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Figure 1: Left: Models created by two artists sculpting collaboratively starting from a sphere. Right: Collaborative edits to geometry and
materials. Colors on the left side and insets encode the total percentage of edits performed by each user: green for user A, blue for user B,
and cyan for both.

Abstract

Collaborative systems are well established solutions for sharing
work among people. In computer graphics these workflows are
still not well established, compared to what is done for text writing
or software development. Usually artists work alone and share their
final models by sending files. In this paper we present a system
for collaborative 3D digital sculpting. In our prototype, multiple
artists concurrently sculpt a polygonal mesh on their local machines
by changing its vertex properties, such as positions and material
BRDFs. Our system shares the artists’ edits automatically and seam-
lessly merges these edits even when they happen on the same region
of the surface. We propose a merge algorithm that is fast-enough
for seamless collaboration, respects users’ edits as much as possible,
can support any sculpting operation, and works for both geometry
and appearance modifications. Since in sculpting artists alterna-
tively perform fine adjustments and large scale modifications, our
algorithm is based on a multiresolution edit representation that han-
dles concurrent overlapping edits at different scales. We tested our
algorithm by modeling meshes collaboratively in different sculpting
sessions and found that our algorithm outperforms prior works on
collaborative mesh editing in all cases.

Keywords: collaborative modeling, digital sculpting and painting.

1 Introduction

Collaborative Digital Sculpting. Digital sculpting is a 3Dmodeling
paradigm where free-form surfaces are manipulated with tools that
mimic real-life sculpting of soft materials, e.g. clay. This paradigm
is particularly effective when designing organic shapes, since artists
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do not have concerns about mesh connectivity and topology details,
working always with high-resolution irregular meshes.

Cloud-based tools enable seamless, real-time collaboration between
users when editing a variety of contents, from documents to code.
In 3D modeling, seamless collaboration is still in its infancy. While
some commercial tools are available for collaborative CAD using
NURBS, e.g. [Onshape 2014], no commercial applications support
collaborative sculpting of free-form polygonal meshes yet. This is
the focus of our work.

Sculpting Properties. Collaborative sculpting is particularly chal-
lenging since high-resolution meshes need to be manipulated in
real-time and since artists work in a very unstructured manner. For
example, analyzing the workflows data from [Denning et al. 2015]
it is clear that artists work alternatively at different scales, mixing
large modifications to fine detail adjustments. For the large scale
edits, soft brushes are frequently as large as half the model. Fur-
thermore, sculpting is often combined with appearance painting to
define material parameters.

cSculpt. We present a prototype system for digital sculpting and
paintingwhere artists work concurrently and seamlessly on the same
model. In our system, each artist works on a local version of the
model. Collaboration is established by automatically sharing and
merging all edits at fixed time intervals that are fast enough for
seamless collaboration. The core contribution of our work is a
merge algorithm that can handle concurrent edits at different scales
on the same mesh regions. We propose the use of a multiresolution
hierarchy to encode edits at different spatial frequencies. At each
level, edits from different artists are encoded as linear transforma-
tions of the underlying vertex properties and are combined together
with weighted blending in an appropriate linear space. Edits at dif-
ferent levels are considered independent one from each other and no
blending occurs. Our merge algorithm is efficient, respects artists
intentions, and can handle both geometry and appearance parame-
ters.

Comparison with MeshHisto. [Salvati et al. 2015] presents a sys-
tem for collaborative modeling of low-polygonal and subdivision
meshes, based on robustly detecting conflicts between artists and
rejecting conflicted operations. If applied to sculpting, operations
would be in conflict whenever two edits touch the same vertex. Since
the use of large brushes is common, a conflict detection approach
would not work in our case. For example, in the results of this paper,
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MeshHisto would have rejected between 11% to 37% of the total
edits, effectively hindering collaboration entirely. This is not sur-
prising since it is addressing an entirely differentmodelingworkflow
that is not comparable to sculpting. We take an entirely different
approach and merge overlapping edits smoothly. Said another way,
we handle conflicts gracefully without rejecting edits.

Results and Contributions. In order to test our approach we de-
veloped a collaborative sculpting system prototype. We support
a variety of UI tools for mesh sculpting and painting, similar to
the ones offered by Blender [Blender 2014]. Fig. 1 shows models
created in collaborative sessions by two artists, where both geom-
etry and materials are edited. The supplemental video shows how
artists work seamlessly on these models. Our merge algorithm runs
in fractions of a second for meshes with hundreds of thousands of
faces. We tested the system both with fast synching times as well
as slow ones to simulate unreliable network communications be-
tween artists. In both cases, collaboration works well in practice, as
shown by the quality of the results generated by artists. We believe
that in exploring this topic we made two main contributions: (1)
demonstrating that seamless collaborative sculpting is possible and
works well in practice, and (2) proposing a multiresolution merge
algorithm that is efficient, respects user edits and handles geometry
and materials.

2 Related Work

Mesh Versioning Control. A versioning control system for 3D
scene was proposed in [Doboš and Steed 2012], where the scenes
are split into separated components. Two versions are automatically
merged if the edits act on different components, but when two users
act on the same one, a conflict is generated and has to be solved
manually. In contrast, we handle edits to overlapping regions of
the same mesh. An approximated diff and merge algorithm was
presented in [Denning and Pellacini 2013], but the slow execution
times, requiring minutes for 100K faces, do not permit collaborative
workflows.

Collaborative Modeling. While real-time collaborative editing of
texts or 2D images is well-established, collaborative 3D modeling
is still in its infancy. [Salvati et al. 2015] supports workflows for
low-polygonal meshes, while [Onshape 2014] targets NURBS edit-
ing for collaborative CAD. Both use a conflict detection approach.
[Li et al. 2001] uses remote locking for NURBSmodels disallowing
conflicting edits. As discussed before, the design of these systems
would not work for sculpting since most edits would be conflicted
and would have to be either discarded or locked, stopping collabo-
ration. We instead handle conflicts gracefully and merge smoothly
concurrent overlapping edits.

Multiresolution Merge. The challenges posed by our merge algo-
rithm are reminiscent of the ones encountered in the fields of mesh
deformation, e.g. [Rong et al. 2008], mesh morphing [Alexa 2003]
and detail transfer [Boscaini et al. 2015]. Similarly to what is done
in the cited works for surfaces representation, our solution relies on
geometric hierarchies, consisting in a progressively coarser to fine
representations of the users’ edits. Hierarchical multi-resolution
geometric structures of this kind are ubiquitous tools and their use-
fulness has been successfully demonstrated in a variety of geometry
processing applications, ranging frommesh editing [Lee et al. 1999]
to mesh streaming or compression [Khodakovsky et al. 2000] and
many others. The main purpose of our hierarchy is to merge edits
at different spatial frequencies to better respect user intentions. Fur-
thermore, our merge operator is orientation-agnostic as introduced
by [Sorkine et al. 2004] for fine mesh details, and then adopted in
multiresolution structures in [Rong et al. 2008]. From the point of
view of the objectives, a related previous work is found in the shape

synthesis-by-analogy technique presented in [Boscaini et al. 2015],
where, however, a single deformation is to be applied on different
base shapes rather than vice-versa. That approach would also be too
slow for our purpose.

In spite of these similarities, the problem in our setup is unique.
Our merge operator operates on triplets of shapes: a snapshot of the
last shared mesh and the two (or more) edited ones. Consequently,
our multiresolution structure targets shapemodifications rather than
shapes. Also, in our context merging happens in real time, meaning
the time budget is more stringent than for typical detail-transfer
applications.

3 Collaborative Sculpting

In our collaborative system, artists concurrently sculpt a model on
their machine. Collaboration is established by merging all artists’
edits at fixed time intervals on a central server, and broadcasting the
merged version back to all artists. Merge operations are fast enough
to avoid interrupting artists’ workflows. Merge frequency is chosen
by artists and can be made fast enough to give the impression of
editing the same live version of the model.

Our prototype supports editing indexed triangle meshes with ar-
bitrary properties stored at each vertex. We tested editing vertex
positions, (i.e. 3D sculpting), and per-vertex materials, represented
as microfacet BRDFs, (i.e. material painting). The same merge
operation supports both. Artists’ edits can be represented as the
mesh difference between the last agreed upon versions of the model
and the one just before the merge operation. More formally, a mesh
difference ∆M can be written as the set

∆M = {∆vi } with i ∈ E

where E is the set of the edited vertices, typically a subset of the
whole mesh, and v are the vertex properties. Intuitively, for vertex
positions pi , the mesh difference can be thought as the set of per-
vertex translations ti = ∆pi , i.e. the mesh deformation sculpted
by an artist. For BRDF parameters, the difference corresponds to
per-vertex shifts in the relative parameter domain.

3.1 Merge Algorithm

The core of our system is a merge algorithm that applies the edits
∆Mj concurrently sculpted by each artist j to the last agreed upon
version of the model M , to compute the new merged mesh Mm
(Fig. 2 shows an example merge).
Formally,

Mm = merge({∆Mj }, M)

For edits that are disjoint on the surface, the merged version can
be trivially computed by updating the vertex properties with their
respective deltas. For overlapping edits, the merge operation should
respect each artists’ intentions as expressed by their mesh differ-
ences. A further concern that needs to be addressed is that sculpting
sequences consist of both large scale variations and fine detail ad-
justments. Analysis of digital sculpting practices [Denning et al.
2015] reveals that both edits are alternated freely while sculpting,
so situations where edits are applied concurrently at different scales
are very likely.

The remainder of this section will formally describe the design goals
of our merge operation and present an efficient algorithm that satis-
fies such goals. Our algorithm supports any number of concurrent
edits and arbitrary per-vertex parameters encoded in linear spaces,
namely sculpted vertex locations and microfacet BRDFs, encoded
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Figure 2: Example of applying our merge algorithm to two concurrent edits of geometry (left) and geometry and materials (right). We
artificially designed these cases to be challenging since the edits overlap significantly and are performed at different spatial scales. In spite
of these factors, the merged geometry respects the user intentions well.
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Figure 3: Example of different per-vertex combination of transla-
tions (bottom), relative to the user edits (top). From left to right:
average, cumulation and weighted sum. Note how the weighted sum
is the only one that respects artists’ intentions.

in the linear spaces presented in [Di Renzo et al. 2014]1. For sim-
plicity of explanation though, we will present the algorithm for the
case of two artists’ editing vertex locations with ∆M0 and ∆M1.

Properties. As stated above, the merge operation should preserve
all artists intentions as much as possible. This objective cannot be
uniquely defined in the presence of overlapping edits. However, a
few necessary properties could be described as:

• identity: when either ∆M0 or ∆M1 are locally null, then Mm
must match the other difference at those locations – this cover
the case of non-overlapping edits;

• idempotence: when ∆M0 and ∆M1 are locally identical, Mm
must match them at those locations – this corresponds to the
case where users intentions coincide;

• commutativity: Mm is invariant to the swapping of ∆M0 and
∆M1– intuitively, since edits are performed independently
from each other, neither can be prioritized;

• continuity: small mesh differences∆M0 and∆M1 must induce
small changes in Mm ;

• generality: the merge algorithm mush not depend on specific
editing operations – this allows us to support all sculpting and
painting tools.

Per-vertex merge. For vertex positions, the mesh differences of
each artists are sets of per-vertex translations ti0 = ∆pi0 and t j1 = ∆p j

1
respectively for the edited regions i ∈ E0 and j ∈ E1. We can
define a merge by computing a per-vertex combined translation
tkm for each vertex k in the mesh. One possibility would be to
average the per-vertex translations for each vertex k, i.e. tkm = (tk0 +

1This is akin to the support of arbitrary parameters in commercial imple-
mentation of subdivision surface algorithms

tk1 )/2. This definition though would break identity, since the effect
of each sculpted edit will be halved in non-overlapping regions. This
problem would be avoided by summing the translations instead, i.e.
tkm = tk0 + tk1 . This solution though breaks idempotence since
in overlapping regions merging two identical edits will result in
doubling their effect. We can obviate both concerns by averaging
each artists translation weighted by their magnitudes, i.e.

tkm =
|tk0 |

|tk0 | + |t
k
1 |
· tk0 +

|tk1 |

|tk0 | + |t
k
1 |
· tk1 .

This definition is equivalent to averaging translations for equal trans-
formations, and summing them for non-overlapping edits, thus ful-
filling both idempotence and identity. When edits are overlapping
and non-identical, averaging them provides a reasonable definition
that respects as best as possible both intentions. Fig. 3 shows an
example comparing the discussed merge solutions.

Multiscale merge. When edits are performed at different scales
though, the simple solution presented does not suffice. Consider the
case of concurrently performing a large scale edit ∆M0, e.g. uni-
formly displacing an entire portion of the editedmesh, and a fine one
∆M1, e.g. sculpting a small detail over the displaced surface. For
vertices where ∆M1 is performed, the otherwise uniform transfor-
mation of ∆M0 is partially negated, and in the merged modification
artefacts arise. To obviate this problem, we represent edits as multi-
resolution hierarchies, and combine them at each hierarchical level
independently. This way edits at the same spatial frequency, i.e. the
same level of the hierarchy, are merged together, but independently
from the other scales.

Rotational Invariance. When merging vertex positions, one sur-
viving limitation emerges when a large scale edit modifies the local
orientation of the mesh region where a concurrent detail edit is
acting. The problem with this scenario is that the translation trans-
formation is not invariant to rotation. This does not occur for BRDF
parameters since rotations have no useful semantics in the appear-
ance domain. For the geometry case, artefacts arise. Facing similar
problems, [Sorkine et al. 2004] factors out the rotation of a Lapla-
cian shape descriptor, and [Lipman et al. 2005] introduce rotation
invariant coordinates to describe the shape. Our case differs in that
we aim at representing shape modifications rather than shapes. Our
solution consists simply in switching to a more generic class of
transformations, namely isometries, i.e. roto-translations, instead
of translations. This choice is motivated by the observation that
typical sculpting edits can be locally approximated well by rigid
transformations.

We represent isometries as dual quaternions [Kavan et al. 2008],
since this representation is efficient and produces better interpolation
than affine matrices. We efficiently approximate dual quaternion
interpolation as [Kavan et al. 2008] by their weighted sum, followed
by renormalization. Formally,

qm = normalize( m(q0) · q0 ⊕ m(q1) · q1 )
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Figure 4: Visualisation of merge hierarchy for the example in Fig. 2. Multiresolution hierarchies are shown coarse to fine from left to
right. Red coloring shows the magnitude of the remaining transformation with respect to the coarser level transformations, stored at the
corresponding level.

where ⊕ is the quaternion addition and m(q) is the magnitude of
the isometric transformation encoded in dual quaternion q, which
we define as the distance from the identity dual-quaternion 1:

m(q) = |q − 1|

The isometry addition⊕ is defined, as normal, as the addition of the 8
real numbers of their dual quaternion representation, preceded when
needed by a flip of sign of either one operand, to take into account the
sign invariance of this representation (i.e. that −q and +q represent
the same isometry). Normally, the sign flip is issued when the
rotational parts of the operands have a negative dot product (using
the dot product of R4). In our case, we can make the assumption
that the rotational angle is smaller than 90 degrees, so we can use
a simpler and equivalent test: we just ensure that the real primal
component of each operand is positive, and flip the sign of that
operand otherwise. This has the important benefit of ensuring that
⊕ is associative in addition to commutative, when simultaneous
edits from more than two users are merged together.

Multiscale Hierarchy. The simplest hierarchical structure we con-
sidered is a tree, with one leaf node per mesh vertex, and all leaves in
the same level. Higher level in the hierarchy corresponds to clusters
of spatially-close vertices. We store the original mesh differences
by decomposing them at different levels of the hierarchy. The root
node stores a global transformation, affecting the entire mesh, and
each other node stores the residual transformations with respect to
the summed transformation from the root to its parent. Decom-
posing edits over a hierarchy is not uniquely defined, with different
choices producing different merged outcomes. We choose a pro-
jection that minimises the magnitudes of stored deformations, de-
scribing per-vertex transformations with a few, large modifications
closer to the root, leaving the remaining minimal transformation to
deepest nodes. With this projection we aim to minimize the number
of nodes that will represent user edits.

In a tree, sibling nodes correspond to disjoint groups of spatially-

localized mesh vertices. When edits cross these node boundaries,
artefacts may appear in the final result. We address this by replacing
the single parent transformation of each node with a blend of a small
number of parent node transformations at the immediately coarser
level, with fixed, given weights. As a data structure, this is similar
to what is routinely used for skinned animations (e.g. [Kavan et al.
2008]), where each vertex is associated with a given blend of a
small number of bones transformations. In our formulation, each
node stores the residual transformation with respect to the averaged
transformations of all its parent nodes. Fig. 4 shows an example of
the multiscale hierarchy.

Hierarchy Construction. We build a multiresolution structure
based on the mesh connectivity, where we take advantage of the
consistent tessellation density and the relative regularity of meshes
typically used in digital sculpting. Our mutiresolution structure
consists of an array of levels, L0 to Ln from finest to coarsest. Each
level consists in a set of nodes, and each node stores links to up to
K parent nodes in the immediately coarser level, with associated
weights summing up to 1. K is a parameter of the system; our ex-
periments indicate that K = 7 achieves good results. Additionally,
during construction only, we use a notion of reciprocal adjacency
between nodes on the same level, by adding horizontal links between
pairs of nodes at the same level.

The finest level L0 has one node for each vertex, and one horizontal
link for each triangle edge. Iteratively, a coarser level Li+1 is
constructed from the previous finer level Li , until all levels are
created. At each iteration, we populate Li+1 by selecting a subset
of nodes of Li with a simple heuristic, as follows. Initially, Li+1 is
empty and no node of Li has any parents. Then, we pass through
all nodes of Li once, in an arbitrary order: if we encounter a node
na of Li with no parent yet, we and add it as a new node nb in
Li+1, and we add nb in the parent-set of na and of all its adjacent
nodes. Note that this selection depends on the arbitrary order but it
is always fairly regular: no two adjacent nodes are selected, but at
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least one node is selected around a non-selected node.

If the newly created level Li+1 has asmany nodes as Li , we discard it
and the construction is over. This happenswhen Li has a single node
for each connected component, i.e. normally one. Otherwise, we
proceed to finalize level Li+1, in two steps. First, we add horizontal
edges to it. For every horizontal edge in Li , connecting nc and nd ,
we consider their first parents n′c and n′

d
in Li+1, and, if they are

distinct nodes not yet connected by an edge, then we add that edge.
Second, we adjust the sets of parents and relative weightings. We
provisionally initialize all weights in each parent-set in Li as one
over the cardinality of the set. Then we apply a smooth operator
to all sets of parents. We add to the set of parent of each node the
original sets of parents of all its neighbors, then renormalize it so
that their sum is one again. The sum of two sets of parent is defined
as the union of the two sets, with summed weights for elements
present in both. Finally, we trim all the sets of parent to leave only
the K parents associated with the largest weights and renormalize
the weights again.

Hierarchy Statistics. In the ideal case of a fully regular mesh,
this heuristic builds coarser levels with a number of nodes ranging
between a ratio of 0.16 and 0.25 of immediately finer level. In real
cases, we found this ratio to be between 0.25 to 0.5. The number of
levels therefore typically ranges between 6 to 14. Empirically, we
found the total number of nodes in all levels to be around 1.33 times
the number of vertices.

Per-Vertex Isometries. For each edit, isometries are first com-
puted at each mesh vertex in such a way that the transformed vertex
matches exactly the edited one and its transformed neighborhood
corresponds approximately to the edited one. A typical solution
(e.g. [Sorkine et al. 2004]) consists in first fitting an affine transfor-
mation that maps a neighborhood into the other, with least squares,
and then extracting the isometry closest to the affine with SVD. We
prefer a faster approximation that avoids the linear minimization
step. We first compute the rotational part as a quaternion for each
triangular face: we apply SVD to the unique 3×3 Amatrix that maps
two face edges, e0a and e1a , along with the original face normal
na , into the two corresponding transformed faces edges e0b and e1b
and normal nb :

A =
(

e0b , e1b , nb
)
·
(

e0a , e1a , na
)−1

We then accumulate these per-face rotational part of the quaternions
at vertices, and renormalize them. This will result in the rotational
part qR of the complete isometry, that will be represented itself as
the dual quaternionq = qR+ε ·qT . The translational quaternion part
qT of each vertex is finally computed so that each vertex originally
in the 3D position pa is moved exactly into its edited 3D position
pb :

qT = quat(0, pb/2) · qR − qR · quat(0, pa/2)

where quat(x, v) is the quaternion having x as the real part and
vector v as the imaginary parts.

Multiscale Isometries. Given a per-vertex isometry for each edit,
we decompose it onto the hierarchy by computing, at each level,
the residual isometry from the finest to coarsest level. For each
level Li+1, we compute the isometry of each node as the average
transformation of its children in the immediately finer level Li . We
do this by zeroing all dual quaternions in Li+1 and then passing over
each node in Li to sum its dual-quaternion over the nodes in its parent
set, accordingly weighted. We finally normalize all accumulated
dual-quaternions. We then compute the residual isometry qr of
each node in Li by removing from its isometry q f the isometry qp
averaged on its parents in Li+1:

qr = q f · q−1p

user a

user b

multiscale
translation

multiscale
isometry

multiple parents 
translation

multiple parents
isometry

single scale
isometry

single scale
translation

EDITS MERGE ALTERNATIVES

Figure 5: Comparison of different variations of merge algorithms.
Note how the inclusion of isometries, multiscale formulation and
multiple parents renders the algorithm stable in this challenging
case. Please refer to the text for a detailed discussion of the various
algorithm’s variants.

where dual-quaternion q−1p denotes the inverse of dual-quaternion
qp . During all operations, we exploit the efficiency of dual-
quaternions for blending, inversion, composition, and normaliza-
tion.

Final Merged Mesh. Since each edit is now represented as dif-
ferent per-node assignment of residual isometries over the same
hierarchical structure, we can compute the merged isometry just by
combining the respective dual-quaternion associated independently
at each node and each level using the weighted dual-quaternion
combination introduced before. We compute per-vertex combined
transformations by traversing the hierarchy fromcoarsest to the finest
level, and, at each level, computing the node transform by applying
the residuals to the parent transforms. We obtain the merged mesh
by applying the combined per-vertex transformations to the starting
mesh vertices. Fig. 5 shows a comparison between the discussed
variants of our merge algorithm.

3.2 Prototype Implementation

Sculpting tools. Our system can in principle accommodate any
sculpting tool. Our prototype implementation supports a toolset
similar to the one offered by Blender and based on the work from
[Angelidis et al. 2006], [von Funck et al. 2006] and [Huang et al.
2007]. In particular, controlled by a mouse or a tablet device, gaus-
sian and textured brushes are used to target and define an influence
area on the mesh surface. Relative surface portions will undergo
a deformation defined by a local transformation, weighted by the
brush influence and an additional global strength parameter. In this
formulation brushes can apply various deformations, such as relief
and engraving to simulate addition and removal of plaster, local
filtering for smoothing and sharpening surface features and tools
like pinching, grabbing, bulging and local twisting tools, in order to
mimic claymanipulation. Finally, we support edit saturation (which,
during interaction, avoids the exaggerated accumulation of transfor-
mations by clamping their weighting) and symmetry enforcement
tools support that can be enabled to mirror brush strokes over the
surface.

Painting tools. We edit materials with a simple vertex painting in-
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Editing Session Edits Collaboration Comparison w/ MeshHisto
Model Length Total Unser A User B Merges Merge Time (s) Sync Time (s) Conflicts Disabled Edits

Man 38m 1197 50% 50% 337 0.018 5 92 213 (18%)
Turtle 25m 1293 46% 54% 250 0.017 5 68 148 (11%)
Alien 34m 775 50% 50% 92 0.018 20 62 290 (37%)
Dyno 45m 1327 55% 45% 119 0.018 20 74 399 (30%)
Skull 22m 647 60% 40% 63 0.017 20 50 208 (32%)
Turtle 16m 553 39% 61% 134 0.02 5 - -
Dyno 10m 417 55% 45% 22 0.02 20 - -

Table 1: Statistics of our collaborative modeling sessions for models with 320K faces. When possible, we report comparisons with [Salvati
et al. 2015] that only supports geometry changes.

terface (similar to the one offered by Blender), where a user can alter
per-vertex BRDF’s albedo, metallicity and roughness. Since these
are not linear parameters, we merge their values by first projecting
them on the linear parameterization of [Di Renzo et al. 2014]. Our
system allows brushes that alter geometry and material at the same
time, e.g. for breaking up a clean mirror into a noisy and rough
metal.
While editing we preview the manipulated material under natural
illumination, by employing precomputed convolutions of an envi-
ronment map [Křivánek and Colbert 2008] with spherical gaussian
kernels, chosen to be proportional to a fixed number of Phong lobes
[Iwasaki et al. 2012].

Communication. Merging happens at fixed time intervals. Be-
tween merges, artists’ clients communicate mesh differences via
asynchronous socket connections. The asynchrony ensures that the
interface is not blocked even when diffs are large. Merging happens
on the server that broadcast the merged version back to all clients,
again asynchronously to avoid blocking. In this prototype, any user
has a local copy of the mesh he/she can keep working on: all users’
copies are frequently merged together by the server.

3.3 Discussion and Limitations

Comparison with MeshHisto. Wecompare our approachwith [Sal-
vati et al. 2015], a system for collaborative low-polygonal modeling.
MeshHisto’s diff and merge algorithm work on the complete history
of edits created during the results production. In that system, a
conflict occurs if two editing histories modify the same mesh ele-
ments. In that case, all conflicting operations are eliminated. The
algorithm presented in this paper overcomes the notion of conflict
and merge is always performed even if overlapping area exists in
different histories. In Table 1, we show that if we apply MeshHisto
to our editing sequences, the total amount of conflicting operations
would be very high for sculpting, making such system entirely im-
practical in our domain. In particular, we found that the number of
rejected operations is up to 37% of the total amount of edits made
by the users. As discussed before, this is due to an entirely different
workflow supported by two systems. Furthermore, maintaining the
full history would not be practical storage-wise when sculpting large
meshes.

Limitation: Connectivity Updates. Our prototype implementation
does not currently handle mesh refinement during sculpting. While
we support very high resolution meshes, the overall system would
benefit from dynamically applying a local topology optimization
similar to [Hoppe et al. 1993]. We believe that this could be achieved
without changing significantly the system architecture nor the merge
algorithm if mesh refinement is deferred to the server. In particular,
connectivity update is a digital sculpting well-known subproblem
with established solutions; in our case, connectivity updates would
change mesh updates representation to include small sequences of

local operations (edge-flips, collapses and splits). The server, right
before merging, would apply the same connectivity updates to its
meshes and from that, merge algorithm could continue as before.
Since these are just implementative tasks, we delegate them to future
work.

Limitation: Scale Invariance. The situation in which our merge
operator performs the least satisfactory, toward the objective of
respecting users’ intentions, is when a large scale edit consist in the
local rescaling of a large region that is merged with a fine detail
edit on that region. The issue is that internally we represent residual
transformation as isometries, as opposed to similarities. However, it
is not trivial to extend to similarities the same “correct”way inwhich
unit dual quaternions blend isometries. Specifically, the problem
with specifying the scaling separately lies in the determination of the
center of scaling for the blended transformations. Here, no trivial
solution works. Affine matrices, on the other hand, are known to
produce robust results, but, being linear, can only produce the same
result which we would get by interpolating transformed points.

4 Results

We tested our system by collaboratively modeling meshes starting
from spheres to final shapes. We ran our prototype on standard
desktop machines with 3.4 Ghz Intel CPUs with Wacom Tablets as
input devices, and using the local network for data transport.

Models. Table 1 summarizes statistics of the sculpting sessions,
shown in Fig. 6. Each model is created by applying between 417
and 1327 brush strokes equally subdivided between two artists, in
sessions that vary in length between 22 and 38 minutes. We use
meshes with 320k faces, enough to obtain detailed final outputs.
From the figures, it is clear that artists work on overlapping regions
very frequently, demonstrating the need for a fast, detail-preserving
merge algorithm. We show sequences of edits in the supplemental
video. We choose models with a variety of styles, but focus on or-
ganic creatures since that is the most effective domain for sculpting.

Performance. We merge meshes interactively, taking less than a
tenth of a second. This is well below the average time between user
strokes, which is easily above a second. In our editing sessions, we
send on average 170 KB for each stroke, a number that obviously
vary with brush size. This works quite well in our networking setup
and is likely to work well also on common cloud services.

Collaboration. The models Turtle and Man were created by synch-
ing every 5 seconds. Sync time was chosen experimentally based
on the brush strokes duration, both on geometry and appearance
edits, that can last up to seconds when artists refine little features
or carefully move big portions of the model. At the same time, 5
seconds is short enough to allow seamless cooperation during edit-
ing. We also perform stress test of the algorithm by setting the sync
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Figure 6: Summary of the editing histories for models created in real-time collaboration between two users. Colors encode the amounts of
edits applied in each snapshot by users to relative surface areas: green for user A, blue for user B, and cyan for both

time to 20 seconds in order to simulate latency. This has the effect
of increasing the number of overlapping edits. These sync times
correspond to between 2 and 5 edits per users for each merge, with
edits that can act on a large number of vertices depending on brush
size. In both cases, our algorithm preserved user intentions very
well.

In our prototype we notify that a merge was performed by using
smooth fading colors of all users on edited model. An artist can im-
mediately choose how to change its future edits for the just changed
mesh. In our experiments, despite the presence of overlapping edits
during interaction, this feedback allowed artists to work seamlessly
without communication even in the simulated high latency case.

Materials. Fig. 7 shows sequences for adding appearance details to
the Turtle and Man models. These editing sessions are between 11
and 16 minutes long. Collaborative appearance painting has over-
lapping frequency slightly higher than the sculpting one. This is
due to the difference in speed and size of stroke interaction between
painting and sculpting manipulation, e.g. area filling in albedo edit-
ing. Even in this case, the system merged seamlessly, despite the
amount of data being varied is higher, since appearance manipu-
lation require more data to be altered. Performance changes were
negligible even when geometry and appearance were manipulated
and merged at the same time.

Informal User Study. [Salvati et al. 2015] presents a user study that
supports the preference for real-time collaboration when editing a
model between users. Our system follows the same user workflow
as theirs, so the same conclusion should be true. To further vali-
date this claim, we performed an informal user study with the same
methodology as [Salvati et al. 2015]. We refer the reader to the
original paper for details. Here we briefly summarize our results.
We asked 12 subjects to perform a matching and an open task. Six
subjects are novices of 3D modeling while the others have knowl-
edge of it. The matching task asks to match the final shape of Fig. 4
starting from a simpler mesh version, while the open task asks to
customize the shape of the Dyno model. Each task lasted 5 minutes
and was performed twice with the system synching every 5 seconds,
as our results, or 150 seconds, to simulate offline collaboration.
10 subjects consistently rated realtime collaboration better than the
other, while 2 preferred the offline workflow. Looking at the com-
ments in the questionnaires, the 2 outliers declared that they prefer to
work alone on their art, avoiding collaboration altogether. The other
subjects expressed a strong preference for real-time collaboration,
rather than offline one supporting our workflow entirely. This group
includes all trained subjects. These results are exactly comparable
to [Salvati et al. 2015]. We report comments from users preferring
realtime collaboration: “I felt comfortable when I wanted to extend
some edit in regions where the other artist is working”, “real-time
would allow for a better cooperation”.
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Figure 7: Summary of the editing histories for both geometry and
appearance editing realized in real-time collaboration between two
users.

5 Conclusions

In this paper we present a system for seamless collaborative sculpt-
ing, where collaboration is enabled by automatically sharing users
edits and merging them in a reliable manner. We support edits in
both geometry and materials allowing the creation of full meshes.
By considering only variations of vertex properties, our algorithm
is independent of the tools being used by artists to produce these
changes. We use a multiscale representation to accurately han-
dle concurrent edits applied at different spatial frequencies. In the
future, we plan to augment our system by considering arbitrary
topology variations, including concurrent changes to the genus, and
the editing of skinned animations.
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