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Abstract

This paper investigates both theoretically and using finite elements the elastoplastic field induced by a pres-

surized spherical cavity expanding dynamically in an infinite medium modelled using the Gurson-Tvergaard-

Needleman porous plasticity approach. The theoretical model, which assumes that the porosity is uniformly

distributed in the material and the cavitation fields are self-similar, incorporates artificial viscous stresses into

the original formulation of Cohen and Durban (2013b) to capture the shock waves that emerge at high cavitation

velocities. The finite element calculations, performed in ABAQUS/Explicit (2013) using the Arbitrary Lagrangian

Eulerian adaptive meshing available in the code, simulate the cavity expansion process in materials with uniform

and non-uniform distributions of porosity. The finite element results show that the distribution of porosity has

small influence on the cavitation velocity, as well as on the location of the shock wave, which are primarily deter-

mined by the cavity pressure and the average material properties. In contrast, it is shown that the intensity of

the shock wave, evaluated based on the maximum value of the plastic strain rate within the shock, depends on

the local material porosity. The ability of the theoretical model to reproduce the numerical results obtained for

the various distributions of porosity used in this work is exposed and discussed.
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1. Introduction

The work of Hopkins (1960) was among the first studies to investigate the problem of a spherical cavity

expanding dynamically in an elastoplastic medium. A few years later, the model of Hopkins (1960) was used

by Goodier (1965) to analyse the penetration of spherical projectiles into metal targets. While in recent years

alternative theoretical approaches to study the problem of a projectile penetrating a metallic target have been

developed (e.g. Yarin et al. (1995); Roisman et al. (1997); Rubin et al. (2016)), it is still widely accepted that

spherical cavitation models are very useful in understanding the mechanics of penetration (Cohen and Durban,
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2013a). An important reason for this is that, as stated by Durban and Masri (2004), spherical cavitation models

provide fairly simple, yet accurate, expressions for key parameters like the resisting force and penetration depth.

Thus, following the work of Goodier (1965), several authors have contributed over the last decades to the

research on dynamic spherical cavitation with application to high velocity penetration problems. For instance,

Forrestal et al. (1988) used cavity-expansion approximations to obtain closed-form penetration equations for

elastic-perfectly plastic targets (Forrestal and Luk, 1988). The authors obtained predictions for penetration

depths that were in reasonable agreement with experimental data obtained from tests in which maraging steel

rods with spherical, ogival, and conical noses were impacted onto 6061-T651 aluminum targets at velocities ranging

from 0.4 to 1.4 km/s. Shortly after, Forrestal et al. (1991), following the work of Luk et al. (1991), included the

strain hardening of the target material in their analytical model. As in their previous work, the theoretical

predictions were compared to experimental data obtained from high-velocity impact tests in which projectiles

with different geometries were used to penetrate 6061-T651 aluminum targets, and satisfactory agreement between

theory and experiments was obtained. In Forrestal et al. (1995), the authors compared their analytical models

for incompressible and compressible elastic-perfectly plastic constitutive idealizations to numerical simulations

performed by Hallquist (1990), McGlaun et al. (1990) and Chen (1995). The predictions of the analytical models,

obtained assuming different friction coefficients between projectile and target, were in good agreement with the

numerical results. Warren and Forrestal (1998) extended previous penetration models published by Forrestal et al.

(1988, 1991, 1995) by including the strain rate sensitivity in the constitutive model of the target material. The

theoretical results were compared with experiments previously published by the authors for 6061-T651 aluminum

targets, and the influence of material rate sensitivity in the depth of penetration was brought to light. Some

years later, Forrestal and Warren (2008) used the penetration model published in Forrestal et al. (1988, 1992)

to identify the range of penetration velocities for which target inertia plays a role in the penetration depth of

6061-T651 aluminum targets impacted by ogive-nose projectiles. In this respect, the recent work of Warren (2016)

showed that target inertia effects also depend on projectile geometry and nose shape, projectile density and target

material properties.

However, in the last fifteen years, the researchers who worked most actively in the development of analytical

penetration models based on dynamic spherical cavity expansion equations were Durban and co-workers (Durban

and Masri, 2004; Masri and Durban, 2005; Cohen et al., 2010; Cohen and Durban, 2013b). Namely, Durban and

Masri (2004) studied dynamic spherical cavitation fields in pressure sensitive elastoplastic materials modelled with

Drucker-Prager plasticity. The results presented by the authors revealed that the cavitation pressure increases

when the elastic compressibility decreases and the plastic compressibility increases. Masri and Durban (2005)

derived a power expansion solution for the problem of a spherical cavity expanding dynamically in a compressible

von Mises solid. Note that this analytical study covered only the case where the cavity expansion velocity was
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much smaller than the speed of sound in the solid. The authors considered both elastic/perfectly plastic response

and strain-hardening behaviour, and applied their analytical model to predict the penetration depths obtained in

the experiments of Forrestal et al. (1988, 1991). Good agreement between experiments and analytical predictions

was reported. Few years later, Cohen et al. (2010) found out that, for cavity expansion velocities greater than

those investigated by Masri and Durban (2005), plastic shock waves emerge in the material. The shocks, which

led to discontinuities in the field variables, were modelled imposing jump (Hugoniot) conditions regarding mass

and momentum conservation at the wave front. It was shown that the level of discontinuities induced by the

shock increases with the cavitation velocity. The work of Cohen et al. (2010) was continued by Cohen and Durban

(2013b) who investigated hypervelocity spherical cavitation fields in porous elastoplastic solids described with the

Gurson model. Cohen and Durban (2013b) showed that material porosity favours the development of shock waves.

The authors also showed that in the spherical cavity expansion problem, for a given cavity expansion velocity, the

level of discontinuities induced by the shock increases with the material porosity.

A key hypothesis in the analytical works of Durban and co-workers (Durban and Masri, 2004; Masri and

Durban, 2005; Cohen et al., 2010; Cohen and Durban, 2013b) is the self-similarity of the cavitation fields. This

hypothesis was verified by Rodríguez-Martínez et al. (2014) with finite element simulations performed using

ABAQUS/Explicit (2013) for elastoplastic materials modelled with von Mises plasticity and different strain hard-

ening behaviours. The numerical simulations of Rodríguez-Martínez et al. (2014) also showed that shock waves

emerge at high cavitation velocities, in agreement with the analytical predictions of Cohen et al. (2010). However,

unlike in the theoretical model, the shock wave in the finite element calculations did not entail a finite jump in

field variables. The authors noticed that, due to the artificial viscosity included by ABAQUS/Explicit (2013),

the shock wave in the finite element calculations was described as a thin band of steep gradients of stress, strain,

density, velocity and increased strain rates.

Motivated by these results, in the present paper we incorporate artificial viscous stresses into the theoretical

model of Cohen and Durban (2013b) to capture the shock waves that emerge at high cavitation velocities in

porous elastoplastic materials modelled using Gurson plasticity. Our approach, which is based on the works of

Wilkins (1980) and Lew et al. (2001), leads to smooth solutions of the set of differential equations which govern

the problem, so that it is not necessary to use the Hugoniot conditions for the calculation of the shock. The results

obtained from our theoretical model are validated with finite element simulations performed in ABAQUS/Explicit

(2013). A good agreement between theoretical and numerical predictions is obtained in terms of cavitation

velocity, stress and density fields, and shock wave location. The finite element calculations also show that the

steady-state expansion of the cavity is reached in few microseconds (for the highest cavitation velocity considered),

thus verifying the assumption of steady cavitation fields used in the theoretical model. In addition to the finite

element simulations used to validate the theoretical model (which assumes that the initial porosity is uniformly
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distributed in the material), we have performed numerical calculations with non-uniform distributions of initial

porosity that aim at idealizing the micro-structure of metallic materials with inclusions and second-phase particles

randomly distributed in the bulk (Ohno and Hutchinson, 1984; Becker, 1987; Huang, 1993; Bilger et al., 2007).

These numerical calculations show that the distribution of porosity has small influence on the cavitation velocity,

as well as on the location of the shock wave, which are primarily determined by the average material properties.

In contrast, it is shown that the intensity of the shock wave strongly depends on the local porosity at the shock

location.

2. Constitutive framework

The mechanical behaviour of the material is described using the Gurson-Tvergaard-Needleman (GTN) consti-

tutive model (Gurson, 1977; Tvergaard, 1981, 1982) pre-implemented in ABAQUS/Explicit (2013). For the sake

of clarity, the main features of the model are briefly presented in this section.

The flow potential has the form:

Φ =
(
σe
σy

)2

+ 2q1f cosh
(

3q2σh
2σy

)
− 1− (q1f)2 (1)

where q1 and q2 are material parameters, and f is the void volume fraction. The effective von Mises stress,

σe, and the hydrostatic pressure, σh, are defined by:

σe =
√

3
2s : s; σh = 1

3σ : 1; s = σ − σh1 (2)

where σ is the macroscopic Cauchy stress tensor, s is its deviatoric part, and 1 is the unit second order tensor.

Moreover, σy is the flow strength of the fully dense matrix material described by the following power-type

relation:

σy = σ0

(
1 + ε̄p

ε0

)n
(3)

being ε̄p =
∫ t

0 ˙̄εp (τ) dτ the effective plastic strain, where ˙̄εp is the effective plastic strain rate (see equation (8)).

Moreover, σ0 is the initial yield stress of the matrix material, n is the strain hardening parameter, and ε0 is the

reference strain. For the sake of simplicity, we have not considered the temperature and strain rate dependences

of the flow strength of the matrix material. This, in turn, facilitates to derive a theoretical model for the spherical

cavity expansion problem studied in this work, see Appendix A.
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The rate of deformation tensor is taken to be the sum of an elastic part, de, and a plastic part, dp, as follows:

d = de + dp (4)

where the elastic part is related to the rate of the stress by the following hypo-elastic law:

O
σ = C : de = C : (d− dp) (5)

with O
σ being the objective stress rate (it corresponds to the Green-Naghdi derivative in ABAQUS/Explicit

(2013)) and C being the tensor of isotropic elastic moduli given by:

C = E

1 + ν
I
′ + E

3(1− 2ν)1⊗ 1 (6)

where E is the Young’s modulus, ν is the Poisson’s ratio and I ′ is the unit deviatoric fourth order tensor.

The plastic part of the rate of deformation tensor follows the direction normal to the flow potential:

dp = λ̇
∂Φ

∂σ
(7)

where λ̇ is the non-negative plastic flow proportionality factor.

The plastic part of the rate of deformation tensor and the effective plastic strain rate in the matrix material

are related by enforcing equality between the rates of macroscopic and matrix plastic work:

σ : dp = (1− f)σy ˙̄εp (8)

Moreover, assuming the incompressibility of the matrix material, the evolution of the void volume fraction is

defined as:

ḟ = (1− f) dp : 1 (9)

Note that void nucleation is not considered in the present analysis. Hence, if the initial void volume fraction
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Symbol Property and units Value
ρ0 Initial density (kg/m3) 7600
E Young’s modulus (GPa), Eq. (6) 70
ν Poisson’s ratio, Eq. (6) 0.3
q1 Material parameter, Eq. (1) 1.25
q2 Material parameter, Eq. (1) 1.0
σ0 Reference yield stress (MPa), Eq. (3) 300
n Strain hardening exponent, Eq. (3) 0.1
ε0 Reference strain, Eq. (3) 0.00429
f0 Average value of initial VVF 0.001, 0.01, 0.1

Table 1: Material parameters used in the finite element calculations (Srivastava et al., 2014; N’souglo and Rodríguez-Martínez, 2018).
VVF stands for void volume fraction (porosity).

is zero, the macroscopic material is fully dense and follows von Mises plasticity.

The flow strength of the matrix material, Eq. (3), has been used along with the GTN model pre-implemented

in ABAQUS/Explicit through a user-defined subroutine VUHARD (ABAQUS/Explicit, 2013). The material

parameters related to the elastic law, Eqs. (5)-(6), the flow potential, Eq. (1), and the flow strength of the matrix

material, Eq. (3), taken from Srivastava et al. (2014) and N’souglo and Rodríguez-Martínez (2018), are given in

Table 1. Note that the average initial void volume fraction, from now indistinctly referred to as porosity, is the

average value of initial porosity over the whole sample, see section 3.1 for details.

3. Finite element model

This section describes the features of the axisymmetric finite element model developed in ABAQUS/Explicit

(2013) to simulate the dynamic, spherical, cavity-expansion problem. The model is identical to the one used

by Rodríguez-Martínez et al. (2014), that was based on the previous work of Rosenberg and Dekel (2008). The

specimen is a sphere of very large radius Rs = 300 mm which has a small cavity of radius Rc = 0.5 mm in its

center. Due to the symmetry of the model, only the θ ≥ 0 half of the specimen has been analyzed (see Fig. 1).

The sample is initially at rest and undeformed, while a constant internal pressure p is applied at the cavity wall.

The dimensions (radii) of the sphere and the cavity do not influence the simulation results. We have checked that,

for all the numerical simulations, the stress waves generated by the application of the cavity pressure reach the

free boundary of the sphere after the steady cavitation field has developed.

The model has been meshed with 240, 000 four-node axisymmetric reduced integration elements, CAX4R in

ABAQUS notation. The mesh shows radial symmetry, in order to retain the symmetry of the problem, with 200

elements along the circumferential direction and 1200 along the radial direction. The elements size is constant

along the circumferential direction whereas it decreases along the radial direction as the cavity is approached.
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Namely, the elements show a bias ratio of 100 along the radial direction. The dimensions of the elements located

near the cavity are 12 µm × 4 µm. Small elements are needed to capture the large gradients of stress and strain

which arise in this region of the specimen. Moreover, these large gradients of stress and strain lead to severe

mesh distortion. In order to reduce this problem, the Arbitrary Lagrangian Eulerian (ALE) adaptive meshing

available in ABAQUS/Explicit (2013) has been applied to the entire model. ALE adaptive meshing uses a single

mesh definition that is gradually smoothed within analysis steps. The frequency of adaptive meshing is set to 1

and the remeshing sweeps per increment are set to 10. As reported by Rodríguez-Martínez et al. (2014), these

values of the controlling parameters of the adaptive meshing ensure a proper aspect ratio of the elements during

the simulations.

Note that ABAQUS/Explicit (2013) introduces artificial damping in the calculations in order to attenuate

the numerical solution and ensure stability, see Aranda-Iglesias et al. (2017). The code generates bulk viscosity

pressures, which are linear and quadratic, respectively, in the volumetric strain rate. This artificial viscosity is

controlled by two parameters $ (linear viscosity) and χ (quadratic viscosity). Unless otherwise noted, in the

calculations shown in section 5, we have used the default values of the code 0.06 and 1.2, respectively. Only in

few calculations, with large initial porosity and applied pressure, we have increased the value of $, see section 5.

Figure 1: Axisymmetric finite element model used to analyse dynamic spherical cavity expansion. This figure is adapted from
Rodríguez-Martínez et al. (2014).
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3.1. Porosity distribution

The porosity in the GTN model idealizes the void nucleating particles that can be found in many metallic

materials. These particles are considered sources of damage and preferential sites for the nucleation of cracks.

There are many numerical works in the literature, investigating a wide variety of engineering problems, in which

the initial porosity is considered uniformly distributed in the material (e.g. Zhang (1996), Vadillo et al. (2008)).

However, for some materials, the void nucleating particles may be non-uniformly distributed in the bulk (e.g.

Ohno and Hutchinson (1984), Becker (1987), Huang (1993), Bilger et al. (2007)). Accordingly, in this work we

perform numerical simulations with specimens with uniform and non-uniform distributions of initial porosity.

Three different average values of initial void volume fraction f0 are used in the calculations reported in section 5,

namely 0.001, 0.01 and 0.1 (see Table 1).

The specimens with uniform distribution of porosity are modelled assigning the same value of f0 to all the

nodes of the mesh. The specimens with non-uniform distribution of porosity are modelled using the methodology

developed by N’souglo and Rodríguez-Martínez (2018). Namely, the average value of the initial porosity in the

sample f0 is obtained assigning finite (positive) values of initial porosity only to some nodes (and zero to the

others). The percentage of nodes, over the total number of nodes in the sample, that do have initial porosity is

denoted as F . Three values of F have been investigated in the simulations: 10%, 25% and 40%. The specific nodes

with positive initial porosity are selected randomly using the function randperm of MATLAB. Each of these nodes

has allotted a random value of initial porosity that was generated using the normal distribution function normrnd

of MATLAB. The mean and the standard deviation of this normal distribution are µ = f0/F and σ = µCv,

respectively. The relative standard deviation, Cv, determines the maximum dispersion of the generated random

values of porosity. Three different values of Cv have been used in the numerical simulations presented in section 5,

namely 5%, 15% and 25%. Moreover, note that, for any given combination of F , Cv and f0, we could generate an

infinite number of random porosity distributions: different nodes with positive initial porosity and different values

of porosity for each one. Nevertheless, in the finite element simulations reported in section 5 we have used only

one random non-uniform distribution of porosity. It is out of the scope of this paper to assess the specific effect

that the randomness of the non-uniform porosity distribution has on the finite element results. Note that, due

to the axisymmetry of the finite element model, the non-uniform porosity distributions are 2D microstructural

idealizations (Tvergaard and Needleman, 1992, 2006). Describing more realistic microstructures require a fully

3D analysis, which is out of the scope of this paper.

4. Main features of the theoretical model

In this section we summarize the main features of the theoretical model developed to investigate dynamic

spherical cavitation fields in Gurson materials. The complete formulation can be found in Appendix A. The



9

model used in this paper shows two differences with respect to the formulation reported in the seminal work of

Cohen and Durban (2013b): (1) it includes the parameters q1 and q2 in the flow potential of the constitutive

model, and (2) it uses the artificial viscosity approach to capture the formation of plastic shocks at high cavitation

velocities. Note that solutions of rate-independent nonlinear differential equations commonly exhibit first-order

discontinuities associated with shock wave propagation. Due to unbounded derivatives, this singular behaviour

causes difficulties in the numerical integration of the corresponding differential equations using typical numerical

schemes such as the Runge-Kutta methods. While Cohen et al. (2010) and Cohen and Durban (2013b) solved this

problem imposing jump (Hugoniot) conditions regarding mass and momentum conservation at the wave front,

in this paper (as previously mentioned) we use the artificial viscosity approach developed, for instance, by von

Neumann and Richtmyer (1950); Landshoff (1955); Wilkins (1980) and Lew et al. (2001). This approach, which

stands out for its simplicity, leads to smooth solutions of the set of differential equations which govern the problem,

facilitating the integration process. Recall that the outputs of this theoretical model, which considers a uniform

distribution of porosity in the specimen, will be compared in section 5 with the results obtained from the finite

element model presented in section 3, in which uniform and non-uniform distributions of porosity are considered.

Following Cohen and Durban (2013b), the problem is modelled as a pressurized spherical cavity of instan-

taneous radius a expanding under self-similar, steady-state conditions in an infinite medium, see Fig. 2. Let

(r, θ, φ) stand for the Eulerian coordinates of a material point with reference to a spherical system with the origin

located at the center of the cavity denoted by O in Fig. 2. It is assumed that the only independent variable is

the nondimensional radial coordinate ξ = r/a. In the formulation used in this paper, see Appendix A, equations

(A.8), (A.9), (A.16), (A.27) and (A.29) provide a system of five differential equations with derivatives of five

unknowns: dimensionless radial velocity (v), dimensionless radial elastoplastic stress (Σrr), dimensionless circum-

ferential elastoplastic stress (Σθθ), dimensionless yield stress (Σy) and dimensionless radial viscous stress (Σv
rr).

Moreover, porosity (f), density (ρ) and dimensionless circumferential viscous stress (Σv
θθ) are calculated from the

algebraic relations (A.15), (A.21) and (A.28).

Integration is performed over the independent variable ξ, from the the elastic wave front ξw up to the cavity

wall ξ = 1, see Fig. 2. The following boundary conditions have been used for the cavity wall:

v = 1, Σrr = −P

and for the elastic wave front:

v = 0, Σrr = Σθθ = 0
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Figure 2: Illustration of the steady cavity expansion field in a porous medium. The dimensionless internal pressure P = p/E is applied
at the cavity wall where the dimensionless radial coordinate ξ = r/a = 1. The remote region, at ξ > ξw, is a strain and stress-free
undisturbed zone with f = f0 and ρ = ρ0, while behind the elastic wave front, at ξ = ξw, an elastic range develops. The transition
between the elastic and elastoplastic regions is denoted by ξi, and the location of the plastic shock wave by ξp (a plastic shock wave
emerges at high cavitation velocities). This figure is adapted from Durban and Masri (2004).

where P = p/E is the dimensionless applied pressure. The compatibility of the field variables at the interface

between the elastic zone and the elastoplastic zone (ξ = ξi in Fig. 2) has been enforced using the closed-form

elastic solution developed by Durban and Masri (2004). As in Cohen et al. (2010) and Cohen and Durban

(2013b), the shooting method is used to determine the unknown coefficient that arises from the elastic solution.

The reader is referred to the seminal works of Durban and Masri (2004), Masri and Durban (2005), Cohen et al.

(2010) and Cohen and Durban (2013b) to obtain further details on the derivation and numerical integration of

this theoretical model (with the exception of the artificial viscosity approach to capture the shocks, which is an

original contribution of this paper).

5. Results

This section of the paper is split into two parts. In subsection 5.1 we compare theoretical and numerical results

for the case in which the porosity is uniformly distributed in the finite element model, which allows to validate the

theoretical model in terms of cavitation velocity, stress and density fields, etc. In subsection 5.2 the comparison

is carried out for the case in which the porosity is non-uniformly distributed in the finite element model. The

goal is to assess the capability of the theoretical model to predict cavitation fields in metallic materials with a

microstructure characterized by the random distribution of void nucleating particles (Tvergaard and Needleman,
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2006; Srivastava et al., 2014, 2017). As mentioned before, such microstructure is idealized here, using a 2D

approach, as initial material porosity (N’souglo and Rodríguez-Martínez, 2018).

5.1. Uniform initial distribution of porosity

Fig. 3 shows the variation in dimensionless applied pressure P with dimensionless cavitation velocity m, see

equation (A.25), for three different values of the initial porosity f0: 0.001, 0.01 and 0.1. The theoretical and

finite element results are compared within a wide range of cavitation velocities 0.04 ≤ m ≤ 0.35. The agreement

between both approaches is excellent, demonstrating the potential of the theoretical model to determine the P−m

relation. For the three values of f0 investigated, the cavitation velocity increases with the applied pressure, the

P −m curve featuring a concave-upward shape, as in Cohen and Durban (2013b). While the difference between

the results obtained for f0 = 0.001 and f0 = 0.01 can hardly be noticed, the P −m curve obtained for f0 = 0.1

shows that, for any given applied pressure within the range of values of P explored, the cavitation velocity is

greater as the initial porosity increases. The finite element calculations for f0 = 0.1 and m > 0.2 were performed

using a linear viscosity parameter $ = 0.6 greater than the default value of ABAQUS/Explicit (2013). This was

necessary so that the code could complete the calculations, despite the large gradients of stress, strain and strain

rate that develop in these computations. The numerical simulations predict that for m = 0.04 the time required

to reach the steady-state expansion of the cavity is ≈ 30 − 35 µs, whereas for m = 0.35 is ≈ 2 − 3 µs, for the

three initial porosities investigated. Loading times of the same order of magnitude were reported by Rodríguez-

Martínez et al. (2014) for von Mises materials with different strain hardening behaviours. Note that for values of

m greater than 0.35, for the largest value of initial porosity considered f0 = 0.1, despite of the artificial damping

and the Arbitrary Lagrangian Eulerian adaptive meshing used in the finite element simulations, excessive element

distortion was found in some calculations at the cavity wall and within the shock wave. Therefore, we selected

m = 0.35 as the upper bound for the cavitation velocities investigated.

Fig. 4 shows the dimensionless von Mises flow stress Σe (also referred to as effective von Mises stress in section

2 and Appendix A), see equations (A.11)-(A.12), versus the dimensionless radial coordinate ξ for calculations

conducted with three different values of initial porosity, f0 = 0.001, 0.01 and 0.1, and two different cavitation

velocities, m = 0.04 and 0.35. These are the smallest and greatest cavitation velocities investigated. Theoretical

and finite element results are compared. Note that the flow stress results correspond to the elastoplastic material

response, i.e. they are the solution of the constitutive problem, see Appendix A. In each of the six plots of

Fig. 4 we present finite element results for three different loading times for which the steady-state cavitation

has been reached: 40 µs, 50 µs and 60 µs if the cavitation velocity is m = 0.04, and 10 µs, 20 µs and 30 µs if

m = 0.35. In all cases the agreement between theoretical and finite element results is good, which shows that the

theoretical model, in conjunction with the artificial viscosity approach, captures the stress fields that develop in

the specimen. Note that the finite element results obtained for different loading times virtually lie on top of each
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Figure 3: Variation in dimensionless applied pressure P with dimensionless cavitation velocity m for three different values of the initial
porosity f0: 0.001, 0.01 and 0.1. The theoretical and finite element results are compared. The distribution of initial porosity in the
finite element model is uniform.

other, confirming the self-similarity of the cavitation field, as it is assumed in the theoretical model, see section

4. Meaningful differences are only found for the greatest porosity and cavitation velocity analysed, as will be

discussed later on. Note that there is an elastic wave –with the front located at ξw (elastic precursor)– induced

by the application of the velocity/pressure boundary conditions which compresses the material up to the initial

elastic limit which is located at ξi. This elastic wave is followed by a plastic wave that compresses further the

material (Czarnota et al., 2017). As the cavitation velocity increases, the elastoplastic interface becomes closer

to the elastic precursor, see Cohen and Durban (2015). Furthermore, it is worth mentioning that, as it has been

discussed by Cohen et al. (2010), no jump (shock) conditions are expected in the primary field variables at the

elastic precursor. Accordingly, we have not observed an elastic shock in the calculations performed in this work, for

the range of cavitation velocities investigated, and the material behavior considered. Next, we carry out specific

analyses of the 6 plots presented in Fig. 4.

Figs. 4(a)-(b) show results for f0 = 0.001 –the lowest porosity considered– and the two cavitation velocities

investigated. For m = 0.04, which corresponds to Fig. 4(a), the Σe − ξ curve shows a kink for ξ ≈ 4.77 that

defines the interface between the elastic zone (on the right) and the elastoplastic zone (on the left). Recall that

in section 4 this interface was denoted by ξi. The Σe − ξ curve, both to the right and to the left of the kink,

features a concave-upward shape. As expected, the flow stress decreases as we move away from the cavity wall

(which corresponds to ξ = 1). The values of Σe for ξ = 1 and ξi are ≈ 0.0086 and ≈ 0.0043, respectively. Note

that, according to the asymptotic analysis developed by Durban and Masri (2004), Σe should be unbounded at

the cavity wall. However, this is not the case for the calculations performed in this work. It seems that, due to
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the discretization and the numerical solution of the problem, the flow stress has a finite value at the cavity wall.

We have checked that the specific value of Σe for ξ = 1 depends on the tolerance of the shooting method in the

theoretical model, and the size of the elements at the cavity wall in the finite element simulations. Moreover, for

ξ & 15 the value of Σe is below 10−5. This radial coordinate defines the elastic wave front. For m = 0.35, which

corresponds to Fig. 4(b), the Σe − ξ curve shows a bump, a brief speed-up in the decrease of Σe followed by a

short plateau, which is located just before the elastic / elastoplastic interface ξi ≈ 2.51. Note that the location of

the elastic / elastoplastic interface depends on the cavitation velocity (see Fig. 7). The bump, which is zoomed

in the upper right part of the plot, indicates the region of the specimen in which the porosity turns from zero

for ξ < 2.19 to f0 for ξ > ξi. Both to the left of the bump and to the right of ξi, the Σe − ξ curve features a

concave-upward shape. The value of Σe at the cavity wall is ≈ 0.0087, similar to the case of m = 0.04. Note also

that the value of Σe is below 10−5 for ξ & 3.32. This radial coordinate defines the elastic wave front.

Figs. 4(c)-(d) show results for the initial porosity f0 = 0.01, and the cavitation velocities m = 0.04 and

m = 0.35. For m = 0.04, which corresponds to Fig. 4(c), the Σe − ξ curve is similar to the one obtained for

the smaller porosity f0 = 0.001. There is a kink, located at the radial coordinate ≈ 4.67, which corresponds to

the elastic / elastoplastic interface ξi. The branches of the Σe − ξ curve on both sides of the kink also feature a

concave-upward shape. In addition, Σe ≈ 0.0086 for ξ = 1, as in the case of f0 = 0.001. For m = 0.35, which

corresponds to Fig. 4(d), the bump shown for f0 = 0.001 has turned into a sudden drop of Σe –which partially

bounces back immediately after– followed by a short plateau. While the end of the plateau, as mentioned before,

corresponds to the elastic / elastoplastic interface ξi = 2.36, the sudden drop of Σe indicates the emergence of a

shock wave ξp ≈ 2.20, as discussed by Cohen and Durban (2013b). Both in the theoretical model and the finite

element simulations, the change in the effective stress induced by the shock, while abrupt, is not a discontinuity,

i.e. the shock has a finite width due to the artificial viscosity used in both approaches, see sections 3, 4 and

Appendix A. In fact, the drop of Σe is less abrupt, i.e. the width of the shock wave is greater, in the finite

element simulations than in the theoretical model (see the zoom in the upper right part of the figure). We have

checked that, in all the finite element simulations, the element size is smaller than the width of the shock, i.e.

there are at least two elements within the shock. The fact that the effective stress is non-monotonic in the shock

region (it drops and partially bounces back immediately after) occurs due to the porosity of the material and

the small strain hardening considered, see Table 1. We have checked that this effect is reduced increasing the

strain hardening, and seems to vanish if the initial porosity is zero (fully dense material). The material does not

unload in the shock wave, we have checked in the finite element simulations that the plastic strain in the material

increases monotonically with time. Moreover, we have also checked in our calculations that both circumferential

and radial stresses decrease monotonically with ξ. Nevertheless, these results are not shown in this paper for the

sake of brevity.
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Figs. 4(e)-(f) show results for m = 0.04 and m = 0.35, and the greatest initial porosity investigated f0 = 0.1.

For m = 0.04, the kink of the Σe − ξ curve, in comparison with the cases f0 = 0.001 and f0 = 0.01, is shifted

leftwards ξi = 3.90 (see Fig. 7). To the right of the kink, the Σe − ξ curve features a concave-upward shape, as

for the smaller initial porosities considered. However, as we move to the left of the kink, the Σe − ξ curve first

shows a sort of plateau and after a rapid increase in Σe. In fact, near the cavity, the gradients of flow stress are

greater than for f0 = 0.001 and f0 = 0.01. For m = 0.35, which corresponds to Fig. 4(f), the abrupt change in

Σe that indicates the emergence of a shock is more pronounced than for f0 = 0.01, see Fig. 4(d). The flow stress

drops from ≈ 0.0065 to ≈ 0.0023 for ξp ≈ 1.70, immediately bounces back until ≈ 0.0033, and then increases

moderately until reaching a peak which corresponds to the elastic / elastoplastic interface ξi ≈ 1.81. Recall

that the finite element calculation reported in Fig. 4(f) has been performed using a value of the linear viscosity

parameter $ = 0.6 greater than the default value of ABAQUS/Explicit (2013), see section 3. It was necessary to

increase the viscosity so that the code could complete the calculation. Moreover, note that the values of ξp and ξi
are smaller as the cavitation velocity and the material porosity increase, as it will be discussed later on.

Fig. 5 shows, for the theoretical model, the elastoplastic flow stress Σe (denoted simply as flow stress in Figs.

4 and 9), the viscous flow stress Σv and the total flow stress Σ̄ = Σe+Σv, see equations (A.22) and (A.29), versus

the dimensionless radial coordinate ξ for m = 0.35 and f0 = 0.01 (as Fig. 4(d)). The Σe − ξ and Σ̄ − ξ curves

are very similar. The ratio Σv/Σe is ≈ 3 % at the cavity wall and decreases with ξ until the shock wave location is

reached. The emergence of the shock leads to a sharp increase of Σv that leads to a peak of Σ̄. For values of the

radial coordinate greater than ξp the value of Σv drops rapidly and the ratio Σv/Σe becomes smaller than 1 %.

Fig. 6 shows the dimensionless material density ρ/ρ0, see equation (A.21), versus the dimensionless radial

coordinate ξ for the same initial porosities and cavitation velocities that were reported in Fig. 4. The results of the

theoretical model and the numerical simulations are compared, and satisfactory agreement is found between both

approaches. Meaningful differences are only found for the greatest porosity and cavitation velocity investigated,

as it will be discussed later on. For the lowest porosity considered f0 = 0.001, Figs. 6(a)-(b), the density decreases

smoothly as we move away from the cavity wall, for both cavitation velocities investigated. The theoretical model

predicts that, at the cavity wall, ρ/ρ0 ≈ 1.02 for m = 0.04, and ≈ 1.18 for m = 0.35. Slightly greater values are

predicted by the finite element model. Note that, according to the asymptotic analysis developed by Durban and

Masri (2004), the hydrostatic stress should be unbounded at the cavity wall, and consequently the density should

drop to zero. However, this is not the case for the calculations performed in this work, most likely, due to the

discretization and numerical solution of the problem (as mentioned before). We have checked that the specific

value of the density for ξ = 1 depends on the tolerance of the shooting method in the theoretical model, and
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Figure 4: Dimensionless flow stress Σe versus dimensionless radial coordinate ξ. Comparison between the theoretical model and
finite element results obtained for different loading times. Three different values of the initial porosity f0 and two different cavitation
velocities m are considered: (a) f0 = 0.001 and m = 0.04, (b) f0 = 0.001 and m = 0.35, (c) f0 = 0.01 and m = 0.04, (d) f0 = 0.01
and m = 0.35, (e) f0 = 0.1 and m = 0.04, (f) f0 = 0.1 and m = 0.35. The distribution of initial porosity in the finite element model is
uniform.

the size of the elements at the cavity wall in the finite element simulations. For the intermediate initial porosity

f0 = 0.01, and the cavitation velocity m = 0.04, the ratio ρ/ρ0 reaches ≈ 1.03 for ξ = 1, and it decreases smoothly
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Σv and total flow stress Σ̄ = Σe + Σv versus dimensionless radial coordinate ξ. The cavitation velocity is m = 0.35 and the initial
porosity is f0 = 0.01.

as we move away from the cavity wall, see Fig. 6(c). However, for the same initial porosity and higher cavitation

velocity m = 0.35, the ratio ρ/ρ0 shows an abrupt drop which corresponds to the shock wave. Note that the drop

of ρ/ρ0 in Fig. 6(d) and the drop of Σe in Fig. 4(d) occur for the same value of the radial coordinate. Moreover,

the zoom in the upper right part of Fig. 6(d) shows that the drop in density while abrupt, is not a discontinuity.

As mentioned before, this is due to the artificial viscosity included in the theoretical model and the finite element

simulations. The results for the greater initial porosity investigated are shown in Figs. 6(e)-(f). For the cavitation

velocity m = 0.04 the density decreases smoothly with the radial coordinate. However, for m = 0.35, the ratio

ρ/ρ0 drops from 1.185 to 1.007 for a value of the radial coordinate ≈ 1.70 due to the emergence of a shock wave

(i.e. ξp ≈ 1.70), as discussed in Fig. 4(f). Moreover, note that the finite element results for different times do not

lie on top of each other. For ξ < ξp, the numerical results for 10 µs are above the numerical results for 20 µs and

30 µs and these, in turn, are slightly above the theoretical results. Recall that in this finite element simulation we

increased the value of the linear viscosity parameter $ from 0.06 to 0.6.

Fig. 7 shows the variation in the locations of the elastic / elastoplastic interface ξi and the shock wave ξp with

the dimensionless cavitation velocity m for two different values of the initial porosity, f0 = 0.01 and f0 = 0.1.

The theoretical and finite element results are compared, and very good agreement is found between the results

obtained with both approaches. The results for f0 = 0.001 are not shown because no shocks were found for this

level of porosity for the range of cavitation velocities analysed in this paper. In fact, we have checked that for

f0 = 0.001 shocks emerge for values of m greater than ≈ 0.43. On the other hand, for 0.01 and 0.1 the minimum

values of m for which shock waves appear are 0.26 and 0.14, respectively. The location of the shock wave is taken,
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Figure 6: Dimensionless material density ρ/ρ0 versus dimensionless radial coordinate ξ. Comparison between the theoretical model and
finite element results obtained for different loading times. Three different values of the initial porosity f0 and two different cavitation
velocities m are considered: (a) f0 = 0.001 and m = 0.04, (b) f0 = 0.001 and m = 0.35, (c) f0 = 0.01 and m = 0.04, (d) f0 = 0.01
and m = 0.35, (e) f0 = 0.1 and m = 0.04, (f) f0 = 0.1 and m = 0.35. The distribution of initial porosity in the finite element model is
uniform.
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both in the theoretical model and the finite element simulations, as the radial coordinate for which v′ 6 −1.4,

where v′ = dv/dξ, see equation (A.1). On the other hand, the location of the elastic / elastoplastic interface is taken

as the minimum radial coordinate for which the plastic strains are zero. Note that ξi and ξp decrease with m for

both values of f0 considered, i.e. the elastic / elastoplastic interface and the shock wave are closer to the cavity

wall as the cavitation velocity (i.e. the applied pressure) increases. Note also that, for a given initial porosity, the

values of ξi and ξp get closer to each other as m increases. This observation agrees with the theoretical results

reported by Cohen et al. (2010) who claimed that increasing m will eventually lead to ξi = ξp. In addition to

favouring the emergence of shocks at lower cavitation velocities, the increase in porosity also brings closer to the

cavity wall the elastic / elastoplastic interface and the shock wave. Note that the ξi −m and ξp −m curves for

f0 = 0.1 are below the curves for f0 = 0.01, being the gap between curves of different porosities rather constant

for the whole range of cavitation velocities considered. Recall that for the initial porosity f0 = 0.1, the finite

element calculations for m > 0.2 are performed using the increased linear viscosity parameter $ = 0.6.
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Figure 7: Variation in the locations of elastic / elastoplastic interface ξi and shock wave ξp with dimensionless cavitation velocity m
for two different values of the initial porosity, f0 = 0.01 and f0 = 0.1. The theoretical and finite element results are compared. The
distribution of porosity in the finite element calculations is uniform.

To be noted that the results presented in Figs. 4, 6 and Fig. 7 confirm the theoretical predictions of Cohen

and Durban (2013b): shock waves emerge in dynamic spherical cavitation fields in Gurson materials, and their

intensity increases with the cavitation velocity and the initial material porosity. These theoretical predictions are
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validated in this paper using finite element simulations. On the other hand, it has to be noted that Cohen and

Durban (2015) showed that for planar shocks, except for small porosities (f0 < 0.001), the porosity delays the

appearance of plastic shock waves. Therefore, it becomes apparent that the influence of material porosity on the

emergence of shock waves depends on the specific problem addressed (geometry, boundary conditions, stress state,

etc.). Further research is still needed to elucidate the specific mechanisms which control the role of porosity on

the emergence of shock waves in elastoplastic porous media.

5.2. Non-uniform initial distribution of porosity

Firstly, we check whether the cavitation velocity in specimens which include non-uniform distributions of

porosity matches with the one obtained in samples with the porosity homogeneously distributed in the bulk

(those presented in previous section). For that purpose, Fig. 8 shows the radial velocity of a node located at

the cavity wall ȧ versus the loading time t for finite element simulations with specimens in which the porosity

is uniformly and non-uniformly distributed in the material. The node taken for the velocity measurements was

identified in Fig. 1. The results in Fig. 8 correspond to the initial porosity f0 = 0.01 and the cavitation velocity

m = 0.35. Recall that for this combination of f0 and m, shock waves are formed in the sample, see section

5.1. Recall also that in the simulations with non-uniform distributions of porosity the value of f0 is the average

porosity in the specimen, see section 3.1. Results are shown for different non-uniform distributions of porosity in

which the percentage of nodes that do have initial porosity is F = 10%, 25% or 40%, and the relative standard

deviation of the distribution is Cv = 5%, 15% or 25%. Note that the ȧ− t curves obtained from the simulations

with uniform and non-uniform distributions of porosity are very similar. The steady-state cavity expansion (i.e.

ȧ = constant) starts at t ≈ 2− 3 µs, as mentioned in section 5.1, and the velocity of the cavity is ȧ ≈ 1060 m/s,

which corresponds to m ≈ 0.35. On the other hand, note that for the simulations which consider a non-uniform

distribution of porosity the radial velocity ȧ shows slight fluctuations which are more accentuated as the value of

Cv increases and the value of F decreases, i.e. as the porosity distribution becomes more heterogeneous. Note that

for the values of F and Cv considered, the variation of F has greater impact on the fluctuations of the ȧ− t curves

than the variation of Cv. On the other hand, note that we have checked that similar results to those presented in

Fig. 8 are obtained for other combinations of f0 and m.

Secondly, we check whether the cavitation fields in the samples with non-uniform distribution of porosity are

self-similar. For that purpose, Fig. 9 shows the dimensionless flow stress Σe versus the dimensionless radial

coordinate ξ for calculations conducted with f0 = 0.01, and two cavitation velocities, m = 0.04 and m = 0.35.

The theoretical results are compared with finite element results corresponding to different loading times. In the

finite element calculations the flow stress is measured along the radial path 1 identified in Fig. 1. The numerical

calculations correspond to a specimen with non-uniform distribution of porosity for which Cv = 15% and F = 25%.

For the smallest cavitation velocity, Fig. 9(a), the three Σe−ξ curves obtained from the finite element simulations
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Figure 8: Radial velocity of a node located at the cavity wall ȧ versus the loading time t for finite element simulations in which the
porosity is uniformly and non-uniformly distributed in the material. The initial porosity and the cavitation velocity are f0 = 0.01 and
m = 0.35. Results are shown for different non-uniform distributions of porosity in which the percentage of nodes that do have initial
porosity is F = 10%, 25% or 40%, and the relative standard deviation is: (a) Cv = 5%, (b) Cv = 15% and (c) Cv = 25%.

are very similar to the theoretical one. There are some slight fluctuations of the flow stress, i.e. deviations from

the theoretical solution, only for values of ξ smaller than ξi (the porosity does not affect the elastic range). For

this cavitation velocity, the influence of the non-uniform distribution of porosity on the flow stress field is small.

On the other hand, for the greatest cavitation velocity, Fig. 9(b), the non-uniformity in the porosity distribution

plays a greater role in the numerical results. Note in the zoom shown in the upper right part of the plot that

the gradients of flow stress within the shock wave vary with the loading time. Note also the fluctuations of the

flow stress for values of ξ slightly smaller than ξp. Nevertheless, we have checked that the theoretical predictions

find satisfactory agreement with the numerical Σe − ξ curves for any combination of f0, Cv and F studied in this

paper. The self-similarity of the cavitation fields, for the specimens with non-uniform distribution of porosity, is

further illustrated in Fig. 10 which shows the dimensionless material density ρ/ρ0 versus the dimensionless radial

coordinate ξ for the same calculations of Fig. 9. The theoretical model is compared with finite element results
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obtained for different loading times. In the finite element calculations, the material density is measured along the

radial path 1 identified in Fig. 1. For m = 0.04, Fig. 10(a), the numerical results show oscillations in the density,

which are more accentuated as we approach the cavity wall. The zoom in the upper right part of the figure shows

that these oscillations are dependent on the loading time considered. On the other hand, leaving these oscillations

aside, the three finite element curves are similar to each other, and they are also similar to the theoretical curve.

For m = 0.35, Fig. 10(b), the analysis is very much alike. On the one hand, there are fluctuations of the density

which are more important close to the cavity wall. On the other hand, the three finite element curves and the

analytical curve are similar, i.e. the average slope of the ρ/ρ0−ξ curve before the shock wave is similar, the location

of the shock wave is also the same, etc. Comparable agreement between theoretical and numerical predictions for

the density fields has been found for any other combination of f0, Cv and F considered in this paper.

The results presented in Figs. 9 and 10 show that, while there is an influence of the porosity distribution on

the numerical results, the cavitation fields in specimens with the non-uniform distributions of porosity used in

this paper can be considered self-similar. In addition, it is shown that the theoretical model presented in section

4 provides a good estimation of the cavitation fields that develop in these specimens.
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Figure 9: Dimensionless flow stress Σe versus dimensionless radial coordinate ξ for radial path 1 (see Fig. 1). Comparison between the
theoretical model and finite element results obtained for different loading times. The numerical calculations correspond to a specimen
with non-uniform distribution of porosity for which Cv = 15% and F = 25%. The initial material porosity is f0 = 0.01. The cavitation
velocity is: (a) m = 0.04 and (b) m = 0.35.

The finite element contours of material density ρ and effective plastic strain rate ˙̄εp in specimens with uniform

and non-uniform distributions of porosity are shown in Figs. 11 and 12, respectively. The cavitation velocity is

m = 0.35, the loading time t = 20 µs, and the initial porosity f0 = 0.01. For the specimen with non-uniform

distribution of porosity we have that Cv = 15% and F = 25%, as in Figs. 9 and 10. Note that the contours of

material density ρ and effective plastic strain rate ˙̄εp are shown in a plane that contains the center of the sphere

(this plane has been obtained by sweeping from 0◦ to 180◦ the axisymmetric model built in ABAQUS).
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Figure 10: Dimensionless material density ρ/ρ0 versus dimensionless radial coordinate ξ for radial path 1 (see Fig. 1). Comparison
between the theoretical model and finite element results obtained for different loading times. The numerical calculations correspond
to a specimen with non-uniform distribution of porosity for which Cv = 15% and F = 25%. The initial material porosity is f0 = 0.01.
The cavitation velocity is: (a) m = 0.04 and (b) m = 0.35.

The colour coding in Fig. 11 is such that values of material density ranging from 7600 kg/m3 (the initial value)

to 9000 kg/m3 correlate with a colour scale that goes from blue to red. If the value of the material density is

above 9000 kg/m3, it remains red. No values of ρ below 7600 kg/m3 were obtained. The contours of Fig. 11 show

that the material density fluctuates along the circumferential direction in the specimen for which the distribution

of porosity is non-uniform (unlike what occurs in the sample with uniform initial porosity). In addition, the

non-uniformity of the initial porosity distribution makes density not to decrease monotonically with the radial

coordinate (as it was also shown in Fig. 10), i.e. the color scale is not traversed unidirectionally from top to

bottom as we move away from the cavity wall. For instance, in the specimen with non-uniform distribution of

porosity, along any radial path, there are yellow elements (or green, or light blue) closer to the cavity than red

elements (or yellow, or green). Note that this is not the case for the specimen with uniform distribution of porosity.

Note also that the transition from light blue to dark blue, which is very well defined in the density contours for

both specimens, corresponds to the shock wave.

The colour coding in Fig. 12 is such that effective plastic strain rates ranging from 103 s−1 to 105 s−1 correlate

with a colour scale that goes from blue to red. Effective plastic strain rates below 103 s−1 remain blue and above

105 s−1 remain red. The contour plots show an outer ring, located at some distance from the cavity wall, in which

the plastic strain rate reaches its maximum value. This outer ring, whose width varies between ≈ 300 µm and

≈ 700 µm, is the shock wave. Similar shocks widths were reported in the recent work of Czarnota et al. (2017)

for metallic porous materials. Depending on the loading time, there may be from 2 to more than 10 elements

inside the shock (recall that the element size varies with the radial coordinate). The evolution of the effective

plastic strain rate with the radial coordinate for the finite element simulations of Fig. 12 is shown in Fig. 13.
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The effective plastic strain rate is measured along the radial path 1. The value of ˙̄εp first decreases as we move

away from the cavity wall, then suddenly increases within the shock wave, and the decreases again eventually

dropping to zero at the elastic / elastoplastic interface. The maximum effective plastic strain rate, i.e. the shock

wave, is located at ξp = 2.20. The distribution of porosity affects the value of the maximum strain rate attained,

which is ≈ 5.2 105 s−1 for the specimen with uniform distribution of porosity, and ≈ 2.6 105 s−1 for the specimen

with non-uniform distribution of porosity. Similar values (the same order of magnitude) for the maximum strain

rate attained in a shock in a porous material were found by Czarnota et al. (2017). While for the specific radial

path selected to obtain the finite element results presented in Fig. 13 (radial path 1 ) the inhomogeneous porosity

distribution reduces the peak of strain rate, we have checked that for other radial paths, porosity distributions,

and loading times, the opposite effect can be obtained. Note also that, outside the shock wave, the strain rate

profiles for the specimens with uniform and non-uniform distributions of porosity are very similar.

The influence of the porosity distribution on the strain rate field is further illustrated in Fig. 14, which

shows finite element results for specimens with two different porosity distributions for which the relative standard

deviation Cv is 15%, and the percentage of nodes with non-zero porosity F is 10% in Fig. 14(a), and 25% in Fig.

14(b). The initial material porosity, cavitation velocity and loading time are f0 = 0.01, m = 0.35 and t = 20 µs,

respectively. The two plots of Fig. 14 show the evolution of ˙̄εp with ξ for the two radial paths indicated in Fig.

1: radial path 1 and radial path 2. The strain rate attained in the shock wave is smaller for the radial path 1.

In addition, the difference between the strain rate attained in the shock wave for the radial paths 1 and 2 varies

with F . This suggests that the intensity of the shock wave –assuming that the intensity of the shock wave can be

defined by the maximum strain rate– depends on both the average porosity of the specimen and the local porosity

at the location of the shock.

6. Summary and concluding remarks

In this paper we have studied dynamic spherical cavitation fields in porous metals with uniform and non-

uniform distributions of porosity. For that purpose we have developed a theoretical model and performed finite

element simulations in ABAQUS/Explicit (2013). The problem addressed is that of a very large sphere, whose

mechanical response is described with the GTN constitutive model, with a small cavity in its center subjected to

internal pressure. The theoretical model, based on the seminal work of Cohen and Durban (2013b), has the novelty

of using the artificial viscosity approach developed by Wilkins (1980) and Lew et al. (2001) to capture the shock

waves that emerge at high cavitation velocities. This is a simple alternative to the methodology used by Cohen

et al. (2010) and Cohen and Durban (2013b) who imposed Hugoniot conditions at the shock wave front to obtain

the cavitation fields. Note that the artificial viscosity approach used in this paper can also be applied to model
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Figure 11: Finite element results. Contours of material density ρ for specimens with uniform and non-uniform distributions of porosity.
For the latter case, the values of the distribution parameters are Cv = 15% and F = 25%. The initial material porosity, cavitation
velocity and loading time are f0 = 0.01, m = 0.35 and t = 20 µs, respectively. (For interpretation of the references to colour in the
text, the reader is referred to the web version of this article.)

the emergence of shock waves in strain hardening materials with different mechanical behaviours (e.g. anisotropic

materials, tension-compression asymmetric materials, etc.) In contrast, for non-hardening materials (even for

phase transforming materials with non-hardening phases) further investigations have to be carried out. It has

to be noted that ABAQUS/Explicit (2013) also generates bulk viscosity pressures which attenuate the numerical

solution and help to model the shock waves. While the theoretical model considers that the initial porosity is

uniformly distributed in the material, the finite element model has been used to simulate the cavitation process in

specimens with uniform and non-uniform distributions of porosity. The non-uniform distributions of porosity, that

aim at idealizing the micro-structure of metallic materials with inclusions and second-phase particles randomly

distributed in the bulk, are generated using the methodology developed by N’souglo and Rodríguez-Martínez

(2018) which assigns positive values of initial porosity to some nodes and zero to the others. The theoretical
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Figure 12: Finite element results. Contours of effective plastic strain rate ˙̄εp for specimens with uniform and non-uniform distributions
of porosity. For the latter case, the values of the distribution parameters are Cv = 15% and F = 25%. The initial material porosity,
cavitation velocity and loading time are f0 = 0.01, m = 0.35 and t = 20 µs, respectively. (For interpretation of the references to colour
in the text, the reader is referred to the web version of this article.)

model and the finite element calculations yielded the following results:

• Uniform distribution of porosity: the theoretical model predicts cavitation velocities in agreement with the

finite element calculations for the three values of initial porosity investigated: f0 = 0.001, 0.01 and 0.1.

Both theoretical and finite element model show that the increase of porosity and applied pressure leads to

higher cavitation velocities. Moreover, the finite element simulations predict that the time required to reach

the steady-state limit turns from 30 − 35 µs for the lowest cavitation velocity investigated (m = 0.04), to

2− 3 µs for the highest (m = 0.35). Note also that the finite element calculations confirm the self-similarity

of the cavitation fields, as it is assumed in the theoretical model. Furthermore, it has been shown that the

porosity favours the development of shock waves in the spherical cavity expansion problem, which confirms

the theoretical predictions of Cohen and Durban (2013b). Namely, the first shock appears for m = 0.26



26

0

1 10
5

2 10
5

3 10
5

4 10
5

5 10
5

6 10
5

7 10
5

1 2 3 4

D

B

Dimensionless radial coordinate, ξ

Uniform distribution of porosity

Non-uniform distribution of porosity: Cv=15%, F=25%

Shock wave

Shock wave

f
0
=0.01

m=0.35

t=20 μs

E
ff
e
c
ti
v
e
 p

la
s
ti
c
 s

tr
a
in

 r
a

te
, 
εp.

Figure 13: Effective plastic strain rate ˙̄εp versus dimensionless radial coordinate ξ for radial path 1 (see Fig. 1). Finite element results
for specimens with uniform and non-uniform distributions of porosity. For the latter case, the values of the distribution parameters
are Cv = 15% and F = 25%. The initial material porosity, cavitation velocity and loading time are f0 = 0.01, m = 0.35 and t = 20 µs,
respectively.
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Figure 14: Effective plastic strain rate ˙̄εp versus dimensionless radial coordinate ξ for radial paths 1 and 2 (see Fig. 1). Finite element
results for specimens with two different porosity distributions: (a) Cv = 15% and F = 10% and (b) Cv = 15% and F = 25%. The
initial material porosity, cavitation velocity and loading time are f0 = 0.01, m = 0.35 and t = 20 µs, respectively.

if the initial porosity is f0 = 0.01, and for m = 0.14 if f0 = 0.1. For the initial porosity f0 = 0.001

no shock emerges for the cavitation velocities investigated. Moreover, both theoretical and finite element

model predict that the shock wave is located closer to the cavity wall as the cavitation velocity and the

initial porosity in the material increase. It has also been shown that, while cavitation velocity and initial

porosity boost the intensity of the shock wave, both theoretical and the finite element model do not predict

a discontinuity in the field variables for the values of f0 and m investigated. Due to the artificial viscosity

included in the theoretical model and the finite element calculations the shock has a finite width that, in
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the finite element simulations, for the combinations combination of f0 and m investigated, ranges between

300 µm and 700 µm.

• Non-uniform distribution of porosity: the finite element simulations have shown that the cavitation velocity

and the time to reach the steady-state limit in specimens which include uniform and non-uniform distribu-

tions of porosity is very similar. However, for the specimens with non-uniform distributions of porosity the

time evolution of the radial velocity of the cavity wall shows fluctuations which are more accentuated as the

number of nodes in the specimen with initial porosity F decreases, and the relative standard deviation of the

porosity distribution Cv increases. The finite element simulations also predict fluctuations in the flow stress

and density fields which are more important as F decreases and Cv increases. Leaving these fluctuations

aside, which depend on the loading time and are particularly important near the cavity wall, the flow stress

and density fields in the samples with non-uniform distributions of porosity are shown to be self-similar. In

fact, there is general agreement between the results of the theoretical model for the flow stress and density

fields, and the average response of the sample predicted by the finite element calculations. This is a key

outcome which suggests that the theoretical model can also be used to predict dynamic cavitation fields in

materials with inhomogeneous microstructures characterized by the random distribution of defects such as

voids or second phase particles. The limitation of the theoretical model lies in the prediction of the intensity

of the shock in such materials since it is dependent on the local porosity at the shock location, as shown by

the strain rate profiles obtained from the finite element simulations. Outside the shock wave, the cavitation

response seems to be mainly controlled by the average properties of the material.

In summary, the theoretical model proposed in this work, which is a modification of the original formulation

reported in the seminal paper of Cohen and Durban (2013b), captures the main features of the elastoplastic fields

induced by a pressurized spherical cavity expanding dynamically in porous metallic specimens modelled using the

Gurson-Tvergaard-Needleman approach. Only for the specimens with non-uniform distributions of porosity it is

necessary a full numerical solution to describe the shock wave that emerges at high cavitation velocities, since

its intensity depends on the local material porosity. The combined numerical and theoretical approach developed

here should be enriched in future works including micro-inertia effects that, at high strain rates, play an important

role in the structure of steady shock waves in porous metals (Czarnota et al., 2017).
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Appendix A. Derivation of the theoretical model

As mentioned in section 4, the core of the theoretical model used in this paper was developed by Cohen and

Durban (2013b). The original contributions of the present work are: (1) consider the parameters q1 and q2 in the

flow potential of the constitutive model, and (2) use an artificial viscosity approach to capture the formation of

plastic shocks at high cavitation velocities. The main steps of the model derivation are presented below.

The derivative with respect to the radial coordinate takes the form:

d ()
dr

= d ()
dξ

dξ

dr
= ()′ 1

a
(A.1)

where the prime superscript denotes differentiation with respect to ξ. In addition, as shown by Durban and

Fleck (1997), the time derivative is transformed by the similarity relation:

(̇) = d ()
dξ

ξ̇ = ()′ ȧ
a

(v − ξ) (A.2)

where v = ṙ/ȧ is the dimensionless radial velocity. Note that, in steady-state expansion, ȧ is a constant, which

leads to v̇ = r̈/ȧ.

Under spherical expansion conditions, the active components of the strain rate tensor are:

drr = dṙ

dr
= ȧ

a
v′ (A.3)

dθθ = dφφ = ṙ

r
= ȧ

a

v

ξ
(A.4)

where equations (A.1) and (A.2) have been used. Similarly, under spherical expansion conditions, σrr and

σθθ = σφφ are the only active components of the Cauchy stress tensor.

The hypo-elastic law introduced in equation (5) can be rewritten as:

de = 1 + ν

E
σ̇ − ν

E
σ̇ : 1 (A.5)
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Note that, in absence of material spin, the objective derivative O
σ (see equation (5)) has been replaced by a

time derivative σ̇.

The flow rule introduced in equation (7), using the work conjugacy relation (8), can be rewritten as:

dp = (1− f) σy ˙̄εp

σ : NN (A.6)

where the second order tensor N is:

N = 3 s
σ2
y

+ q1q2f

σy
sinh

(
3
2
q2σh
σy

)
1 (A.7)

Therefore, based on the expressions for the strain rates given in (A.3) and (A.4), the additive decomposition

of the rate of deformation tensor, see equation (4), leads to the following two expressions for the radial and

circumferential directions:

v′ = (v − ξ)
[
Σ′rr − 2νΣ′θθ + (1− f) ∂ε̄

p

∂Σy
Σ′yÑrr

]
(A.8)

v

ξ
= (v − ξ)

[
−νΣ′rr + (1− ν)Σ′θθ + (1− f) ∂ε̄

p

∂Σy
Σ′yÑθθ

]
(A.9)

where equations (A.1) and (A.2) have been used. Moreover, Σrr = σrr/E and Σθθ = σθθ/E are the dimensionless

radial and circumferential stresses. The term ∂ε̄p/∂Σy is obtained from the definition of the flow strength of the

matrix material given in equation (3):

∂ε̄p

∂Σy
= ε0
nΣ0

(
Σy
Σ0

) 1
n
−1

(A.10)

being Σy = σy/E and Σ0 = σ0/E the dimensionless flow strength and the dimensionless initial yield stress of

the matrix material, respectively. Moreover, Ñrr and Ñθθ are:

Ñrr = σyNrr

σ : N = −1
2

2ΣeΣy − q1q2f sinh
(

3q2
2
Σh
Σy

)
(
Σe
Σy

)2
+ q1q2f sinh

(
3q2
2
Σh
Σy

)
3
2
Σh
Σy

(A.11)

Ñθθ = σyNθθ

σ : N = 1
2

Σe
Σy

+ q1q2f sinh
(

3q2
2
Σh
Σy

)
(
Σe
Σy

)2
+ q1q2f sinh

(
3q2
2
Σh
Σy

)
3
2
Σh
Σy

(A.12)

where Σe = σe/E is the dimensionless effective von Mises stress (also referred to as dimensionless flow stress in

section 5), Σh = σh/E is the dimensionless hydrostatic pressure, and Nrr and Nθθ are the radial and circumferential
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components of the tensor N , respectively. Note that, under spherical expansion conditions, the dimensionless

effective von Mises stress can be expressed as Σe = Σθθ −Σrr.

Moreover, using equations (A.6) and (A.7), the expression for the evolution of the void volume fraction given

in (9) can be written as follows:

ḟ = 3
2 (1− f)2 ˙̄εp

q1q2f sinh
(

3
2
q2σh
σy

)
(
σe
σy

)2
+ q1q2f sinh

(
3
2
q2σh
σy

)
3
2
σh
σy

(A.13)

Using equation (A.2), and the dimensionless stresses Σy, Σe and Σh, previous formula can be rewritten as:

f ′ = 3
2 (1− f)2 q1q2f sinh

(
3q2
2
Σh
Σy

)
(
Σe
Σy

)2
+ q1q2f sinh

(
3q2
2
Σh
Σy

)
3
2
Σh
Σy

∂ε̄p

∂Σy
Σ′y (A.14)

Next, solving the flow potential equation, Eq. (1), for the physical branch of f , it is obtained:

f = 1
q1

cosh
(

3q2
2
Σh
Σy

)
−

√√√√sinh2
(

3q2
2
Σh
Σy

)
+
(
Σe
Σy

)2
 (A.15)

Differentiating previous expression with respect to ξ, and inserting the result into equation (A.14), leads to

the following expression:

[
q1q2f sinh

(
3q2
2
Σh
Σy

)
− 2Σe

Σy

]
Σ′rr + 2

[
q1q2f sinh

(
3q2
2
Σh
Σy

)
+ Σe
Σy

]
Σ′θθ − 2χΣ′y = 0 (A.16)

with

χ = (1− f)2 q1

[
q1f − cosh

(
3q2
2
Σh
Σy

)](
Ñrr + 2Ñθθ

) ∂ε̄p
∂Σy

Σy +
[
q1q2f sinh

(
3q2
2
Σh
Σy

)
3
2
Σh
Σy

+ Σ2
e

Σ2
y

]
(A.17)

Moreover, the ratio between current material density ρ and initial material density ρ0 can be obtained from

the balance of mass which, in Eulerian description, takes the form:

ρ̇+ ρtr (l) = 0 (A.18)

where l = d in absence of material spin. Thus, equation (A.18), using expressions (A.2), (A.3) and (A.4),

leads to:
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(v − ξ) ρ
′

ρ
+ v′ + 2v

ξ
= 0 (A.19)

Inserting equations (A.8) and (A.9) into the previous expression yields:

ρ′

ρ
= −

[
3(1− 2ν)Σ′h + f ′

(1− f)

]
(A.20)

where the definition for f ′ given in (A.14) has been used.

Integrating equation (A.20) from a given coordinate ξ to the elastic wave front ξw, where f = f0, ρ = ρ0, and

Σh = 0 (see Fig. 2), a closed-form relation for the density ratio is obtained:

ρ

ρ0
= (1− f)

(1− f0) exp (−3(1− 2ν)Σh) (A.21)

Moreover, the balance of linear momentum in the radial direction, in Eulerian description, takes the form:

∂σ̄rr
∂r

+ 2
r

(σ̄rr − σ̄θθ) = ρr̈ (A.22)

where σ̄rr and σ̄θθ are the total radial and circumferential stresses given by the sum of the elastoplastic

equilibrium stresses and the viscous stresses, i.e. σ̄rr = σrr + σvrr and σ̄θθ = σθθ + σvθθ. While σrr and σθθ are

related to the elastic and plastic deformation rates by means of the constitutive equations, σvrr and σvθθ are related

to the total deformation rates by means of an artificial viscosity. In other words, the artificial viscosity approach

is only used in the definition of the stresses that enter into the balance of linear momentum.

Following the works of Wilkins (1980) and Lew et al. (2001), the radial and circumferential viscous stresses

inserted into equation (A.22) are defined as:

σvrr =


c2

0ρ (∆r)2 |drr| drr + cLρ∆rVsdrr for drr < 0

0 for drr ≥ 0
(A.23)

σvθθ =


c2

0ρ (∆r)2 |dθθ| dθθ + cLρ∆rVsdθθ for dθθ < 0

0 for dθθ ≥ 0
(A.24)

where c0 ≈ 2 and cL ≈ 1 are constant parameters, ∆r is a given increment along the radial direction and

Vs =
√
E/ρ. Note that the viscous contribution plays a role only in compression.

Using equation (A.3), the radial viscous stress σvrr can be written as:
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σvrr = −c2
0 (∆ξ)2E

ρ

ρ0
m2 (v′)2 − cL∆ξE√ ρ

ρ0
m
∣∣v′∣∣ (A.25)

where the relations ȧ = m
√
E/ρ0 and ∆ξ = ∆r/a have been used. Note that m = ȧ/

√
E/ρ0 is the dimensionless

cavitation velocity defined as the ratio between the cavity expansion velocity ȧ and the elastic wave velocity in a

long rod
√
E/ρ0.

Using equation (A.4), the circumferential viscous stress can be written as:

σvθθ = −c2
0

(
∆ξ

ξ

)2
E
ρ

ρ0
m2v2 − cL

∆ξ

ξ
E

√
ρ

ρ0
m |v| (A.26)

According to equations (A.25) and (A.26), the dimensionless viscous stresses Σv
rr = σvrr/E and Σv

θθ = σvθθ/E

become:

Σv
rr = −

(
c2

0 (∆ξ)2 ρ

ρ0
m
∣∣v′∣∣+ cL∆ξ

√
ρ

ρ0

)
m
∣∣v′∣∣ (A.27)

and

Σv
θθ = −

(
c2

0

(
∆ξ

ξ

)2 ρ

ρ0
m |v|+ cL

∆ξ

ξ

√
ρ

ρ0

)
m |v| (A.28)

Using equations (A.1), (A.2), and relation m = ȧ/
√
E/ρ0, the balance of linear momentum (A.22) can be

rewritten in terms of dimensionless stresses as:

(Σrr +Σv
rr)
′ + 2

ξ
(Σrr −Σθθ) + 2

ξ
(Σv

rr −Σv
θθ) = m2 ρ

ρ0
(v − ξ) v′ (A.29)
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