
H2020-ICT-2018-2-825377

UNICORE

UNICORE: A Common Code Base and Toolkit for Deployment of

Applications to Secure and Reliable Virtual Execution Environments

Horizon 2020 - Research and Innovation Framework Programme

D2.5 Platform Integration

Due date of deliverable: 30 June 2021

Actual submission date: 30 June 2021

Start date of project 1 January 2019

Duration 36 months

Lead contractor for this deliverable Nextworks s.r.l. (NXW)

Version 1.0

Confidentiality status Public

© UNICORE Consortium 2021 Page 1 of (32)

Abstract

The UNICORE project is developing tools to enable lightweight VM development to be as easy as compil-

ing an app for an existing OS, thus unleashing the use of the next generation of cloud computing services

and technologies. With UNICORE toolchains for unikernels, software developers will be able to easily

build and quickly deploy lightweight virtual machines starting from existing applications.

This deliverable reports on the integration activities executed in the UNICORE project.

Target Audience

The target audience for this document is public.

Disclaimer

This document contains material, which is the copyright of certain UNICORE consortium parties, and may

not be reproduced or copied without permission. All UNICORE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the UNICORE consortium as a whole, nor a certain party of the UNICORE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Impressum

Full project title UNICORE: A Common Code Base and Toolkit for Deployment of Ap-

plications to Secure and Reliable Virtual Execution Environments

Title of the workpackage WP2 - Platform Design and Evaluation

Editor Nextworks s.r.l. (NXW)

Project Co-ordinator Emil-Ioan Slusanschi, UPB

Technical Manager Felipe Huici, NEC

Copyright notice © 2021 Participants in project UNICORE

Page 2 of (32) © UNICORE Consortium 2021

List of Authors
Editors Gino Carrozzo (NXW), Gabriele Scivoletto (NXW)

Participants NEC, UPB, ULIEGE, IBM, VUA

Work-package WP2 - Platform Design and Evaluation

Security PUBLIC

Nature R

Version 1.0

Total number of pages 32

© UNICORE Consortium 2021 Page 3 of (32)

Contents

List of Authors 3

List of Figures 5

List of Tables 6

1 Executive Summary 7

2 Introduction 8

3 UNIKRAFT Integration and Deployment 10

3.1 GitHub code repository . 10

3.1.1 The UNIKRAFT kernel repository . 11

3.1.2 The kraft toolstack repository . 12

3.2 The UNIKRAFT external libraries . 14

3.3 UNIKRAFT sample applications . 14

3.4 Patch tracking via Patchwork and GitHub Pull Request . 16

3.5 Continuous Integration via Concurse-CI . 17

3.6 Release Management . 18

4 UNICORE toolstack integration 20

4.1 Security and isolation primitives . 20

4.2 Deterministic execution support . 21

4.3 Compilation Toolchain . 23

4.4 Symbolic Verification Support . 24

4.5 Orchestration Tools Integration . 26

5 Guidelines for deployment 27

5.1 Krafting functions with UNIKRAFT . 27

5.2 Bug filing and support . 29

6 Conclusions 30

7 Abbreviations and Definitions 31

7.1 Abbreviations . 31

7.2 Definitions . 31

References 32

Page 4 of (32) © UNICORE Consortium 2021

List of Figures

3.1 The UNIKRAFT GitHub repository. 11

3.2 UNIKRAFT builds specialized OSses just selecting the application specific modules and li-

braries. 12

3.3 High level view of the micro-libraries needed for building and running unikernels. 13

3.4 The implementation of the Kraft CLI. 13

3.5 The Patchwork Web Interface. 16

3.6 Example of Pull Request. 17

3.7 Result of the integration tests via unikraft-bot. 18

3.8 Software Development life cycle in UNIKRAFT. 19

4.1 Symbolic Verification Support architecture. 25

© UNICORE Consortium 2021 Page 5 of (32)

List of Tables

3.1 Krafted libraries in UNIKRAFT . 15

3.2 UNIKRAFT releases. 19

Page 6 of (32) © UNICORE Consortium 2021

1 Executive Summary
One of the main goals of the UNICORE Consortium is to work on the integration of all the different libraries,

components and tools developed within the Project in order to build and release consolidated prototypes of

the UNIKRAFT/UNICORE toolstack.

The main collectors of public artifacts from this process are:

• The UNIKRAFT GitHub page: https://github.com/unikraft

• The UNIKRAFT project webportal: https://unikraft.org/

• The UNICORE project webpage: https://unicore-project.eu/

This deliverable reports on the integration activities executed in the UNICORE project.

The document specifically provides insights on the toolkits adopted to manage the software configuration

management aspects of the UNIKRAFT/UNICORE project, and also provides guidelines for building and

deploying krafted functions. Mechanisms for submitting developed artifacts on UNIKRAFT as well as the

available channels and policies for interactions with the UNIKRAFT core developer teams are described.

© UNICORE Consortium 2021 Page 7 of (32)

https://github.com/unikraft
https://unikraft.org/
https://unicore-project.eu/

2 Introduction
Continuous Integration and Continuous Delivery (CI/CD) are common practices for building, testing, and

releasing modern software and services.

CI/CD refers to workflows which generally consists of various steps, executed sequentially and then closed

in a loop to implement the incremental improvement:

• Continuous Integration workflow

(i) Plan

(ii) Code

(iii) Build

(iv) Test

(v) back to Plan

• Continuous Delivery workflow

(i) Release

(ii) Deploy

(iii) Operate

(iv) Monitor

(v) back to Plan

It is common sense that CI/CD practices have increased efficiency of releases, have reduced bugs and errors

in software ahead-of-time, and allow to produce more reliable software products with less overhead for code

reviews, testing and validation.

This deliverable reports on the integration activities organised within the UNICORE project in relation to

the main software stream around UNIKRAFT [1]. The different areas of development of the project are

covered and the related integration activities described. The deliverable also provides a complete guideline

for building and deploying general software applications in mixed UNICORE environments, taking advantage

of the automation and optimization features offered by the system.

The document is organised as follows:

• Section 3 describes the UNIKRAFT integration and deployment environment, documenting the soft-

ware configuration management platform in use (GitHub), the patch tracking system, the continuous

integration environment and the release management approach.

• Section 4 describes the UNICORE toolstack integration aspects, and covers specifically the parts re-

lated to security and isolation primitives, the deterministic execution support modules, the symbolic

verification support, the orchestration tools.

Page 8 of (32) © UNICORE Consortium 2021

• Section 5 documents the guidelines for building and deploying krafted functions with UNIKRAFT, and

provides information on how to raise bugs and request support to the UNIKRAFT development team.

• Section 6 contains the document conclusions.

© UNICORE Consortium 2021 Page 9 of (32)

3 UNIKRAFT Integration and Deployment

3.1 GitHub code repository

UNIKRAFT [1][2][3] is a project hosted by the Linux Foundation. Thanks to the open source nature of the

project, the source code is distributed in the form of public repositories in GithHub, the most important and

widely used web-based version-control and collaboration platform for software developers.

The url of the project is https://github.com/unikraft.

The UNIKRAFT repository in the public GitHub project contains all the source code files needed to compile

a fully functional unikernel based on the UNIKRAFT framework. The building process has to be configured

in order to fit the requirements of the different platforms and architectures.

The contribution policy to UNIKRAFT in GitHub allows anyone who is interested in working on the de-

velopment of UNIKRAFT modules to do so and submit their work in the form of patches. The project

is mailing-list driven, meaning that the contributors should submit the patches to the proper mailing list

(minos-devel@list.xen.org) and CC the corresponding maintainer. The list of the maintainers for

every sub-project is written in the file MAINTAINERS.md under the /unikraft/unikraft repository in GitHub.

The patch submission procedure follows the Xen Projects one: the main branches are master and staging.

For a correctly formatted patch submission, the git tools (in particular git format-patch and git send-email) is

strongly recommended and makes the patch review processes easier.

The Commit Message follows a predefined format:

[selector]/[component name]: [Short message]

Where [selector] can be one of the following:

• arch: Patch for the architecture code in arch/, [component] is the architecture (e.g, x86) applies also

for corresponding headers in include/uk/arch/

• plat: Patch for one of the platform libraries in plat/, [component] is the platform (e.g, linuxu). This

applies also for corresponding headers in include/uk/plat/

• include: Changes to general UNIKRAFT headers in include/, include/uk

• lib: Patch for one of the UNIKRAFT base libraries (not external) in lib/, [component] is the library

name without lib prefix (e.g, fdt)

• doc: Changes to the documentation in doc/, [component] is the corresponding guide (e.g., developers)

• build: Changes to build system or generic configurations, [component] is optional

UNIKRAFT is organized into libraries where each might be individually licensed. In general, each source

file should declare who is the copyright owner and under which terms and conditions the code is licensed.

Page 10 of (32) © UNICORE Consortium 2021

https://github.com/unikraft
minos-devel@list.xen.org

The main license of the project is the following BSD 3-clause license. It applies in particular to source code

files that do not declare a license and where there is no license information file (e.g., LICENSE, COPYING)

placed in the same or corresponding root folder.

The files in plat/xen/include/xen of the repository unikraft/unikraft were copied from the Xen sources, so they

are licensed under MIT (for more information, its possible to read the file plat/xen/include/xen/COPYING).

UNIKRAFT’s build and configuration system is based on Buildroot, which is licenced under GPLv2. In

addition, the UNIKRAFT Kernel repository supplies a copy of the Linux Kernel’s checkpatch.pl script to

help committers adhere to the coding style. This means that a number of files in this repository are GPLv2-

licenced.

Figure 3.1: The UNIKRAFT GitHub repository.

The most relevant repositories of the project are:

• UNIKRAFT kernel repository (https://github.com/unikraft/unikraft), which con-

tains the source code related to the core part of the unikernel itself, such as platform specific related

code (i.e arm vs x86) or architecture specific related code (i.e Linux KVM vs Solo5);

• kraft repository (https://github.com/unikraft/kraft), which contains the source code

related to the UNIKRAFT Toolstack implementation

3.1.1 The UNIKRAFT kernel repository

The main goal of the UNIKRAFT framework is to automatically build OSes tailored to the needs of specific

applications, based around the concept of small, modular libraries, each providing a part of the functionality

commonly found in an operating system, as shown in Figure 3.2.

Following the concept in Figure 3.2, the UNIKRAFT kernel repository is organized as follows:

© UNICORE Consortium 2021 Page 11 of (32)

https://github.com/unikraft/unikraft
https://github.com/unikraft/kraft

Figure 3.2: UNIKRAFT builds specialized OSses just selecting the application specific modules and libraries.

• Architecture specific directory (arch/): contains all the tools and source code files related to the

architecture-specific kernel building processes. Therefore, the directory is composed, so far, by an arm

subdirectory (arm/) and the x86 one (x86/)

• Platform specific directory (plat/): contains all the tools and source code files related to the platform-

specific kernel building processes, including the virtualization drivers if required by the platform cho-

sen. Actually, the platform supported (the repository has the proper subdirectory for each of them)

are

– Linux KVM: Virtualized using the QEMU tool

– Linux User Space: Running on a bare-metal linux platform

– XEN Hypervisor

• OS Libraries directory (lib/): contains all the libraries who make the platform modular, since there

were all the micro-libraries and tools needed for building the platform-independent layer of the system,

as well as all the system calls that have been krafted so far. Figure 3.3 shows a high level view of the

hierarchical level of the micro-libraries.

3.1.2 The kraft toolstack repository

The kraft tools is responsible for implementing all the tools needed for building and managing the unikernel

using the UNIKRAFT Framework.

Kraft is a command-line utility, therefore, once it has been installed, it provides a full set of shell commands

for defining, configuring, building, running and debugging UNIKRAFT applications.

Page 12 of (32) © UNICORE Consortium 2021

Figure 3.3: High level view of the micro-libraries needed for building and running unikernels.

The tool is written in Python and it is released as a Python package: in the root directory, there are all

the python configuration files needed for installing the package in a Linux based environment, such as the

mandatory setup.py for the installation script and the requirements.txt for preparing the environment installing

the dependencies.

The implementation of the CLI that kraft offers, is located in the subdirectory kraft/cmd/.

Figure 3.4: The implementation of the Kraft CLI.

© UNICORE Consortium 2021 Page 13 of (32)

3.2 The UNIKRAFT external libraries

Along with the os-libraries that have been krafted during the project, a set of external libraries have been

correctly rebuilt and made available for being used in a unikernel application.

As shown in Figure 3.2, the main goal of the UNIKRAFT framework is to combine, following a modular

path, os kernel modules with both os and 3rd party libraries in order to generate a fully functional unikernel

with a minimal footprint. For achieving this goal, the UNIKRAFT GitHub Project has been populated with

the most commonly used libraries ready to be used with the UNIKRAFT Toolstack. All of them are stored in

a separate repository who has the name who start with lib-*.

Currently, the libraries reported in table 3.1 have been correctly krafted.

3.3 UNIKRAFT sample applications

Along with the porting of the 3rd party libraries, several applications have been compiled and have been

made available and ready to be executed. These samples can also act as a starting point for new UNIKRAFT

applications: for example, the application app-python3 have been used for the UNICORE Smart Home use

case as a starting point for the implementation of an MQTT driver written in Python, using both UNIKRAFT

Libraries (such as lib-pthread-embedded) and also external krafted libraries. Moreover, the Application app-

nginx has been used as a benchmark for the validation of the UNIKRAFT Framework and the results are

shown in the EuroSys’21 - Best Paper Award UNIKRAFT: Fast, Specialized Unikernels the Easy Way.

All of the UNIKRAFT applications are stored in a separate repository who has the name who start with app-*.

Currently, the available application samples include:

• app-httpreply: A simple HTTP echo server example for UNIKRAFT

• app-helloworld: A simple ”Hello World” application written in C

• app-duktape: kraft-ready repo for building JavaScript/duktape applications with UNIKRAFT

• app-lua: kraft-ready repo for building Lua applications with UNIKRAFT

• app-helloworld-go: kraft-ready repo for building Go applications with UNIKRAFT

• app-python3: UNIKRAFT Python3 app repo

• app-helloworld-cpp: kraft-ready repo for building c++ applications with UNIKRAFT

• app-wamr: Web Assembly (WAMR) on UNIKRAFT

• app-click: Click Modular Router on UNIKRAFT

• app-redis: Redis on UNIKRAFT

• app-sqlite: SQLite on UNIKRAFT

Page 14 of (32) © UNICORE Consortium 2021

Table 3.1: Krafted libraries in UNIKRAFT
Unikraft Library Orig. Library Unikraft Library Orig. Library
lib-lwip lwip lib-libelf ELF toolchain
lib-libsodium libsodium lib-pybind11 lib-pybind Redis
lib-newlib newlib lib-redis Redis
lib-compiler-rt compiler-rt lib-dnnl Intel Math Kernel

Library for DNNs
lib-gcc GNU Compiler

Collection libraries
lib-musl musl libC

lib-libcxx C++ standard li-
brary

lib-duktape duktape/JavaScript

lib-tlsf TLSF (general-
purpose memory
allocator)

lib-bzip2 bzip2

lib-shfs shfs lib-mbedtls Mbed TLS library
lib-pthread-
embedded

pthread-embedded lib-sqlite SQLite

lib-dafny Dafny language lib-c-ares c-ares
lib-nettle Nettle crypto-

graphic library
lib-lzma lzma compression

library
lib-libhogweed libhogweed lib-boost boost library
lib-libuv libuv lib-lvgl lvgl
lib-arm-intrinsics ARM intrinsics lib-nnpack nnpack
lib-libtasn1 libtasn1 lib-open62541 OPC UA imple-

mentation
lib-tinyalloc thi.ng/tinyalloc lib-protobuf Googles protobuf
lib-mimalloc mimalloc lib-ruby Ruby
lib-libicu ICU lib-micropython Micropython
lib-tflite TensorFlow Lite lib-intx intx
lib-fft2d fft2d lib-libgo Go language
lib-gemmlowp Google’s gemm-

lowp
lib-wamr WAMR

lib-farmhash lib-flatbuffers lib-googletest Google testing
and mocking
framework

lib-zydis Zydis disassembler lib-libunwind libunwind
lib-axtls axTLS lib-http-parser http-parser
lib-pcre Perl Compatible

Regular Expres-
sions library

lib-openssl OpenSSL

lib-libuuid libuuid lib-nginx NGINX
lib-zlib zlib lib-

googlebenchmark
Google Benchmark

lib-lua Lua language lib-libfp16 half-precision
floating point
formats conversion

lib-libucontext ucontext.h API lib-intel-intrinsics Intel intrinsics
lib-libcxxabi C++ ABI lib-libfxdiv fxdiv
lib-psimd psimd lib-eigen libeigen
lib-pthreadpool pthreadpool lib-click Click modular

router
lib-python3 Python 3

© UNICORE Consortium 2021 Page 15 of (32)

• app-ruby: Ruby on UNIKRAFT

• app-micropython: Micropython on UNIKRAFT

• app-nginx: Nginx on UNIKRAFT

• app-elfloader: Load and execute Linux ELF binaries

• app-nettle-test: Nettle cryptographic library in UNIKRAFT

3.4 Patch tracking via Patchwork and GitHub Pull Request

The UNIKRAFT software development cycle provides a mechanism for releasing the patchwork as soon as

a bug is found or a new development is required.

For the first two years of UNICORE project, the Patch tracking tool that has been used was Patchwork [4].

Patchwork is free software, and is available from the Patchwork website (http://jk.ozlabs.org/

projects/patchwork/).

The main goal of that Patch Tracking software is to facilitate the contribution and management of an open

source project. The patches that have been sent to a mailing list are caught by the system and made available

through a web-based interface. Any comments posted that reference the patch are appended to the patch page

too.

The Patchwork system is reachable from the URL https://patchwork.unikraft.org/, and the

version used is v2.1.0.postrc1-2-gb2106f3. The tools provide also a CLI named pwcllient: currently, it

provides access to some read-only features such as downloading and applying patches.

Figure 3.5 shows how the Patchwork Web Interfaces looks like.

Figure 3.5: The Patchwork Web Interface.

Once the patch has been submitted, the tools stores not only the patch itself but also various metadata associ-

ated with the email that the patch was parsed from, for example the State, that track the current status of the

Page 16 of (32) © UNICORE Consortium 2021

http://jk.ozlabs.org/projects/patchwork/
http://jk.ozlabs.org/projects/patchwork/
https://patchwork.unikraft.org/

element (it varies from project to project, but generally a minimum subset of new, rejected and accepted will

exist. In the UNIKRAFT Project, the States are:

• New

• Under Review

• Awaiting Upstream

• Accepted

• Rejected

Currently, the number of submitted patches are 4235 (+31 archived).

Since the start of the third year of the UNICORE project, the Patch Tracking System has been moved to the

GitHub Pull Request tool, which lets the developer tell others about changes that he has pushed to a branch in

a repository on GitHub. Once a pull request is opened, he can discuss and review the potential changes with

collaborators and add follow-up commits before the changes are merged into the base branch.

An example of a Pull Request is shown in Figure 3.6.

Figure 3.6: Example of Pull Request.

Once a pull request has been submitted, the CI/CD process (that will be explained in the next section) spawn a

set of pipelines that make several integration test, the results is shown as an answer on the same Pull Request

discussion, as shown in Figure 3.7.

3.5 Continuous Integration via Concurse-CI
The UNIKRAFT software development cycle also embeds mechanisms for continuously integrating and test-

ing the code as soon as one of the repositories changes its status.

For that purpose, the tool chosen is Concurse-CI (https://concourse-ci.org/, [5]), a pipeline-

based continuous thing-doer.

© UNICORE Consortium 2021 Page 17 of (32)

https://concourse-ci.org/

Figure 3.7: Result of the integration tests via unikraft-bot.

Actually, the word Pipeline in the range of CI/CD is a widely used term. Concurses Pipelines are built around

Resources, which represent all external states and Jobs, which interact with them.

Concourses pipelines represent a dependency flow, kind of like distributed Makefiles Resources are used to

express entities like source code, dependencies, deployments and any other external state.

The concourse web-based management interface of the UNIKRAFT Project is not publicly available, since

its visibility is limited to the developer and maintainer of the project itself.

However, the idea behind the UNIKRAFT Framework is to build unikernel taking into account the following

parameters:

(i) The architecture (armv7, arm64, x86 64)

(ii) The platform (KVM, XEN, Linux Bare Metal ..)

(iii) The set of libraries included in the building process

(iv) The set of configurations of each of the 3 entities at the points 1-3

For that purpose, the highly parameterizable nature of Concurrent-CI made the continuous integration and

continuous testing of new modules suitable for all the scalability requirements. Whenever a new Pull Re-

quest (or any git commit) is submitted, a huge number of pipelines is generated based on all the possible

configurations of architecture, platform, library and configurations and the result is shown in a web-based

interface.

3.6 Release Management

The Release policy in UNIKRAFT is not included in the automatic DevOps operations explained above.

The the software development cycle can be summarized as depicted in Figure 3.8.

As soon as a Patch has been approved, the system is evaluated in order to check the current status of the

system in terms of the number of new features.

Page 18 of (32) © UNICORE Consortium 2021

Figure 3.8: Software Development life cycle in UNIKRAFT.

A new release of the software was delivered only if the system is stable (after a huge number of tests) and

with a good number of new features with respect to the last version released.

The releases delivered so far are reported in Table 3.2.

Table 3.2: UNIKRAFT releases.
VERSION RELEASE NAME RELEASE DATE
v0.3.0 Iapetus February 20, 2019
v0.3.1 Iapetus March 7, 2019
v0.4.0 Rhea February 18, 2020
v0.5.0 Tethys February 6, 2021

© UNICORE Consortium 2021 Page 19 of (32)

4 UNICORE toolstack integration

4.1 Security and isolation primitives

FlexOS. A UNIKRAFT variant called FlexOS has been designed which includes primitives for security and

isolation.

FlexOS is a novel, modular OS design whose compartmentalization and protection profile can easily and cost-

efficiently be tailored towards a specific application or use-case at build time, as opposed to design time as it

is the case today. With FlexOS, the user can decide, at build time, which of the fine-grained OS components

should be compartmentalized (e.g. the scheduler, TCP/IP stack, etc.), as well as how to instantiate isolation

and protection primitives for each compartment and what data sharing strategies to use for communication

between compartments. To that aim, we abstract the common operations required when compartmentalizing

arbitrary software behind a generic API that is used to retrofit an existing LibOS into FlexOS. This API

limits the porting effort of kernel and application components to a minimum. A solver automatically derives

from that description as a set of conforming compartmentalization configurations that can be effortlessly

instantiated through FlexOS flexible build.

MPK Isolation Backend. MPK is a mechanism present in recent Intel server CPUs and offers low-overhead

intra-address space memory isolation at page granularity. Our MPK backend uses protection keys to isolate

compartments and shared data. MPK permissions for the thread executing on a core are held in the PKRU

register. Any compartment can modify its value, thus the MPK backend has to prevent such unauthorized

writes; it can do so via runtime checks, static analysis, or page-table sealing. Conceptually, the implementa-

tion of MPK in FlexOS introduced isolation requirements for the scheduler and the Memory Manager (MM):

the schedulers memory hold the value of the PKRU for threads that are not currently running and the MMs

domain includes the page-table that holds the mapping between pages and protection domains. This implies

that the scheduler and MM have to be trusted when using MPK, so in our implementation we used a veri-

fied scheduler implemented in Dafny, and we also introduced the option of using hardening mechanisms on

schedulers/MMs implemented in C.

EPT Isolation Backend. Virtualization has been used in many works to support isolation within a kernel.

Hardware-assisted virtualization is widely supported and provides strong security guarantees compared to

MPK, at the cost of higher overheads. Our EPT backend generates one VM image per compartment. Images

contain the minimum set of kernel functionality necessary to run the VM independently, along with a thin

RPC implementation based on inter-VM notifications and a shared area of memory for shared heap/static

data. This area is always at the same address and is mapped in all compart- ments (VMs) so that pointers

to/in shared structures remain valid. Compartments do not share address spaces and run on different vCPUs.

As a result, each compartment needs its own memory allocator and scheduler that have to be trusted. Our

VM-based isolation backend currently uses the Xen hypervisor. VM-based gates place a function identifier

Page 20 of (32) © UNICORE Consortium 2021

as well as arguments in a predefined shared area of memory and issue an inter-VM notification. When the

invoked compartment receives it, it executes the function, placing the return value in a predefined area of the

shared memory, and notifying the caller that the RPC has succeeded.

Toolchain. The majority of the code transformations required for the build of a given FlexOS security config-

uration is realized through extensive use of Coccinelle. We leverage Coccinelles awareness of the C language

semantics to de- scribe complex automated code transformations that would be hardly achievable through

traditional search-and-replace tools or regular expressions: matching and replacement of various types of

statically or dynamically allocated data including pointers and arrays, function calls and declaration with

variable number of arguments, etc. The toolchains transformations achieve the following: 1) allocation of

annotated shared static data n ELF sections such that they are mapped to the proper memory areas accessible

from communicating compartments; 2) transformation of shared stack variable declarations into pointers re-

ferring either to the DSS or to a shared heap according to the data sharing strategy, as well as updating the

statements reading from/writing to these variables into reads/writes to the corresponding location referred to

by the pointer; 3) replacement of the calls to dynamic allocation functions (malloc, etc.) by calls to shared

heaps for shared data, or to per-compartment heaps for private data; 4) identification of cross-components

calls and their replacement by common function calls when they are in the same compartment, or by the

proper cross-compartment gate according to the selected isolation mechanism; and 5) wrapping of functions

annotated as callbacks in the proper cross-compartment call gates. As an example, the code transformation

step modifies about 1 KLoC for a simple configuration (redis with 2 compartments, one for the TCP/IP stack,

the other for the rest of the system, isolation with MPK and shared stacks). The other toolchain components

are made up of a set of scripts and Makefiles driving the build process. Alongside code transformation the

toolchain also generates a custom linker script declaring shared memory areas for static data. Finally, the

toolchain includes a semi-automated performance evaluation platform that helps to explore the design space.

4.2 Deterministic execution support

Deterministic execution support is provided by native unikernel primitives such as programming language

support, interaction with the outside world (networking, 9pfs), library configuration and build system. These

are used to ensure minimalism, isolation and the optimal deterministic environment for running UNICORE

applications as smart contract programs.

The build and deployment system in UNICORE relies on the kraft tool for configuration of components to be

included in a UNICORE application image and parts of these components. kraft is a wrapper configuration

tool on top of the basic KConfig+Makefile build system used in UNICORE. For fine tuning and control,

the basic build system can be used. The build system and the UNICORE SDKs allow for both including or

excluding certain APIs and for selecting a particular implementation for a given API (assumedly one that

ensures improved determinism, isolation and minimalism).

The UNICORE development and execution environment enables developers to write programs in popular

© UNICORE Consortium 2021 Page 21 of (32)

programming languages, such as Go, Python, C. We rely on that to provide a build environment for popular

programming languages, allowing smart contract developers to use their preferred language. The UNICORE

SDKs and build system have to provide:

• functionality: actual programming language support, allowing the execution of smart contract pro-

grams running in that particular programming language;

• configurability: ability to configure, replace and tune SDKs with the purpose of minimalism, isolation

and determinism.

Configurability is provided as is by the UNICORE SDKs and build system. Functionality is available for C,

C++ and partially for Go, Python and Lua.

A repository has been defined for storing smart contracts in multiple programming languages [6]. At this

point support is provided for C and C++ smart contracts and partially in Go. Go smart contracts are running

but without a networking interface for interacting with the outside world of the smart contract. A simple

smart contract simply increments a value provided from the outside world and sends it back.

A more realistic scenario relies on implementing the Ed25519 signing algorithm thats used for e-voting

systems and other common use cases for smart contracts. Its currently implemented in C in this repository

[7] and relies on OpenSSL library support in UNIKRAFT. The implementation is going to be evaluated

against EVM or other blockchain environments for running smart contracts.

Fine tuning of the UNICORE application is complementary to fine tuning of the VMM (Virtual Machine

Monitor) for increased performance. Although the UNICORE isolation + determinism environment will

incur overhead that may be inferior to other blockchain environments, the upside is the support for multiple

programming languages via the UNICORE SDKs and build system.

Smart contract interface with the outside world for receiving transactions and providing results. There are

two models that may be enabled by UNICORE for running smart contracts:

(i) continuous run: start smart contract, run continuously and receive transaction via a communication

interface

(ii) start-top run: start smart contract with the transaction embedded in the smart contract (or passed as an

argument), run it once and retrieve the results

The downside of the former approach is the interaction overhead between the smart contract and the outside

world. The current networking interface employed provides unsatisfactory results. We are looking for a

faster, shared memory-based approach.

The downside of the latter approach is the added time for starting a new unikernel instance each time. This

however, comes with two advantages: the reduced resource consumption when the unikernel is not running

and the added benefit of security as each instance is started anew and is not affected by previous runs. More-

Page 22 of (32) © UNICORE Consortium 2021

over, this is closer to the unikernel-model of small, fast booting micro-VMs. We are looking into VMM

configuration improvements to reduce the start-stop overhead.

Summarily, the UNICORE SDKs and build system provide the basic level of support for running smart

contracts. Careful configuration of SDKs, VMM and running models, with the ongoing implementation

of realistic smart contracts and addition of programming languages support will provide a complete good

performance and feature rich environment.

4.3 Compilation Toolchain

The compilation toolchain contains a set of tools to automatically build images of operating systems targeting

applications. The toolchain includes the following tools:

• Decomposition tool to assist developers in breaking existing monolithic software into smaller compo-

nents.

• Dependency analysis tool to analyse existing, unmodified applications to determine which set of li-

braries and OS primitives are absolutely necessary for correct execution.

• Automatic build tool to match the requirements derived by the dependency analysis tools to the avail-

able libraries constructed by the OS decomposition tools. This one is composed of two components: a

static analysis and a dynamic analysis.

• Verification tool to ensure that the functionality of the resulting, specialized OS+application matches

that of the application running on a standard OS. The tool will also take care of ensuring software

quality.

• Performance optimization tool to analyse the running specialized OS+application and to use this infor-

mation as input to the automatic build tools so that they can generate even more optimized images.

The toolchain is written in golang/go. Once go is installed, it is necessary to run the Makefile (via make deps)

to get all the required dependencies and in order to build the toolchain.

The toolchain contains the high-level architecture:

• configFiles: Contains sample configuration of specific applications.

• testFiles: Contains sample tests of a specific application for the dynamic analysis. The format used is

a json which contains three different fields typeTest, timeMsCommand and listCommands. The first

field represents the type of test which can be: exec (test via a classic execution like a script), stdin (test

via stdin) or telnet (test via telnet). The timeMsCommand field defines the time of execution in ms.

Finally, the listCommands field contains the different commands which will be executed during the

dynamic analysis.

© UNICORE Consortium 2021 Page 23 of (32)

• srcs: Contains the go source of the toolchain.

As stated previously, the toolchain contains 5 different tools. You can either completely run the toolchain or

specify which tool to use. The default behaviour executes all the tools (except the crawler one). To execute a

specific tool, use one of the following arguments:

• –dep: runs only the dependency analysis tool.

• –build: runs only the automatic build tool.

• –verif : runs only the dependency analysis tool (prototype).

• –perf : runs only the dependency analysis tool (Not implemented).

Outside the toolchain:

• –crawler: run only the crawler tool. It creates a graph which represents dependencies of dependencies.

• –memanalyser: run only the memory analyser tool. It allows to analyse and disassemble binaries/object

files (e.g., functions, instructions, etc) as well as identifying the mapping of microlibs.

Further information about the toolchain can be found in Deliverable 4.3: Design & Implementation of Tools

for Unikernel Deployment.

4.4 Symbolic Verification Support

The main problem that were trying to solve is that the libraries that are part of UNIKRAFT, are neither safe

nor correct since they are written in C and have not been formally verified, only manually tested. Moreover,

UNIKRAFT introduces the idea of language mixing, and libraries written n different programming languages

have different properties, e.g. Rust programming language libraries have built in memory safety.

The initial approach that we took in solving this problem was to use push-button verification based on sym-

bolic execution. During our initial work, we discovered that it does not scale to proper components.

We devised a new innovative idea which consists of using runtime checks and hardware isolation such that we

may integrate verified libraries into the pool of available UNIKRAFT libraries, but such that the properties

of these libraries will hold at runtime and such that we will have both good performance and overall safety.

Since UNIKRAFT has no correctness and safety proven for all its libraries, using a library that has been

verified will cause its properties to be void when used directly alongside unverified C code. To solve this,

we design a solution based on the idea of compartments. A compartment is a set of libraries that have

compatible properties. For example, in the architecture of Figure 4.1 we have three compartments that gives

us a configuration in which all the properties of the libraries hold:

In one compartment we have the network stack, in the second compartment the verified scheduler and in the

third compartment we have the rest of the kernel and application.

Page 24 of (32) © UNICORE Consortium 2021

Figure 4.1: Symbolic Verification Support architecture.

The properties of a library written by the developer in a specialized metadata language. Such metadata

are created manually for each library by its developer, a one-time and relatively low effort for the librarys

author. The metadata purpose is to capture the effects upon the overall safety properties of running this

library alongside other libraries in the same or in a different compartment. For instance, here is an example

describing a formally verified scheduler that we have implemented in the Dafny programming language and

integrated into UNIKRAFT:

The description concisely specifies that (1) the library accesses its own memory and a segment shared with

other libraries (e.g. its callers), that (2) it only uses functions provided by the memory allocator, (3) which

functions it exposes as its API, and that (4) it expects other libraries to be able to read its own memory (but

not write to it) and be able to write in shared memory.

The metadata has been designed to be both simple and intuitively to use, e.g. R represents read, W write, X

execute. Given two libraries and their metadata, we now have enough information to automatically decide

whether they can run in the same compartment. If both libraries have no Requires clause, the answer is yes.

If any of the libraries has such clauses, each clause can be automatically checked in the presence of the other

library. In our example above, for its verified properties to hold, the scheduler expects others to only read,

not write, to its own memory. A untrusted C component, on the other hand, could write to all memory it

has access to (in its compartment) - thus breaking the expectation: as a result, these two libraries cannot be

run in the same compartment. In order to maximize performance, we want to have the minimum number

of compartments. Armed with information about pairwise incompatibility, selecting the smallest number of

compartments can be reduced to the classical graph coloring problem: each library is a vertex, and an edge

© UNICORE Consortium 2021 Page 25 of (32)

connects two incompatible libraries. Graph coloring assigns the smallest number of colors to the vertices

of a graph such that no two adjacent vertices have the same color. For each color, we will instantiate a

separate compartment that holds the libraries that have been painted with that color. In the worst case where

all libraries have conflicts, each library will be instantiated in its own compartment.

We now introduce the idea of modifying the properties of libraries via software mechanisms which we call

hardening mechanisms. We support several such mechanisms, among them Address Sanitization, Control

Flow Integrity, Stack Protector and Undefined Behavior Sanitization. In certain cases, it is preferable from a

performance or deployment point of view to use runtime instead of multiple compartments possibly only for

a subset of the system/compartments. For control-flow integrity, the transformation is simple: libraries that

previously declared X*(e.g. may be compromised and could jump at any address) are transformed into a list of

predefined symbols where the list of functions is populated via a standard control-flow analysis of the library.

The result of this step will be a list of libraries that have two versions: one with SH, and one without. We

then iterate through all combinations of such library versions and run the graph coloring algorithm described

above. This will result in as many colorings as there are possible combinations of libraries. Consider our

example above: the unsafe C library will have two versions now, one with SH and one without SH. When put

together with the scheduler in the same image, the SH version will be able to share a compartment with the

scheduler, while the original version will require a separate compartment.

4.5 Orchestration Tools Integration
In order to make Unikernels easy to use and have a positive adoption by the community, one of UNICOREs

goals is to integrate unikernels in some private cloud orchestrators and public cloud service providers.

Currently, UNIKRAFT supports three cloud providers: AWS, Google Compute and Digital Ocean. That

means that it is possible to launch the resulting custom unikernels through UNIKRAFT in any of these three

providers. To do so, first it is necessary to have an account and then configure UNIKRAFT with the keys so

that it can communicate the endpoints of each of the platforms:

• Amazon Web Services: https://github.com/unikraft/plat-aws [8]

• Google Compute Platform: https://github.com/unikraft/plat-gcp [9]

• Digital Ocean: https://github.com/unikraft/plat-digitalocean [10]

As regards the private cloud orchestrators, UNICORE is working on the Integration of UNIKRAFT into

OpenNebula and Kubernetes. UNIKRAFT is not fully integrated yet in these platforms, specially the Kuber-

netes due to the problems encountered in running unikernels on it, but there is a good progress so probably

will be integrated in the next months.

Page 26 of (32) © UNICORE Consortium 2021

https://github.com/unikraft/plat-aws
https://github.com/unikraft/plat-gcp
https://github.com/unikraft/plat-digitalocean

5 Guidelines for deployment

5.1 Krafting functions with UNIKRAFT
Krafting a function with UNIKRAFT is a simple and automated procedure, thanks to the development of

the kraft tool that includes all the commands needed to define, configure, build, run and debug UNIKRAFT

applications.

With kraft, its possible to build environments for managing unikernels, as well as managing the dependencies

of its build.

Installing the tool is straightforward, since its a python package hosted in a public repository in GitHub:

$ pip3 install git+https://github.com/unikraft/kraft.git

The Kraft tool works both with local and remote repositories: the (local or remote) link to the repositorys

source code files, in combination with all the building information, are specified in the kraft.yml file. The

following example shows how to specify local libraries and remote repositories for a custom UNIKRAFT

application.

specification: ’0.4’

UNIKRAFT: file:///home/developer/repos/unikraft/unikraft@3a8150d

libraries:

mylib:

version: devel/new-feature

source: git://git.example.com/lib-mylib

Other files that should be present in the root directory of the application are:

• Makefile.uk A Kconfig target file you can use to create compile-time toggles for your application.

• .config The selection of options for architecture, platform, libraries and your application (specified in

Makefile.uk) to use with UNIKRAFT.

The .config file can be obtained from an interactive Kconfig GUI with the command

$ kraft configure –menuconfig

When your unikernel has been configured to your needs, you can build the the unikernel to all relevant

architectures and platforms using

$ kraft build ./my-first-unikernel

During the building process, all the artifacts are placed in the build/ directory including intermediate object

files and unikernel images.

External Library Development

© UNICORE Consortium 2021 Page 27 of (32)

Similarly to the case of krafting new applications, the UNIKRAFT framework offers the possibility to port

an external library and makes it available to be used in an unikernel application.

Most of the work consists of creating a UNIKRAFT Custom Makefile called Makefile.uk that the framework

uses to compile the source code.

The first thing to do is to call the UNIKRAFT addlib function to register the application with the system (note

the letters lib: everything in UNIKRAFT is ultimately a library). This function call will also populate APP-

NAME BASE (containing the directory path to the application sources) and APPNAME BUILD (containing

the directory path to the applications build directory):

$(eval $(call addlib,appname))

where the name would be replaced by the applications name. In case the main application code should be

downloaded as archive from a remote server, the next step is to set up a variable to point to a URL with the

application sources (or objects, or pre-linked libraries, see further below) - if required.

Together with the Makefile.uk file, a Config.uk should be created and properly filled in order to customize

the entries of the Kconfig menu provided by the framework for easily configuring the application or library.

An example of a Config.uk file is the following:

menuconfig LIBNAME

bool "name: My lib"

select LIBNOLIBC if !HAVE_LIBC

select LIBUKALLOC

default n

if LIBNAME

Library settings go in here

endif

Internal Platform Development

In UNIKRAFT, along with applications and libraries, its possible to distinguish between different target

platforms.

Platforms (like KVM or Xen) are also treated as libraries in UNIKRAFT, but:

• variables have to be namespaced (ex LIBKVMPLAT) Platforms have to be

• registered in the Makefile.uk like that

$(eval $(call addplat s,platname,$(CONFIG PLAT PLATNAME)))

$(eval $(call addplatlib,platname,libplatnameplat))

Page 28 of (32) © UNICORE Consortium 2021

• A Linker script (Linker.uk) has to be provided.

• The default linker script for a platform is provided using the UK PLAT PLATNAME DEF LDS vari-

able in the Makefile.uk of the platform library.

• The platform files have to be placed under plat/platname/ path in the UNIKRAFT Kernel repository.

• A platform have to implement interfaces defined in include/uk/plat.

• Platforms dont use any external source files.

• Platforms must not have dependencies on external libraries, i.e the UNIKRAFT repo must be able to

be built on its own.

• All changes/additions to include/uk/plat and include/uk/arch have to be completely independent of any

library (internal and external).

5.2 Bug filing and support
Previously, UNIKRAFT did not have any proper mechanism for filing bugs, other than writing an email to

the Xen/mini-os mailing list.

Through UNICORE, the switch over GitHub has been implemented which allows - among other features - to

submit and review patches, and report bugs or issues.

This not only provides a lot more visibility into current bugs, so that the community can help with common

issues they have seen; but, it also works as a good tool for commenting on bugs and linking them to actual

code.

In addition, a UNIKRAFT CI/CD system has been configured to optimise the integration, testing and release

process. The CI/CD tool is under NEC operational control.

Finally, additional debugging facilities have been added to UNIKRAFT, not yet upstream in official release,

which include support for running a gdb server within UNIKRAFT.

© UNICORE Consortium 2021 Page 29 of (32)

6 Conclusions
This deliverable reports on the integration of the UNICORE project in various areas development of the

toolkit components.

The major integration workstreams of the UNIKRAFT/UNICORE development have been documented,

which serve as a base for the deployment of functions krafted with UNIKRAFT for the UNICORE use

cases.

The integration of Performance Optimization Tools is not described in this document as it is planned for

future releases of the UNICORE toolkit.

Page 30 of (32) © UNICORE Consortium 2021

7 Abbreviations and Definitions

7.1 Abbreviations

DoA Description of Action
EC European Commission
FOSS Free Open Source Software
IPR Intellectual Property Rights
WG Working group
WP Work Package

7.2 Definitions
No definition is introduced by this document

© UNICORE Consortium 2021 Page 31 of (32)

References
[1] The unikraft github page. [Online]. Available: https://github.com/unikraft

[2] The unikraft project webportal. [Online]. Available: https://unikraft.org/

[3] The unicore project webpage. [Online]. Available: https://unicore-project.eu/

[4] Patchwork tracking system. [Online]. Available: http://jk.ozlabs.org/projects/patchwork/

[5] Concurse-ci system. [Online]. Available: https://concourse-ci.org/

[6] Simple smart contract application on unikraft. [Online]. Available: https://github.com/cs-pub-ro/

app-smart-contract-simple

[7] Unikraft openssl test application. [Online]. Available: https://github.com/cs-pub-ro/app-openssl

[8] Unikraft cloud script for amazon web services. [Online]. Available: https://github.com/unikraft/plat-aws

[9] Unikraft cloud script for google compute platform. [Online]. Available: https://github.com/unikraft/

plat-gcp

[10] Unikraft cloud script for digital ocean cloud platform. [Online]. Available: https://github.com/unikraft/

plat-digitalocean

Page 32 of (32) © UNICORE Consortium 2021

https://github.com/unikraft
https://unikraft.org/
https://unicore-project.eu/
http://jk.ozlabs.org/projects/patchwork/
https://concourse-ci.org/
https://github.com/cs-pub-ro/app-smart-contract-simple
https://github.com/cs-pub-ro/app-smart-contract-simple
https://github.com/cs-pub-ro/app-openssl
https://github.com/unikraft/plat-aws
https://github.com/unikraft/plat-gcp
https://github.com/unikraft/plat-gcp
https://github.com/unikraft/plat-digitalocean
https://github.com/unikraft/plat-digitalocean

	List of Authors
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	UNIKRAFT Integration and Deployment
	GitHub code repository
	The UNIKRAFT kernel repository
	The kraft toolstack repository

	The UNIKRAFT external libraries
	UNIKRAFT sample applications
	Patch tracking via Patchwork and GitHub Pull Request
	Continuous Integration via Concurse-CI
	Release Management

	UNICORE toolstack integration
	Security and isolation primitives
	Deterministic execution support
	Compilation Toolchain
	Symbolic Verification Support
	Orchestration Tools Integration

	Guidelines for deployment
	Krafting functions with UNIKRAFT
	Bug filing and support

	Conclusions
	Abbreviations and Definitions
	Abbreviations
	Definitions

	References

