
*All articles are now 
categorized by topics 
and subtopics. View at 
PM-Research.com.

Matrix Evolutions: Synthetic 
Correlations and Explainable 
Machine Learning for Constructing 
Robust Investment Portfolios

Jochen Papenbrock, Peter Schwendner, Markus Jaeger,  
and Stephan Krügel

KEY FINDINGS

n The authors introduce the matrix evolutions concept based on an evolutionary algorithm 
to simulate correlation matrixes useful for financial market applications.

n They apply the resulting synthetic correlation matrixes to benchmark hierarchical risk 
parity (HRP) and equal risk contribution allocations of a multi-asset futures portfolio 
and find HRP to show lower portfolio risk.

n The authors evaluate three competing machine learning methods to regress the portfolio 
risk spread between both allocation methods against statistical features of the synthetic 
correlation matrixes and then discuss the local and global feature importance using the 
SHAP framework by Lundberg and Lee (2017).

ABSTRACT

In this article, the authors present a novel and highly flexible concept to simulate correla-
tion matrixes of financial markets. It produces realistic outcomes regarding stylized facts of 
empirical correlation matrixes and requires no asset return input data. The matrix generation 
is based on a multiobjective evolutionary algorithm, so the authors call the approach matrix 
evolutions. It is suitable for parallel implementation and can be accelerated by graphics 
processing units and quantum-inspired algorithms. The approach is useful for backtesting, 
pricing, and hedging correlation-dependent investment strategies and financial products. Its 
potential is demonstrated in a machine learning case study for robust portfolio construction in 
a multi-asset universe: An explainable machine learning program links the synthetic matrixes 
to the portfolio volatility spread of hierarchical risk parity versus equal risk contribution.

TOPICS

Statistical methods, big data/machine learning, portfolio construction, performance 
measurement*

Markets in crisis mode are an example of how assets correlate or diversify 
in times of stress. It is essential to see how markets, asset classes, and 
factors change their correlation and diversification properties in different 

market regimes. The most recent crisis now adds to the list of scenarios available 
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to risk managers, but it is still unknown what future crises will look like. Every crisis 
looks different because history does not repeat itself. That is why simple backtests 
are problematic, being a view in the rear mirror only.

Therefore, it is desirable not only to consider real manifestations of market sce-
narios from history but to simulate new, realistic scenarios systematically. To model 
the real world, quants turn to synthetic data, building artificially generated data based 
on so-called market generators. Market simulation of correlation matrixes unveils a 
new and flexible way of modeling financial time series, which has recently inspired a 
surge of research activity in the quantitative finance community.

Investment strategies could be systematically tested based on these simulations 
like a new car is systematically tested in a wind tunnel before hitting the road. In 
such environments, key system parameters are configurable. An investment strategy 
is said to be robust if it is not fragile in some situations. We could make specific 
assumptions regarding future scenarios, but if any of these assumptions do not hold, 
it will adversely affect the strategy.

There are many practical use cases and applications for simulating correlation 
matrixes, especially in correlation-sensitive products such as multi-asset derivatives. 
Other applications include creating reference datasets without licensing restrictions 
(e.g., for education and academia) and conducting standardized testing of model 
performance or recent approaches to crowd sourced model development.

Matrix simulation can also be used in risk management, such as in creating 
scenarios or new ways of (stress) testing portfolios, giving rise to a shift in the asset 
management industry toward a more mature, industrialized, digitized, systematic, 
and scientific way of constructing investment portfolios using the support of artificial 
intelligence (AI). Future regulatory requirements could be met, and sound risk man-
agement practices could be implemented. Examples are packaged retail investment 
and insurance products performance scenarios and European Securities and Markets 
Authority stress testing.

Quant funds use Monte Carlo methods with parameters for asset processes and 
regime shifts as well as AI to master correlations. Lopez de Prado (2019) has described 
use of nonparametric, AI-based Monte Carlo methods when data-generating processes 
are too complex to model explicitly. Examples are neural network–based approaches 
such as variational autoencoders (VAEs) and generative adversarial networks (GANs).

Along these lines, Marti (2019) recently proposed a promising approach called 
CorrGAN, which uses GANs to sample plausible financial correlation matrixes. The 
authors list a battery of matrix evaluations of financial correlation matrixes that is 
encompassed by their approach. An online test system at http://www.corrgan.io/ has 
also been set up in which a user can declare whether certain correlation matrixes 
are fake or real. At the time of writing this article, the CorrGAN test had a chance of 
50%, meaning people could not decide whether a matrix was fake or real.

Approaches like CorrGAN depend on the input data and the parameterization/
training of the machine learning (ML) approach. Thus, it needs to be assumed to 
approximate the underlying data-generating process (Lopez de Prado 2019). A novel 
method is to use evolutionary algorithms to generate realistic matrixes. Doing so 
requires almost no assumptions and no training data. We outline the matrix evolu-
tions approach in the following section before we continue with a practical example 
of investment portfolio construction.

MATRIX EVALUATIONS OF FINANCIAL CORRELATION MATRIXES

At this point, a question arises: What is a realistic matrix in this context? 
Matrixes obtained from financial datasets tend to exhibit a very specific structure.  
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A straightforward approach is to consider the matrix evaluations of empirical correlation 
matrixes. Marti (2019) described them as follows and referred to classical literature 
on network complexity and hierarchy in financial markets:

§	A distribution of pairwise correlations that is significantly shifted to the  
positive

§	Eigenvalues that follow the Marchenko-Pastur distribution but for
• a very large first eigenvalue (the market)
• a couple of other large eigenvalues (industries)

§	The Perron–Frobenius property (first eigenvector has positive entries)
§	A hierarchical structure of correlations
§	The scale-free property of the corresponding minimum spanning tree (MST)

The CorrGAN approach seems to meet all of these matrix evaluation criteria, thus 
producing very realistic matrixes. Such an approach can be used to sample many 
correlated asset paths, providing a large number of realistic scenarios that have never 
been observed before. The output matrixes need to be positive definite, of course 
(e.g., for applications involving Cholesky factorization).

The literature on matrix evaluations of empirical asset returns is much larger 
than that on asset correlations. Even smaller is the number of approaches to sim-
ulate such realistic correlation matrixes, maybe because finding such correlation 
matrixes is highly complex. For example, Huettner, Mai, and Mineo (2018) pointed 
out that “to the best of our knowledge, to date there exists no simulation algorithm 
that can reproduce all of them [the matrix evaluations], or even more than just 
one.” The same authors later came up with a solution (Huettner and Mai 2019). 
They generated correlation matrixes with the Perron–Frobenius property based on a 
given eigenvalue structure. The authors chose eigenvalues distributed according to 
a power law, and a significant percentage of the simulated correlation matrixes then 
exhibited a realistic distribution of pairwise correlations in addition to realistically 
distributed eigenvalues. Furthermore, when additionally fixing the largest eigenvalue 
at a realistic value of 40% of the total variance, large correlation matrixes simulated 
from their algorithm tended to exhibit a power-law-like degree distribution in their 
corresponding MST.

Other metrics to consider in empirical correlations are the ranges; the mean 
shifted to the positive, smooth, and unimodal (one-peak) distributions of correlations; 
and largest eigenvalues not larger than a certain amount. The approach of Huettner 
and Mai (2019) seems to meet most requirements. However, the hierarchical prop-
erties are discussed less intensively than the MST properties.

Hierarchies in Financial Markets

Hierarchy is an important concept in financial markets, as was highlighted by 
Mantegna (1999) and Marti et al. (2017). In 1962, Nobel Laureate Simon wrote: 
“The central theme that runs through my remarks is that complexity frequently takes  
the form of hierarchy, and that hierarchic systems have some common properties 
that are independent of their specific content. Hierarchy, I shall argue, is one of the 
central structural schemes that the architect of complexity uses.”

Financial markets are indeed complex systems with hierarchies owing to their emer-
gent, self-organizing properties. For this reason, in recent years several approaches 
for portfolio construction have been developed that explicitly take into account hier-
archies in financial markets (e.g., Onnela et al. 2003; Tola et al. 2008; Papenbrock 
2011; Baitinger and Papenbrock 2015, 2017; Papenbrock and Schwendner 2015).
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Why is taking these hierarchies into account so important? Lopez de Prado 
(2016b) gave two reasons for the instability of traditional inversion-based portfolio 
construction such as equal risk contribution (ERC): instability caused by noise and 
instability caused by signals. Inversion-based algorithms often replace very differ-
ent assets when small changes in the estimation parameters occur. A natural way 
to replace assets, however, would be in the same correlation cluster. An optimiza-
tion-free, heuristic algorithm called hierarchical risk parity (HRP) has been proposed 
by Lopez de Prado (2016a). It has been shown that such portfolios can outperform 
traditional approaches out of sample.

Explainable Machine Learning

The most common task of ML is to train a model that can predict an unknown 
outcome (response variable) based on a set of known input variables/features. 
When using such models for real-life applications, it is often crucial to understand 
why a particular set of features leads to precisely that prediction. Many ML models 
exhibit a so-called explainability gap: The more accurate they are, the more they are 
like a black box whose decision making cannot be explained. However, we want to 
trust the model and need simple, interpretable explanations, or at least we need 
to know the essential features involved in a market phenomenon and how the 
features interrelate.

There has recently been increased activity in developing explainable AI (XAI) or 
interpretable ML approaches in many industries, especially in financial services where 
supervisors have started to focus on AI governance and risk management (see an 
example of ML [XML] in credit risk management from Bussmann et al. 2021). Many 
use the concept of Shapley (1953) values, the only prediction explanation framework 
with a solid theoretical foundation (Lundberg and Lee 2017), being rooted in coop-
erative game theory.

Unless the actual distribution of the features is known and there are fewer than, 
say, 10–15 features, these Shapley values need to be estimated/approximated.  
A unified approach to interpreting model predictions is the SHAP (Lundberg and Lee 
2017). There is also tree SHAP (Lundberg et al. 2020), which is an algorithm to com-
pute exact SHAP values for decision tree–based models such as XGBoost (Chen and 
Guestrin 2016). These are among the most popular and successful ML algorithms 
in practice. New tools allow us to explain the predictions and gain insight into the 
global behavior of these models.

Jaeger et al. (2020) employed block-bootstrap multi-asset market return series to 
analyze whether HRP or ERC outperforms. The authors concluded that HRP is more 
stable than ERC, expressed in a closer matching of risk control parameters and in 
lower drawdowns. The authors also used a novel XML setup to attribute important 
variables to the success of different investment strategies. Their approach opens 
the possibility to challenge heuristic strategies and to study their relationship with 
the properties of their asset universe that otherwise would be hidden under very 
nonlinear relationships or complex statistical dependencies. They used Shapley val-
ues to determine the variables that were significant in explaining the difference in 
performance. This approach can be helpful in comparisons and facilitate attribution 
analysis, factor interaction, and assigning importance.

As mentioned before, the study by Jaeger et al. (2020) is based on bootstrapped 
data and thus is dependent on the underlying empirical data and the bootstrap pro-
cedure. It would be desirable to change this analysis to simulate data to be able to 
generate more potential scenarios and to control better the input space for the XML. 
In this article, we do precisely that: We augment the sample space by using synthetic 
correlation matrixes with real properties, which can improve the robustness of the 
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ML approach. However, choices of simulation methodology and matrix evaluations 
addressed will be decisive for the performance of the ML.

In this article, for each correlation matrix, we carry out a Monte Carlo simulation 
and measure the average spread between the risk of ERC and HRP; risk is measured 
as volatility. We then set up an ML regression in which we have the matrix evaluations 
of each correlation matrix as input and regress on the spread.

After finishing the ML, we extract the variable importance for each data point 
with an XML approach based on cooperative game theory (Shapley values; see 
Jaeger et al. 2020). In this way, we are able to see which matrix evaluations (and 
combinations thereof) drive the risk spread between ERC and HRP. To summarize, 
this analytical workflow is quite similar to the one by Jaeger et al. (2020), but in 
this article, we use synthetic matrixes generated by matrix evolutions and not 
block-bootstrapped data.

Multiobjective Evolutionary Algorithm

For our XML approach, we need a flexible and controlled environment to gener-
ate realistic correlation matrixes in which all matrix evaluations are addressed at 
the same time. We therefore introduce a novel methodology for generating realistic 
correlation matrixes using a multiobjective evolutionary algorithm based on decom-
position (MOEA/D). We call this approach matrix evolutions. It is model-free and 
does not require training data. It can be formulated to produce matrixes with desired 
properties (e.g., those typical for a stress scenario or crisis).

Matrix evolutions decomposes a multiobjective optimization problem (MOP) into 
several scalar optimization subproblems and optimizes them simultaneously. MOEA/D 
were initially proposed by Zhang and Li (2007) and represent a widely used class of 
population-based metaheuristics for solving MOPs, as further discussed by Trivedi 
et al. (2017). MOEA/Ds can generate a set of very evenly distributed solutions.

MOPs are problems in which multiple objective functions must be optimized simul-
taneously. These problems are characterized by a set of objective functions, which 
results in the existence of a set of optimal compromise (Pareto-optimal) solutions 
instead of a single globally optimal one. This set is called the Pareto frontier, well 
known from the efficient line in modern portfolio theory.

We set up our MOP such that each of the matrix evaluations is a single objec-
tive. The objectives can even be contrary and conflicting. We search for a set of best 
compromise solutions. The new method can iteratively optimize synthetic correlation 
data based on a set of utility parameters until its difference from the original data 
achieves the desired level.

This controlled and flexible way of generating synthetic but realistic correlation 
matrixes systematically augments the sample space for ML. Usually, learner per-
formance is evaluated in terms of accuracy, interpretability, and efficiency, among 
other factors. The limitation of this approach is that we never know whether the 
maximum achievable accuracy is reached or if there is still potential for performance 
improvements. This can be addressed by synthetic data to generate sufficient prior 
knowledge of the solution space.

Using synthetic data in this way is not new, but to the best of our knowledge, we 
are the first to use it for generating financial correlation matrixes. Our matrix evolutions 
is used in an XML approach to understand the circumstances under which specific 
portfolio construction algorithms work.

To summarize, this article follows an approach that could be called triple ML:

 1. We use ML to generate synthetic correlations (evolutionary algorithms are 
sometimes deemed AI).
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 2. We test where HRP outperforms (HRP uses unsupervised representation 
learning like hierarchical clustering).

 3. We use XML to explain the decision making of the ML.

Potential for Acceleration

The entire workflow can be accelerated considerably because there are many paral-
lel1 steps involved. First, the multiobjective evolutionary algorithm can be accelerated by 
graphics processing units (GPUs), as described by Souza and Pozo (2014) and Oliveira, 
Davendra, and Guimarães (2013), some of them based on CUDA technology. There also 
exists quantum-inspired MOEA/D, as, for example, outlined by Wang, Li, and Jiao (2016).

The Monte Carlo simulations can, of course, be parallelized and processed with 
multiple-core central processing units (CPUs) or one or more GPUs. Last, SHAP can 
be computed in an accelerated way following the approach of Mitchell, Frank, and 
Holmes (2020) for tree-based ML models such as XGBoost, which in turn can be 
accelerated by multiple CPUs and GPUs, as we do in this work.

Case Study for a Multi-Asset Portfolio

The purpose of this case study is to determine whether we should pick HRP or 
ERC as a portfolio construction approach for a special dataset. We would like to 
develop an ML program with synthetic learning data (matrix evaluations of simulated 
correlation matrixes) that can predict the risk spread. This prediction should also be 
explainable in terms of variable contributions.

Our backtest simulation study is very close to the one by Lopez de Prado (2016a), 
in which correlated returns are sampled, and several portfolio construction approaches 
are compared in a walk-forward test with rebalancing to see which strategy exhibits 
the lowest portfolio risk. The comparison is made with respect to the realized volatility 
of the strategy, and we focus on HRP and ERC.

Exhibit 1 shows our investment universe of futures covering commodities, equi-
ties, and fixed income.

The choice of the universe is a classical one for constructing diversified multi-asset 
portfolios. We use daily index returns and concentrate on the daily data from May 2, 
2000, to October 7, 2019. We construct walk-forward tests with monthly rebalancing 
and one-year rolling windows for parameter estimation. We construct the two strat-
egies, HRP and ERC. The strategies are unleveraged and long only, and transaction 
costs are not considered. 

In our simulation, the HRP portfolio allocation strategy shows an annualized 
volatility of 0.0400, whereas the ERC strategy exhibits a higher risk of 0.0424. The 
risk spread is defined as Portfolio volatility (ERC)—Portfolio volatility (HRP), and it is 
positive in this case.

We also compute the simple Pearson empirical correlation matrix across the 
entire period and measure the following four properties (Exhibit 2):

§	avg_corr: The average correlation coefficient of the matrix.
§	eigen_gini: The Gini coefficient of the eigenvalues (Gini ranges from 0 to 1, 

where 0 means complete equality).
§	coph_corr_single: This measures how close the single linkage hierarchical 

clustering is compared to the original correlation distance matrix. It is a 
proxy for how hierarchical the data are. Correlation distance is measured as 

= −D CORR2(1 ).

1 See Herlihy and Shavit (2012): “Some computational problems are ‘embarrassingly parallel’: they 
can easily be divided into components that can be executed concurrently.”
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§	perron_frob_sum_neg: This measures the sum 
of negative entries of the first eigenvector.

Exhibit 2 shows that the average correlation in 
the universe (avg_corr) is slightly positive, the Gini 
of eigenvalues is 0.578, the cophenetic correlation 
between the original correlation distance matrix and 
the cophenetic matrix of the hierarchical clustering 
(single linkage) is 0.948, and the sum of negative 
entries of the first eigenvector is 1.264.

The matrix is visualized in Exhibit 3. The block structure of asset classes is clearly 
observable.

Matrix Evolutions

In the matrix evolution step, we create realistic correlation matrixes with the 
desired properties as in the intended matrix evaluations. We sample synthetic cor-
relation matrixes that are in the neighborhood of the empirical matrix. In this way, 
the ML gets information about more or less similar scenarios around the empirical 
matrix and can thus learn the link between matrix evaluations and risk spread. This 
technique is used to analyze the circumstances (matrix constellations) under which 
one method would be preferred over the other. If there are opinions about future 
matrix evaluations, the ML could give answers about which method to pick. It would 
also show how robust the decision for a specific strategy is and whether a small 
change in the estimations would change the decision, thus reflecting the robustness 
of the decision making.

We define upper and lower barriers for the matrix evaluations inside which the 
matrixes should be sampled. This neighborhood could be defined in a static way or 
by expert knowledge. We pick another approach by choosing several alternative mea-
surement approaches to correlation matrixes, thus creating neighborhoods. We take 

EXHIBIT 1
Investment Universe

Ticker

CLA Comdty
GCA Comdty
SIA Comdty
BZA Index
ESA Index
HIA Index
NKA Index
NQA Index
SMA Index
VGA Index
XPA Index
Z A Index

CNA Comdty
G A Comdty
RXA Comdty
TYA Comdty
XMA Comdty

Asset Class

Commodities
Commodities
Commodities

Equities
Equities
Equities
Equities
Equities
Equities
Equities
Equities
Equities

Fixed Income
Fixed Income
Fixed Income
Fixed Income
Fixed Income

Currency

USD
USD
USD
BRL
USD
HKD
JPY
USD
CHF
EUR
AUD
GBP

CAD
GBP
EUR
USD
AUD

Long Name

NYMEX WTI Light Sweet Crude Oil
COMEX Gold
COMEX Silver
BM&F IBOVERSPA
CME E-mini S&P 500
HKFE Hang Seng
OSE Nikkei 225
CME E-mini NASDAQ-100
Eurex SMI
Eurex EURO STOXX 50
ASX SPI 200
ICE FTSE 100

10Y Canadian GB
ICE Long Gilt
Eurex 10Y Euro-Bund
CBOT 10Y US T-Note
ASX 10Y Australian T-Bonds

EXHIBIT 2
Multivariate Measures

avg_corr
eigen_gini
coph_corr_single
perron_frob_sum_neg

empcorr_orig

0.110
0.578
0.948
1.264
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the most extreme values of the matrix evaluations 
as barriers. These alternative estimators for correla-
tion matrixes are random matrix denoising, shrink-
age, exponential weighting, and some related ones. 
CorrGAN could also be useful for such neighborhood 
sampling/exploration around a given point in case the 
GANs or VAEs have a smooth latent space.

We sample 10,480 correlation matrixes by our 
simpler procedure. We then run the MOP with the 
following four objective functions:

 1. Minimize the deviation of avg_corr outside the boundaries.
 2. Minimize the deviation of eigen_gini outside the boundaries.
 3. Minimize the deviation of coph_corr_single outside the boundaries.
 4. Minimize the deviation of perron_frob_sum_neg outside the boundaries.

An important constraint to the resulting matrix is to be positive definite (i.e., to 
have only positive eigenvalues). This constraint is a necessary condition for Cholesky 
factorization. In practical applications of Monte Carlo simulation for value-at-risk or 
pricing models, issues with gaps in time-series data often lead to nonpositive eigenval-
ues for empirical correlation matrixes and require involved regularization procedures.

Exhibit 4 shows the minima and maxima of the quantities resulting from the sam-
pled correlation matrixes. It can be seen that the matrix evaluations of the empirical 
matrix (middle column) are almost always covered by sample data.

We run the MOP to produce 10,480 sample matrixes, involving several initial 
seed populations to get a range of different results. In some situations, the empirical 
quantities are the most extreme variables, but in most cases, they are well surrounded 
by samples. These situations could be improved by running another MOP in which 
boundaries and constraints are set in a different way.

In the next step, we create the training dataset based on the generated matrixes. 
First, we evaluate the matrix with respect to the measures that had already been 
used in the MOP. We enrich these measures by two more quantities:

EXHIBIT 3
Heatmap of the Empirical Correlation Matrix

XMA Comdty (Fixed Income)
TYA Comdty (Fixed Income)
RXA Comdty (Fixed Income)
G A Comdty (Fixed Income)

CNA Comdty (Fixed Income)
–1.0 –0.5 0.0

Pearson
Correlation

0.5 1.0

Z A Index (Equities)
XPA Index (Equities)
VGA Index (Equities)
SMA Index (Equities)
NQA Index (Equities)
NKA Index (Equities)
HIA Index (Equities)
ESA Index (Equities)
BZA Index (Equities)

SIA Comdty (Commodities)
GCA Comdty (Commodities)
CLA Comdty (Commodities)

EXHIBIT 4
Multivariate Measures

avg_corr
eigen_gini
coph_corr_single
perron_frob_sum_neg

Lower

0.106
0.536
0.928
1.217

empcorr_orig

0.110
0.578
0.948
1.264

Upper

0.160
0.711
0.948
1.411 b
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§	The power law exponent of the eigenvalue dis-
tribution

§	Ward hierarchical clustering

The first was approximated to a certain extent in 
the MOP by the eigen_gini. Ward hierarchical cluster-
ing delivers a different view on the data aside from 
the single-linkage hierarchical clustering that was 
already part of the MOP because the HRP also uses 
this clustering.

Exhibit 5 shows the range of realized matrix  
properties.

Having generated the matrixes, we order the rows and columns such that they 
are as close as possible to the original empirical correlation matrix. In this way of 
permutation, we can use the empirical vector of risk and return of the assets and 
apply them to the simulated correlation matrixes. Therefore, we really exchange only 
the correlation matrixes and keep the rest unchanged, so matrix order and the quan-
tities empmean and empsds are fixed.

We need to compute the correlation matrix distance (CMD; see Herdin et al. 
2005), which compares two correlation matrixes. The CMD becomes zero for equal 
correlation matrixes and unity if they differ to a maximum extent. The optimal reor-
dering to find the lowest CMD is found by a genetic permutation algorithm, as by 
Scrucca (2013). Exhibit 3 shows the empirical correlation matrix. Exhibit 6 shows 
one of the simulated matrixes with optimal permutation to be as close as possible 
to the original matrix.

Exhibit 7 shows the difference between the two previous matrixes.
Exhibit 8 shows the difference between the two matrixes expressed in terms of 

features.
We have now produced the input for the regression. The response data for the 

regression (labels) are created in the following way: For each of the 10,480 synthetic 
correlation matrixes, we sample 100 times from a multivariate normal distribution. 

EXHIBIT 5
Range of Multivariate Measures

avg_corr
eigen_gini
coph_corr_ward
coph_corr_single
perron_from_sum_neg
power_eigen_values

Min

0.105
0.536
0.615
0.927
1.217
1.284

empcorr

0.110
0.578
0.862
0.948
1.264
2.071

Max

0.145
0.614
0.904
0.948
1.412
5.540

EXHIBIT 6
Heatmap of a Synthetic Correlation Matrix with Ordering of Columns and Rows as Close as Possible  
to the Empirical Matrix
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We use the procedure by Ripley (1987) based on the 
matrix eigendecomposition. This creates multivariate 
normal deviates, given means, standard deviations, 
and correlations among the variables.

Based on the sampled returns, we parametrize a 
Monte Carlo simulation with empirical asset means 
and standard deviations to run the same walk-forward 
test (constructing the portfolios based on HRP and 
ERC), as reported for the original empirical data in 
daily time steps. We then average the realized annu-
alized portfolio volatilities of HRP and ERC allocations 
across the simulations for each specific sampled cor-
relation matrix. Thus, for each matrix, we get the annu-

alized volatilities of HRP and ERC. We compute the difference between the annualized 
standard deviations of portfolio returns from the ERC allocation and that of the HRP 
allocation to get the annualized portfolio volatility spread in Exhibit 9.

On average, the risk spread between HRP and ERC is 0.007, which means the 
average risk of ERC is higher (Exhibit 10). Please note that the parametric Monte 
Carlo simulations lead to different portfolio volatilities compared to the nonparametric 
backtest using the empirical time series. This is not surprising, because the Monte 
Carlo simulation averages across many paths, whereas the nonparametric backtest 
considers only the single historical price paths.

Machine Learning Training Results

We run several ML regression algorithms on a training set with cross-validation, 
splitting the set 50/50. We have a simple linear model (LM), a classification and 
regression tree (CART), and XGBoost. Exhibit 11 presents the R2 statistics.

The synthetically generated data are able to produce valuable information for an 
ML program because R_squared in-sample and out-of-sample can be high. The learned 
relationships are rather complex, such that only the XGBoost is able to make a rea-
sonably accurate prediction.

EXHIBIT 7
Heatmap of the Difference between the Two Previous Matrixes

EXHIBIT 8
Multivariate Measures for Correlation Matrixes
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Exhibit 12 shows the trained decision tree of the 
CART model. At each branching of the tree, the deci-
sion rule together with the cutoff parameter is dis-
played. The marginal and cumulative probabilities to 
reach each decision are also visible.

The most important variables are eigen_gini, 
coph_corr_ward, and avg_corr because those have the 
highest discriminating impact. Exhibit 13 is the accu-
racy plot for the train set for XGBoost. The squared 
correlation coefficient of the point cloud reflects the 
R_squared_train of XGBoost in Exhibit 11.

Exhibit 14 shows the accuracy plot for the test set 
for XGBoost. The squared correlation coefficient of the 
point cloud reflects the R_squared_test of XGBoost 
in Exhibit 11.

The predicted portfolio volatility spread between 
ERC and HRP for the empirical correlation matrix is 
0.0077, whereas the true value of the volatility spread 
in the Monte Carlo simulations using the empirical cor-
relation matrix is 0.0037, so the difference between 
prediction and true value is 0.0040. This means the 
prediction error for the risk spread of the empirical 
matrix is relatively high. This is surprising because the 
model looks quite accurate and stable out of sample. 

There are several approaches to potentially miti-
gate this issue:

§	The label of risk spread of the empirical matrix is 
not precise enough. Running more Monte Carlo 
trials for each of the generated matrixes could 
improve this because it could lead to a more 
accurate average risk estimate.

§	Another approach is to generate more matrixes 
that are more diverse in the close neighborhood 
of the empirical matrix. The area seems to be 
underrepresented by the synthetic data.

§	A third approach would be to enhance the fea-
tures describing the matrixes in the regression.

The advantage of matrix evolutions is that large quantities of data with desired 
properties can be sampled. The advantage of XML is that it can also be used for 
model debugging. The next section shows the results of XML.

XML

Next, we explain the ML output locally by means of feature contributions. We 
extract the SHAP values from the XGBoost model using the TreeSHAP procedure. 
Based on the trained model, we create an explainer and explain the test data, includ-
ing the empirical data. First, we rank the features by mean |SHAP| and show the global 
feature importance of the model in Exhibit 15.

Most important in the model is eigen_gini, followed by coph_corr_ward, and  
avg_corr.

EXHIBIT 9
Statistics of Annualized Portfolio Volatility Spread ERC 
versus HRP

EXHIBIT 10
Boxplot of the Volatilities across Samples of HRP  
and ERC
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EXHIBIT 11
In-Sample R2
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EXHIBIT 12
Trained CART Model Results

0.0067
100%

0.0043
9%

0.0059
22%

0.0036
3%

0.0062
19%

0.007
91%

0.0073
69%

0.0072
64%

0.0069
41%

0.0067
26%

0.0056
6%

0.007
20%

0.0066
11%

0.0013
3%

0.0024
1%

0.0045
1%

0.0058
6%

446e-6
1%

0.005
2%

0.0053
4%

0.0064
16%

0.0029
1%

0.006
5%

0.0059
5%

0.0072
5%

0.0074
10%

0.0074
15%

0.0077
23%

0.0089
5%

305e-6
2%

–0.0011
1%

eigen_gini >= 0.56

coph_corr_ward < 0.74

coph_corr_ward < 0.8

eigen_gini >= 0.6 eigen_gini >= 0.6

eigen_gini >= 0.58

avg_corr < 0.13

coph_corr_ward < 0.84

eigen_gini >= 0.55

coph_corr_ward < 0.78

eigen_gini >= 0.57 power_eigen_values >= 2.4

perron_frob_sum_neg < 1.3

power_eigen_values < 2.5

coph_corr_single < 0.93

yes no

EXHIBIT 13
Accuracy Plot for the Train Set for XGBoost
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Next, we use the Liu and Just (2019) package to display the SHAP value of the 
test set for each feature. Exhibit 16 shows the results. The feature value quantities 
are color coded.

High-feature values for eigen_gini are connected to negative feature contribu-
tion. This means that for concentrated eigenvalues (high-feature eigen_gini), the risk 
spread prediction is pushed lower, meaning ERC is almost as successful as HRP.

High values for the feature coph_corr_ward (i.e., large Ward-like hierarchical clus-
ter structure) lead to more successful HRP (high-risk spread). This makes sense 
because several more-pronounced blocks along the diagonal can potentially be han-
dled by the HRP algorithm in a diversifying way. The plot also shows a large average 
correlation better handled by HRP, still finding ways to diversify.

Exhibit 17 shows similar information in another way as we scatterplot the features 
versus their SHAP contributions.

The red smoothed lines indicate monotone relationships, but there are no single 
straight lines or steps, so more complex relationships are involved.

Exhibit 18 groups the data points into clusters. The clusters are found based on 
the Euclidean distance between the data items with respect to SHAP contributions 
and the best cut in a Ward hierarchical clustering according to a relatively high level 
of the cluster quality criterion silhouette width. The outcome is six clusters.

Each cluster stands for another set of SHAP contributions in the trained model, 
so each cluster represents a specific type of decision making.

Exhibit 19 arranges the data points using the SHAP contributions in t-SNE, 
whereas the previously generated clusters are color coded.

Exhibit 20 shows the breakdown of feature contributions for the empirical set. 
The intercept reflects the mean portfolio volatility spread across the training set.

EXHIBIT 14
Accuracy Plot for the Test Set for XGBoost
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EXHIBIT 15
Global Importance of Features Aggregated by Local Feature Contribution

EXHIBIT 16
SHAP Value of the Test Set for Each Feature, Color Coding for Feature Value
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EXHIBIT 17
Scatterplot of the Features versus their SHAP Contributions

EXHIBIT 18
Force Plot of the Feature Contributions, Separated by Groups
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We also considered explaining individual predictions when features are dependent 
on getting more accurate Shapley values, following the procedure of Aas, Jullum, and 
Løland (2019). However, this methodology does not necessarily lead to better results, 
as stated by Janzing, Minorics, and Bloebaum (2020).

EXHIBIT 19
Arranging the Data Points Using the SHAP Contributions
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EXHIBIT 20
Breakdown of Feature Contributions for the Empirical Set
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CONCLUSION

We use evolutionary algorithms to generate realistic correlation matrixes in a novel 
approach called matrix evolutions. The approach augments the training data space 
for an explainable ML program to identify the most critical properties in matrixes that 
lead to the relative performance of competing approaches to portfolio construction. 
We show that HRP is very robust and that our method can identify the driving vari-
ables behind it. Matrix evolutions can be used for many different applications, such 
as generating risk scenarios for portfolios and pricing of multi-asset derivatives. The 
entire workflow involving matrix evolutions scales well with technologies of accelera-
tion such as GPUs and quantum-inspired algorithms. In this way, millions of realistic 
samples can be run to simulate correlated markets.

ACKNOWLEDGMENTS

This research has been sponsored by Munich Re Markets. We appreciate the infrastructure 
by Open Telekom Cloud and the NVIDIA GPU resources provided for this research. This research 
was also supported by the European Union’s Horizon 2020 research and innovation program FIN-
TECH: A financial supervision and technology compliance training programme, under the grant 
agreement no. 825215 (topic: ICT-35-2018, type of action: CSA). We would like to thank Gautier 
Marti for his valuable input and an anonymous referee for helpful comments.

REFERENCES

Aas, K., M. Jullum, and A. Løland. 2019. “Explaining Individual Predictions When Features Are Depen-
dent: More Accurate Approximations to Shapley Values.” arXiv. http://arxiv.org/abs/1903.10464.

Baitinger, E., and J. Papenbrock. 2015. “Interconnectedness Risk and Active Portfolio Manage-
ment: The Information-Theoretic Perspective.” Journal of Network Theory in Finance 1 (4): 1–25. 

——. 2017. “Interconnectedness Risk and Active Portfolio Management.” Journal of Investment 
Strategies 6 (2): 63–90. 

Bussmann, N., P. Giudici, D. Marinelli, and J. Papenbrock. 2021. “Explainable AI in Credit Risk Man-
agement.” Computational Economics 57: 203–216. https://doi.org/10.1007/s10614-020-10042-0.

Chen, T., and C. Guestrin. “XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. 
ACM, 2016.

Herdin, M., N. Czink, H. Ozcelik, and E. Bonek. “Correlation Matrix Distance, a Meaningful Mea-
sure for Evaluation of Non-Stationary Mimo Channels.” In 2005 IEEE 61st Vehicular Technology 
Conference, Vol. 1, 136–140. IEEE, 2005.

Herlihy, M., and N. Shavit. 2012. The Art of Multiprocessor Programming, Revised Reprint, 1st ed. 
San Francisco: Morgan Kaufmann.

Huettner, A., and J.-F. Mai. 2019. “Simulating Realistic Correlation Matrices for Financial Applica-
tions: Correlation Matrices with the Perron–Frobenius Property.” Journal of Statistical Computation 
and Simulation 89 (2): 315–336. 

Huettner, A., J.-F. Mai, and S. Mineo. 2018. “Portfolio Selection Based on Graphs: Does It Align 
with Markowitz-Optimal Portfolios?” Dependence Modeling 6: 63–87.

Jaeger, M., S. Krügel, D. Marinelli, J. Papenbrock, and P. Schwendner. “Understanding Machine 
Learning for Diversified Portfolio Construction by Explainable AI.” SSRN, 2020. https://ssrn.com/
abstract=3528616.

 b
y 

gu
es

t o
n 

Ju
ly

 1
6,

 2
02

1.
 C

op
yr

ig
ht

 2
02

1 
Pa

ge
an

t M
ed

ia
 L

td
. 

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d 

fr
om

 

http://arxiv.org/abs/1903.10464
http://arxiv.org/abs/1903.10464
https://doi.org/10.1007/s10614-020-10042-0
https://ssrn.com/abstract=3528616
https://ssrn.com/abstract=3528616
https://jfds.pm-research.com


68 | Matrix Evolutions: Synthetic Correlations and Explainable Machine Learning Spring 2021

Janzing, D., L. Minorics, and P. Bloebaum. “Feature Relevance Quantification in Explainable AI: A 
Causal Problem.” In Proceedings of the Twenty-Third International Conference on Artificial Intelligence 
and Statistics, edited by S. Chiappa and R. Calandra, 2907–2916. PMLR, 2020. http://proceedings 
.mlr.press/v108/janzing20a.html.

Liu, Y., and A. Just. “SHAPforxgboost: SHAP Plots for ‘XGBoost’.” 2019. https://github.com/
liuyanguu/SHAPforxgboost.

Lopez de Prado, M. 2016a. “Building Diversified Portfolios That Outperform Out of Sample.”  
The Journal of Portfolio Management 42 (4): 59–69.

——. “A Robust Estimator of the Efficient Frontier.” SSRN, 2016b, https://ssrn.com/abstract= 
346996.

——. “Tactical Investment Algorithms.” SSRN, 2019. https://ssrn.com/abstract=3459866.

Lundberg, S. M., G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,  
N. Bansal, and S.-I. Lee. 2020. “From Local Explanations to Global Understanding with Explainable 
AI for Trees.” Nature Machine Intelligence 2 (1): 56–67. 

Lundberg, S., and S.-I. Lee. “A Unified Approach to Interpreting Model Predictions.” In Advances in 
Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, 
R. Fergus, S. Vishwanathan, and R. Garnett, 4765–4774. Curran Associates, 2017. http://arxiv.
org/abs/1705.07874.

Mantegna, R. N. 1999. “Hierarchical Structure in Financial Markets.” The European Physical Journal 
B-Condensed Matter and Complex Systems 11: 193–179. 

Marti, G. “CorrGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial 
Networks.” arXiv, 2019. http://arxiv.org/abs/1910.09504.

Marti, G., F. Nielsen, M. Binkowski, and P. Donnat. 2017. “A Review of Two Decades of Correla-
tions, Hierarchies, Networks and Clustering in Financial Markets.” arXiv, 2017. http://arxiv.org/
abs/1703.00485.

Mitchell, R., E. Frank, and G. Holmes. 2020. “GPUTreeShap: Fast Parallel Tree Interpretability.” 
arXiv, 2020. http://arxiv.org/abs/2010.13972.

Oliveira, F. B., D. Davendra, and F. G. Guimarães.“Multi-Objective Differential Evolution on the 
GPU with c-CUDA.” In Advances in Intelligent Systems and Computing, 123–132. Berlin-Heidelberg: 
Springer, 2013.

Onnela, J.-P., A. Chakraborti, K. Kaski, J. Kertész, and A. Kanto. 2003. “Dynamics of Market 
Correlations: Taxonomy and Portfolio Analysis.” Physical Review E 68 (5): 056110. 

Papenbrock, J. “Asset Clusters and Asset Networks in Financial Risk Management and Portfolio 
Optimization.” PhD thesis, Karlsruhe, 2011. https://doi.org/10.5445/IR/1000025469.

Papenbrock, J., and P. Schwendner. 2015. “Handling Risk On/Risk Off Dynamics with Correlation 
Regimes and Correlation Networks.” Financial Markets and Portfolio Management 29: 125–147.

Ripley, B. D., ed. Stochastic Simulation. Hoboken, NJ: John Wiley & Sons, 1987. 

Scrucca, L. 2013. “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software  
53 (4): 1–37. 

Shapley, L. S. “A Value for n-Person Games.” In Contributions to the Theory of Games II, edited by 
H. Kuhn and A. W. Tucker, 307–317. Princeton, NJ: Princeton University Press, 1953.

Souza, M. Z., and A. T. R. Pozo. “Parallel MOEA/d-ACO on GPU.” In Advances in Artificial Intelli-
gence—IBERAMIA 2014, 405–417. Springer International Publishing, 2014. 

 b
y 

gu
es

t o
n 

Ju
ly

 1
6,

 2
02

1.
 C

op
yr

ig
ht

 2
02

1 
Pa

ge
an

t M
ed

ia
 L

td
. 

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d 

fr
om

 

http://proceedings.mlr.press/v108/janzing20a.html
http://proceedings.mlr.press/v108/janzing20a.html
https://github.com/liuyanguu/SHAPforxgboost
https://github.com/liuyanguu/SHAPforxgboost
https://ssrn.com/abstract=346996
https://ssrn.com/abstract=346996
https://ssrn.com/abstract%3D3459866
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1910.09504
http://arxiv.org/abs/1703.00485
http://arxiv.org/abs/1703.00485
http://arxiv.org/abs/2010.13972
https://doi.org/10.5445/IR/1000025469
https://jfds.pm-research.com


The Journal of Financial Data Science | 69Spring 2021

Tola, V., F. Lillo, M. Gallegati, and R. N. Mantegna. 2008. “Cluster Analysis for Portfolio Optimiza-
tion.” Journal of Economic Dynamics and Control 32 (1): 235–258.

Trivedi, A., D. Srinivasan, K. Sanyal, and A. Ghosh. 2017. “A Survey of Multiobjective Evolution-
ary Algorithms Based on Decomposition.” IEEE Transactions on Evolutionary Computation 21 (3): 
440–462.

Wang, Y., Y. Li, and L. Jiao. 2016. “Quantum-Inspired Multi-Objective Optimization Evolutionary 
Algorithm Based on Decomposition.” Soft Computing 20 (8): 3257–3272.

Zhang, Q., and H. Li. 2007. “MOEA/d: A Multi-Objective Evolutionary Algorithm Based on Decom-
position.” IEEE Transactions on Evolutionary Computation 11 (6): 712–731.

To order reprints of this article, please contact David Rowe at d.rowe@pageantmedia.com  
or 646-891-2157.

 b
y 

gu
es

t o
n 

Ju
ly

 1
6,

 2
02

1.
 C

op
yr

ig
ht

 2
02

1 
Pa

ge
an

t M
ed

ia
 L

td
. 

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d 

fr
om

 

https://jfds.pm-research.com

