
IET Collaborative Intelligent Manufacturing

Research Article

Analysis of metamodels for model-based
production automation system engineering

eISSN 2516-8398
Received on 14th February 2020
Revised 30th April 2020
Accepted on 12th May 2020
E-First on 17th June 2020
doi: 10.1049/iet-cim.2020.0013
www.ietdl.org

Suhyun Cha1 , Birgit Vogel-Heuser1, Juliane Fischer1

1Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
 E-mail: suhyun.cha@tum.de

Abstract: In the current Industry 4.0 era, automated production systems (aPS) comprising of multi-disciplinary artefacts all
closely interwoven are required to adapt to various and varying requirements from customers and environment which introduce
additional complexity. Model-based engineering on the premise of metamodelling is regarded as a promising paradigm to
handle this complexity to engineer aPS. Although various metamodels appear to solve problems in different viewpoints on
systems, the absence of a core metamodel causes inconsistencies between the metamodels and hinders common
understanding of the system and model reuse. In this study, the authors analyse existing metamodels from different research
groups and present inconsistencies among them explicitly which support the necessity of the core metamodel. Considering
properties of aPS together with relevant standards, the authors present a demonstration of analyses on exemplary metamodels
and a set of criteria to understand the various aspects of the aPS metamodels as the first step towards the core metamodel.
Feasibility of creating a universal metamodel of aPS domain is discussed, and the authors claim the necessity of having a
common understanding of core concepts of aPS to support the cross-disciplinary reuse of existing metamodels and,
accordingly, the compatibility of the instalment and operation of components.

1 Introduction
In the current Industry 4.0 (I4.0, which is derived from the German
term Industrie 4.0 [1]) era, automated production systems (aPS)
including manufacturing machines and logistics are required to
adapt to various and varying production requirements
(functionally) and operate in a smarter way (non-functionally) with
the longer lifecycles [2]. Although the requirements could be
described in short sentences, these imply usually complicated
functional requirement, e.g. flexible and real-time production
facility configuration, including non-functional requirement, e.g.
increased production efficiency or human-friendly interactions.
These various requirements lead to the increased complexity of
aPS [3–5].

To handle this increased complexity efficiently, engineering
using models (model-based or model-driven) is regarded as a
promising paradigm for aPS engineering [2, 6]. Under the model-
based paradigm, the requirements can be considered already in the
design phase, and possible danger or risk in the real
implementation can be avoided in advance by validating the
models. Modelling has always been an engineering method in the
field of production automation [7] appearing in different forms
such as topology drawings, mathematical equations or graphics of
processes. Regarded as a promising way to handle the problems
efficiently during engineering processes and supported by the
software tools [7], lots of model-based approaches have been
introduced.

The International Standard Organization (ISO) defines the term
model as ‘M is a model of S if M can be used to answer questions
about S’ [8]. The Object Management Group (OMG) defines it as
‘A model represents some concrete or abstract thing of interest,
with a specific purpose in mind’ [9]. Stachowiak [10] has derived
three fundamental properties of a model: mapping (as a
representation of something), reduction (by highlighting the
relevant attributes and eliminating irrelevant ones), and
pragmatism (usable for a specific purpose and timing). Although
many define the term in different ways, a model could be
conclusively defined as a representation of an original entity for a
specific user concerning a specific intention at a specific point of
time.

As the prefix meta means ‘beyond’ etymologically [11],
metamodel means a model in the higher and more abstract degree
beyond models. With this base, like model, there are different
definitions of term such as by ISO [8] as ‘a metamodel presents the
architecture description elements that comprise the vocabulary of a
model kind’, by OMG specifications (e.g. [12]) as ‘a metamodel is
a model that defines a modelling language and is also expressed
using a modelling language’, by Mellor et al. [13] as ‘it defines the
structure, semantics and constraints for a family of models’, or by
Clark et al. [14] as ‘a metamodel should be capable of describing a
language's concrete syntax, abstract syntax and semantics’.
Summarising these different definitions, a metamodel could be
defined as a representation of an abstract syntax used to represent
semantic contents of the model kind.

Different viewpoints are decided by stakeholders and concerns
[8], and lead to different metamodels, meaning different types of
representation of the system-of-interest. However, metamodels
vary, same object-of-interest, or more specifically its aspect-of-
interest, should be described consistently to achieve efficiency over
approaches. Especially, this applies to the essential parts, which all
the same types of systems include commonly and appear more
often in the metamodels correspondingly. We give a small
exemplary case of unified modelling language (UML) specification
[15], in which various metamodels are defined for different aspects
of the language. As one type of behaviours, the StateMachine
package defines concepts of event-driven behaviours. Within a
state machine, a Trigger enables a path traversal by existing
between a state and a transition (Fig. 1a). These elements are all
explicitly visible within StateMachine metamodel. The mechanism
of how this Trigger gets in effect is defined in the Event
metamodel, which is the actual occurrence and defined as a core
concept underlying all behavioural models in UML (Fig. 1b).
Although the Event does not appear explicitly within the
StateMachine metamodel, the separately defined elements can be
associated with other core concepts. If they all were separately
developed without any consolidating organisation like OMG, they
might have had unassociated names for each and some rules should
have been defined to describe the relevant associations. As they are
developed on common ground, this huge metamodel could be
consistent as a whole. Over model-based aPS engineering

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

45

methodologies, it is observed that a huge variety of metamodels
appears to solve different problems, but not with a commonly
accepted abstraction of these all, which is namely a core
metamodel. Various metamodels with the absence of the core
metamodel may hinder the common understanding of stakeholders,
e.g. different vendors of components who enable connections of
the concepts from different sides as a very intuitive example.

The main contribution of this study is to indicate existing
metalevel inconsistencies over aPS metamodels explicitly and to
reason the factors of different viewpoints on a system which have
been somehow assumed but not clearly visible so far. To coordinate
the metamodels in this domain, the first step towards the core
metamodel would be to abstract common properties of our target
system. Therefore, we visit the characteristics of aPS and their
engineering processes and present classification criteria for aPS
metamodels based on them. These are demonstrated with different
research groups' metamodels. These criteria will enable engineers
from aPS domain to judge or analyse whether an existing
metamodel is suitable to fulfil or extend for their needs. At the
same time, there will be a starting point to organise metamodel
landscape in aPS engineering field and to have the foundation of
the core metamodel underlying all aPS metamodels.

The outline of this study is as follows: first, model-based
approaches for aPS are shortly reviewed together with the
inconsistency management approaches and relevant standards in
Section 2. In Section 3, characteristics of aPS and their engineering
are introduced to enhance the insight on aPS metamodels. After
addressing research questions and research methods including
introducing the target metamodels in Section 4, Section 5 follows it
by analyses of aPS metamodels to present and reason metamodel
inconsistency cases by proving hypothesised causes. In Section 6,
the summarised findings are discussed together with the threats to
validity and metamodel classification criteria derived from aPS
properties are presented followed by the conclusion and outlook in
Section 7.

2 State of the art
This section addresses states of related researches about model-
based approaches. The focus is put first on model-based aPS
engineering approaches (Section 2.1) and narrowed down to
metamodel inconsistencies (Section 2.2). Relevant standards and
guidelines endeavouring to align individual approaches are
introduced (Section 2.3) followed by a summary in Section 2.4.

2.1 Model-based engineering for aPS

As model-based engineering is regarded as a promising paradigm
for the development of aPS to handle the complexity [6], various
model-based approaches appear along with the aPS engineering
flow from requirement analysis to system maintenance and
evolution. Introduction to these approaches detail is omitted here.
Instead, reviews on model-based aPS/cyber physical system (CPS)
engineering approaches are found in various literature, e.g. Vyatkin
[16], Fay et al. [17], Vogel-Heuser et al. [2] or Shi et al. [18].

Considering the variety of the metamodels of the approaches for
aPS engineering, some researchers have already started to look at
the bigger picture trying to achieve insights into common
understandings among the various approaches. An overview of
different metamodels for system engineering and the modelling
languages is introduced by Reichwein and Paredis [19].
Interestingly, in their outlook, they have considered handling
inconsistencies of heterogeneous metamodels as one of the future
challenges in model-based system engineering (MBSE). While it
becomes more serious in aPS domain as model-based engineering
gets more common methodology than before, the envisioned
directions are in the wider scope of system engineering which
requires precise elaboration to be applied in aPS domain. Vogel-
Heuser et al. [2] present a view on aPS development along with the
engineering cycles with MBSE though the inconsistencies
commented in their work are laid mainly in model level. Witte et
al. [7] present a more philosophical view with relating models,
concepts and modelling languages mainly discuss interchange
format among the different models and modelling software.
Recently, Pietrusewicz [20] classifies various metamodels in the
scope of CPSs. In his work, comparisons and classifications of
metamodels depending on engineering activities and modelling
workflows are presented but characteristics aPS are not considered.

2.2 Inconsistency management over metamodels and
models

Different metamodels are developed from different viewpoints
depending on the concerns causing issues of model inconsistencies.
Various stakeholders in an aPS building project understand and
implement their own parts based on relevant metamodels
simultaneously in most cases due to the multi-disciplinary aspect.
Actually, inconsistencies over models are likely to occur and have
to be carefully considered to guarantee a high quality of the final
system [5] as well as consolidation of collaborative data for smart
system operation and management as presented, e.g. in [21]. On
the one hand, maintaining consistency or traceability is obtained by
the model transformation. For a continuous engineering process,
model transformation has been often applied in the automation
software development process (e.g. from observed/classified
pattern [22], component-based model [23], or SimulinkTM model
[24]) or test cases (e.g. from UML State Charts [25] or sequence
diagram [26]) to save development time and cost with fewer faults
than manual transformation. As a syntactic standardised data
exchange among the different presentations, AutomationML [27] is
suggested, and accordingly, the approaches weaving different
models and languages through this have appeared such as [28].
One remark is that model transformation is defined on the premise
of the inter-metamodel consistencies which have been either
assumed to be consistent or handled by full knowledge regarding
the target metamodels (usually well-known) to build
transformation rules.

On the other hand, approaches to manage inter-model
inconsistencies are suggested. Derler et al. [29] have counted
‘component consistency’ and ‘model divergence’ as the challenges
of modelling CPS highlighting the evolving models in parallel. So
the assumption is that model semantics are already consistent but
the models get inconsistent during the engineering. Similarly, the
sequential model-based design steps for CPS suggested by Jensen
et al. [30] is emphasising keeping consistencies among models by
transforming a model into another one. Feldmann et al. [5] have
introduced a semi-automatic supporting method of inter-model
inconsistencies of aPS by bridging target models with a specific
model called ‘Link’. In their work, they also classify inconsistency
management approaches into logical reasoning (i.e. defining the
relationships and constraints in logics), rule-based reasoning (i.e.
acquired rules and patterns), and synchronisation approaches (i.e.
capturing conflicts by transformation). Vogel-Heuser et al. [31]
have found that inconsistencies can be detected easier with coupled
technical models by a priori connections or post hoc tracing
considering the perspectives of the collaborative human
behaviours. They [32] have also presented the multi-view
collaboration method using knowledge-base and shown a research

Fig. 1  Exemplary UML metamodels [15]: separate but consistent
(a) Partially excepted StateMachine metamodel, (b) Partially excepted Event
metamodel

46 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

demonstrator use-case, still the method works in model level. As
many approaches are developed for software engineering like [33],
Wolfenstetter et al. [34] introduce a software tool called TRAILS
(standing for traceability, integration, and life-cycle management
support) which aims to convert existing information from different
domain-specific model into a uniform format by defining the
relationship between the metamodels like Link model. Similarly,
correspondence and consistency rules can be defined for a set of
metamodels of the targets for flexible views in virtual single
underlying metamodel (VSUMM) suggested by Kramer et al. [35].
As seen in one of the UML model examples in [36], these
approaches usually target resolving model-level inconsistencies of
major languages like well-known UML profiles also assuming that
metamodels are already consistent which is valid for UML profiles.
However, as highlighted, metamodel consistency is not assured
among independently developed approaches. Hardebolle and
Boulanger [37] have summarised approaches about abstract syntax
and semantics of modelling languages in the computer science field
and concluded that capturing common semantics is a mandatory
step to handle heterogeneous models as we see the problem in the
same way.

2.3 Standards as common grounds

Existing standards might take a role for being bases of consistency.
ISO 42010 (originated from IEEE 1471) [8] defines systems and
software engineering architecture description. There, the concept of
architecture description and the correspondence of architecture
framework entities. This can give a framework of aPS
metamodelling as a conceptual base. More specific into the
mechatronics system, IEC 61512 [38] (also known as ISA 88)
defines reference models for batch control in the process industry.
For example, a ‘unit’ is defined as a basic block in the sense of
procedure and its technical operation. VDI 2193 [39], a
communication language for I4.0, defines elements (I4.0
component) in the sense of network entities. For a seamless
communication of separately delivery parts, standardised protocols
like open platform communication unified architecture (OPC-UA),
are developed and many relevant approaches to adapt them to the
varying requirement of the production environment (e.g. [40] for
flexible manufacturing). IEC 62264 [41] (also known as ISA 95), a
standard for enterprise-control system integration, defines
equipment very broadly in the viewpoint of system integration over
functional hierarchies. The closest standard to our aim would be
IEC 62390 [42] which defines automation devices as a component
consisting of hardware, software, function and interface. Standards
help for common understanding, but they mostly define entities in
too abstract level by their nature and are not easy to interconnect
each other, e.g. automation devices in IEC 62390 can be a little bit
more specified regarding the basic structure and function of aPS.
VDI 5100 [43] is a German software architecture guideline for
intralogistics systems (also known as SAIL). These standards could
guide regarding the metamodel consistencies to some extent;

however, still they are quite higher abstract level to be considered
in the engineering level as a core metamodel. Examples
conforming this guideline are presented later to show metamodel
level inconsistencies.

2.4 Discussion

The relationship between metamodels can be defined in an ad hoc
way by having a specific mapping between selected models as in
some approaches introduced or many model transformation
approaches. However, standardisation of the system models, not
for all levels, but for core concepts, would be necessary to ensure
semantical homogeneity over a wider range of metamodel
semantics to achieve efficiency during aPS engineering. The
International Council on Systems Engineering (INCOSE) also
highlights and envisions the necessity of encompassing
sophisticated model-based methods in the two recent trend reports
[44, 45].

Although there are varieties and complexities of aPS, aPS have
common characteristics in technical and engineering processes.
Despite a number of standards, semantically inconsistent
metamodels to handle different concerns are being developed
missing a commonly accepted architecture as a set of terminologies
or rules for coupling metamodels for aPS engineering. In this I4.0,
the importance of compatibility of the components gets more
highlighted to realise self-x systems since automatic integration or
reconfiguration can be implemented based on the compatibility
which requires information matches or well-defined transformation
rules. Thus, this paper poses the following research questions: RQ1
– do modelled objects in the metamodels describe the same entity
in the same way?; RQ2 – what makes the difference in the
appearance of the metamodel on the same entity? and RQ3 – how
do domain-specific metamodels focusing on the same concern
differ?

3 Essential characteristics of aPS and
engineering them
The aPS are defined in [2] as ‘…comprised of mechanical parts,
electrical and electronic parts (automation hardware) and software,
all closely interwoven, and thus represent a special class of
mechatronic systems …’ and ‘aPS, a particular type of mechatronic
system on which this paper focuses, is designed-to-order systems.
These are complex manufacturing systems, and they have a typical
lifetime in operation of several decades’ in the technology point of
view. In the functionality point of view, aPS refer to the
manufacturing and logistics plants like production lines for
automobiles or bottling beverages focusing on the production
automation. Since a metamodel reflects a specific part of a system
concerning the specific intention of the stakeholder, the concerns
are related to the objectives of corresponding engineering steps.
Therefore, understanding the characteristics of systems, i.e. aPS,
and their engineering is necessary to understand the properties of
metamodels. In this section, these characteristics are introduced as
concerns and contexts of the metamodels in MBSE scheme.

3.1 Technical process of aPS

A technical system implements its corresponding technical process
by relevant components (Fig. 2) and this is the realm of our interest
in aPS engineering. The system status is changed by the technical
process with relevant parts (de)activated. Thus, the system
structure, as well as, different states make the system to be seen
differently in each engineering process. The two axes of the
technical process and engineering process could categorise
metamodels since system(part)-under-interest and the concerns of
the stakeholder can be defined with these two axes.

The processes proceeded within aPS are technical processes
based on the definition in [47] – a process by which involved
object, i.e. matter, energy or information, is altered in its state.
Thereby, a technical process is the totality of all operations in
which material, energy or information is converted, transported or
stored [46]. Automation [47] in general requires access to
information from this technical process (via sensors) to influence

Fig. 2  Technical process and technical system [46]

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

47

the technical process (via actuators) based on its behaviour. Here,
the material, energy and information are the objects of the technical
processes. Also, human interaction is regarded as an important
element in aPS since a human is one of the main elements
contained in the aPS to be specialised out of overall scope of
automated systems as an entity who develops, follows the process
event, control and influences process, and handle the faults [46].
This classical concept of process has been a base for the
automation pyramid as known (defined in ISA 95), which extends
the basic technical process by including supervisory control level
(supervisory control and data acquisition), overall manufacturing
execution management level (manufacturing execution system),
and business management level (enterprise resource planning,
ERP).

3.2 Engineering process of aPS

Since aPS, a particular type of mechatronic system, is designed-to-
order system, each aPS engineering process goes through specific
engineering methods depending on the own requirements and
objectives of the system. The engineering life cycle can be
presented as Fig. 3. Based on the project-independent activities,
customer-specific projects are designed and developed in particular
(lower part in Fig. 3).

Although the overall process of engineering from requirement
specification to the maintenance in the coarse level is similar to the
other systems, like pure software system, one of the big difference
is that aPS have physical substances with masses. To be integrated
as one aPS, most pieces machinery are shipped in part, assembled
and commissioned on-site [48]. This specific engineering process
leads to the necessity of adaptation during commissioning as well
as start-up [2]. Therefore, this step cannot be overlooked in aPS
engineering process. Various components are gathering or
generated from various disciplines (or their combination). This
leads to maintenance activities in various forms. Also, longer life
cycle (usually decades) and corresponding ageing cause
components from different disciplines to go through re-engineering
and modernisation (mechanics: 5–40 years, electrics: 10–15 years,
software: weeks–years). Some reasons could be, e.g. physical wear
and tear, changing requirements, or technology trends and these
cause changes in different disciplines with different cycles [2]. This
is also a distinctive characteristic of aPS engineering.

3.3 Characteristics of aPS and the properties of models and
metamodels: what, when and why

A model represents a technical system in a technical process
statically or dynamically. Therefore, the technical system,
including interacting entities (e.g. external systems or engineers) if
necessary, is what a model describes. A metamodel is built to
capture the same sort of description. Then, when and why is a
model generated? In the MBSE, the engineering processes can be

separated into the project-independent activities and the project-
related activities (Fig. 3). Within the project-independent activities,
reusable solutions are developed and these are taken to be used in
the project-related development process. Along this engineering
process, models are the artefacts of each engineering process.
Therefore, when and why a model is generated could be answered
by the juncture and the objective of the project-related engineering
activities, respectively. In the case of metamodels, the objective of
the metamodel would be same as the model while the timing of the
metamodel generation and use would be different. Most probably
the generation of a metamodel would be during the project-
independent activities to develop an approach for the same sort of
the problems and its use (i.e. modelling) would happen during the
project-related activities.

4 Research questions and study design
Metamodels appear in different forms depending on stakeholders
and concerns. Inconsistencies in not only values (model level) but
also semantics (metamodel level) hinder the efficiency throughout
the aPS engineering lifecycles. Getting one step deeper into the
metamodel levels, we discover explicit metamodel level
inconsistencies and investigates possible reasons in this paper.

4.1 Research questions and hypothesis

Metamodels reflect the design concept, and thus modelling
mistakes can seldom be a reason for this fundamental level
inconsistency. Rather, design rationale and individual background
could be. To clarify the direction of the investigation and the goals,
the research questions (RQs) to be addressed connected to the
hypotheses as follows:

• RQ1: Do modelled objects in the metamodels describe the same
entity in the same way?

o (H1) There are inconsistencies across metamodels regarding
the objects' names and their semantics.

H1.1) There are objects in the metamodels named differently
though semantically they mean the same.
H1.2) There are objects in the metamodels, which are named the
same but mean different semantics.

• RQ2: What makes the difference in the appearance of the
metamodel on the same entity?

o (H2) The different objectives and backgrounds of the architect
decide the different use of the elements across the metamodels.

H2.1) Metamodels for analysis of the already existing artefacts
and generation of the new artefacts appear in different
constitutions.

Fig. 3  V-Model XP with separation of the project-independent/project-related activities (elaborated from [2])

48 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

H2.2) Metamodels designed by different discipline-based
architect appear in different constitutions.

• RQ3: How do domain-specific metamodels focusing on the
same modelling object differ?

o (H3) Various abstraction levels appear across the metamodels,
which is related to the underlying design rationale of the
corresponding software architecture.

H3.1) Metamodels with the same objective appear in different
forms depending on the design rationale of the overall control
software in the same application domain, like intralogistics.
H3.2) If the objective of the model even in one application
domain like intralogistics is different, the resulting metamodel is
different in regard to the level of abstraction of the modelled
concepts

4.2 Introduction of the considered metamodels

Some published metamodels from aPS engineering methodologies
are selected from the automation community to be analysed
(Table 1). To have a wide range of application cases, metamodels
are selected based on several aspects of the aPS;

• Control software: IEC 61131-3 [49] is the standard for control
software on PLC. As the proportion of the aPS functionalities
realised in software is increasing [50], efficient and effective
handling of automation software via model-based approaches
regarding, e.g. automated generation or change management, is
highlighted [2]. Two metamodels related to this language are
selected regarding automatic generation and analysis.

• I4.0: as the current trend in automation, most design principles
and enabling technologies are actively researched for I4.0 during
recent years [1]. Two metamodels are selected focusing on two
main features of I4.0 which are flexible collaboration and
reconfiguration

• Enterprise management: cost reduction is the main driver of aPS
engineering techniques [16] during not only developing them
but also maintaining for their long life cycle. One metamodel is
selected to cover the engineering cost in the viewpoint of
enterprise management.

• Specific subdomain (intralogistics): intralogistics systems are
considered as an especially mature subdomain of aPS since the
modules are loosely coupled and formed by application of
internet of things paradigm even a decade before I4.0 [51, 52].
Selected metamodels are based on the domain-specific software
architecture (SAIL) and show inconsistencies even within a
small domain.

To find the evidence of hypotheses and prove them, selected
metamodels considering supplementary ones are investigated

regarding their aims and design rationale in detail. Over the target
metamodels, terminologies and their semantics are figured out and
compared. Also, the counter parts of the comparison targets are
projected to each other for the structural difference analyses.

5 Analyses on metamodel inconsistencies
For each hypothesis to explore the research questions, considered
exemplary metamodels are analysed in the following (Table 1).
They are referred with acronyms, and some additional metamodels
are introduced with brief explanations to support and strengthen the
proofs.

5.1 Inconsistencies of the syntaxes and semantics (H1: H1.1.
and H1.2)

Some objects are named differently in different metamodels even
though they are semantically the same (H1.1). That is, various
synonyms appear to represent the same entities for the metamodels
(or part of them) describing the same system. For example, in
SemAnz40 [55], aiming at providing a semantic basis for a
mechatronics system, a system-of-interest is divided into functional
units, which are further decomposed into components. In this
metamodel, a structural joint of components is named as interface
for flows of material, energy and information as well as a
geometric joint for assembly. On the other hand, there is another
metamodel RC4PA [56] for plant automation focusing on the
reconfiguration mechanism of the system. In this metamodel, the
control system is divided into several mechatronic components.
These components are connected (i.e. referring to or referred by)
variables through the IO class which represents input/output of the
signals. Therefore, IO means the same sense with the information
flow of interface in SemAnz40. Additionally, we can find another
synonym in other metamodels like interdisciplinary behaviour
model [60] which is designed for formal verification of the system
behaviours by extending software behaviour models to the
hardware levels. Similarly to SemAnz40, the system structure is
decomposed further into components as essential structural
elements. In this metamodel, components are connected to the
others through port instead of interface.

In reverse, different objects are also observed to be called with
the same names (H1.2). In IntraMAS [58], where interface class is
found in resource part representing an interfacing point to hand
over the materials as downed by modules. In SemAnz40, the
comparable parts of these interface and module in IntraMAS would
be interfaces and components with a broader meaning. If an
engineer uses these metamodels, he/she should be careful not to be
confused with the element names. In both cases, which are naming
and semantic mismatch, the inconsistency introduces inefficiency.
Also, H1.1 and H1.2 are true and, consequently, H1 is true.

One possible reason for these inconsistencies could be that
terminologies and definitions, which are firmly established as

Table 1 Description about exemplary metamodels
Aspects Description
control software IEC 61131-3 metamodel for code generation (CG4IEC) [53]: defines the information in the IEC61131-3 program to

generate the code automatically from the model
IEC 61131-3 metamodel for family mining (FM4IEC) [54]: defines the information in the IEC61131-3 program to compare
and analyse variants and versions of the PLC software

I4.0 metamodel for semantic modelling (SemAnz40) [55]: defines semantical bases to support semantic modelling of aPS in
the various viewpoint
plant automation system metamodel for defining control system reconfiguration (RC4PA) [56]: defines the reconfiguration
of IEC 61131-3 software programs to ensure availability at runtime in case of controller failures

enterprise
management

change effort estimation metamodel using Karlsruhe Architectural Maintainability Prediction (KAMP4aPS) [57]: defines
the structural description of the aPS to apply KAMP method to derive a list of tasks for a change considering functional
hierarchy diversity on aPS domain derived by pure software engineering viewpoint

specific domain
(intralogistics)

intralogistics multi-agent system metamodel (IntraMAS) [58]: defines the structural composition of material flow systems
including routes and transportation allowing the knowledge base (system layout, component and task) required to control
flexible material flow systems
metamodel for automated material flow modules (AutoMFM) [59]: defines material flow modules to generate the control
code of intralogistics systems

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

49

unified concepts in aPS domain, are hardly found. Actually some
standards such as the device reference model [61] (which has its
own base on IEC 62390) define core concepts, e.g. Device – as a
module which gives specific functions like measuring or
controlling – containing interfaces to be able to exchange broad-
ranged information like field control or diagnosis. However, the
naming of each element from these all metamodels is not exactly
and firmly tied into each other. In other words, an engineer
knowing one of them should spend some time to interpret the
meaning of the other metamodel elements so that he/she could find
the corresponding element.

When there are inconsistencies between metamodels regarding
its syntaxes and semantics, metamodel elements can be
synchronised either in ad hoc ways by having a specific mapping
between selected ones only (like transformation rules between
metamodels) or in consolidated ways by compiling a unified
terminology dictionary. Although the former might require small
work comparable to the latter only for mapping between target
models, this one-to-one mapping causes redundant mapping over
the pairs of the metamodels. Therefore, a common understanding
of the considered aPS domain would enhance the understandability
and reuse of the existing metamodels as well as the detection and
resolution of inconsistencies over metamodels used in different
disciplines or different phases of engineering.

5.2 Concern types of metamodel: analysis of the existing
artefacts versus generation of the new artefacts (H2.1)

In metamodels, elements of the system-of-interest appear with
different features in the metamodels depending on the concern
types (H2.1). We introduce two examples with a narrow focus on
the IEC 61131-3 language regarding: code generation transformed
from UML model (CG4IEC), and code comparison as a
prepossessing step to family mining (FM4IEC).

CG4IEC [53] aiming to generate a runnable object-oriented
PLC project in sequential function chart (SFC) defines the PLC
platform specifications with configuration and resources including
variables and program organisation units (POUs). We focus on the
way of variable declarations. In this metamodel, possible variable
types are defined firmly as enumeration depending on the
functional module types (e.g. FunctionBlock or Method). When we
see another metamodel, FM4IEC [54] also depicting IEC 61131-3
control software with a top-level view on a PLC project, the
metaclasses works as a container of information to be compared
regarding similar variants and versions of PLC projects for its code
comparison purpose. In this metamodel, variables and their
declaration appear as ones of the main comparison elements;
however, restrictions of the variable types depending on the POU
types do not appear. This is because restrictions on allowed
syntaxes of elements are necessary to assure the validity to
generate runnable code whereas this is not an issue for code
comparison since the code already fulfils these requirements of
being executable. For example, variable types or statement orders
should be valid to make the code executable while no explicit
measures are taken to ensure any certain rules in FM4IEC for code
comparison. Another worthy point to compare is comment which is
observed in FM4IEC but not in CG4IEC. Some implementation
history or other information regarding variants could be described
in comments, such as a version number or the versioning date. This
is important information source to analyse the variants of the code.
In contrast, this is not regarded as necessary for code generation
because the comment of the generated code would not affect the
software execution in any way. Therefore, we observe that same
elements-of-interest are described with different features depending
on the concerns. Thus, hypothesis H2.1 holds.

Some information can already be obtained or at least prepared
to be consistent during earlier engineering steps for the later steps
if it is already known that relevant information will be required
later. For example, within the engineering process of the aPS, code
generation is done in implementation steps while code comparison
is a reverse engineering activity during the maintenance steps.
Variants information can be prepared during the code generation in
some information holder like ‘comment’, if it is foreseen, so that

this could be used during the analysis steps. Although not all the
engineering processes can be strictly defined or must not,
engineering processes and terminologies can be standardised to
some course degree to relate approaches and corresponding
metamodels, which will bring higher efficiencies.

5.3 Effect of the background (H2.2)

A metamodel might appear in different constitutions depending on
the discipline base of the metamodel designer (H2.2). We show two
aPS metamodel examples: KAMP4aPS and FM4IEC.

The KAMP4aPS [57] aims to estimate the effort to implement a
change by deriving a task list. To analyse the change propagation
over the components, a structural description of the aPS is
necessary. This constitution is defined in two levels: the coarse
level structure (‘abstract’ metamodel) and the finer level structure
(‘specific’ metamodel) with further subclasses of possible
component types. Comparing this to the other metamodels like
SemAnz40, SysML4Mechatronics [62], or RC4PA in the context
of the structural description, this metamodel would seem flat to the
aPS engineer's viewpoint. Several reasons can be addressed for
this. For example, ‘abstract’ metamodel provides only the very
coarse level of differentiation of the system parts without any
further abstraction of the features. It is a contrast that the compared
metamodels already capture features of system parts in the coarse
level with the abstraction (e.g. separating software from hardware
and connecting these over interface). In addition, the ‘specific’
metamodel in KAMP4aPS highly depends on the detailed change
propagation rules which work only for a specific system (or the
same sort) while the comparing metamodels in the finer level are
still applicable to broader system types.

A similar distinction could be found in another pair of
metamodels: FM4IEC and a control flow analysis metamodel of
PLC programs [63]. Both metamodels depict IEC 61131-3 SFC in
which the elements of steps and transitions compose the program.
Since the steps and transitions appear alternatively, a program is
established by indicating adjacent elements of different types (from
step to transition or vice versa). At this point, in the control flow
analysis metamodel, SFCstep class are defined as floating nodes
and transitions (Edge class in the metamodel) connect the steps by
indicating sources and targets (sourceObject and targetObject
properties in the metamodel). Differently from this, in FM4IEC
steps and transitions are indicated bidirectionally: a transition
indicates source/destination steps and a step indicates incoming/
outgoing transitions. Although direct adjacency indication allows
quicker data resolving of the predecessor/successor of each step or
transition, this is not the way that system engineers would take
since this might cause information inconsistency between the step's
and the adjacent transition's indicator.

Mainly the KAMP4aPS and FM4IEC metamodels are
developed by the designers from pure computer science field who
might see every hardware component equally most probably. It
might not be intuitive for the metamodel designers, who do not
have enough experience of engineering this type of system, to
abstract components differently regarding the hardware
characteristics or to expect behavioural element inconsistencies.
Thus, H2.2 is true.

Metamodels can be designed in different ways; however, these
need to be acceptable to the field engineers who would utilise the
metamodels during the engineering with the concrete values and
data. Especially, as the broader disciplines are integrated during
aPS engineering and the boundaries are getting blurred among the
disciplines [1], a core metamodel of aPS would provide a blueprint
of the system even to the engineers from another field with a
consistent language.

5.4 Domain-specific metamodels with regards to levels of
granularity (H3)

Metamodels might appear differently, even in a sub-domain of aPS
for the same modelling objective (H3.1). The AutoMFM
metamodel [59] is designed to generate the control code of an
intralogistics system modules dynamically adaptable to changes
with conformance to a software architecture guideline called SAIL

50 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

to support modularisation of material flow modules. In the context
of I4.0, alternative design rationales such as multi-agent systems
are regarded as a suitable approach for a decentralised and flexible
control architecture [64]. IntraMAS [58] applies this agent-based
control architecture to support runtime change of logistics system's
layout without error-prone re-engineering of the control software.
IntraMAS describes the knowledge base required by a module
agent to judge whether a requested job order can be fulfilled by the
module. In contrast to AutoMFM which includes hardware device
like sensors and actuators, IntraMAS metamodel omits this detail
of hardware control but includes abstract information about the
material flow modules instead, such as abilities or potential
material interfaces. By this logical level description, the knowledge
base can contain module-type independent information so that the
agents of material flow modules can interact with each other. These
two metamodels from the intralogistics domain demonstrate how
metamodels could differ greatly even within a small sub-domain of
aPS metamodels used with the same objective of supporting the
PLC software development because the fundamental software
control design rationale differs. Thus, H3.1 holds true.

Another aspect regarding RQ3 is that metamodels even in a
small application domain with a different modelling objective
handle the same core concepts in different abstraction levels
(H3.2). One example of a core concept in the intralogistics domain
is a module interface as a survey shows that the module interface
development is one of the most critical issues for realisation [65].
We consider the two metamodels introduced above. In the
AutoMFM metamodel, the module interfaces are described from a
hardware point of view regarding the material flow interfaces
(ModuleFlowInterface), similar to IntraMAS (Interface).
Additionally in AutoMFM, a module sequence control viewpoint is
considered which leads to control interfaces for details of the
material transfer control such as specific event sequence (i.e.
handshake) to build connections. In IntraMAS, it is crucial to
detect neighbouring material flow modules to interact with while
detailed information of the field device level is not of interest. In
short, the metamodel represents the MFMs on a logical level. The
Interface class is defined regarding its position and type of material
transfer (i.e. either input, output or both) from a hardware point of
view. This is sufficient for the agents to control the material flow
consisting of a sequence of modules connected via their interfaces.
Therefore, it holds true that depending on the objective of a
metamodel, the same core concepts of a domain could be defined
in different granularity levels even in a very narrow area (H3.2).

6 Discussion

6.1 Summary of findings and validity analysis

We have analysed various causes of metamodel differences starting
with the research questions (summarised in Table 2). For RQ1, we
have hypothesised that there are inconsistencies across metamodels
regarding the objects names and semantics (H2.1, H2.2). We have
verified this by showing the same elements constituting a system
called differently, and disparate components called with the same
name. This means a specific semantic is not always linked to a
specific syntax. There could be observable syntactic or semantic
conflicts between the metamodels as seen even in a small set of
metamodels that we gathered as our demonstrators. Thus, the
inconsistencies of semantics and syntaxes can be observed often
which indicates the analysis result to be valid.

For RQ2, we have hypothesised that different objectives and
backgrounds of the architect lead to different constitutions of
metamodels. We verify this with two different objectives, which
are analysing existing artefacts and generating new artefacts
(H2.1). We have also shown that discipline-based views could be a
reason for these differences on the metamodels (H2.2). We find
that the two objectives could logically come to a hypothesised
conclusion, and thus the H2 is conclusively valid. Still, H2 could
be regarded as the answer to RQ2 partially since not all the factors
leading to the different metamodels are exhaustively investigated.
This hypothesis needs to be supplemented with more factors
causing different metamodels. Also for H2.2, not all the
backgrounds are counted as possible views on aPS though there are
more disciplines involved in aPS engineering other than software
and mechatronics views. Thus, the effect of objectives and
background on the metamodel need to be observed in more aspects
to answer the RQ2 soundly, which results in a moderate level of
validity.

In RQ3, the observation scope has been narrowed down to a
specific application domain of intralogistics. We have shown that
metamodel appears in different forms depending on the design
concept even in the narrowed sub-domain with the same objective
of the metamodel (H3.1). Although the results are as hypothesised,
more design rationales should be explored to validate this
hypothesis more strongly. The effect of the different objectives on
the level of abstraction in metamodels is observed (H3.2). It has
been shown that constitutions appear affected by the design
rationales and objectives. We have a limited pair of metamodels,
but could easily observe such a different abstraction level.
Therefore, the H3 could be said valid.

Table 2 Research questions and related hypotheses evaluation
Criterion Result and validity Evidence
RQ1: Do modelled objects in the metamodels describe the same entity in the same way?
(H1) there are inconsistencies across metamodels regarding the objects’ names and their
semantics

TRUE (strongly valid) H1.1, H1.2

(H1.1) there are objects in the metamodels named differently even though semantically they
mean the same

TRUE (strongly valid) SemAnz40, RC4PA

(H1.2) there are objects in the metamodels, which are named the same but mean different
semantics

TRUE (strongly valid) SemAnz40, IntraMAS

RQ2: What makes the difference in the appearance of the metamodel on the same entity?
(H2) the different objectives and backgrounds of the modeler/architect decide the different use
of the elements across the metamodels

TRUE (strongly valid) H2.1, H2.2

(H2.1) the objective of the metamodel can be separated into analysis of the already existing
artefacts and generation of the new artefacts as one of the cause factors of the difference
across the metamodel

TRUE (strongly valid) CG4IEC, FM4IEC

(H2.2) metamodels designed by different discipline-based architect appear in different
constitutions

TRUE (strongly valid) KAMP4APS, FM4IEC

RQ3: How do domain-specific metamodels focusing on the same modelling objective differ? (narrowed down to intralogistics)
(H3) metamodel inconsistencies appear even within a smaller application domain TRUE (strongly valid) —
(H3.1) metamodels with the same objective appear in different forms depending on the design
rationale of the overall control software in the same application domain, like intralogistics

TRUE (moderately valid) AutoMFM, IntraMAS

(H3.2) different objectives affect on the level of abstraction of the modelled concepts even in one
application domain of like intralogistics.

TRUE (strongly valid) AutoMFM, IntraMAS

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

51

6.2 Feasibility and effectiveness of creating a metamodel
covering the aPS domain

The analysis and the examples illustrate the variety of viewpoints
about aPS. Syntactic and semantic inconsistencies between the
metamodels are often observed and are basically due to different
viewpoints including concerns and backgrounds. The objectives
and disciplines, which differ in most problem-solving activities,
affect even on the representation of essential components of aPS in
metamodels. Theoretically, it would be possible to include all
different aspects in the various abstraction levels within one large
metamodel. However, this holds the risk of becoming inconsistent
during the maintenance of the metamodel and being hard to
understand: engineers using the metamodel would choose the parts,
which are relevant to fulfil their tasks. However, they are required
to understand the entire metamodel more than actually needed to
sort out necessary and unnecessary parts. Most of all, scopes of
concepts and resulting metamodels in aPS domain are extensive as
seen. Therefore, one large closed aPS domain metamodel is not
feasible practically when it comes down to supporting a specific
engineer's tasks. Nevertheless, a joint, commonly accepted core
metamodel representing the significant concepts (e.g. structural and
behavioural) of aPS components would be beneficial for efficient
and effective MBSE for aPS. The core metamodel plays a role of a
common understanding ground of important concepts and
terminologies. Newly generated metamodels based on it would be
able to be consistent which leads to engineering efficiency.
Although there have been some attempts to standardise the

essential elements and concepts, e.g. SAIL for intralogistics
domain or the device reference model in IEC 62390, it does not
perfectly fit as an aPS core metamodel. It is still required to analyse
aPS regarding common structural and behavioural architecture and
define corresponding concepts considerately. This will enhance a
shared understanding and enable interconnecting and expanding of
developed metamodels.

6.3 Classification criteria for metamodels

Considering the characteristics of aPS in the technical and
engineering point of view including representative standards to
abstract aPS characteristics, finer-grained classification of aPS
metamodels could be developed. The collected criteria based on
widely accepted standards and definitions including explicit
division of the technical and engineering processes proposed for
classifying metamodels are introduced in Table 3. These criteria are
collected in the perspective of the engineer who would utilise
metamodels. Through reviewing the criteria of the metamodels,
they could figure out the characteristics of the target metamodel,
utilise the existing ones, or extend them. These criteria can
contribute to extract common properties of aPS as the first step
towards aPS core metamodel. Core components and their
composition can be considered regarding the given aspects of types
and points as classified by these criteria.

The considered metamodels in this study selected from the
automation community are exemplarily analysed regarding the
criteria in the same table. This demonstration envisions how the

Table 3 Metamodel classification criteria and selected metamodels with their properties on the criteria
Criteria and categories Metamodels

Control software Industry 4.0 Enterprise
management

Intralogistics

CG4IEC
[53]

FM4IEC
[54]

SemAnz40
[55]

RC4PA
[56]

KAMP4aPS
[57]

IntraMAS
[58]

AutoMFM
[59]

(a) functional hierarchy levels [41,
66]: a technical process includes
technical system and human–
machine interaction (HMI) as well as,
manufacturing operation and
businessplanning

field level (sensor/
actuator)

X X X

control and
communication level

X X X X X X

HMI for operation of
the plant system
manufacturing
operation and
control (with
including HMI for
manufacturing
management)
business planning
(ERP)

X

(b) engineering process steps [67]
part 2 – Typical aPS engineering
process is separated in to six general
categories:

requirement
engineering

X

design X X X
implementation X X X X X
commissioning
operation X
maintenance X X

(c) technical flow sorts [46]: if a model
describes a technical process, the
relevant flow object appears in the
model implicitly or explicitly

material flow X X X
energy flow N/A N/A X N/A
information flow X X X X

(d) material (refines c1): the product itself might appear in
the metamodel to indicate effect to or by product
properties, e.g. adaptability of the system regarding the
product weight change. Even if the material flow is not
depicted in the model, material can appear statically

X X

52 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

criteria are intended to be applied on metamodels. This could be a
starting point to arrange a landscape of metamodels for aPS
domain. Also, one can define the engineering properties within the
criteria and assess metamodels regarding these properties as well as
analysing their needs and choosing a metamodel regarding its
properties in the other way around.

7 Conclusion and further works
Regardless whether models are to be in graphical symbolic forms
for engineers to understand and represent systems for developing
systems or to be in mathematical representation for systematic and
mathematical problem solving, metamodel inconsistencies are
problematic in both cases. Metalevel inconsistencies are not easy to
be captured with shallow knowledge about the relevant
metamodels but easy to confuse engineers. To achieve higher
quality systems in the end, these have to be handled effectively and
efficiently.

Within this study, model-based aPS engineering is focused
regarding the metamodels. Explicit metamodel inconsistencies are
investigated together with their potential causes. Based on the
motivation of the challenging and time-consuming task of
metamodelling, the analysis result leads to the necessity of core
metamodel to promote the effective and efficient model-based aPS
engineering with higher system quality. As a first step towards a
core metamodel, a set of classification criteria for aPS metamodels
is presented, which can serve as a basis to enable engineers to
assess existing metamodels for their engineering tasks.

Having various metamodels on aPS is inevitable due to its
broad range of disciplines and engineering activities. Containing all
information required for the different engineering tasks arising
throughout the entire development and life cycle of an aPS across
all involved disciplines would not be feasible. However, we

envision the possibility and benefits of having a common and
abstract metamodel defining the terminology of core concepts of
the domain to gain a common understanding of important concepts
and to avoid unnecessary inconsistency management cost.
Preliminarily, detailed analyses about existing metamodels should
be executed regarding various aspects, such as characteristics,
commonalities, distinctions and inconsistencies. Basically, the core
metamodel would enable generation of modelling language with
consistent concepts and terminologies. Furthermore, it could be
reformed in various forms depending on the objectives to optimally
support inter-model or inter-language consistency problems which
might happen during handling different models such as model
transformation or language unification. The metamodels grounded
by the core metamodel could be efficiently linked, mapped, or even
used to create new views by combining elements of existing ones
by means of current metamodel linking approaches such as the
introduced ones, namely TRAILS, Link models or VSUMM.

Another issue to be discussed in the further work is the
maintainability of the metamodel. Due to the longer lifecycle of the
aPS, the system itself, its corresponding model, and metamodel
face many chances to change under the MBSE scheme. It is
obvious that the model should reflect the system snapshot
whenever a change happens. As seen, the detailed metamodel
supports the engineering task to be more focused on the target and
the problem. In the view of maintenance, however, it is fragile to
the changes done on the system, i.e. changes are required to be
done on the metamodel when there is a change on the target
system. As an abstraction of the models, it is not always desirable
to change the metamodel (mostly not). Correlations between the
different aspects of the metamodel such as abstraction level and its
maintainability should be also researched. Furthermore, extending
or including additional aspects of the system view with regards to
the quality should be considered since system quality will be more

 
Criteria and categories Metamodels

Control software Industry 4.0 Enterprise
management

Intralogistics

CG4IEC
[53]

FM4IEC
[54]

SemAnz40
[55]

RC4PA
[56]

KAMP4aPS
[57]

IntraMAS
[58]

AutoMFM
[59]

(e) information classes (refines
c3) [55], this criterion gives the
type information of depicted
system entities

function X X
structure X X X X X X X
behaviour X X X

(f) discipline range [46]: in the
technical system point of view,
disciplines can be classified. In
addition, technical process itself is
another type of discipline to
control the technical system over
time

mechanical X X X X
electrical X X
software X X X X X X

(g) level of detail: the detail level depends on the
concerns and the model usage. Therefore, it is
hard to define absolute classification of the detail
level but the user of the model would recognise the
proper abstraction degree

more
detail

more
detail

abstract detail detail detail detail

(h) aPS type [41] types of aPS
can be separated in to these two
types based on

discrete N/A N/A N/A N/A N/A X X
continuous (Inc.
Batch)a

(i) specific application domain: the
applicability of the metamodel is
also an issue to the model user to
decide if it is suitable for his/her
concern

general aPS X X X X Δb

specific type of
aPS

intralogistics intralogistics

aBasic control is principally the same for batch and continuous processes since batch is a continuous system with infinitely state duration [68].
bSee Section 4.5.

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

53

emphasised than ever before due to the increasing vulnerabilities in
cyber-physical systems. A security issue, a cyber invasion as an
example, might affect the product quality. Thus, our further
research will also focus on whether a metamodel allows such an
unobserved (yet) aspect to be integrated with which level of effort
entailed.

8 Acknowledgment
This work was supported by the German Research Foundation
(DFG) under the Priority Programme SPP 1593: Design For Future
– Managed Software Evolution (grant number: VO937/29-1).

9 References
[1] Vogel-Heuser, B., Hess, D.: ‘Guest editorial industry 4.0-prerequisites and

visions’, IEEE Trans. Autom. Sci. Eng., 2016, 13, (2), pp. 411–413
[2] Vogel-Heuser, B., Fay, A., Schaefer, I., et al.: ‘Evolution of software in

automated production systems: challenges and research directions’, J. Syst.
Softw., 2015, 110, pp. 54–84

[3] McFarlane, D.C., Bussmann, S.: ‘Developments in holonic production
planning and control’, Prod. Plan. Control, 2000, 11, (6), pp. 522–536

[4] Durdik, Z., Klatt, B., Koziolek, H., et al.: ‘Sustainability guidelines for long-
living software systems’. IEEE Int. Conf. Software Maintenance, ICSM,
Trento, Italy, 2012, pp. 517–526

[5] Feldmann, S., Kernschmidt, K., Wimmer, M., et al.: ‘Managing inter-model
inconsistencies in model-based systems engineering: application in automated
production systems engineering’, J. Syst. Softw., 2019, 153, pp. 105–134

[6] Vogel-Heuser, B., Schuetz, D., Frank, T., et al.: ‘Model-driven engineering of
manufacturing automation software projects – A SysML-based approach’,
Mechatronics. (Oxf), 2014, 24, (7), pp. 883–897

[7] Witte, M.E., Diedrich, C., Figalist, H.: ‘Model-based development in
automation’, At-Automatisierungstechnik, 2018, 66, (5), pp. 360–371

[8] International Organization for Standardization (ISO): ‘ISO/IEC 42010:2011
systems and software engineering – architecture description’, 2011

[9] Object Management Group (OMG): ‘Object management group terms and
acronyms’. Available at https://www.omg.org/gettingstarted/
terms_and_acronyms.htm, accessed January 2020

[10] Stachowiak, H.: ‘Allgemeine modelltheorie’ (Springer-Verlag, Wien, 1973)
[11] Online Etymology Dictionary: ‘Meta-origin and meaning of prefix meta- by

online etymology dictionary’. Available at https://www.etymonline.com/
word/meta, accessed January 2020

[12] Object Management Group (OMG): ‘MDA guide rev.2.0’, 2014, (June), pp.
1–15

[13] Mellor, S.J., Scott, K., Uhl, A., et al.: ‘MDA distilled: principles of model-
driven architecture’, in ‘MDA distilled: principles of model-driven
architecture’ (Addison-Wesley Professional, Boston, USA., 2004), p. 14

[14] Clark, T., Sammut, P., Willans, J.: ‘Applied metamodelling: a foundation for
language driven development (3rd edn)’. ArXiv, 2015

[15] Object Management Group (OMG): ‘OMG unified modeling language –
version 2.5.1’, 2017

[16] Vyatkin, V.: ‘Software engineering in industrial automation: state-of-the-art
review’, IEEE Trans. Ind. Informat., 2013, 9, (3), pp. 1234–1249

[17] Fay, A., Vogel-Heuser, B., Frank, T., et al.: ‘Enhancing a model-based
engineering approach for distributed manufacturing automation systems with
characteristics and design patterns’, J. Syst. Softw., 2015, 101, pp. 221–235

[18] Shi, J., Wan, J., Yan, H., et al.: ‘A survey of cyber-physical systems’. 2011
Int. Conf. on Wireless Communications and Signal Processing, WCSP 2011,
Nanjing, China, 2011, pp. 1–6

[19] Reichwein, A., Paredis, C.: ‘Overview of architecture frameworks and
modeling languages for model-based systems engineering’. Proc. ASME
Design Engineering Technical Conf., Washington, DC, USA, 2011

[20] Pietrusewicz, K.: ‘Metamodelling for design of mechatronic and cyber-
physical systems’, Appl. Sci., 2019, 9, (3), p. 376

[21] Lazarova-Molnar, S., Mohamed, N., Al-Jaroodi, J.: ‘Data analytics framework
for industry 4.0: enabling collaboration for added benefits’, IET Collab. Intell.
Manuf., 2019, 1, (4), pp. 117–125

[22] Bonfè, M., Fantuzzi, C., Secchi, C.: ‘Design patterns for model-based
automation software design and implementation’, Control Eng. Pract., 2013,
21, (11), pp. 1608–1619

[23] Estévez, E., Marcos, M., Orive, D.: ‘Automatic generation of PLC automation
projects from component-based models’, Int. J. Adv. Manuf. Technol., 2007,
35, (5), pp. 527–540

[24] Yang, C., Vyatkin, V.: ‘Transformation of Simulink models to IEC 61499
function blocks for verification of distributed control systems’, Control Eng.
Pract., 2012, 20, (12), pp. 1259–1269

[25] Krause, J., Herrmann, A., Diedrich, C.: ‘Test case generation from formal
system specifications based on UML state machine’, Atp-International, 2008,
1, pp. 47–54

[26] Kormann, B., Tikhonov, D., Vogel-Heuser, B.: ‘Automated PLC software
testing using adapted UML sequence diagrams’. 14th IFAC Symp.
Information Control Problems in Manufacturing, Bucharest, Romania, 2012,
vol. 45, no. 6, pp. 1615–1621

[27] Hundt, L., Drath, R., Lüder, A., et al.: ‘Seamless automation engineering with
AutomationML®’. 2008 IEEE Int. Technology Management Conf. (ICE),
Lisbon, Portugal, 2008, pp. 1–8

[28] Berardinelli, L., Biffl, S., Lüder, A., et al.: ‘Cross-disciplinary engineering
with AutomationML and SysML’, At-Automatisierungstechnik, 2016, 64, (4),
pp. 253–269

[29] Derler, P., Lee, E.A., Sangiovanni-vincentelli, A.L.: ‘Addressing modeling
challenges in cyber-physical systems’, 2011

[30] Jensen, J.C., Chang, D.H., Lee, E.A.: ‘A model-based design methodology for
cyber-physical systems’. IWCMC 2011 – Seventh Int. Wireless
Communications and Mobile Computing Conf., Istanbul, Turkey, 2011, pp.
1666–1671

[31] Vogel-Heuser, B., Böhm, M., Brodbeck, F., et al.: ‘Interdisciplinary
engineering of cyber physical production systems: highlighting the benefits of
a combined interdisciplinary modelling approach on the basis of an industrial
case’, Des. Sci., 2020, 6, pp. 1–36

[32] Vogel-Heuser, B., Zou, M.: ‘Leveraging inconsistency management in the
multi-view collaborative modelling of cyber-physical production systems’,
IET Collab. Intell. Manuf., 2019, 1, (4), pp. 126–129

[33] Farias, K., De Oliveira, T.C., Gonçales, L.J., et al.: ‘UML2Merge: a UML
extension for model merging’, IET Softw.., 2019, 13, (6), pp. 575–586

[34] Wolfenstetter, T., Basirati, M.R., Böhm, M., et al.: ‘Introducing TRAILS: A
tool supporting traceability, integration and visualisation of engineering
knowledge for product service systems development’, J. Syst. Softw., 2018,
144, pp. 342–355

[35] Kramer, M.E., Burger, E., Langhammer, M.: ‘View-centric engineering with
synchronized heterogeneous models’. Proc. First Workshop on View-Based,
Aspect-Oriented and Orthographic Software Modelling, Montpellier France,
2013, pp. 5:1–5:6

[36] Egyed, A.: ‘Automatically detecting and tracking inconsistencies in software
design models’, IEEE Trans. Softw. Eng., 2011, 37, (2), pp. 188–203

[37] Hardebolle, C., Boulanger, F.: ‘Exploring multi-paradigm modeling
techniques’, Simulation, 2009, 85, (11–12), pp. 688–708

[38] International Electrotechnical Commission (IEC): ‘IEC 61512-1:1997 – batch
control – part 1: models and terminology’, 1997

[39] Verein Deutscher Ingenieure (VDI) e.V.: ‘VDI/VDE 2193 – sprache für I4.0-
komponenten – struktur von nachrichten (en: language for I4.0 components –
structure of messages)’, 2019

[40] Gîrbea, A., Nechifor, S., Sisak, F., et al.: ‘Design and implementation of an
OLE for process control unified architecture aggregating server for a group of
flexible manufacturing systems’, IET Softw.., 2011, 5, (4), pp. 406–414

[41] International Organization for Standardization (ISO): ‘IEC 62264-1:2013 –
enterprise-control system integration – part 1: models and terminology’, 2013

[42] International Electrotechnical Commission (IEC): ‘IEC TR 62390:2005 –
common automation device – profile guideline’, 2005

[43] Verein Deutscher Ingenieure (VDI) e.V.: ‘VDI/VDMA 5100 Blatt 1 –
Systemarchitektur für die intralogistik (SAIL) – grundlagen (en: system
architecture for intralogistics (SAIL) – fundamentals)’, 2016

[44] International Council on Systems Engineering (INCOSE): ‘Systems
engineering vision 2020’, 2007

[45] International Council on Systems Engineering (INCOSE): ‘System
engineering vision 2025’, 2014

[46] Vogel-Heuser, B., Diedrich, C., Fay, A., et al.: ‘Challenges for software
engineering in automation’, J. Softw. Eng. Appl., 2014, 07, pp. 440–451

[47] International Electrotechnical Commission (IEC): ‘IEC 60050-351:2013 –
International electrotechnical vocabulary (IEV) – part 351: control
technology’, 2013

[48] Vogel-Heuser, B.: ‘Automation in the wood and paper industry’, in Nof, S.Y.
(Ed.): ‘Springer handbook of automation’ (Springer Berlin Heidelberg,
Berlin, Germany, 2009), pp. 1015–1026

[49] International Electrotechnical Commission (IEC): ‘IEC 61131-3
programmable logic controllers – part 3: programming languages’, 2009

[50] Thramboulidis, K.: ‘The 3 + 1 SysML view-model in model integrated
mechatronics’, J. Softw. Eng. Appl., 2010, 03, (2), pp. 109–118

[51] Regulin, D., Schuetz, D., Aicher, T., et al.: ‘Model based design of knowledge
bases in multi agent systems for enabling automatic reconfiguration
capabilities of material flow modules’. 2016 IEEE Int. Conf. on Automation
Science and Engineering (CASE), Fort Worth, TX, USA., 2016, pp. 133–140

[52] Mayer, S.H.: ‘Development of a completely decentralized control system for
modular continuous conveyors’ (Universitätsverlag Karlsruhe, Karlsruhe,
2009)

[53] Witsch, D.: ‘Modellgetriebene entwicklung von steuerungssoftware auf basis
der UML unter berücksichtigung der domänenspezifischen anforderungen des
maschinen- und anlagenbaus (en: model-driven development of control
software based on UML considering domain-specific requirements of machine
and plant engineering)’ (Technische Universität München, Munich, Germany,
2013)

[54] Schlie, A., Rosiak, K., Urbaniak, O., et al.: ‘Analyzing variability in
automation software with the variability analysis toolkit’. Proc. 23rd Int.
Systems and Software Product Line Conf. – Volume B’, Paris France, 2019

[55] Hildebrandt, C., Scholz, A., Fay, A., et al.: ‘Semantic modeling for
collaboration and cooperation of systems in the production domain’, 2017
22nd IEEE Int. Conf. on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 2017, pp. 1–8

[56] Priego, R., Armentia, A., Estévez, E., et al.: ‘On applying MDE for
generating reconfigurable automation systems’. 2015 IEEE 13th Int. Conf. on
Industrial Informatics (INDIN), Cambridge, UK., 2015, pp. 1233–1238

[57] Heinrich, R., Koch, S., Cha, S., et al.: ‘Architecture-based change impact
analysis in cross-disciplinary automated production systems’, J. Syst. Softw.,
2018, 146, pp. 167–185

[58] Fischer, J., Marcos, M., Vogel-Heuser, B.: ‘Model-based development of a
multi-agent system for controlling material flow systems’, 2018, 66, p. 438

[59] Aicher, T., Regulin, D., Schuetz, D., et al.: ‘Increasing flexibility of modular
automated material flow systems: A meta model architecture’, IFAC-
PapersOnLine, 2016, 49, (12), pp. 1543–1548

54 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

https://www.omg.org/gettingstarted/terms_and_acronyms.htm
https://www.omg.org/gettingstarted/terms_and_acronyms.htm
https://www.etymonline.com/word/meta
https://www.etymonline.com/word/meta

[60] Legat, C., Mund, J., Campetelli, A., et al.: ‘Interface behavior modeling for
automatic verification of industrial automation systems’ functional
conformance’, At-Automatisierungstechnik, 2014, 62, (11), pp. 815–825

[61] International Electrotechnical Commission (IEC): ‘IEC 62769–5 field device
integration (FDI) – part 5: FDI information model’, 2015

[62] Kernschmidt, K., Feldmann, S., Vogel-Heuser, B.: ‘A model-based framework
for increasing the interdisciplinary design of mechatronic production
systems’, J. Eng. Des., 2018, 29, (11), pp. 617–643

[63] Ulewicz, S., Vogel-Heuser, B., Member, S.: ‘Industrially applicable system
regression test prioritization in production automation’, IEEE Trans. Autom.
Sci. Eng., 2018, 15, (4), pp. 1839–1851

[64] Leitão, P., Karnouskos, S., Ribeiro, L., et al.: ‘Smart agents in industrial
cyber–physical systems’, Proc. IEEE, 2016, 104, (5), pp. 1086–1101

[65] Straube, F., Pfohl, H.-C., Günthner, W.A., et al.: ‘Trends und strategien in der
logistik, ein blick auf die agenda des logistik-managements 2010’, 2005

[66] DIN: ‘DIN SPEC 91345: reference architecture model industrie 4.0
(RAMI4.0)’, 2016

[67] Verein Deutscher Ingenieure (VDI) e.V.: ‘VDI/VDE 3695: engineering of
industrial plants – evaluation and optimization – subject processes’, 2010

[68] Greeff, G., Ghoshal, R.: ‘Business process design models and concepts used
in operations systems’, in ‘Practical E-manufacturing and supply chain
management’ (Newnes, Boston, MA, USA, 2004), pp. 66–111

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 2, pp. 45-55
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

55

