

Programmatic modeling for biological systems

Alexander L.R. Lubbock1,2, Carlos F. Lopez1,2,3,*

1 Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
of America
2 Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville Tennessee 37212, United
States of America
3 Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37212,
United States of America
* To whom correspondence should be addressed: c.lopez@vanderbilt.edu

Abstract
Computational modeling has become an established technique to encode mathematical
representations of cellular processes and gain mechanistic insights that drive testable
predictions. These models are often constructed using graphical user interfaces or domain-
specific languages, with SBML used for interchange. Models are typically simulated,
calibrated, and analyzed either within a single application, or using import and export from
various tools. Here, we describe a programmatic modeling paradigm, in which modeling is
augmented with best practices from software engineering. We focus on Python - a popular,
user-friendly programming language with a large scientific package ecosystem. Models
themselves can be encoded as programs, adding benefits such as modularity, testing, and
automated documentation generators while still being exportable to SBML. Automated version
control and testing ensures models and their modules have expected properties and behavior.
Programmatic modeling is a key technology to enable collaborative model development and
enhance dissemination, transparency, and reproducibility.

Highlights

● Programmatic modeling combines computational modeling with software engineering
best practices.

● An executable model enables users to leverage all available resources from the
language.

● Community benefits include improved collaboration, reusability, and reproducibility.
● Python has multiple modeling frameworks with a broad, active scientific ecosystem.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

Introduction

Mathematical modeling of cellular processes for mechanism exploration has now
become commonplace using various techniques [1–5], but challenges remain as to
how models should be built, calibrated, analyzed and interpreted to extract much-
needed mechanistic knowledge from experimental data. Historically, methods and
techniques from other fields have been directly imported to systems biology with
varying success. For example, early interpretations of cellular processes as circuits
provided insights about basic regulatory motifs that could explain cellular behaviors [6].
Similarly, techniques from chemistry, physics, and various engineering disciplines have
been used to model cellular processes [7,8], but due to the spatiotemporal complexity
of cellular processes, from femtosecond/nanometer electron transfer reactions to years
and meter scales in tumor growth, no established paradigm has emerged to capture
the full complexity of cellular processes. Multiple tools have been developed to achieve
specific modeling tasks. For example, COPASI [5], RuleMonkey [9], Simmune [10], and
StochSS [11] all provide graphical user interfaces that cater to non-expert modelers
wishing to encode mechanistic representations of biological processes. More abstract
approaches such as BioNetGen [12], Kappa [13], and CobraPy [14] employ a domain-
specific language (DSL) to describe and simulate models. However, most tools are
self-contained platforms with a small set of included methods and analyses, limiting
access to other standalone simulation tools such as StochKit [4], SciML tools[15],
URDME [16], SmolDyn [17]. Similarly, optimization techniques ranging from vector-
based optimization methods [18,19] to probabilistic-based methods [20*,21] exist in yet
another isolated domain. Therefore, the current modeling and simulation ecosystem is
compartmentalized and fractured, and thus, unification and intercompatibility efforts
are sorely needed.

Valuable efforts toward unification have been put forth to create standards for model
instantiation, simulation, analysis and dissemination [22,23**,24–26]. Of these, Systems
Biology Markup Language (SBML) is perhaps the most successful to date. However,
mathematical modeling for cell biology remains challenging to scale - both vertically
(larger, more complex models) and horizontally (more active collaborators). While
mathematical tools are the obvious way forward to describe cellular processes, the
complexity challenge results in a knowledge base that is highly domain specific, with
some notable exceptions [27*].

A novel, more flexible approach to encode knowledge about biological processes as
computer programs is slowly emerging and gaining momentum [3,28,29]. In this
approach, biological models are no longer static documents, but computer code that

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

aggregates community knowledge and opens doors toward crowd-driven
mathematical models of biological processes. Although computer languages like Lisp
[30] and proprietary packages such as MATLAB have been used toward this goal, we
believe Python provides the largest ecosystem, myriad learning resources, and large
applicable base to unify modeling practices in the field. Adopting a programmatic
modeling paradigm for systems biology automatically accrues decades of computer
science practices including structured documentation, integrated development
environments (IDEs), (model) version control, code-sharing platforms, code testing
frameworks, and importantly, literate programming/computational notebook
dissemination. Here, we review the recent developments in programming-based
approaches for systems biology. The structure of the manuscript is motivated by the
model specification, simulation, calibration, analysis, and visualization
paradigm/pipeline, commonly practiced in systems biology. Throughout, we note how
this approach could be supplemented and improved by incorporating best practices
from software engineering (Figure 1).

Model specification

Traditionally, encoding a model of biochemical reactions would require the user to
write each equation by hand, encode these into a solver, and run the simulations [31].
Although this is still common practice for smaller model systems, these lists of
equations often lead to a model dead-end as the biological context is completely lost
in the mathematical representation, which hinders model reuse. Reaction-based
modeling formats add one layer of abstraction where the user instead writes chemical
reactions of the form 𝐴 + 𝐵 ↔ 𝐶 in a program-specific notation and the computer
parses this information into a mathematical representation [32]. These DSLs can
operate either through a GUI that generates the code in the background, or directly
through a text editor. For example, Antimony [32] requires manual enumeration of
every species and reaction explicitly. However, signaling pathways often comprise a
large number of molecular complexes, which can assemble in multiple orders, leading
to a large number of reactions and intermediate species during complex assembly and
degradation. Therefore, traditional approaches become unwieldy as model systems
become larger, learning to model dead-ends. Another level of abstraction is presented
by rule-based modeling formalisms whereby reaction rules rather than explicit
reactions (or equations) are used to encode the system [3,12,13]. A reaction rule is a
template for reaction patterns to be enumerated and instantiated recursively, starting
from a defined list of initial species, thereby saving the user time and reducing error-
prone repetition. In rule-based approaches, the reaction center (the relevant molecular

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

components for a given reaction) is separated from the context (attached molecular
components which have minimal or no effect on the reaction). These approaches often
require a pre-processing step to generate the network of nodes (chemical species) and
edges (chemical reactions) from the initial pool of chemical species and a set of
reaction rules. However, network-free methodologies have been proposed to bypass
the network generation step [33].

Model specification can also be embedded into General Purpose Programming
Languages (GPPL) to provide a more powerful approach to biological modeling. In the
programmatic modeling paradigm, the model is encoded as an executable piece of
code, thereby offering all the advantages of a full-fledged computer programming
language (Figure 2). Modularity, in which a model can be split into smaller, reusable
code objects, is perhaps the most useful aspect for cell biology modeling. For
example, PySB currently includes a library of 25 macros (small modules or functions)
that encode reaction patterns commonly found in biology such as catalytic activation,
molecule-molecule inhibition, or complex oligomerization. From a user perspective,
GPPLs have greater integration with IDEs than DSLs, thus allowing syntax highlighting
and checking, and navigation between functions. The model is also inspectable at
runtime, allowing searching and filtering of model components. For example, a user
could check whether certain species or reactions are present before simulation
commences. Currently, the most used modeling frameworks using the programmatic
modeling paradigm in Python are PySB [3], written in and using Python, and Tellurium
[29], which is written in Python but uses Antimony [32], a DSL with function support, for
model specification.

Model simulation

Model simulation involves numerically solving the model equations to obtain
trajectories for dynamically controlled species. Concentrations or molecule counts of
chemical species in the model are the most commonly simulated quantities. Integration
of systems of ordinary differential equations (ODEs) for deterministic simulations is the
most common model simulation approach. Many ODE integrators are available and the
best choice depends on model stiffness, desired integrator tolerances, and other
requirements. In Python, a family of integrators is available through SciPy [34**]
including VODE and LSODA, but many other solvers have been proposed. Other
commonly used solver suites include StochKit (Stochastic Simulation Algorithm) [4,35],
BioNetGen (CVODE, SSA, tau-leaping algorithm, partition-leaping algorithm) [12],
cupSODA (GPU ODE) [36], GPU_SSA (GPU SSA) [37], and Libroadrunner (CVODE,

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

SSA) [38]. Within the Python ecosystem, PySB provides a simulation class that enables
users to use many of these simulation tools or to connect new tools as needed. In
addition, users of other Python-based tools such as Tellurium can also take advantage
of these resources.

Model calibration

Model calibration is the process of adjusting model parameters to match experimental
data, also known as parameter estimation/optimization when applied to parametric
models. The most common form of model calibration involves a process of running
many simulations (thousands to millions or more) and checking the distance between
model and experimental data error using an objective function, which gives a measure
of the model’s simulation “error” versus experiment; for a review see [39]. Since
dynamic data for signaling models are hard to come by, the modeler often only has
data for a few species, and thus model calibration often leaves a model
underdetermined - multiple parameter sets fit the data equally well [40]. The concept of
parameter “sloppiness” states that only a few “stiff” combinations of parameters are
important in determining model outcomes, and others are “sloppy” and have little
effect. Thus, an undetermined model can still be useful in predicting biological
properties [41]. However, the interpretation of large, underdetermined models in the
context of limited data is still up for debate. Lessons from e.g. hydrology and climate
modeling have been highly influential toward addressing these issues [20*,42,43].

The landscape of model parameters is often envisioned as a multidimensional surface
with “height” representing the objective function, where the (ideally global) minimum or
minima (representing the best fit(s)) must be found. SciPy [34**], for example, includes
gradient descent and simplex-based methods. However, the curse of dimensionality
means that local optimization can give far-from-globally optimal results as the number
of model parameters increases. Finding the global minimum of a multivariate nonlinear
model is NP-hard [44], however several methods can make statistically good
approximations. Markov Chain Monte Carlo sampling methods are among the most
popular algorithms [45]. General purpose optimization toolkits for Python include
SciPy.optimize [34**] and Pyomo [46]. We have found that DEAP [19] provides
excellent support for PSO and genetic algorithm-based optimization.

Given the dearth of data available for biological model calibration, conditional
probability (Bayesian) approaches are gaining traction. These approaches provide a
probabilistic interpretation of model parameters [47], including uncertainty

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

quantification, at the cost of increased computer time. However, new GPU-based
integrators mitigate this problem. Excellent tools for Bayesian parameter inference
include PyDREAM (which can readily take PySB models) [20*], PyBioNetFit [48*],
PyPESTO [49], PyMC3 [50], and PySTAN [51], although popular data-science tools
such as TensorFlow [52] and PyTorch [53] also provide Bayesian inference capabilities.
ABC-SysBio [54] provides a hybrid solution to the computation problem but still within
a Bayesian context.

Model analysis and visualization

Model analysis and visualization is likely the least developed area in systems biology as
no clear standards have been proposed. In general, modelers explore the chemical
species concentration trajectories in their model to infer mechanistic behaviors and
properties. Exploration of biochemical flux through reactions is highly challenging with
some notable attempts toward this goal in the literature [7,47], but much work is still
needed. For visualization, perhaps the most useful tool in Python is matplotlib [55],
which provides flexible graphing capabilities. Other Python tools include Seaborn
(https://seaborn.pydata.org/), Plotly [56], and Mayavi [57]. Network visualization is
perhaps the other major area of model analysis that is addressed in various ways in
Python. For example, PyVIPR [58*] is a visualization tool built on Cytoscape.js [59] for
rule- and reaction-based models which animates model dynamics over time, overlaid
on a graph. MASSPy [60] also provides some visualization capabilities for metabolic
models. We note, however, that excellent tools for graph manipulation in Python exist,
such as NetworkX [61].

Model sharing and modification

Perhaps the most appealing benefit for the systems biology community from program-
based paradigm is the use of literate programming for model and results
dissemination. Introduced by Donald Knuth, literate programming is a paradigm
whereby the code and the document coexist in an interactive format [62]. Jupyter
Notebook, a popular format, has been described as “data scientists’ computational
notebook of choice” [63]. Jupyter Notebooks allow analyses to be run in a web
browser, checked into version control, and include documentation alongside analyses,
in turn improving transparency and reproducibility. We believe that Jupyter notebooks
are a highly desirable step forward in systems biology as it greatly contributes to model

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

transparency, revision, and dissemination, and should be included in paper
submissions where computational simulation and analysis are involved.

Programmatic models’ code can be managed using existing version control tools. Git
has emerged as the de facto standard for version control, providing powerful
capabilities for decentralized editing, branching, and merging, with online platforms
such as GitHub adding a collaborative interface for change management, commenting,
and other functions. In PySB, models are Python programs, and so can be imported
like other Python modules and extended or modified. The code can be inspected, for
example the model can be searched for species or reactions using pattern matching.
Tellurium’s antimony language has an import function, but previous model definitions
are currently not programmatically searchable or modifiable.

Good documentation can be vital to ensure model reproducibility and interpretability
by others. Sphinx (sphinx-doc.org) is a de facto documentation standard for Python
code, which allows code comments to be compiled into multiple formats including
website (HTML) and PDF. The former can be combined with continuous integration, for
always up-to-date documentation (readthedocs.io).

Model checking and testing

Complex biochemical models present challenges in both ensuring they are correctly
encoded, and ensuring their dynamics meet a given specification. In software
engineering, it has become common practice to build an accompanying test suite while
developing code, which runs the code under scrutiny to test that works as expected.
Subtle errors can be introduced as models grow larger. In our opinion, the field should
establish minimum standards to ensure software is runnable, reproducible, and meets
basic quality standards [64]. In the context of models-as-programs, unit and integration
tests can be borrowed from software engineering to ensure code correctness. Unit
tests refers to code which checks the functionality of other, minimal units of code;
integration tests check that units work as expected when combined. Python has
several frameworks for testing, PyTests is a popular option with a plugin for Jupyter
Notebooks [65]. PySB introduces a framework for testing static properties of rule-
based models after network generation; for example, checking that certain species are
produced by the reaction network, or that certain reactions are present. Using
continuous integration (CI), these tests can be run automatically when changes are
made and checked into version control, and/or on a regular basis. Running tests
regularly is recommended because, even if a model itself does not change, changes to

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

software dependencies could lead to unexpected errors. The importance of this is
emphasized by a recent review, which found a majority of Jupyter Notebooks were not
automatically reproducible, often due to dependency errors [66**]. For open-source
models, these tests can be run for free using services such as Github Actions, Travis,
and Circle CI. Finally, we recommend containerization technologies such as Docker
[67] and Singularity [68], which bundle model and software dependencies together in a
self-contained environment, further aiding reproducibility and cross-platform
compatibility.

Conclusions

Python has recently turned 30 years old and is now one of the most popular
programming languages in the world. There are many reasons for its success, but a
key insight of its creator is that code is read much more often than it’s written [69]. The
same principle applies to models, which emphasizes the importance of clear
documentation, transparency of approach, and the separation of model specification
from simulation and downstream analysis code. These efforts are central to improving
reproducibility, code maintenance, and model extensions, by original authors and third
parties.

For beginners interested in modeling cell signaling, we recommend either the PySB or
Tellurium frameworks, both of which have high quality documentation and active
communities for support. We expect the Python modeling ecosystem will continue to
grow, and efforts for framework and package interoperability to increase.

Acknowledgements

Funding was provided by the National Science Foundation (1411482 and 1942255 to
C.F.L.) and the National Cancer Institute (U01CA215845 to C.F.L.).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

Tool or service Usage
terms

Notes

Frameworks

PySB [3] BSD Bespoke Python object-based model format, multiple
simulation backends

Tellurium [29] Apache Bespoke DSL (Antimony), ODE and SSA simulation
backends

PySCeS [70] BSD Bespoke DSL, ODE simulation backend

ScrumPy [71] GPL Metabolic modeling

CobraPy [14] GPL Metabolic modeling

Testing

PyTest MIT Testing framework; pytest.org

GitHub Actions Free*
service

Continuous Integration; github.com/features/actions

Circle CI Free*
service

Continuous Integration; circleci.com

Calibration

PyBioNetFit [48*] BSD BNGL and SBML models

PyPESTO [49] BSD SBML and PEtab support

PyDREAM [20*] GPL PySB interface

Analysis & Visualization

Matplotlib PSF Plotting library; matplotlib.org

Jupyter
Notebooks

BSD Computational notebooks; jupyter-notebook.readthedocs.io

PyVIPR [58*] MIT PySB, Tellurium interfaces

Sharing and modification

Github Free*
service

Code hosting and collaboration suite; github.com

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

Sphinx BSD Documentation framework; sphinx-doc.org

Readthedocs Free*
service

Automated documentation compiler and hosting;
readthedocs.io

Table 1: List of key frameworks, tools, and services for programmatic modeling in Python.
BSD, MIT, and PSF are permissive software licenses. GPL is a “copyleft” software license.
*Free for open-source projects.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

Figure 1: The traditional modeling paradigm in systems biology entails model building,
simulation, calibration, and analysis (left column), which is carried out with myriad tools and
practices. Software engineering practices can add much needed structure to the practice
through maintenance, testing, documentation and sharing paradigms (right column), vetted by
a the software community.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

Figure 2: Levels of abstraction in programmatic modeling. Models are composed of modules
and macros, which are handled by the programming language interpreter/compiler; rules
encode sets of reactions using structured pattern templates; reactions specify biochemical
species’ transformations; and finally equations are handled by an ODE integrator or simulation
algorithm directly.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

References

1. Albert R, Thakar J: Boolean modeling: a logic-based dynamic approach for

understanding signaling and regulatory networks and for making useful predictions.
Wiley Interdiscip Rev Syst Biol Med 2014, 6:353–369.

2. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P: PhysiCell: An
open source physics-based cell simulator for 3-D multicellular systems. PLOS
Comput Biol 2018, 14:e1005991.

3. Lopez CF, Muhlich JL, Bachman JA, Sorger PK: Programming biological models in
Python using PySB. Mol Syst Biol 2013, 9.

4. Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR: StochKit2: software for discrete
stochastic simulation of biochemical systems with events. Bioinformatics 2011,
27:2457–2458.

5. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P,
Kummer U: COPASI—a COmplex PAthway SImulator. Bioinformatics 2006, 22:3067–
3074.

6. Tyson JJ: Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad
Sci 1991, 88:7328–7332.

7. Mallela A, Nariya MK, Deeds EJ: Crosstalk and ultrasensitivity in protein degradation
pathways. PLOS Comput Biol 2020, 16:e1008492.

8. Lander AD, Nie Q, Sanchez-Tapia C, Simonyan A, Wan FYM: Regulatory feedback on
receptor and non-receptor synthesis for robust signaling. Dev Dyn Off Publ Am Assoc
Anat 2020, 249:383–409.

9. Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG:
RuleMonkey: software for stochastic simulation of rule-based models. BMC
Bioinformatics 2010, 11:404.

10. Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-
Schellersheim M: Computational modeling of cellular signaling processes embedded
into dynamic spatial contexts. Nat Methods 2012, 9:283–289.

11. Drawert B, Hellander A, Bales B, Banerjee D, Bellesia G, Jr BJD, Douglas G, Gu M, Gupta
A, Hellander S, et al.: Stochastic Simulation Service: Bridging the Gap between the
Computational Expert and the Biologist. PLOS Comput Biol 2016, 12:e1005220.

12. Harris LA, Hogg JS, Tapia J-J, Sekar JAP, Gupta S, Korsunsky I, Arora A, Barua D,
Sheehan RP, Faeder JR: BioNetGen 2.2: advances in rule-based modeling.
Bioinformatics 2016, 32:3366–3368.

13. Boutillier P, Maasha M, Li X, Medina-Abarca HF, Krivine J, Feret J, Cristescu I, Forbes AG,
Fontana W: The Kappa platform for rule-based modeling. Bioinformatics 2018, 34:i583–
i592.

14. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR: COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst Biol 2013, 7:74.

15. Rackauckas C, Nie Q: DifferentialEquations.jl – A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia. J Open Res Softw 2017, 5:15.

16. Drawert B, Trogdon M, Toor S, Petzold L, Hellander A: MOLNs: A CLOUD PLATFORM
FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC
COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME. SIAM J
Sci Comput Publ Soc Ind Appl Math 2016, 38:C179–C202.

17. Andrews SS: Smoldyn: particle-based simulation with rule-based modeling, improved
molecular interaction and a library interface. Bioinforma Oxf Engl 2017, 33:710–717.

18. Kennedy J, Eberhart R: Particle swarm optimization. In Proceedings of ICNN’95 -
International Conference on Neural Networks. . 1995:1942–1948 vol.4.

19. Fortin F-A, De Rainville F-M, Gardner M-AG, Parizeau M, Gagné C: DEAP: evolutionary

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

algorithms made easy. J Mach Learn Res 2012, 13:2171–2175.
20. * Shockley EM, Vrugt JA, Lopez CF: PyDREAM: high-dimensional parameter inference

for biological models in python. Bioinformatics 2018, 34:695–697.

Shockley et al. present a Python implementation of the DREAM algorithm, an efficient
Monte Carlo method for parameter estimation, with PySB compatibility.

21. Feroz F, Hobson MP, Bridges M: MultiNest: an efficient and robust Bayesian inference

tool for cosmology and particle physics. Mon Not R Astron Soc 2009, 398:1601–1614.
22. Keating SM, Waltemath D, König M, Zhang F, Dräger A, Chaouiya C, Bergmann FT, Finney

A, Gillespie CS, Helikar T, et al.: SBML Level 3: an extensible format for the exchange
and reuse of biological models. Mol Syst Biol 2020, 16:e9110.

23. ** Zhang F, Smith LP, Blinov ML, Faeder J, Hlavacek WS, Juan Tapia J, Keating SM,
Rodriguez N, Dräger A, Harris LA, et al.: Systems biology markup language (SBML)
level 3 package: multistate, multicomponent and multicompartment species, version
1, release 2. J Integr Bioinforma 2020, 17.

SBML Multi is a standard to include multistate, multicomponent species within SBML,
bringing closer compatibility with rules-based modeling platforms.

24. Clerx M, Cooling MT, Cooper J, Garny A, Moyle K, Nickerson DP, Nielsen PMF, Sorby H:

CellML 2.0. J Integr Bioinforma 2020, 17.
25. Agapito G, Pastrello C, Guzzi PH, Jurisica I, Cannataro M: BioPAX-Parser: parsing and

enrichment analysis of BioPAX pathways. Bioinforma Oxf Engl 2020, 36:4377–4378.
26. Bergmann FT, Cooper J, König M, Moraru I, Nickerson D, Le Novère N, Olivier BG, Sahle

S, Smith L, Waltemath D: Simulation Experiment Description Markup Language (SED-
ML) Level 1 Version 3 (L1V3). J Integr Bioinforma 2018, 15.

27. * Szigeti B, Roth YD, Sekar JAP, Goldberg AP, Pochiraju SC, Karr JR: A blueprint for
human whole-cell modeling. Curr Opin Syst Biol 2018, 7:8–15.

Szigeti et al. propose a roadmap towards whole-cell dynamical models, including
discussion on technology and standards development.

28. Gyori BM, Bachman JA, Subramanian K, Muhlich JL, Galescu L, Sorger PK: From word

models to executable models of signaling networks using automated assembly. Mol
Syst Biol 2017, 13:954.

29. Choi K, Medley JK, Cannistra C, Konig M, Smith L, Stocking K, Sauro HM: Tellurium: A
Python Based Modeling and Reproducibility Platform for Systems Biology. bioRxiv
2016, doi:10.1101/054601.

30. Mallavarapu A, Thomson M, Ullian B, Gunawardena J: Programming with models:
modularity and abstraction provide powerful capabilities for systems biology. J R Soc
Interface 2009, 6:257–270.

31. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK:
Input–output behavior of ErbB signaling pathways as revealed by a mass action
model trained against dynamic data. Mol Syst Biol 2009, 5.

32. Smith LP, Bergmann FT, Chandran D, Sauro HM: Antimony: a modular model definition
language. Bioinformatics 2009, 25:2452–2454.

33. Sneddon MW, Faeder JR, Emonet T: Efficient modeling, simulation and coarse-graining
of biological complexity with NFsim. Nat Methods 2011, 8:177–183.

34. * Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

Peterson P, Weckesser W, Bright J, et al.: SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nat Methods 2020, 17:261–272.

SciPy 1.0 is an open-source library at the core of the scientific Python ecosystem,
including optimization, integration, interpolation, matrix algebra and much more.

35. Gillespie DT: Stochastic Simulation of Chemical Kinetics. Annu Rev Phys Chem 2007,

58:35–55.
36. Harris LA, Nobile MS, Pino JC, Lubbock ALR, Besozzi D, Mauri G, Cazzaniga P, Lopez CF:

GPU-powered model analysis with PySB/cupSODA. Bioinformatics 2017, 33:3492–3494.
37. Pino JC, Prugger M, Lubbock ALR, Harris LA, Lopez CF: Accelerated Simulations of

Chemical Reaction Systems using the Stochastic Simulation Algorithm on GPUs.
bioRxiv 2020, doi:10.1101/2020.02.14.948612.

38. Somogyi ET, Bouteiller J-M, Glazier JA, König M, Medley JK, Swat MH, Sauro HM:
libRoadRunner: a high performance SBML simulation and analysis library. Bioinforma
Oxf Engl 2015, 31:3315–3321.

39. Mitra ED, Hlavacek WS: Parameter Estimation and Uncertainty Quantification for
Systems Biology Models. Curr Opin Syst Biol 2019, 18:9–18.

40. Daniels BC, Chen Y-J, Sethna JP, Gutenkunst RN, Myers CR: Sloppiness, robustness,
and evolvability in systems biology. Curr Opin Biotechnol 2008, 19:389–395.

41. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP: Universally
Sloppy Parameter Sensitivities in Systems Biology Models. PLoS Comput Biol 2007,
3:e189.

42. Kochen MA, Lopez CF: A Probabilistic Approach to Explore Signal Execution
Mechanisms With Limited Experimental Data. Front Genet 2020, 11.

43. Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA: Treatment of input
uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain
Monte Carlo simulation. Water Resour Res 2008, 44:n/a-n/a.

44. Floudas CA, Pardalos PM: State of the Art in Global Optimization: Computational Methods
and Applications. Springer Science & Business Media; 2013.

45. Valderrama-Bahamóndez GI, Fröhlich H: MCMC Techniques for Parameter Estimation of
ODE Based Models in Systems Biology. Front Appl Math Stat 2019, 5.

46. Hart WE: Python Optimization Modeling Objects (Pyomo). In Operations Research and
Cyber-Infrastructure. Edited by Chinneck JW, Kristjansson B, Saltzman MJ. Springer US;
2009:3–19.

47. Shockley EM, Rouzer CA, Marnett LJ, Deeds EJ, Lopez CF: Signal integration and
information transfer in an allosterically regulated network. Npj Syst Biol Appl 2019,
5:1–9.

48. * Mitra ED, Suderman R, Colvin J, Ionkov A, Hu A, Sauro HM, Posner RG, Hlavacek WS:
PyBioNetFit and the Biological Property Specification Language. iScience 2019,
19:1012–1036.

PyBioNetFit is a tool for model parameter estimation, uncertainty characterization, and
agreement with experimental data.

49. Schmiester L, Weindl D, Hasenauer J: Efficient gradient-based parameter estimation for
dynamic models using qualitative data. bioRxiv 2021, doi:10.1101/2021.02.06.430039.

50. Salvatier J, Wiecki TV, Fonnesbeck C: Probabilistic programming in Python using
PyMC3. PeerJ Comput Sci 2016, 2:e55.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

51. Van Hoey S, van der Kwast J, Nopens I, Seuntjens P: Python package for model
STructure ANalysis (pySTAN). 2013, 15:EGU2013-10059.

52. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G,
Isard M, et al.: TensorFlow: A System for Large-Scale Machine Learning. 2016:265–
283.

53. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein
N, Antiga L, et al.: PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019,

54. Liepe J, Barnes C, Cule E, Erguler K, Kirk P, Toni T, Stumpf MPH: ABC-SysBio—
approximate Bayesian computation in Python with GPU support. Bioinformatics 2010,
26:1797–1799.

55. Hunter JD: Matplotlib: A 2D Graphics Environment. Comput Sci Eng 2007, 9:90–95.
56. Plotly Technologies Inc: Collaborative data science. 2015,
57. Ramachandran P, Varoquaux G: Mayavi: 3D Visualization of Scientific Data. Comput Sci

Eng 2011, 13:40–51.
58. * Ortega OO, Lopez CF: Interactive Multiresolution Visualization of Cellular Network

Processes. iScience 2020, 23:100748.

PyVIPR is a visualization tool that aims to address network visualization problems with
community detection algorithms.

59. Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD: Cytoscape.js: a graph theory

library for visualisation and analysis. Bioinformatics 2016, 32:309–311.
60. Haiman ZB, Zielinski DC, Koike Y, Yurkovich JT, Palsson BO: MASSpy: Building,

simulating, and visualizing dynamic biological models in Python using mass action
kinetics. PLOS Comput Biol 2021, 17:e1008208.

61. Hagberg A, Swart P, S Chult D: Exploring network structure, dynamics, and function using
networkx. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); 2008.

62. Knuth DE: Literate Programming. Comput J 1984, 27:97–111.
63. Perkel JM: Why Jupyter is data scientists’ computational notebook of choice. Nature

2018, 563:145–146.
64. Lubbock ALR: Accredit scientific software for sustainability. Nature 2019, 572:586–586.
65. Fangohr H, Fauske V, Kluyver T, Albert M, Laslett O, Cortés-Ortuño D, Beg M, Ragan-Kelly

M: Testing with Jupyter notebooks: NoteBook VALidation (nbval) plug-in for pytest.
2020,

66. ** Pimentel JF, Murta L, Braganholo V, Freire J: A Large-Scale Study About Quality and
Reproducibility of Jupyter Notebooks. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). . 2019:507–517.

Pimentel et al. conduct a large scale reproducibility analysis of Jupyter Notebooks. They
identify common issues affecting reproducibility and suggest best practices.

67. Boettiger C: An introduction to Docker for reproducible research. ACM SIGOPS Oper

Syst Rev 2015, 49:71–79.
68. Kurtzer GM, Sochat V, Bauer MW: Singularity: Scientific containers for mobility of

compute. PLOS ONE 2017, 12:e0177459.
69. PEP 8 -- Style Guide for Python Code. Python.org [date unknown],
70. Olivier BG, Rohwer JM, Hofmeyr J-HS: Modelling cellular systems with PySCeS.

Bioinformatics 2005, 21:560–561.
71. Poolman MG: ScrumPy: metabolic modelling with Python. Syst Biol 2006, 153:375–378.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433125doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.433125
http://creativecommons.org/licenses/by-nd/4.0/

