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ABSTRACT This paper considers the problem of estimating the motion parameters of a low-observable
high-speed maneuvering target with high-order motions, where the target’s complex motions will result
in the range migration (RM) and Doppler frequency migration (DFM) effects within the observation time
interval, which will significantly affect the radar performance. Based on the Hough transform (HT) and the
polynomial Chirplet transform (PCT), a novel method for the motion parameter estimation, which we coin
as HPCT, is proposed in this paper. It first employs the trajectory feature extracted from the image of range
profiles by the HT to correct the first-order RM and resolve the Doppler ambiguity. Then, it compensates
the residual range curvature and the DFM with the motion parameters estimated from the time-frequency
ridge, which is extracted from the highly concentrated time-frequency representation (TFR) generated by the
PCT. After that, the energy of radar returns can be coherently integrated along the target’s moving trajectory.
In addition, we evaluate the parameter estimation performance, integration performance and computational
cost of the proposed method via theoretical analysis or numerical experiments. The results show that in
terms of the anti-noise ability, cross-term interference avoidance, measurement accuracy and computational
complexity, the HPCT is superior to some common methods for the motion parameter estimation. Finally,
we extend it to the scenario of multiple targets with different motion orders.

INDEX TERMS Motion parameters estimation, Hough transform, polynomial Chirplet Transform,
time-frequency representation, feature extraction.

I. INTRODUCTION
A. MOTIVATION AND RELATED WORKS
Under low signal-to-noise ratio (SNR) environment, robust
and effective motion parameter estimation of moving target
is one of the fundamental and important subjects in the field
of radar signal processing, since the estimated motion infor-
mation is very meaningful for the target detection, tracking,
imaging and identification [1]–[11]. It is well known that
the SNR of radar returns can be improved significantly by
means of the coherent integration among multiple pulses [1],
which is extremely helpful for the motion parameter esti-
mation. However, for a maneuvering target, the target’s
complex motion usually leads to the range migration (RM)
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and Doppler frequency migration (DFM) [8]–[13]. Espe-
cially for the high-speed maneuvering target with complex
motions, these two effects may inevitably cause the energy of
radar returns spread in both the time and Doppler frequency
domains. If these two effects cannot be compensated pre-
cisely and simultaneously, then the radar performance will
be seriously affected because the echo energy could not be
efficiently exploited to improve the SNR of radar returns.

In the past decade, the issue of eliminating the effects
of RM and DFM simultaneously has attracted considerable
attention [8]–[34], where the target’s movement within the
observation time interval is generally modeled as a polyno-
mial function. In order to get better fidelity, the order of
the motion model discussed in different literatures is getting
higher in recent years. It improves from the uniform velocity
model [14]–[18] to the uniform accelerationmodel [19]–[23],

35178 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9786-7265
https://orcid.org/0000-0001-5182-223X
https://orcid.org/0000-0002-0243-9311
https://orcid.org/0000-0001-7599-5602
https://orcid.org/0000-0003-2968-2888


H. Lin et al.: Radar Maneuvering Target Motion Parameter Estimation

then to the uniform jerk model, and even to the arbitrary high-
order motion model. Focus on the high-speed maneuvering
target whose motion order is no less than jerk, the relevant
studies could be roughly categorized into the following four
categories.

The first category utilizes the amplitude information or
the similarity/correlation between the envelope range profiles
to measure the target’s motion parameters, e.g., the range
centroid method [24], envelope cross-correlation method [3].
This kind of method is straightforward and computationally
efficient. However, in low SNR situation it could not accu-
rately estimate the target’s motion parameters because the
abovementioned similarity/correlation would be corrupted by
the huge noise and interference.

The second category utilizes the phase characteristic of
moving target’s echoes and the coupling relationship among
target’s motion parameters, instantaneous range and echoes’
phase to reduce (or iteratively reduce) the order of RM and
DFMand then to estimate the target’s motion parameters. The
existing method includes adjacent across correlation func-
tion (ACCF) method [25], [26], symmetric autocorrelation
function method [23], [27] sequence/time-reversing trans-
form (SRT/TRT) [28], [29], frequency axis reversal trans-
form (FRT) [30], etc. In theory, this kind of method does
not need a searching procedure for the motion parameters.
Hence, its computational burden is comparatively low. How-
ever, it requires that the signal is strict symmetry either in
the time domain or in the frequency domain [23] so that
it would not work well under low SNR environment. Fur-
thermore, it would inevitably introduce plenty of cross-term
interferences that are troublesome for the maneuvering target
detection and motion parameter estimation in realistic and
practical application.

The third category utilizes the image feature extracted from
the range profile image and/or the time-frequency image
via the image processing and feature extraction techniques
to estimate the target’s motion parameters. For example,
B. D. Carlson et al. [31] realized long-time non-coherent
integration via Hough transform (HT) in a high-dimensional
data space. However, they did not consider the DFM effect of
the maneuvering target. In order to solve this problem and
realize the long-time coherent integration, X. Li et al. [32]
combined the Radon transform (RT) with the generalized
de-chirp process (GDP) to estimate the target’s motion
parameters. However, its computational cost is huge because
an exhaustive searching procedure is needed in GDP. P.
HUANG et al [33] combined the generalized high-order
ambiguity function (GHAF) with the HT to detect both
the range walk trajectory and the time-frequency trajec-
tory. However, the cross-term interferences will inevitably
appear due to the nonlinear transform property [33]
of GHAF.

The fourth category achieves the long-time coherent inte-
gration along the target’s moving trajectory via jointly
searching in the target’s motion parameter space, e.g.,
the generalized Radon Fourier transform (GRFT) [13],

generalized Keystone transform-generalized de-chirp pro-
cess (GKT-GDP) [12] and Radon-S transform [34]. This
kind of method can obtain desirable estimation and integra-
tion performances. However, for a maneuvering target with
complex motions, its main drawback is that the exhaustive
searching in high-dimensional parameter space is often com-
putationally very expensive, which may limit its practical
applications.

B. SUMMARY OF THE CONTRIBUTIONS
This study considers the problem of motion parameter esti-
mation for a low-observable high-speed maneuvering target
with high-order motions. The contributions of this work can
be summarized as follows:

• Based on the Hough transform (HT) [31] and the poly-
nomial Chirplet transform (PCT) [35], a novel motion
parameters estimation method, which we coin as HPCT,
is proposed in this paper. It first adopts the HT to
detect the target’s moving trajectory from the image
of range profiles and measure the target’s average
velocity within the observation time duration, which is
used for the first order range migration (a.k.a. range
walk) compensation (FRMC) and the Doppler ambi-
guity resolution (DAR). Then, it employs the PCT to
obtain the time-frequency representation (TFR) of the
signal that is extracted from the most representative
range sampling cell, and estimates the remaining motion
parameters, including the residual velocity, acceleration,
jerk, and so on, with the time-frequency ridge feature
extracted from the TFR. After that, it re-corrects the
RM and re-estimates the initial slant range from the
radar platform to the target. Finally, it coherently inte-
grates the energy of radar returns along the target’s
moving trajectory that is rebuilt by the estimated motion
parameters.

• Then, the parameter estimation performance, integration
performance and computational complexity of the pro-
posed method are investigated via theoretical analysis
or numerical experiments. The results demonstrate that
the proposed method has many advantages when com-
paredwith some commonmethods for motion parameter
estimation, such as excellent anti-noise performance,
free from cross-term interference, high measurement
accuracy and low computational complexity. Therefore,
it seems to be promising and attractive for the motion
parameter estimation of the high-speed maneuvering
target under low SNR environment.

• After that, the proposed method is extended to the
scenario of multiple targets, and its performance is eval-
uated with numerical experiment. The results demon-
strate that the proposed method can estimate the motion
parameters of the maneuvering targets with different
motion order accurately and integrate the signal energy
of each target along its moving trajectory, which is help-
ful to the target detection.

VOLUME 9, 2021 35179



H. Lin et al.: Radar Maneuvering Target Motion Parameter Estimation

TABLE 1. Mathematical notation.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows. The
transmitted and received signal models are briefly introduced
in Section II. In Section III, the motion parameter estimation
method via HPCT is proposed. Section IV evaluates the
performance of the proposed method via several numerical
experiments. Finally, we draw the conclusions and present
its possible future research direction in Section V. Beside,
although every mathematical notation is defined in the paper
prior to its use, for the sake of convenience, themajor symbols
used in this paper are summarized in TABLE 1.

II. SIGNAL MODEL
Suppose that the radar transmits a train of identical linear
frequency modulated pulses [1] for simplicity, i.e.,

st (t) = rect
(
t − mTr
Tp

)
cos

[
2π fct + πKr (t − mTr )2

]
,

(1)

where

rect (x) =

{
1 for |x| ≤ 1/2
0 otherwise,

m = 0, 1, . . . ,M − 1 and M is the number of transmitted
pulses during the observation time interval Tobs, Tp is the
pulse width, Tr denotes the pulse repetition interval, fc is the
carrier frequency, Kr = B

/
Tp is the frequency modulated

rate and B represents the signal bandwidth.

FIGURE 1. Geometry of radar and a moving target.

Suppose there is a moving target in the radar field of
view, and the geometry of the radar and a moving target
can be depicted by FIGURE 1. The target is moving from
its initial location at (a0, 0) with a heading angle [3] of θ ,
where the X coordinate is along with the radar-target line of
sight. At time instant t , the instantaneous slant range from
the radar platform to the target is R (t). According to the
Weierstrass approximation principle [36] and the ‘‘stop-and-
hop’’ assumption [1], R (t) can be approximated with a Q
order discrete-time polynomial function R (tm) within the
finite observation time interval, i.e.,

R (tm) =
Q∑
i=0

1
i!
ai t im, (2)

where tm = mTr represents the slow-time, a0 is the initial
slant range between the radar and the target, a1, a2 . . . , aQ
are the projected motion parameters of target along the
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FIGURE 2. Block diagram of the proposed method.

radar-target line of sight (LOS), such as the radial velocity,
acceleration, jerk, etc.

In accordance with the pulse repetition interval Tr and the
range sampling interval ts (range sampling rate fs = 1

/
ts),

the radar echo signals after quadrature demodulation within
the observation time interval Tobs and the range gate rg can be
discretized and then be rearranged as a two-dimensionalM×
N matrix (ignoring the noise components for convenience):

s (tm, tn) = Ar rect

(
tn − 21R (tm)

/
c

Tp

)
exp

(
−j

4π
λ
1R (tm)

)
exp

[
jπKr

(
tn −

21R (tm)
c

)2
]
, (3)

where m = 0, 1, . . . ,M − 1, n = −N
/
2,−N

/
2 +

1, . . . ,N
/
2−1,M is the number of received pulses, N is the

number of range sampling bins within the range gate rg, Ar
is the amplitude of received baseband echo signals, tn is the
discrete version of the fast-time t ′ = t−mTr−2Rc

/
cwith the

range sampling interval ts, λ = c
/
fc is the carrier wavelength,

1R (tm) = R (tm) − Rc denotes the relative range from the
scene range center Rc, which corresponds to the center of
range gate, to the target in the direction of the LOS.

After pulse compression (a.k.a. range compression), the
compressed signal in the slow time-range frequency (tm− fr )
domain can be expressed as

Sc (tm, fr ) = A1rect
(

fr
KrTp

)
exp[
−j

4π (fr + fc)1R (tm)
c

]
, (4)

where fr is the range frequency corresponding to the fast time
tn and A1 is the amplitude of Sc (tm, fr ).

By simply taking the inverse Fourier transform (IFT) of (4)
with respect to the range frequency fr , the so-called complex
range profiles in the tm − tn domain can be obtained:

sc (tm, tn) = A′1 sin c
[
KrTp

(
tn −

21R (tm)
c

)]
× exp

[
−j

4π
λ
1R (tm)

]
, (5)

where sin c (x) = sin (πx)
/
(πx), A′1 is the amplitude of the

complex range profiles.
According to (5), the envelope peak of sc (tm, tn) locates at

tn = 21R (tm)
/
c and the instantaneous Doppler frequency at

time tm is fd (tm) = −2
/
λ · d1R (tm)

/
dtm. Obviously, both

the location of envelope peak and the instantaneous Doppler
frequency vary with the slow-time tm, which are caused by
the target’s movement. If the envelope peak of range profile

moves beyond a range resolution cell, the effect of range
migration occurs. If the Doppler frequency varies beyond
a Doppler frequency resolution cell, the effect of Doppler
frequency migration occurs. As a result, the energy of radar
returns may spread across both the range coordinate and
the Doppler coordinate, which would deteriorate the radar
performance seriously.

III. TARGET MOTION PARAMETERS
ESTIMATION VIA HPCT
In this section, a method based on the Hough transform (HT)
and the polynomial Chirplet transform (PCT) is proposed to
estimate the motion parameters of a low-observable high-
speed maneuvering target with high-order motions. Its block
diagram is given in FIGURE 2.

A. TRAJECTORY DETECTION VIA HT
The Hough transform (HT) is an efficient feature detector for
detecting lines, curves, ellipses, etc., in noisy images [37].
In principle, it is designed to detect the parameterized curves
that are not required to be continuous or derivable [31]. These
properties are very useful in detecting the target’s moving tra-
jectory under low SNR environment. For example, the prior
knowledge of the target’s motion can be easily introduced and
the gaps in the moving trajectory caused by the outlier data
or noise can be tolerated to some extent.
According to (2), the target moving trajectory can

be approximately represented by a Q order polynomial.
Although the generalized HT can detect this type of polyno-
mial curves, its computational load will go up significantly
as the value of Q is increased [31]. Fortunately, in the so-
called coarse range migration compensation procedure [3],
we only need to align the prominent scatterer into the same
range resolution cell across the range profiles. Therefore,
we can approximate the target’s moving trajectory with a
piecewise linear function, and adopt the standard HT to detect
the trajectory to reduce the computational burden.
Before applying theHT to detect the target’smoving trajec-

tory, it is convenient to eliminate part of noise via a primary
thresholding transform as in the following:

s′c (tm, tn) =

{
|sc (tm, tn)| for |sc (tm, tn)| ≥ λAAmax

0, otherwise
(6)

with

Amax =
1
M

M−1∑
m=0

max
n
(|sc (tm, tn)|),

where maxn (|sc (tm, tn)|) represents the maximum amplitude
of the mth envelope range profile along the tn coordinate and
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Amax denotes the sample mean of maxn (|sc (tm, tn)|), λA is a
scaling factor used for adjusting the threshold.

As we have discussed, the target’s moving trajectory can be
approximated by a piecewise linear function for the coarse
range alignment. Each straight line in tm − tn space can be
defined by the angle θ of its normal and the distance ρ from
the origin to this line. The HTmaps all the threshold-crossing
points in the tm − tn space into a set of sinusoids in the ρ − θ
space by [31]

ρ =

√
t2n + t2m sin

(
θ + arctan

tn
tm

)
. (7)

If a straight line does exist in tm − tn space, it will be
represented in ρ − θ space as an intersection point of all of
the corresponding mapped sinusoids. In contrast, the mea-
surements attributed to the noise are randomly distributed
over the entire ρ − θ space. Therefore, a two-dimensional
accumulator array can be used to detect the lines with the
secondary threshold [31]. In addition, a masking operation
based on the prior knowledge about the target’s motion can
also be applied to further reduce the clutter components. With
all this in place, a point denoted by (ρc, θc) in ρ − θ space
with the strongest straight line return can be extracted as the
medoid (the most representative point) [38], [39] to estimate
the target’s average velocity in Tobs, which can be expressed
in terms of θc:

â1 = −
c
2
ts
Tr

tan θc. (8)

B. FRMC AND DAR
In order to correct the first-order rangemigration (a.k.a. range
walk) caused by the target’s velocity, with the estimated
average velocity â1 we can construct a compensation function
in the slow time-range frequency (tm, fr ) domain as follows:

Hr (tm, fr ) = exp
[
j 2π fr

2â1tm
c

]
. (9)

After multiplying (4) with (9) and performing the IFT
along the range frequency fr domain, we have

sra (tm, tn) = A′1 sin c
[
KrTp

(
tn −

2
c
loc (tm)

)]
× exp

[
−j

4π fc1R (tm)
c

]
(10)

with

loc (tm) = (a0 − Rc)+
(
a1 − â1

)
tm +

Q∑
i=2

1
i!
ai t im,

obviously, loc (tm) is the location of the envelope peak of the
mth range profile after FRMC.
It can be seen from (10) that the first order range migration

has been eliminated. Nevertheless, the high-order effects of
the range and Doppler migrations are still present. If the
variation of loc (tm) within the observation time interval is
less than the range resolution, then we can say that all the

range profiles are almost aligned, otherwise the value of Tobs
may need to be adjusted to reduce the effect of the high-order
motions. The index of range sampling cell where the target
locates at can be estimated by

n̂ = argmax
n∈[0,N−1]

[pr (n)] (11)

with

pr (n) =

M−1∑
m=0
|sra (tm, tn)|

N−1∑
n=0

M−1∑
m=0
|sra (tm, tn)|

,

where pr (n) can be understood as the probability of the target
locates at the index n. It is worth pointing out that if the target
is movingwith a constant velocity within the observation time
interval, we can directly compute the index n̂ with (ρc, θc).
The signal at the n̂th range sampling cell along the slow-

time tm coordinate can be approximated as

sra
(
tm; n̂

)
= A2 exp

−j4π
λ

Q∑
i=0

1
i!
ai t im

 . (12)

Because the Doppler frequency of the high-speed target
is usually higher than the pulse repetition frequency (PRF)
when the low-PRF scheme is employed to increase the range
unambiguous observation scope, the radar will be ambiguous
(or extremely ambiguous) in Doppler. With the estimated
average velocity â1, a compensation function used for resolv-
ing the Doppler ambiguity can be constructed as follows:

Hd (tm) = exp
[
j
4π
λ
â1tm

]
. (13)

Multiplying (12) with (13), we have

sd (tm) = A2 exp

−j4π
λ

Q∑
i=0

1
i!
εit im

 (14)

with 
ε0a = a0
ε1a = a1 − â1
εia = ai, i = 2, 3, . . . ,Q,

(15)

where εia, i = 0, 1, . . . ,Q, is the residual errors.
Obviously, sd (tm) is a polynomial frequency modulated

signal. Its instantaneous frequency (IF) can be expressed as

IF (tm) = −
2
λ

Q∑
i=1

1
(i− 1)!

εia t
i−1
m . (16)

If the maximal value of |IF (tm)| is less than half of PRF,
we can say that the Doppler ambiguity has been resolved.
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C. TIME-FREQUENCY REPRESENTATION VIA PCT
The Polynomial Chirplet transform (PCT) [35], [40] is a
parameterized time-frequency analysis method. Essentially,
it approximates the time-frequency trajectory of a given sig-
nal with a polynomial kernel function. By selecting a set
of appropriate characteristic parameters for the polynomial
kernel, the PCT is able to produce a time-frequency represen-
tation (TFR) with excellent energy concentration. In addition,
the PCT is free from the problem of cross-term interfer-
ences [35], [40].

In order to get at the time-frequency signatures of sd (tm),
motivated by the characteristics of PCT, we employ the PCT
to obtain the TFR of sd (tm), which can be stated as

PCTsd
(
t ′m, f ; c

)
=

∫
∞

−∞

sd (τ )8R
c (τ )8

S
c
(
t ′m, τ

)
×g∗σ

(
τ − t ′m

)
exp (−j2π f τ) dτ (17)

with {
8R

c (τ ) = exp
[
−j
∫
∞

−∞
κc (τ ) dτ

]
8S

c
(
t ′m, τ

)
= exp

[
jτκct ′m

]
and

κc (tm) = −
2
λ

Q∑
i=2

1
(i− 1)!

ci t i−1m ,

where8R
c (τ ) and8

S
c
(
t ′m, τ

)
are the frequency rotating oper-

ator and the frequency shifting operator, respectively, κc (tm)
represents the polynomial kernel of PCT with parameters
c =

(
c2, c3, . . . , cQ

)
, and gσ

(
τ − t ′m

)
denotes the Gaussian

window function centered at t ′m with time bandwidth σ .
According to (17) and [35], [40], if the kernel characteristic

parameters c =
(
c2, c3, . . . , cQ

)
accurately match the resid-

ual errors εa =
(
ε2a, ε

3
a, · · · , ε

Q
a

)
at all specific time instant,

then the DFM effect caused by the target’s complex motions
(i.e. acceleration, jerk, and so on) can be eliminated com-
pletely. With this in hand, the PCT can generate a TFR with a
superior energy concentration whose frequency resolution is
only determined by the bandwidth of Gaussian window 1

/
σ .

This is particularly helpful for extracting the time-frequency
ridge feature from the TFR to estimate the residual errors εia,
i = 1, . . . ,Q. Therefore, the determination of proper kernel
characteristic parameters is critical for the motion parameter
estimation.

D. TIME-FREQUENCY RIDGE FEATURE EXTRACTION
As we have discussed, in order to generate the highly
concentrated TFR, we need to determine a set of appropriate
characteristic parameters for the polynomial kernel. From
the generalized matched filtering point of view, if the num-
ber of the kernel characteristic parameters is comparatively
small (such as 1 or 2) and the appropriate prior information
about the target’s motion can be used to limit the searching
range, then the algorithms based on the brute-force exhaustive
search paradigm [39] may be a good choice for finding

the optimal set of kernel parameters. Nevertheless, for the
maneuvering target with complex motions, these two require-
ments are usually not satisfied. As a consequence, this kind
of algorithm is computationally very expensive, which may
not be the best choice in a radar system for the requirement
of real-time and online processing.
As we can see from (16), the instantaneous frequency (IF)

of sd (tm) is a polynomial function with unknown coeffi-
cients εia, i = 1, 2, . . . ,Q. Because this function can be
approximated by the time-frequency ridge extracted from
the TFR, obviously, we can use it to estimate the residual
errors εia via the polynomial regression [38] and then set the
kernel characteristic parameters c. Based on the principle of
time-frequency feature approximate [41], the procedure for
extracting the time-frequency ridge feature and estimating
the residual errors without searching in high-dimensional
parameter space can be stated as follows:
1) Initialize the order of the approximating polyno-

mial with a list Qploy, the Gaussian window size with
Nwin, the initial kernel characteristic parameters with c =
(0, 0, . . . , 0), and set the maximum number of passes over
the dataset (epochs) to Niter ;
2) Utilize (17) to generate the TFR of sd (tm) with c and

then extract the time-frequency ridge by locating the peaks
of TFR at each time instant;
3) Fit the time-frequency ridge with a set of polynomial

functions of order Gipoly (Gipoly ∈ Qploy) to determine the
value of Q by comparing the corresponding mean squared
errors (MSEs), and estimate the residual errors εia, i =
1, 2, · · · ,Q;

4) If Niter is not reached, update c with the estimated
residual errors ε̂a =

(
ε̂2a, ε̂

3
a, · · · , ε̂

Q
a

)
from step 3 and go

to step 2, otherwise output ε̂ia, i = 1, 2, · · · ,Q.
The reason we initialize c = (0, 0, . . . , 0) is that there is no

prior knowledge about εa can be used to set the kernel char-
acteristic parameters c at the beginning. It is also important to
mention that the right choice of the hyper-parameterQ in step
3 is crucial to find a good balance between over-fitting and
under-fitting [39]. Since the value of Q should be a relatively
small positive integer for the high-speed maneuvering target
in a finite observation time interval, the additional computa-
tional cost is relatively cheap.

E. REMAINING PARAMETERS ESTIMATION AND RMC
According to (15), the estimated motion parameters can be
updated by {

â′1 = ε̂1a + â1
â′i = ε̂ia i = 2, 3, . . . ,Q.

(18)

The range migration compensation function can then be
updated as

H ′r (tm, fr ) = exp

j2π fr 2c
Q∑
i=1

1
i!
â′i t

i
m

 . (19)
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With (19), after re-correcting the range migration, the range
profiles can be rewritten as

s′ra (tm, tn) = A3 sin c
[
KrTp

(
tn −

2
c
loc (tm)

)]
× exp

[
−j

4π fc1R (tm)
c

]
(20)

with

loc′ (tm) = (a0 − Rc)+
Q∑
i=1

1
i!

(
ai − â′i

)
t im

Compare loc′ (tm) with loc (tm) in (10), it can be seen
that both the range walk and the range curvatures caused by
the target’s high-order motions have been corrected with the
estimated motion parameters â′i, i = 1, 2, . . . ,Q. Substitute
sra (tm, tn) with s′ra (tm, tn) in (11), the index of range sam-
pling cell where the target locates at can be re-estimated as
n̂′, and the initial slant range between the radar platform and
the target can be calculated by

â′0 =
cts
2

(
n̂′ −

N
2

)
+ Rc. (21)

F. DFMC AND ENERGY INTEGRATION
Using the estimated motion parameters â′i, i = 0, 1, . . . ,Q,
the Doppler frequency migration compensation function can
also be re-constructed as

H ′d (tm) = exp

j4π
λ

Q∑
i=0

1
i!
â′i t im

 . (22)

With the re-estimated n̂′, we extract the signal at the n̂′th range
sampling cell along the slow-time domain and multiply it
with H ′d (tm), the Doppler frequency migration compensated
signal can be written as

s′d (tm) = A4 exp

−j4π
λ

Q∑
i=0

1
i!

(
ai − â′i

)
t im

 . (23)

It can be seen from (23) that the high-order DFMs have
been eliminated with the help of â′i. After that, the energy of
radar returns can be coherently integrated along the target’s
moving trajectory by performing the Fourier transform (FT)
on s′d (tm):

Sfocused,1D (fd ) =
∣∣FT [s′d (tm)]∣∣ . (24)

In addition, if we need the two-dimension (2-D) image of
target, it is also convenient to generate it with the estimated
motion parameters â′i, as in the following:

Sfocused,2D (fd , tn) =
∣∣FTtm {IFTfr [Sc (tm, fr )

H ′r (tm, fr )
]
H ′d (tm)

}∣∣ (25)

where Sc (tm, fr ) is the range-compressed signal in tm − fr
domain, FTtm (·) stands for the Fourier transform operation
with respect to tm and IFTfr (·) denotes the inverse Fourier
transform operation with respect to fr . It is worth pointing

out that in the case of extended target the â′i, i = 0, 1, . . . ,Q,
used in (25) should be the motion parameters of the most rep-
resentative point in the target, such as the centroid point [3].

G. DETAILED PROCEDURE
Based on the above derivation, the detailed flowchart of the
proposed method is summarized in FIGURE 3. The specific
procedures can be stated as follows:

1) Take the range compression to obtain the complex range
profiles sc (tm, tn);
2) Eliminate part of noise via the primary thresholding

preprocessing;
3) Perform Hough transform on the threshold-crossing

envelope range profiles s′c (tm, tn);

FIGURE 3. Detailed flowchart of the proposed method.
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4) Apply the secondary thresholding processing and the
masking operation to further suppress the clutter, and then
estimate the target’s average radial velocity based on the
extracted medoid point (ρc, θc);

5) Correct the first-order range migration with the esti-
mated average radial velocity â1;
6) Extract the signals at the medoid range sampling cell

along the pulses (slow time) domain based on the probability
of the location of the target;

7) Resolve the Doppler ambiguity with â1;
8) Perform PCT on sd (tm) to generate the TFR;
9) Extract the time-frequency ridge feature from the TFR;
10) Estimate the residual errors εia, i = 1, 2, · · · ,Q, via

the polynomial regression;
11) Estimate and refine the remaining motion parameters;
12) Re-correct the range migration and estimate the initial

radial range, and output the results, â′i, i = 0, 1, . . . ,Q;
13) DFMC and energy Integration, for motion parameter

estimation this step is optional, which is not included in
FIGURE 3.

H. COMPUTATIONAL COST
In what follows, we will analyze the computational
cost (complexity) of the major steps of HPCT. As mentioned
in the previous section, the numbers of range sampling cells
and received pulses are N and M , respectively. In the Hough
transform, the ρ − θ space is quantized in the ρ and θ
dimensions with each cell of size1ρ×1θ , the corresponding
numbers of grids are Nρ and Nθ respectively. In the PCT,
the Gaussian window length is Nwin, the number of epochs
is Niter and the polynomial order is Q.

First, since the computational cost of a 1-D FFT of N
points is O

(
N log2 (N )

)
[37], the cost (by separability) for

the range compression is O
(
2MN log2 (N )+MN

)
. Second,

as to detecting the target moving trajectory and estimat-
ing the target’s average velocity via HT, the computational
cost in this step mainly depends on the number of the
primary threshold crossing data points (Ne) and the length
Nl of the lines formed in the tn − tm space, the compu-
tational cost is in the order of O (NeNl) [37]. Third, for
the first-order RM compensation and the Doppler ambi-
guity resolution, the cost is O

(
MN +MN log2 N +M

)
.

Fourth, for the PCT operation, the computational cost
is O

(
Niter ·

(
NNwin log2 Nwin + NNwin

))
. Fifth, for the

time-frequency ridge feature extraction and the polyno-
mial regression, the cost is O

(
Niter

(
Q3
+MQ2

/
2
)/

4
)
[38].

Sixth, as to re-correcting the range migration and estimating
the remaining motion parameters, the computational cost is
O
(
MN +MN log2 N

)
. Seventh, for the DFM compensation,

1-D integration via a 1-D FFT ofM points, the computational
cost is O

(
M +M log2M

)
. Finally, according to FIGURE

2 and FIGURE 3, TABLE 2 summarizes the computational
complexity of the major steps in the proposed method for the
sake of clarity.

In this paper, the previous mentioned parameters are set
as: N = 4M , Nwin = M

/
4, Q = 4, Niter = 10. Because

TABLE 2. Computational complexity.

the maximum length of a straight line in tn − tm space is less
than
√
M2 + N 2, that is,Nl ≤

√
M2 + N 2. Suppose there are

100 primary threshold crossings for each range profile, thus
Ne = 100M . The total computational cost with respect to M
of the proposed method can be written as

CC (M) ≈ O(26M2 log2(M )+ (25+ 100
√
17)M2

+M log2M + 201M + 160). (26)

On the other hand, the computational cost for GRFT is
O
(
MNNvNaNj

)
[12], [13], [32] where M , N , Nv, Na, Nj

denote the number of echo pulses, range sampling cells,
searching velocity, searching acceleration and searching jerk,
respectively. Suppose that N = Nv = Na = Nj = M
for the sake of simplicity, then the computational burden of
GRFT is O

(
M5
)
. We compare the computational costs of

HPCT with that of GRFT by FIGURE 4. It is evident that the
computational cost of GRFT is significantly larger than that
of HPCT (the proposed method). For example, when M =
256, the computational cost of HPCT is about 3.9× 10−5 of
the GRFT; and whenM = 1024, it is about 6.5×10−7 of the
GRFT.

FIGURE 4. Computational cost versus integration pulse number.

IV. NUMERICAL EXPERIMENTS AND PERFORMANCE
ANALYSIS
In this section, several numerical experiments are presented
to demonstrate the effectiveness of the proposed method for
the motion parameters estimation of a low-observable, high-
speed maneuvering target with jerk motion in the Gaussian
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TABLE 3. Key Parameters of radar and target.

white noise background, where the key parameters of radar
and the target are listed in TABLE 3.

In order to reduce the side-lobe of the compressed signal,
the hamming weighting is adopted, the corresponding signal-
to-noise ratio loss and main-lobe broadening factor are about
1.36 dB and 1.47 [42], respectively. It should also be noted
that, in this paper, we do not adopt the Rayleigh range reso-
lution of 1r = c

/
2B (i.e., the main-lobe −4 dB width), but

employ the −10 dB width metric [42] to characterize the
range resolution (1r ≈ 1.5 · c

/
2B). After windowing oper-

ation, the 1r will be further broadened to 1.5 · kw · c
/
2B

with the broadening factor kw. Consequently, the hamming
weighted Rayleigh range resolution is about 7.4 m, and the
corresponding range resolution defined by the main-lobe
−10 dB width is about 11.0 m; the gain of range compression
is about 26 dB. In addition, the unambiguous range, unam-
biguous velocity and observation time are equal to 75 km,
100 m/s, and 0.512 s, respectively. It must be pointed out that
the dynamic ranges of the following two-dimensional (2-D)
images in this paper are all set to 30 dB for showing the image
contents clearly.

A. ENERGY DISTRIBUTION OF RADAR RETURNS
In order to get a better feeling of the effects of the range and
Doppler frequency migrations, we first analyze the energy
distribution of the range-compressed radar returns in the
range-pulses number domainwith FIGURE5,where the SNR
of the received radar echo signals before pulse compression
is set to 0 dB for showing the energy distribution clearly.
Because of the target’s relative motion to the radar, it can be
observed that the slant range between radar and the target has
changed from 30.00 km to 29.47 km within the observation
time interval. In other words, the signal energy spreads across
48 range resolution cells, which is defined by the main-lobe
−10 dB width as mentioned at the beginning of this section.

By taking the Fourier transform of the range-compressed
signal sc (tm, tn) along the slow-time tm domain, we obtain the
energy distribution of the radar returns in the range-Doppler
frequency domain, as shown in FIGURE 6. It can be clearly
observed again that the energy of radar returns spreads across
both the range and Doppler coordinates severely. Therefore,

FIGURE 5. Result after range compression (SNR = 0dB).

FIGURE 6. Energy distribution of radar returns in range-Doppler
frequency domain (SNR = 0dB).

particular attention must be paid to this issue. Otherwise, it is
difficult to improve the radar performance even the dwell time
of antenna beam can be prolonged, because only part of signal
energy can be exploited.

B. MOVING TRAJECTORY DETECTION VIA HT
As mentioned in Section III.A, the Hough transform has
some valuable advantages for detecting the target’s trajec-
tory. In this subsection, we qualitatively evaluate its ability
to detect the moving trajectory of a high-speed maneuver-
ing target in complex Gaussian white noise background by
FIGURE 7, where the SNR before pulse compression is set
to −23 dB. The result after range compression is shown in
FIGURE 7 (a). For simplicity, the scaling factor λA in (6) is
set to 0.5 and the result of the primary threshold is shown
in FIGURE 7 (c). As a point of reference, the instantaneous
slant ranges measured from FIGURE 7 (a) and (c) via the
envelope cross-correlation function (CCF) algorithm, which
is a simple yet popular algorithm that is frequently used for
range alignment [3], are illustrated in FIGURE 7 (b) and (d),
respectively. In the figure, the ‘‘GT’’ label denotes the ground
truth-value of instantaneous slant range. It can be observed
from FIGURE 7 (b) and (d) that there are a large number
of outliers in the measured data, even though a large part
of noise has been omitted via the threshold transform. Intu-
itively, we can think of the reason as the correlation between
range-profiles would be corrupted when the SNR is low to
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FIGURE 7. Target moving trajectory detection and range walk compensation (SNR = −23 dB). (a) Result after pulse compression in the
range-pulses number domain. (b) Instantaneous slant range (ISR) measured by the envelope cross-correlation function (CCF) algorithm. (c) Result
after primary thresholding preprocessing. (d) ISR measured by the CCF algorithm from the thresholding image. (e) Result after the Hough transform
(HT). (f) ISR rebuilt with the average velocity measured by HT from the thresholding image. (g) Result after range walk compensation.
(h) Zoomed-in version of (g) in range direction. (i) The probability of the location of the target.

some extent. In contrast, the target’s moving trajectory can
be accumulated as a peak in ρ − θ space via HT, as shown in
FIGURE 7 (e). So that this trajectory can be robustly rebuilt,
as illustrated in FIGURE 7 (f), where the target’s velocity is
loosely limited to values between 10.0 m/s and 6810.0 m/s
(20 mach). It is desirable for detecting the high-speed maneu-
vering target when the SNR is comparatively low.

Furthermore, after compensating the first-order range
migration (a.k.a., range walk) with the estimated average
velocity â1, we obtain FIGURE 7 (g) and its zoomed-in ver-
sion FIGURE 7 (h). The estimated probability of the location
of the target is illustrated in FIGURE 7 (i). It can be observed
that the range walk has been removed and the target returns
are concentrated at 30.003 km. However, the nonlinear range
migration (range curvature) induced by the target’s higher
order motions still exists, which will be processed in the
following subsection.

C. TFR AND TF-RIDGE FEATURE EXTRACTION
As described in Section III, We adopt the PCT to pro-
duce the time-frequency representation (TFR) of sd (tm),

and estimate the remaining motion parameters, including
the residual velocity, acceleration, jerk, and so on, with the
time-frequency ridge feature extracted from the TFR. The
related results are presented in FIGURE 8. For compari-
son, the TFRs generated by the short-time Fourier trans-
form (STFT), Wigner-Ville distribution (WVD) and PCT are
shown in FIGURE 8 (a), (b) and (c), respectively. It can
be seen that the STFT cannot achieve highly concentrated
TFR, and the WVD suffers from the undesired cross-term
interference. In contrast, the PCT can produce a cross-term-
free TFR with an excellent concentration, which is favorable
for extracting the time-frequency ridge feature. The estimated
instantaneous frequency (IF) from the ridge of TFR is given in
FIGURE 8 (d). The change of IF versus the number of epochs
is given in FIGURE 8 (e), which is evaluated by

ξIF (i) =
M−1∑
m=0

∣∣IF (i) (t ′m)− IF (i−1) (t ′m)∣∣∣∣IF (i) (t ′m)∣∣ . (27)

As we can see in FIGURE 8 (e), the IF difference between the
fourth epoch and the third epoch is almost equivalent to zero.
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FIGURE 8. Time-frequency representation (TFR), ridge feature extraction and energy integration (SNR = −23 dB). (a) The TFR generated by STFT.
(b) The TFR generated by WVD. (c)The TFR generated by PCT after the third epoch. (d) The estimated instantaneous frequency (IF). (e) The change of
IF versus the number of epochs. (f) Result after range migration re-correction. (g) Zoomed-in version of (f) in range direction. (h) The re-estimated
probability of the location of the target. (i) The one-dimensional (1-D) focused result.

In other words, in this case the estimated IF has reached
convergence after the third epoch.

Furthermore, with the refined motion parameters, the RM
re-corrected range profiles and its zoomed-in version, and
the re-estimated probability of the location of the target are
shown in FIGURE 8 (f), (g) and (h), respectively. Compare
FIGURE 8 (g) with FIGURE 7 (h), it can be seen that the
residual nonlinear range migration (range curvature) induced
by the target’s acceleration and jerk has been removed. After
that, the 1-D focused result Sfocused,1D (fd ) is presented in
FIGURE 8 (i), from which we can see that the noise has been
effectively suppressed and the energy of radar returns can be
efficiently integrated by HPCT.

D. PARAMETERS ESTIMATION PERFORMANCE
The estimation errors of target’smotion parameters will affect
the performance of compensating the effects of range and
Doppler frequency migrations, and impact the coherent inte-
gration ability to accumulate the signal energy along the
target’s moving trajectory. In this subsection, the motion

parameters estimation performance of the proposed method
is analyzed via the Monte Carlo experiment under different
SNR levels. For simplicity, the variance of the additive com-
plex Gaussian white noise is fixed to 1, and the input SNR is
changed from −40 dB to +20 dB by adjusting the power of
the radar echo signals. If the SNR is in the interval [-36 dB,
−34 dB], then the corresponding step size is set to 0.2 dB
and is set to 1 dB otherwise. For each SNR value, 200 times
Monte Carlo trials are performed to calculate the root mean
squared errors (RMSEs), which is defined as

RMSE =

√√√√ 1
NMC

NMC∑
i=1

(
ŷi − yi

)2
, (28)

where NMC stands for the number of Monte Carlo trials, ŷi
and yi respectively denote the estimated value and the ground
truth value of the motion parameter in the ith Monte Carlo
trial.

Themeasured RMSEs in decibels for the initial slant range,
velocity, acceleration and jerk via the CCF and the HPCT are
shown in FIGURE 9 and FIGURE 10, respectively. It can be
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FIGURE 9. RMSE of the estimated motion parameters via the envelope
cross-correlation function (CCF) algorithm.

FIGURE 10. RMSE of the estimated motion parameters via the proposed
method (HPCT).

observed that the input SNR threshold region [2] of CCF for
parameter estimation is nearly range from−23 dB to−18 dB.
In contrast, the corresponding region of HPCT is nearly from
−35.2 dB to −35 dB, which is much lower and narrower
than that of CCF. In other words, the parameter estimation
performance of HPCT is significantly better than that of CCF.
The RMSEs at the right boundary points (RBPs) of the above
two SNR threshold regions are listed in TABLE 4.

TABLE 4. RBPS and the corresponding RMSES.

It should be pointed out that we do not compare the RMSEs
of HPCT with those of GRFT via Monte Carlo experiment.
The main reason is that the computational cost of GRFT for
the high-speed maneuvering target with complex motions is
so heavy that evaluating the RMSEs of GRFT is a tedious
job. In addition, we think it is meaningless to evaluate the
RMSEs using the prior information heavily to reduce the time
cost. As an alternative, for the sake of simplicity, we compare
the RMSEs of HPCT with the searching intervals of GRFT,

which may be regarded as the RMSE bounds of GRFT in
low-SNR case. With the −10 dB main-lobe width metric
mentioned in the previous section, the range resolution is
about 1r ≈ kw · 1.5 · c

/
2B and the velocity resolutions is

about1v ≈ kw · 1.5 · λ
/
(2Tobs), where kw ≈ 1.47 is the cor-

responding main-lobe broadening factor. According to [13],
the searching intervals of initial slant range and velocity are
set to δr = 1r (about 11.03m) and δv = 1v (about 0.22m/s)
respectively, and the steps of acceleration and jerk are set to
δa = 1v

/
Tobs ≈ 0.42 m/s2 and δj = 1v

/
T 2
obs ≈ 0.82 m/s3.

Compare these results with the RMSEs of HPCT in TABLE
4 at the right boundary point of the input SNR threshold
region, it can be seen that the HPCT can achieve close param-
eter estimation performance as the GRFT algorithm when the
input SNR is no less than −35 dB.

E. INTEGRATION FOR A MANEUVERING TARGET
In this subsection, we evaluate the coherent integration per-
formance of HPCT for a high-speed maneuvering target with
the motion parameters described in TABLE 3, where the
additive complex Gaussian white noise is added to the radar
returns and the SNR before pulse compression is manually
set to −35 dB. The reason why we set the input SNR to
−35 dB is that the right boundary point of the SNR threshold
region of the HPCT is at −35 dB. The 1-D and 2-D coherent
integration results can be obtained via (24) and (25) with the
estimated motion parameters, as shown in FIGURE 11 and
FIGURE 12, respectively. For comparison, the correspond-
ing coherent integration results of the moving target detec-
tion (MTD), envelope across correlation function (CCF),
Radon Fourier transform (RFT), Hough transform (HT) and
Hough-modified discrete Chirp Fourier transform (HMD-
CFT) are also provided in FIGURE 11 and FIGURE 12. In the
figures, the HMDCFT denotes the method we proposed to
estimate the target’s velocity and acceleration by combining
the Hough transform with the MDCFT [43] algorithm.

In the case of MTD, the motion parameters used in (24)
and (25) are all set to zeroes because it does not need them. Its
1-D and 2-D integration results are shown in FIGURE 11 (a)
and FIGURE 12 (a), respectively. It can be observed that
the MTD outputs are submerged in the noise. The main
reason for this is that the MTD does not consider the RM
and DFM effects when using the Doppler filter bank to
achieve the coherent integration. The envelope CCF method
can compensate the RM and DFM effects simultaneously in
high SNR situation. However, as mentioned in TABLE 4,
because the SNR threshold of CCF for motion parameter
estimation is about −18 dB, the estimated motion parameter
is worthless when the input SNR is equivalent to −35 dB.
Hence, the results of envelope CCF are submerged in the
noise too, as shown in FIGURE 11 (b) and FIGURE 12 (b).
The RFT and HT methods can estimate the target’s veloc-
ity. Therefore, the first-order RM and Doppler ambiguity
can be corrected and the peaks of target are higher than
the noise level. However, the range curvature and high-
order DFM caused by the target’s acceleration and jerk
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FIGURE 11. 1-D coherent integration results (SNR = −35 dB). (a) MTD. (b) CCF. (c) RFT. (d) Hough. (e) HMDCFT. (f) HPCT.

FIGURE 12. 2-D coherent integration results (SNR = −35 dB). (a) MTD. (b) CCF. (c) RFT. (d) Hough. (e) HMDCFT. (f) HPCT.

cannot be compensated so that the output SNRs of the RFT
and HT are unacceptable, as shown in FIGURE 11 (c), (d)
and FIGURE 12 (c), (d). Because the HMDCFT method can
compensate the RM and DFM effects caused by the tar-
get’s velocity and acceleration, the peaks of FIGURE 11 (e)
and FIGURE 12 (e) are sharp, However, the effects caused
by the target’s jerk do not be corrected, which will cause
some performance loss. As mentioned in Section IV.D, the

HPCT can estimate the target’s motion parameters accurately
when the input SNR is no less than −35 dB. Therefore,
the effects of RM and DFM are accurately compensated
and the energy of radar returns is well focused as a sharp
peak in the outputs. Compare FIGURE 11 (f)/FIGURE 12 (f)
with other subfigures, it can be observed that the HCPT can
achieve the sharpest main-lobe and the lowest background of
noise.
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F. COHERENT INTEGRATION PERFORMANCE
In this subsection, the integration performances of MTD,
CCF, RFT, HT, HMDCFT and the proposed method (HPCT)
are further investigated by Monte Carlo trials under different
SNR levels (in the range [−50, 0] dB with a step of 1 dB)
with the parameters described in TABLE 3.

For each SNR value, the mean peak amplitude (MPA) of
Sfocused,1D (fd ) is first calculated by

MPAMD (snr) =
1

NMC

NMC∑
j=1

max
[
Sfocused,1DMD(snr,j) (fd )

]
,

(29)

where MD denotes the methods that are used to estimate the
motion parameters and integrate the energy of radar returns,
including MTD, CCF, RFT, HT, HMDCFT, HPCT and GT.
The ‘‘GT’’ denotes that the ground truth-values of the target’s
motion parameters are directly used in (24) to integrate the
energy of radar returns, which is used as a reference for the
integration performance evaluation. The number of Monte
Carlo trialsNMC in (29) is set to 500. After that, we normalize
the MPAs by max [MPAGT (snr)] and convert them to deci-
bels, i.e.

NMPAMD (snr) = 10 log10

(
MPAMD (snr)

max [MPAGT (snr)]

)
. (30)

The corresponding curves generated by MTD, CCF, RFT,
HT, HMDCFT, HPCT and GT respectively are shown in
FIGURE 13. It can be seen that the proposed method (HPCT)
can achieve close integration performance as the ground
truth-values of the target’s motion parameters are directly
used when the input SNR is no less than−35 dB, which may
indicate that the estimated motion parameters is sufficiently
accurate to integrate the energy of radar returns along the
target’s moving trajectory. The curves also illustrate that the
integration performance of the proposed method is superior
to that of HMDCFTmethod. This is because the radial jerk of
target is not taken into consideration in the HMDCFTmethod
and its peak amplitude would be decreased by about 2.5 dB

FIGURE 13. Coherent integration performance of MTD, CCF, RFT, HT,
HMDCFT and the proposed method (HPCT) under different SNR
background.

TABLE 5. Required minimal input SNR when NMPAS ≥ −17.5 dBV.

with respect to that of HPCT. It is also worth pointing out that
the CCF-based method can achieve an acceptable integration
performance when the input SNR is greater than −18 dB.
It may also hint that the accuracy of the estimated motion
parameters via CCF can reach an acceptable level in this
case, which is consistent with our analysis about parameters
estimation performance in Section IV.D. In contrast, because
the RFT and HT can only compensate the first-order effects
of RM and DFM and the MTD does not consider these two
effects, accordingly, these three methods suffer from serious
integration performance loss as shown in FIGURE 13.

From a quantitative analysis point of view, when the input
SNR is equal to −35 dB, the normalized mean peak ampli-
tude (NMPA) of HPCT is about −17.5 dBV that is denoted
by a gray horizontal line in FIGURE 13. If the NMPAs
of MTD, CCF, RFT, HT and HMDCFT exceed this level,
the required minimal input SNRs of these methods are about
−5 dB, −20 dB, −14 dB, −14 dB, −30 dB, respectively,
which are listed in TABLE 5. In other words, the integration
performance of HPCT is superior to those of MTD, CCF,
RFT, HT andHMDCFT by about 30 dB, 15 dB, 21 dB, 21 dB,
5 dB, respectively, for the high-speed maneuvering target
under the experimental condition described in TABLE 3.

After estimating the target’s motion parameters and inte-
grating the energy of radar returns along the target’s moving
trajectory, the radar target detection is pretty straightforward
by combining the Neyman-Pearson detector or the constant
false alarm ratio (CFAR) detector [2] with the proposed
method. Because the target detection problem is very similar
to the above discussion except the detection threshold is
generally determined by a predetermined false alarm rate,
we will not discuss it here.

G. EXTENSION TO MULTIPLE TARGETS SCENE
In the previous sections, the proposed method has been ana-
lyzed in the single target scene. However, it can also be
extended to the scenario with multiple targets. In this sub-
section, we will analyze the parameters estimation perfor-
mance and the coherent integration performance for multiple
targets of the proposed method by an example, as shown in
FIGURE 14. The key parameters of radar are the same as
those in TABLE 3, the motion parameters of three maneu-
vering targets are listed in TABLE 6 and the SNRs of these
three targets before pulse compression are all set to −23 dB
for simplicity and for showing the results clearly. The tar-
gets in the scene have different motion orders. Moreover,
the radial velocity of target A is set equal to that of target B,
and the initial slant range of target C is the same as that
of target A. According to TABLE 3, because we employ
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FIGURE 14. Motion parameters estimation and 2-D coherent integration for multiple targets. (a) Result after pulse compression. (b) Energy
distribution of radar returns in range-Doppler domain. (c) Result after HT. (d) Result after FRMC with the estimated velocity of target A. (e) Result
after FRMC with the estimated velocity of target B. (f) Result after FRMC with the estimated velocity of target C. (g) Computation of the most
representative range sampling cell (MRRSC) of target A. (h) Computation of the MRRSC of target B. (i) Computation of the MRRSC of target C. (j) TFR
of target A. (k) TFR of target B. (l) TFR of target C. (m) 2-D integration results of target A. (n) 2-D coherent results of target B. (o) 2-D integration
results of target C.
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TABLE 6. Motion parameters of targets.

the low-PRF scheme to increase the range unambiguous
observation scope, the radar will be extremely ambiguous in
Doppler for these three targets.

The result after range compression is shown in
FIGURE 14 (a), and FIGURE 14 (b) shows the energy dis-
tribution of the radar returns in the range-Doppler frequency
domain. The targets’ movements not only make the moving
trajectories of these three targets intersect in the range-pulses
number domain but also cause the energy of radar returns
spread in both the time and Doppler frequency domains
severely. After taking the Hough transform, the moving
trajectories of these three targets can be accumulated as three
peaks in ρ − θ space as shown in FIGURE 14 (c). With the
estimated average velocities of target A, B and C, the results
after the first order range migration compensation (FRMC)
are shown in FIGURE 14 (d), (e) and (f), respectively. The
estimated probabilities of the locations of the targets are illus-
trated in FIGURE 14 (g), (h) and (i), respectively. It can be
seen that there are two sharp peaks in FIGURE 14 (g) and (h)
because target A and B have the same radial velocity.With the
help of the estimated initial slant range by HT, a cyan area is
set up to resolve this type of ambiguity. In addition, the gray
horizontal line is a threshold used for controlling the false
alarm further, which is set equal to

√
2 times the mean value

of pr (n) for simplicity. After extracting the signals from the
most representative range sampling cells of target A, B and C
and resolving the Doppler ambiguity, the TFRs are shown in
FIGURE 14 (j), (k) and (l), respectively. The time-frequency
trajectories can clearly reflect the kinematic features of tar-
gets. Finally, the 2-D coherent integration results along with
the estimated motion parameters of target A, B and C are
shown in FIGURE 14 (m), (n) and (o), respectively. It can
be observed that the estimated motion parameters agree well
with the ground truth-values listed in TABLE 6, and the signal
energy of each target is coherently accumulated as a sharp
peak in the corresponding output, which is helpful for the
target detection.

V. CONCLUSION
For the low-observable high-speed maneuvering target with
high-order motions, based on the Hough transform (HT)
and the polynomial Chirplet transform (PCT) we proposed
a new method, i.e., HPCT, to estimate the target’s motion
parameters in this paper. This method can correct the range
walk, range curvature and Doppler frequency migration

simultaneously, and estimate the target’s motion parameters
accurately, by using the trajectory feature extracted from
the image of range profiles and the time-frequency ridge
feature extracted from the highly concentrated TFR. After
that, the energy of radar returns can be coherently integrated
along the target’s moving trajectory. Moreover, we have eval-
uated the performance of the proposed method via several
numerical experiments. The results showed that the HPCT
can achieve a much lower and narrower input SNR threshold
region than the widely used envelope CCF algorithm, that is,
it has a much better noise resistance capability. The results
also highlighted that the HPCT can avoid the cross-term inter-
ferences, and estimate the target’s motion parameters accu-
rately with a much lower computational cost compared with
the GRFT. In addition, from the coherent integration perspec-
tive, under the experimental condition described in TABLE 3,
the proposed method is superior to MTD, CCF, RFT, HT and
HMDCFT by about 30 dB, 15 dB, 21 dB, 21 dB, 5 dB, respec-
tively, thanks to its ability to deal with the high-order RM
and DFM simultaneously. Finally, we extended the proposed
method to the scenario of multiple targets that have different
motion orders, and demonstrated its effectiveness with an
example.

The proposed method also has its apparent limitation:
although it was extended to the multiple targets scene in
Section IV. G, we only considered the situation in which
the targets are separable in the standard Hough parameter
space. For the case when the targets’ motion parameters
are very similar (with the same initial slant range, same
velocity, but different on acceleration and jerk), it may be
computationally very expensive to separate the targets in
higher dimension using the generalized Hough transform.
Fortunately, the proposed method can avoid the cross-term
interferences. It may be possible to separate the very simi-
lar targets in both the standard Hough parameter space and
the time-frequency domain to reduce the computational cost
and improve the parameter estimation accuracy. A possi-
ble future work might concern the extension of the pro-
posed method to a more complicated situation with multiple
targets.
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