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Abstract 
Motivation: Advanced modeling tools are available for `omics-based metabolic modeling and for 

reactive transport modeling, but there is a disconnect between these methods, which hinders linking 

models across scales. Microbial processes strongly impact many natural systems, and so better 

capture of microbial dynamics could greatly improve simulations of these systems. 

Results: Our approach, ORT, applied to environmental metagenomic data from a river system 

predicted nitrogen cycling patterns with site-specific insight into chemical and biological drivers of 

nitrification and denitrification processes. 

Availability and Implementation: Live interactive models are available at 

https://pflotranmodeling.paf.subsurfaceinsights.com/pflotran-simple-model/. Microbiological data is 

available at NCBI via BioProject ID PRJNA576070. The code for ORT (written in Python 3) is available 

at https://github.com/subsurfaceinsights/ort-kbase-to-pflotran. The KBase narrative used for the test 

case is publicly available at https://narrative.kbase.us/narrative/71260 or may be viewed as a static 

narrative at https://kbase.us/n/71260/258 
Contact: rebecca.rubinstein@subsurfaceinsights.com or roelof.versteeg@subsurfaceinsights.com   

Supplementary information: Supplementary data are available online. 

 

 

1 Introduction  

Watersheds provide a variety of ecosystem services which are essential 

for energy, food, and water security. Microbiological processes are a 

critical component of these services (Anantharaman et al., 2016; Long 

et al., 2016), driving nutrient cycling and contaminant remediation in 

both natural and engineered subsurface environments (Rice et al., 1996; 

Stegen et al., 2018; Furukawa, 2003; Ite and Ibok, 2019; Tchobanoglous 

et al., 2003). To achieve an actionable understanding of the impact of 

these microbial processes on macroscopic properties and processes (e.g. 

soil nutrient availability and water quality), it is necessary to rapidly and 

cost-effectively obtain, analyze, and interpret related genomic and 

chemical data. One promising approach for analysis and interpretation 

is the incorporation of multi-omic data into reactive transport models to 

better represent microbe-catalyzed biogeochemical reactions. These 

models can then be used to model site-specific microbiology-informed 

hydrobiogeochemistry.  

Reactive transport models (RTM) are used to simulate coupled 

chemistry, flow, and transport in biogeochemical systems, allowing us 

to predict contaminant fate and transport, impact of remediation efforts, 

or other environmentally significant processes. There are a variety of 

advanced reactive transport codes (Steefel et al., 2015) that can be used 

for these types of predictions, including PFLOTRAN (Mills et al., 2009; 

Hammond and Lichtner, 2010; Gardner et al., 2015), which we used in 

this work. PFLOTRAN is an open source, massively parallel reactive 

transport code which supports multi-phase, multi-component, and multi-

scale simulation of contaminant transport in porous media, as well as 

includes a basic implementation of microbial reactions modeled by 

Monod kinetics. One major benefit of PFLOTRAN compared to other 

available codes is that it is customizable, allowing users to implement 

custom reactions or kinetics through the Reaction Sandbox (Hammond, 

2017). Using the Reaction Sandbox, we can incorporate microbial 

dynamics that are not part of the default PFLOTRAN microbial reaction 

implementation, such as physical inhibition factors or biomass decay. 

While we have not incorporated these types of dynamics in this initial 

test case, building our approach around PFLOTRAN provides much-

needed flexibility for future development. 

The feasibility of using the results of microbiological data analysis to 

parameterize reactive transport models (RTM) has been shown 

previously. For instance, Scheibe et al. demonstrated the linking of 

genome scale models with a reactive transport code (in their case, 

HYDROGEOCHEM) to improve incorporation of microbiological 

processes on  in situ uranium bioremediation (Scheibe et al., 2009). 

Specifically, they used a genome scale model of Geobacter 

sulfurreducens to populate a lookup table spanning reasonable expected 
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ranges for all combinations of three key system parameters. This was 

then used to predict the effects of varying concentrations of three key 

growth factors (acetate, Fe(III), and ammonium) on reduction of 

uranium (VI) at a systems level. More recently, Song et al. developed 

an enzyme-based approach for simulating microbial reaction kinetics 

which captured the overall behavior of a consortium rather than rely on 

individual taxa within the community and coupled it with reactive 

transport simulations using PFLOTRAN’s Reaction Sandbox (Song and 

Liu, 2015; Song et al., 2017; Hammond et al., 2017). This approach is 

based on a mechanistic understanding of microbial processes and thus 

can more accurately predict microbial response to perturbations. 

However, it requires substantial experimental data, such as enzyme 

concentrations and kinetics data, as well as advanced microbiological 

knowledge to implement. 

Collectively, while these previous efforts have demonstrated the 

value of more advanced handling of microbial processes in RTM, they 

are not well-suited to high-throughput integration. Each requires 

substantial manual effort to implement for a single use case, so broad 

application to microbe-driven systems is not reasonable. They also do 

not provide a clear pipeline for integrating metabolic models based on 

environmental samples, which typically utilize metagenomic assembled 

genomes and metabolomics. These data are becoming increasingly 

available due to enhanced computational workflows which make it 

feasible to more rapidly process the large volumes of data generated by 

high throughput instruments. Yet despite these methodological 

advances, the creation of associated microbiome-informed reactive 

transport models still remains very much a manual effort.  

Metabolic models from environmental samples are becoming 

increasingly available using tools such as KBase (kbase.us),  a US 

Department of Energy (DOE)-funded high-throughout, web-based, 

open-source platform designed to enable sharing, curation, and analysis 

of ‘omics data (Arkin et al., 2018). KBase is structured as a narrative 

interface that users may populate from a library of apps. Each app 

provides well-defined functionality and outputs. Narratives can also 

include rich text and raw code cells with code written in Python 3.  

Here we present a high throughput workflow that can use 

environmental (meta)genomes to generate microbiology-informed 

reactive transport models. This workflow couples free and open source 

tools KBase and PFLOTRAN to generate reactive transport models 

informed by environmentally derived genomic, chemical, and physical 

data. We have exposed two of these models through a user-friendly web 

interface. They can also be accessed using a software application 

programming interface (API), allowing the workflow to be leveraged as 

part of other independent workflows. The results presented here show 

the feasibility and power of such a pipeline. 

2 System & Methods 

2.1 Conceptual Model 

While previous studies have paved the way for informing RTM with 

microbial data (Scheibe et al., 2009; Song et al., 2017; Hammond et al., 

2017), there is still a need for an automated, high-throughput protocol. 

Thus, we have designed our pipeline with automation and high 

throughput in mind. Specifically, this pipeline has well-defined start and 

end points and inputs and outputs, with each component being fully 

automatable (Fig. 1). The inputs to this pipeline are annotated genomes, 

environmental chemistry, physical site data, and a general model type 

classification. Model classification would mean a description such as 

“0D batch reactor” or “2D model of unsaturated soil” where “nD” 

indicates the number of spatial dimensions accounted for in the model 

grid. Each of these models has specific input requirements which guide 

the required physical site data.  

We use KBase to ingest annotated genomes (Shaffer et al., 2020) and 

the chemistry (e.g. available carbon sources, electron acceptors, and 

micronutrients based on metabolome and any other chemical analysis at 

the site, synthesized into a KBase media recipe), leading to the 

generation of the overall reactions. Next, these reactions, as well as the 

site chemistry, physical site data, and model classification are used to 

build the PFLOTRAN infile, which is automatically constructed using 

our automated PFLOTRAN input file builder. After the initial model 

creation, the model is easily updated by repeating the KBase workflow 

using different inputs and repeating the subsequent steps to generate and 

retrieve new resulting overall reactions and substitute them into the 

PFLOTRAN input file. The resulting RTMs can then be executed and 

exposed either automatically, in our case through our web-based 

cyberinfrastructure and associated API, or manually. As PFLOTRAN 

simulates the physical and chemical conditions in the system in space 

and time, we can feed the resulting chemistry back into KBase as new 

input data for an iterative modeling approach.  

 

2.2 Implementation 

Our ‘Omics to Reactive Transport (ORT) workflow couples chemical 

(geochemical, metabolite), genomic, and physical environmental inputs, 

which are highly interdependent but often not in compatible formats, 

thus it is imperative that this implementation ensures that all 

components can connect seamlessly. Our workflow automates this 

connectivity. For example, input data for our test case was manually 

gathered and pre-processed so that the annotations met the input 

requirements of KBase (more detail below). Many of these steps 

required a one-time effort and have now been scripted so that the manual 

Fig. 1. Flowchart of the proposed workflow where orange boxes are 

workflow inputs based on site characterization which are pre-processed 

before use, green boxes are metabolic modeling steps carried out in 

KBase, and blue show the resulting RTM. The horizontally-aligned 

boxes and arrows in the KBase workflow represent “optional” curation 

steps (explained in detail in the text), and the dashed arrow indicates the 

iteration path (currently manual) wherein the final chemistry of each 

time step is used to as a new input in KBase. 
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effort is no longer needed. Similarly, chemical data QA/QC and model 

curation were handled manually, where in the future these need to be 

(and can be) automated. While some steps are still manual, these are 

steps over which we expect users will want to exercise more control, and 

we have automated the components that link these steps. 

Genomes and chemical data are imported into KBase and used as 

inputs for KBase metabolic modeling apps (process described in detail 

below). After the completion of the KBase part of the workflow, we use 

the KBase API to programmatically export the KBase-predicted 

exchange fluxes from KBase. These fluxes are translated by ORT into 

an overall reaction string that describes chemical uptake and secretion 

from each modeled organism, written in PFLOTRAN-compatible 

naming conventions. The flux values are used as the stoichiometric 

coefficients for the corresponding chemicals in the overall reaction used 

in PFLOTRAN, with positive fluxes indicating reactants and negative 

fluxes indicating products. The summation of exchange fluxes is not a 

chemical reaction in the traditional sense, but represents the chemical 

species removed from and added to the system as a result of the 

microbial metabolism. Thus, this “pseudo-reaction” provides the 

information needed by PFLOTRAN to simulate the resulting changes in 

chemical concentrations. 

  The ORT script outputs a *.txt file with the reaction strings and yield 

terms for use in the MICROBIAL_REACTION card in PFLOTRAN as 

well as a set of *.dat files which contain compound names and details 

which need to be added to the PFLOTRAN geochemical database 

(formatted for compatibility with the database). This step can either be 

done programmatically (as we do in our stack when producing our web 

models) or manually (by substituting the content of these text files into 

a PFLOTRAN infile). 

 

2.3 Test Case 

To evaluate the efficacy of our workflow, biological nitrification and 

denitrification were selected as a classic, well-understood, and 

extensively studied system, complemented by the availability of 

relevant real-world environmental samples. We compared a model using 

traditional (textbook) stoichiometries for nitrification and denitrification 

to a model derived from metagenome assembled genomes using KBase 

metabolic modeling tools. Biological nitrogen processing has been the 

study of extensive research as a core component wastewater treatment 

(Tchobanoglous et al., 2003; Henze, 1991; Office of Water, 2004), 

especially since National Pollutant Discharge Elimination System 

permits began to include effluent nitrogen limits. Excess nitrogen in 

natural systems from both point and non-point sources has extensive 

detrimental effects on human health and welfare and the environment 

(Dodds et al., 2009; Smith et al., 1999; Backer and McGillicuddy, 

2006).  

For comparison, we selected biological nitrogen cycling in the 

hyporheic zone, an un-managed system which is similar to that 

described above. River systems have drawn significant interest as a 

critical but often underrepresented component of global greenhouse gas 

models, largely due to lack of experimental data and mechanistic 

understanding needed to develop strong models. The relationship 

between hyporheic zone pore water concentrations and N2O emissions 

is complex, possibly as a result of changes in microbial processes as a 

result of varying environmental conditions (Villa et al., 2020). In order 

to maintain the simplicity of the proof of concept and comparison to 

traditional models, release of gaseous nitrogen species was not 

considered here, but this is an area of interest to be incorporated in future 

revisions. 

Nitrification is traditionally split into two sub-processes, ammonium 

oxidation (NH4 → NO2) and nitrite oxidation (NO2 → NO3), while 

denitrification is often represented as a complete process (NO3 → N2), 

though in reality it is several sequential reactions. With KBase, we could 

implement separate models for each step for which genomes are 

available, but for comparison to the traditional model we used a single 

model for complete denitrification in this test case. The overall reactions 

used for the nitrification step were based on experimentally-determined 

stoichiometries (Liu and Wang, 2012) determined by fitting data 

collected from bench-scale reactors to traditional half-cell reactions 

(Rittmann and McCarty, 2012), as given by the following reactions: 

1.0225 NH4
+ + 1.3875 O2 (aq) + 0.09 CO2 (aq) + 0.0225 HCO3

−

→ 2H+ + NO3
− + 0.0225 Biomass 

 

1 NO2
− + 0.0073 NH4

+ + 0.4635 O2 (aq) + 0.0292 CO2 (aq)

+ 0.0073 HCO3
− → NO2

− + 0.0073 Biomass 

The complete denitrification process stoichiometry was derived from 

half-cell reactions (Rittmann and McCarty, 2012), scaled to one unit 

nitrate utilization for comparability with the first two reactions: 

1 NO3
− + H+ + 0.869 CH3COO −

→ 0.458 N2 (aq) + 0.444 CO2(aq) + 0.869 HCO3
−

+ 0.08484 Biomass 

In both cases, the chemical species represented are limited to classical 

compositions, which in some cases may serve as analogs for a range of 

compounds. These stoichiometries are not associated with any specific 

microbes or metabolic pathways, but rather represent the external fluxes 

observed. While this approach is very effective for process design, it 

does not offer much insight into the microbiology of a system, and may 

obscure finer-scale dynamics, particularly in systems with complex 

carbon sources. 

As mentioned previously, reaction rates and other microbial constants 

are intended to be used as tunable parameters. As a starting point, the 

rates determined through batch kinetics tests (Liu and Wang, 2012) were 

used for ammonium oxidation and nitrite oxidation and the 

denitrification rate was based on rates reported in the literature (Raboni 

et al., 2014). The same rates (shown in Table 1) were used for both the 

literature-based and genome-based models (described in Section 2.4) in 

order to directly compare the effects of the different stoichiometries. For 

future applications, we anticipate reaction rates being used as tunable 

parameters to fit these models to system-specific experimental data. 

 

Table 1. Initial reaction rates used in web-based nitrogen cycling 

models 

 

2.4 Leveraging Existing Multiomics Data 

Sediment was collected and DNA extracted as previously described 

(Graham et al., 2017). Briefly, 6 sediment cores up to 60 cm in depth 

were collected at 5-meter intervals in the hyporheic zone of the 

Columbia River (46°22’15.80″N, 119°16’31.52″W) in March 2015. 

Each core was sectioned into 10 cm segments from 0-60 centimeter 

depths and stored at -80ºC. All biological analyses were carried out at 

10-centimeter increments, except for one core that had low yields, which 

was pooled from 0-30 centimeters to have sufficient input masses 

(Graham et al., 2017, 2018). DNA was extracted as previously described 

Process Rate (mol/L·s) 

  Ammonium Oxidation 1.0×10-7 

  Nitrite Oxidation 8.51×10-8 

  Nitrate Reduction 2.34×10-8 
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(Graham et al., 2017, 2018) using MoBio PowerSoil kit (MoBio 

Laboratories, Inc., Carlsbad, CA). 

To identify the metabolites available to microorganisms in these river 

sediments, we performed 1H Nuclear Magnetic Resonance (NMR) 

spectroscopy on 17 sediment pore water samples as described 

previously (Tfaily et al., 2019). Briefly, sediment samples were mixed 

with water in a 1:1 ratio and then diluted by 10% (vol/vol) with 5 mM 

2,2-dimethyl-2-silapentane-5-sulfonate-d6 as an internal standard. The 

1D 1H NMR spectra of all samples were processed, assigned, and 

analyzed using Chenomx NMR Suite 8.3 with quantification based on 

spectral intensities relative to the internal standard as described. To 

obtain a representative bulk summary of the metabolite environment in 

these sediments, the concentration of 31 of the NMR identified 

metabolites was averaged across the 17 sediment samples, and this data 

was used as the chemical data input in our ORT workflow (data 

available in Supplementary Table S1).  

Purified genomic DNA was sent to the Joint Genome Institute (JGI, 

n=33) under JGI/EMSL proposal 1781 and to the Genomics Shared 

Resource facility at The Ohio State University (OSU, n=10), producing 

43 metagenomes from 34 sediment samples with an average sequencing 

depth of 3.84 (JGI) 25 Gbp (OSU) per sample. JGI and OSU sequencing 

was performed as previously described in Graham et al (Graham et al., 

2018) and Borton et al (Borton et al., 2018) respectively. Raw reads 

were processed, assembled, and binned as outlined in previous 

publications (Shaffer et al., 2020) or via the Wrighton Lab GitHub Page 

(https://github.com/TheWrightonLab). The genomes are available on 

NCBI via BioProject ID PRJNA576070.  

From the sediments we obtained metagenome assembled genomes 

(MAGs) from which we selected 4 genomes that represented key parts 

of the nitrogen cycle. To represent nitrification, we chose the most 

complete genome representatives of the ammonium oxidizing archaea 

classified by GTDB-Tk (version 1.3.0, as of 1-21-21) as a member of 

the family Nitrososphaeraceae within the genus TA-21 (previously 

within the Phylum Thaumarchaeota) and nitrite oxidizing bacterial 

member of the Nitrospiraceae for nitrification. To represent 

denitrifcation, we selected two Gammaproteobacterial MAGs, both 

classified within the family Steroidobacteraceae. Note that neither of 

these genomes encoded a gene to produce N2 gas, but the reaction to 

convert nitrous oxide to nitrogen gas was added to the metabolic models 

during gapfilling (see Section 2.5). Each nitrogen-cycling genome was 

annotated using DRAM (Distilled and Refined Annotation of 

Metabolism (Shaffer et al., 2020)) with default parameters. The raw 

annotations containing an inventory of all database annotations for every 

gene from each input genome are reported in Supplementary File SX. 

These genomes and their annotations were ingested into KBase (Section 

2.5) and were the basis for the KBase-derived model (Section 2.6). 

 

2.5 Pre-ingestion Processing 

At the beginning of our workflow, user inputs were organized and 

prepared, which consisted of three broad steps. In this section, we 

describe these in generic terms, as the same organization would be 

applied to any system. 

(1) Qualitative assessment – to balance model complexity and 

utility, the system definition phase began with a qualitative 

description of the system in terms of type (batch, chemostat, 

continuously stirred tank reactor, etc.), important processes 

(such as nitrification or sulfur reduction, depending on the 

system), and parameters of interest (pH, specific chemical 

species, etc.) that can guide model development. This step 

includes evaluating if there is any “missing” data, which might 

render the model inaccurate or impossible, and would need to 

be estimated in order to produce a viable system (for example, 

concentrations of biologically necessary compounds that were 

not measured). These are identified through a combination of 

subject matter knowledge and comparison with KBase default 

media recipes. Note that this does not entail delineation of 

every process and parameter involved in the system, but rather 

selection of those important to the specific research or 

application. The goal of this step is to develop a conceptual 

model of the system of interest, which may be augmented and 

refined as needed to accommodate new data. 

(2) Data Gathering - data describing the site may be drawn from a 

variety of sources, including direct sampling at the site and 

public resources such as weather stations or national databases. 

Biological data could come in the form of annotated genomes 

or metagenomes collected from the site, or genomes for key 

microbes as determined using 16S data or literature review 

could be drawn from public databases. Chemical data could 

include traditional geochemical analysis as well as 

metabolomics and metaproteomics to provide a more detailed 

picture of the chemical profile at the site. Physical data could 

include temperature, soil porosity, or other parameters of that 

nature that would be included in the PFLOTRAN input file to 

produce a more site-specific model. 

(3) Translation to KBase and PFLOTRAN - the data produced by 

the various analyses above are not necessarily in formats that 

may be directly imported to KBase and/or PFLOTRAN. 

Therefore, the final step in this phase was to translate these data 

to forms that can be used by the tools. Aside from managing 

file formats (see the KBase documentation for details), one 

major consideration was accounting for any un-measured 

chemical species identified in the first step of the preparation 

phase that needed to be added to the KBase media composition 

to make it biologically viable. Additions were limited to 

chemical species or compounds known (or reasonably 

expected) to be present and were added in sufficient 

concentration that they would not be growth-limiting. This is 

something that could be evaluated by running the same model 

on media with a single input concentration varied and 

comparing the outputs.  

These steps are currently carried out manually based on expert 

knowledge and experience, and could be applied to any system of 

interest. The existing system could be modified by simply replacing the 

genomes or input chemistry, and the approach could be expanded to 

additional systems by implementing a template into which end-users 

could put their data and conceptual model. 
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2.6 KBase Metabolic Modeling 

Once pre-processing was complete, genomes were uploaded to KBase 

as paired FASTA and GFF3 text files using the “Import GFF3/FASTA 

file as Genome from Staging Area” app and then annotated with 

RASTtk using the “Annotate Microbial Genome” app in KBase. 

Additional custom annotations from DRAM were uploaded as flat text 

files using the beta version of “Import Annotations from Staging” app. 

If using DRAM annotations, preprocessing may be carried out using the 

provided script at https://github.com/subsurfaceinsights/ort-kbase-to-

pflotran. Notably, both RASTtk and DRAM are available as apps in 

KBase, allowing users to functionally annotate genomes without high 

memory computational resources. However, note that the DRAM app in 

KBase differs from the version used in this example narrative  (Shaffer 

et al., 2020) as the KBase DRAM app annotates using KOfam instead 

of KEGG genes and does not currently include EC reaction identifiers, 

so end results may differ from the included narrative. Chemical data was 

uploaded as flat text files using the “Import Media file (TSV/Excel) 

from Staging Area”. The use of pre-processed flat text files as inputs to 

the workflow significantly simplifies the process compared to using raw 

data, especially for genomes, and these can be generated automatically 

using scripts such as the one developed for the DRAM outputs. This first 

step brought all of our data in the KBase workspace in an integrated 

manner. 

After this step, we used all this data as inputs to the “Build Metabolic 

Model” app, and the generated models were used in conjunction with 

the media objects as inputs to the “Run Flux Balance Analysis” (FBA) 

app. The output from the FBA app included the reaction and exchange 

fluxes for each model grown on the corresponding media. 

 

2.7 PFLOTRAN Reactive Transport Modeling 

As described, we used our workflow to download the FBA exchange 

flux values using the KBase API and translate them from KBase objects 

with ModelSEED (Henry et al., 2010) compound IDs to flat text files 

with reaction strings written using PFLOTRAN naming conventions. 

We then used either the KBase-derived reaction strings and biomass 

yield values or the literature-based stoichiometries introduced in Section 

2.3 to fill in the MICROBIAL_REACTION card in our 0D model 

template. All parameters except the reactions and yield terms were held 

the same for both the conventional and the site-specific model. The 

models were evaluated by comparing the relative “system performance” 

with respect to nitrogen conversion to N2 or to biomass, as described in 

greater detail below. 

3 General behaviors and trends 

Both models exhibited sequential ammonium and nitrite oxidation 

followed by nitrate reduction, ultimately producing dissolved nitrogen 

gas. Despite using the same reaction rates, inhibition constants, and 

initial nutrient concentrations, the overall progress of the system is 

noticeably different. The genome-based model exhausts the available 

ammonium within 1.5 hours of the simulation start, while the literature 

based model does not exhaust ammonium until a little more than 3.5 

hours into the simulation. Nitrite concentration peaks earlier and at a 

lower level for the genome-based model (~18 µM at approximately 1 

hr) than the literature based model (~51 µM slightly before 3 hrs). 

Similarly, nitrate peaks at approximately 4 µM after 1.5 hrs for the 

genome-based model but peaks at 40 µM at the 6 hr mark for the 

literature based model. In the 6 hour period shown in Fig. 2, the genome 

based model has exhausted ammonium, nitrite, and nitrate, while the 

literature based model is still processing nitrite and nitrate. This variance 

is expected since we are comparing generic reactions (with generic 

substrate utilization and biomass production reactions) to site-specific 

reactions based on the most dominant taxa found at our study site. 

One important difference was that the microbiologically-explicit, 

genome-based stoichiometry provided much greater detail on the 

chemistry, particularly with respect to carbon catabolism (Fig. 2 and Fig 

S1 and S2). Specifically, the literature-based models relied entirely on 

either carbon dioxide (nitrification) or acetate (denitrification), however, 

because we provided additional carbon compounds detected from our 

bulk sediment metabolome, the site models used 15 to 23 unique 

additional carbon sources, such as betaine, leucine, and choline (see 

Supplementary Table 1). This greater detail allows us to evaluate more 

precisely the potential chemical drivers or limiters of a system which 

would be entirely overlooked with traditional representations, which 

presents the opportunity to probe and improve our conceptual and 

mechanistic understanding of these systems and individual 

metabolisms. 

Fig. 2. Using our Omics to Reactive Transport (ORT) workflow allows 

us to not only tailor a model to a specific environmental site and system, 

but also provides much finer insight into the changes in chemistry driven 

by microbial processes. The top frame shows the steps captured by the 

literature-based and genome-informed models respectively. The 

literature-based model steps are simplistic and not tied to any specific 

metabolisms, while the genome-informed model is based on the 

metabolisms of specific taxa found to be prominent at this site. Given 

that the expression and activity of nitrite reductase encoded in 

Nitrososphaeraceae (previously Thaumarchaeota) is poorly understood at 

this time (Kuypers et al., 2018), we did not incorporate the production of 

nitric oxide by Nitrososphaeraceae, and focused only on nitrite outputs 

from ammonification. The middle frame shows graphical representations 

of the two sets of reaction stoichiometries. At a high level these are 

similar, but upon closer inspection there are details that may make a 

significant difference in a real-world system. In particular, there are a 

much broader range of carbon compounds utilized and secreted by the 

genome-informed model. Given appropriate time series data, these 

generalized stoichiometries could be tuned to a specific site and time 

period, allowing even more accurate representation of carbon cycling. 

Abbreviations used in the site-specific model frame are Met for 

Methionine, Thr for Threonine, and SAO for S-Adenosyl-4-methylthio-

2-oxobutanoate, which are compounds predicted by KBase as an output 

which is not part of standard literature representations. The bottom frame 

shows the results of using each set of reactions in a 0D PFLOTRAN 

simulation of nitrogen cycling. The general patterns are similar, but the 

different stoichiometries result in noticeable differences in the 

magnitudes even though the same reaction rates were used in both. 
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 Instead of generic bacterial enzymatic reactions, we can determine 

which site specific bacterial – or archaeal – reactions are drivers in the 

system. Instead of pre-set stoichiometries, our Omics to Reactive 

Transport workflow uses chemistry determined based on metabolomics. 

For example, even with the same rate constants, we can see that the 

genome-informed model utilizes a higher proportion of ammonium in 

the first step of nitrification, resulting in more rapid depletion of 

ammonium in the system and earlier generation of nitrite. As a result, 

subsequent steps begin earlier, resulting in an overall accelerated 

process. At the same time, both versions exhibit the expected cycling of 

ammonium to nitrite to nitrate and finally to nitrogen gas.  Since 

PFLOTRAN relies on user-defined chemistry (as opposed to 

automatically generating reactions), this allowed us to incorporate more 

realistic, mechanism-driven reactions. 

The genome-based model allows for greater chemical breadth. The 

nitrogen cycling reactions are modulated by a wider range of carbon 

sources. Additionally, the by-products of this carbon and nitrogen 

metabolism also resulted in more complex chemical outputs in some 

cases, such as L-Threonine or L-Methionine. These inferred reactions 

could be further refined by using gene expression data (e.g. 

metatranscriptomics or metaproteomics data) to calibrate the models (by 

way of reaction rates, saturation constants, etc.) to a particular set of 

environmental conditions. Again, this presents an opportunity to test and 

enhance our understanding of the metabolic processes involved. 

These models are publicly available (without sign-in) through 

Subsurface Insights' web-based PFLOTRAN interface at 

https://pflotranmodeling.paf.subsurfaceinsights.com/pflotran-simple-

model/.  For the literature-based model, we have made the input 

concentrations of ammonium, bicarbonate, and acetate accessible to 

web users using sliders. For the Hanford 300 Area-specific version of 

the model, we have made accessible the reaction rate for each of the 

steps modeled. There is no limit to the number of parameters that may 

be exposed this way, but for the sake of a user-friendly and un-cluttered 

demonstration, we limited our selections to three per model. We selected 

the parameters we did both because the effects of varying them are 

significant and to highlight the power and flexibility provided by this 

approach. 

4 Discussion 

Here we demonstrated an Omics to Reactive Transport (ORT) 

workflow for creating site specific reactive transport models that include 

local chemical and biological content. The ORT workflow was applied 

to a well-understood system, and the results agree generally with 

literature data.  We interpret the differences in magnitude and timing to 

be due to the difference between generic, simplified reactions and 

metabolism-informed reactions, as KBase-derived stoichiometries made 

it possible to capture microbial metabolism in much greater detail than 

conventional approaches allow. 

While the model predictions are borne out by comparison to 

traditional models, we would need extensive new data which currently 

is not available to comprehensively validate our modeling results. 

Rigorous model and method validation will be part of future work. 

Specifically, the sampling effort underlying our data captured a 

microbiological and geochemical snapshot of a dynamic system. To 

expand our model to a 3D site model and validate the results, we will 

need samples covering a broader range of time and space. 

Much of the future work on this workflow will be focused on 

enhancing and expanding automation and on making it more robust in 

several ways. In particular, we are developing a user interface that will 

allow for and provide guidance on QA/QC and the initial setup. 

Automated metabolic curation would also be highly beneficial to this 

pipeline. In our effort, curation was carried out manually using two 

different approaches: metabolism-based and media-based.  The former 

is labor intensive and requires substantial subject-matter expertise to 

carry out. The latter is more straightforward and relies on a more general 

system understanding, but still requires manual iteration to obtain 

reasonable results. Partially or fully automated model curation is needed 

to allow the workflow to support high-throughput processing of data to 

produce simulations. Finally, we need to expand on our PFLOTRAN 

models to include processes such as temperature mediated biological 

processes and material recycling. While these are non-trivial tasks, we 

feel that they are feasible and that we have a clear path forward. 

While previous researchers have demonstrated the feasibility of 

coupling genome-scale metabolic models with reactive transport 

simulations, our work is different in some fundamental ways. First, our 

approach allows us to use microbial reaction constants as tunable 

parameters. The reaction rate, half-saturation concentration, and 

inhibition constants in our study are based on literature review. While 

we note that these values may not be available for all systems, we 

anticipate they could still be approximated based on near relatives or 

determined experimentally. The latter would also allow the models to 

account for conditions that otherwise might not be captured, such as 

temperature or soil conditions which would change microbial growth 

rates. Second, our approach allows for responsive modeling of dynamic 

systems – by feeding back the chemistry modeled by PFLOTRAN (as 

well as other temporal changes) we can model system evolution without 

needing to anticipate changes at the outset. This includes dynamics of 

microbial communities as they respond to different and varying 

conditions. This will allow for investigating complex and poorly 

understood systems in which we can probe microbial behavior under a 

variety of conditions. Finally, our current results set the stage for the 

automated generation of microbiology-informed models which can be 

easily used through either a web interface or an API by end users who 

are not specialists in reactive transport modeling or even microbiology. 

We expect this to be of interest to a very broad community and support 

research efforts in many fields. 
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