown in Supplementary Note 13, and found that
the IFR calculated using the contact matrices of other European countries lay
within the posterior of ifr�m .

Using estimated epidemiological information from previous studies, we assume
the distribution of times from infection to death π (infection-to-death) to be the
convolution of an infection-to-onset distribution (π0)25 and an onset-to-death
distribution24:

π � Gammað5:1; 0:86Þ þ Gammað17:8; 0:45Þ: ð6Þ
The expected number of deaths dt,m, on a given day t, for state m is given by the

following discrete sum:

dt;m ¼ ifr�m
Xt�1

τ¼0
iτ;mπt�τ ; ð7Þ

where iτ,m is the number of new infections on day τ in state m and where, similar to
the generation distribution, π is discretized via πs ¼

R sþ0:5
s�0:5 πðτÞdτ for s = 2, 3, . . . ,

and π1 ¼
R 1:5
0 πðτÞdτ, where π(τ) is the density of π.

For every state m, we also observe daily cases Ct,m after tc= 11 May 2020.
Similar to daily deaths, daily cases are modelled using a positive real-valued
function �ct;m ¼ E½Ct;m� that represents the expected number of symptomatic and
asymptomatic cases. Again, the daily cases Ct,m are assumed to follow a negative

binomial distribution but with mean ct,m and variance ct;m þ c2t;m
ψ2
, where ψ2 follows a

positive half normal distribution, i.e.,

Ct;m � Negative binomial ct;m; ct;m þ c2t;m
ψ2

� �
; t ¼ tc; ¼ ; n; ð8Þ

ψ2 � Nþð0; 5Þ: ð9Þ
As before, we assume the distribution of times from infection to becoming a case π0
(infection-to-onset) to be

π0 � Gammað5:1; 0:86Þ: ð10Þ
We add in a new link between our observed daily cases and our estimated daily
infections. We use our model to estimate an infection ascertainment ratio (iarm) for
each state m, which is defined as the number of reported cases divided by the true
number of infections (including both symtomatic and asymptomatic infections).
This follows a Beta distribution, specifically um ~ Beta(12, 5).

The expected number of cases ct,m, on a given day t, for state m is given by the
following discrete sum:

ct;m ¼ iarm
Xt�1

τ¼0
iτ;mπ

0
t�τ ; ð11Þ

where, again, cτ,m is the number of new infections on day τ in state m and where π0

is discretized via π0s ¼
R sþ0:5
s�0:5 π

0ðτÞdτ for s= 2, 3, . . . , and π01 ¼
R 1:5
0 π0ðτÞdτ, where

π0ðτÞ is the density of π0.
We parametrise Rt,m as a linear function of the relative change in time spent and

number of visits (from a baseline)

Rt;m ¼ R0;m � f �
X2

k¼1
Xt;m;kαk

� �
�
X2

l¼1
Yt;m;lα

region
rðmÞ;l � Zt;mα

state
m � ϵm;wmðtÞ

� �
;

ð12Þ
where f ðxÞ ¼ 2 expðxÞ=ð1þ expðxÞÞ is twice the inverse logit function. Xt,m,k are
covariates that have the same effect for all states, Yt,m,l is a covariate that has region-
specific effects, r(m) ∈ {1, …, R} is the region a state is in (see Supplementary
Note 7), Zt,m is a covariate that has a state-specific effect and ϵm;wmðtÞ is a weekly AR
(2) process, centred around 0, that captures variation between states that is not
explained by the covariates.

The prior distribution for R0,m26 was chosen to be

R0;m � Nð3:28; κÞwith κ � Nþð0; 0:5Þ; ð13Þ
where κ is the same among all states.

In the analysis of this paper we chose the following covariates: Xt;m;1 ¼ Maverage
t;m ,

Xt;m;2 ¼ Mresidential
t;m , Yt,m,1= 1 (an intercept), Yt;m;2 ¼ Maverage

t;m and Zt;m ¼ Maverage
t;m ,

where the mobility variables are from4 and defined as follows (all are encoded so
that 0 is the baseline and 1 is a full reduction of the mobility in this dimension):

● Maverage
t;m is an average of retail and recreation, groceries and pharmacies, and

workplaces. An average is taken as these dimensions are strongly collinear.
● Mresidential

t;m are the mobility trends for places of residences.

We include regional, as well as state-level parameters, in our model to
encapsulate the connected nature of states. This was particularly important in the
Northeasten corridor where residents in New Jersey and Connecticut regularly
commuted into New York, the early epicentre of the US epidemic (see
Supplementary Note 1 for a map of the regions). Regions are based on US Census
Divisions, modified to account for coordination between groups of state
governments27.

We assume that seeding of new infections begins 30 days before the day after a
state has cumulatively observed 10 deaths. From this date, we seed our model with
6 sequential days of an equal number of infections:
i1;m ¼ ¼ ¼ i6;m � Exponential 1

τ

� �
, where τ ~ Exponential(0.03). These seed

infections are inferred in our Bayesian posterior distribution.
The weekly, state-specific effect is modelled as a weekly AR(2) process, centred

around 0 with stationary standard deviation σw that, in every state, starts on the
first day of its seeding of infections, i.e., 30 days before a total of 10 cumulative
deaths have been observed in this state. The AR(2) process starts with
ϵ1;m � Nð0; σ�wÞ,

ϵw;m � Nðρ1ϵw�1;m þ ρ2ϵw�2;m; σ
�
wÞ form ¼ 2; 3; 4; ¼ ð14Þ

with independent priors on ρ1 and ρ2 that are normal distributions conditioned to
be in [0, 1]; the prior for ρ1 is aNð0:8; 0:05Þ distribution conditioned to be in [0, 1]
and the prior for ρ2 is a Nð0:1; 0:05Þ distribution, conditioned to be in [0, 1]. The
prior for σw, the standard deviation of the stationary distribution of ϵw is chosen as
σw � Nþð0; 0:2Þ. The standard deviation of the weekly updates to achieve this
standard deviation of the stationary distribution is
σ�w ¼ σw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ21 � ρ22 � 2ρ21ρ2=ð1� ρ2Þ

p
. The conversion from days to weeks is

encoded in wm(t). Every 7 days, wm is incremented, i.e., we set
wmðtÞ ¼ bðt � tstartm Þ=7c þ 1, where tstartm is the first day of seeding. We keep the AR
(2) process constant over the last 7 days of observations since this is less informed
by data due to the lags and also over the forecast period.

The prior distribution for the shared coefficients were chosen to be

αk � Nð0; 0:5Þ; k ¼ 1; ¼ ; 3; ð15Þ
and the prior distribution for the pooled coefficients were chosen to be

αregionr;l � Nð0; γrÞ; r ¼ 1; ¼ ;R; l ¼ 1; 2; with γr � Nþð0; 0:5Þ; ð16Þ

αstatem � Nð0; γsÞ;m ¼ 1; ¼ ;Mwith γs � Nþð0; 0:5Þ: ð17Þ
We estimated parameters jointly for all states in a single hierarchical model.

Fitting was done in the probabilistic programming language Stan20 using an
adaptive Hamiltonian Monte Carlo (HMC) sampler.

Generated quantities. The effective number of infectious individuals, i*, on a
given day considers how infectious a previously infected individual is on a given
day and includes both asymptotic and symptomatic individuals. It is calculated by
first re-scaling the generation distribution by its maximum, i.e., g�τ ¼ gτ

max
t

gt
. Based

on (2), the number of infectious individuals is then calculated from the number of
previously infected individuals, c, using the following:

i�t;m ¼
Xt�1

τ¼0
iτ;mg

�
t�τ ; ð18Þ

where it,m is the number of new infections on day t in state m.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data necessary for the replication of our results is collated in https://github.com/
ImperialCollegeLondon/covid19model. The death data originated from John Hopkins
University https://github.com/CSSEGISandData/COVID-19 and the New York Times
https://github.com/nytimes/covid-19-data.

Code availability
All code necessary for the replication of our results is collated in https://github.com/
ImperialCollegeLondon/covid19model release 10.
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