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Abstract—We consider the problem of factorizing a matrix
with discrete-valued entries as a product of two low-rank
matrices. Under a probabilistic framework, we seek for the
minimum mean-square error estimates of these matrices, using
full Bayes and empirical Bayes approaches. In the first case, we
devise an integration scheme based on the Gibbs sampler that
accounts also for hyperparameter and noise variance estimation.
A similar technique is used also for the latter case, where
we combine Gibbs sampling with the expectation-maximization
(EM) algorithm to estimate the model parameters via marginal
likelihood maximization. Extension to the case of missing values is
also discussed. The proposed methods are evaluated on simulated
data, and on a real data set for recommender systems.

I. INTRODUCTION

Matrix factorization –and matrix completion– is a funda-

mental topic in data science. It finds application in various

fields, e.g., face recognition [5], image annotation [13], bioin-

formatics [9], and recommender systems [10], [20].

Typically, matrix factorization problems aim at decompos-

ing a data matrix in terms of two low-rank factors that

best explain the data according to some similarity measure.

Usually, the problem is cast under a suitable regularization

framework, e.g., to enforce regularity in the solution [10]

and to prevent overfitting. However, the optimization problem

associated with matrix factorization is in general non-convex,

so specific optimization techniques have to be devised to solve

it. For instance, under �2-type regularization assumptions,

alternated least-squares (ALS) techniques are usually adopted

to compute the matrix factors [27], [6]. Other popular types of

regularization involve the use of the �1 norm to induce sparsity

[19], or the nuclear norm, to enforce low-rank solutions [25].

Another approach to overcome the ill-posedness of the prob-

lem is to assign a prior distribution to the unknown factors.

This approach, usually referred to as Bayesian or probabilistic

matrix factorization (PMF), has been first proposed in [21],

[14], and later generalized in [22]. Extension of this frame-

work, e.g., to deal with outliers, are discussed in [24], [17],

where non-Gaussian noise models are adopted. Note that one

can recover the regularization framework by choosing suitable

priors and computing the maximum-a-posteriori estimates of

the matrix factors.

In many applications, the entries of the data matrix can only

assume discrete or quantized values. For instance, matrices

reporting movie ratings assume integer values (e.g., ranging

from 1 to 5). Accounting for this constraint is important,

especially when the task is to predict missing values in the data

matrix (e.g., in the case of recommender systems). The prob-

lem of matrix completion from quantized entries has received

increasing attention in recent years [3], [12]. In particular, [1]

proposes a probabilistic approach for matrix completion from

quantized entries. However, to our best knowledge, except for

a few contributions [4], [11], quantized matrix factorization

has received little attention.

In this paper, we propose a new method for matrix fac-

torization with quantized entries. Similarly to [1], we assume

that the data matrix is the result of a quantization process of

an underlying matrix of interest, plus a noise matrix that has

unknown variance. The underlying matrix is in turn the result

of the product of two unknown low-rank matrices. Our task

is to recover this structure from the data matrix, which may

have missing entries.

We adopt a probabilistic approach, that is, we assign Gaus-

sian prior distributions to the unknown matrix factors. Then,

we estimate these factors by computing their minimum mean-

square error (MMSE) estimates. To accomplish this task, we

propose two methods. The first is based on a full Bayes

approach. Here, we consider every parameter as a stochastic

quantity. Similarly to [21], the MMSE estimates are computed

using Markov Chain Monte Carlo (MCMC) methods, and, in

particular, with a new procedure based on the Gibbs sampler

[23]. The second method we proposed is based on an empirical

Bayes approach. In this case, the prior hyperparameter and the

noise variance are treated as deterministic parameters, which

we estimate by marginal likelihood maximization. Also for

this case, we devise an novel integration scheme based on

the Gibbs sampler. Moreover, to solve the marginal likelihood

problem, we combine the Gibbs sampler with the expectation-

maximization (EM) algorithm [16], obtaining an effective

iterative parameter estimation approach (sometimes called

empirical Bayes Gibbs sampling, see [2]). The effectiveness

of the proposed methods is evaluated both on synthetic data

and on a real data set for recommender systems. In particular,

we show the advantage of the proposed method compared to

other probabilistic matrix factorization techniques (e.g., [21]).

A. Notation

Bold letters indicate matrices and vectors. In denotes the

identity matrix of size n; “⊗” and “�” denote the Kronecker

and the Hadamard products, respectively. Given a matrix

A, ‖A‖F denotes its Frobenius norm, vec [A] its column-

wise vectorization, and aTi its i-th row. N (m, Σ) denotes a
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Gaussian random vector with mean m and covariance matrix

Σ; N b
a(m, σ2) denotes a scalar truncated Gaussian random

variable in the interval [a, b]; Gamma(a, b) denotes a Gamma

random variable with parameters a and b.

II. PROBLEM STATEMENT

We consider a matrix Z ∈ R
n×m resulting from the product

of two unknown matrices U ∈ R
n×r and V ∈ R

m×r, plus an

additional noise matrix E ∈ R
n×m:

Z = UVT +E . (1)

We assume that the entries of E are i.i.d. realizations of

Gaussian r.v.’s, that is

eij ∼ N (0, σ2) , (2)

where the variance σ2 is unknown.

The matrix Z is not directly measurable by the exper-

imenter; only an entry-wise quantized version is available.

Denoting by Y this quantized version, we have that

yij = Q[zij ] , (3)

where Q is a known map of the type

Q[x] = sk if x ∈ (qk−1, qk] , (4)

with sk ∈ {s1, . . . , sQ} and qk ∈ {q0, . . . , qQ} (and typically

q0 = −∞ and qQ = +∞).

The main problem we address in this paper can be formu-

lated as follows.

Problem 1 (Matrix factorization): From the data matrix Y,

reconstruct the matrices (Z, U, V) that best match the model

(1).

We shall first focus on this problem. As an extension of

Problem 1, we also study the case where Y has some missing

entries that we wish to predict. To this end, we introduce the

matrix W ∈ R
n×m such that

wij =

{
1 if yij is available

0 if yij is not available
. (5)

Then we formulate the following problem:

Problem 2 (Matrix completion): From the data matrix W�
Y, reconstruct the matrices (Z, U, V) –and consequently the

missing entries of Y– that best match the model (1).

In the next section, we introduce the probabilistic approach

adopted to tackle the two problems.

III. PROBABILISTIC MODELING AND ESTIMATION FOR

QUANTIZED MATRIX FACTORIZATION

A. Priors on U and V

Without further assumptions on the the unknown matrices

U and V, the problem is ill-posed. Assuming Z given, for any

noise matrix E there exists an infinite amount of pairs (U, V)
such that (1) holds, because UAA−1VT = UVT holds for

any full-rank matrix A ∈ R
r×r. To overcome this issue, we

pose prior distributions on U and V given by

uij ∼ N (0, λ) (6)

vij ∼ N (0, 1) . (7)

Therefore, each entry of the matrices U and V is a Gaussian

r.v. independent of the other entries. Furthermore, the variance

of the entries of U is regulated by the hyperparameter λ > 0,

which we assume unknown. The variance of the vij is fixed

to the arbitrary value 1, because the bilinear relation between

U and V implies the impossibility of determining their

magnitude (there is always a scaling factor that can be moved

from U to V and vice versa). We do not impose any prior on

λ and σ2.

Other priors for U and V that may lead to different model

assumptions are, e.g., the Laplacian prior, which enforces

sparsity, or the Bernoulli prior, to account for binary entries.

The related Bayesian network describing the system is

depicted in Figure 1.

λ

U V

Z

Y

σ2E

Figure 1. Bayesian network describing the model adopted for quantized
matrix factorization.

B. Estimation of the model (1)

Given the probabilistic description of the previous section,

for fixed values of λ and σ2 the minimum mean-square error

(MMSE) estimate of (Z, U, V) can be expressed in terms of

the integral

(Ẑ, Û, V̂) =

∫
(Z, U, V)p(Z, U, V|Y) dZ dU dV , (8)

where p(Z, U, V|Y) is the posterior distribution of

(Z, U, V) given the data Y. To account for the estimation

of the parameters λ and σ2, we propose the following two

approaches.

1) Full Bayes approach: The first approach treats also

λ and σ2 as random variables, mutually independent and

independent of (Z, U, V), with flat priors accounting of their

positivity. Then, the MMSE estimate of (Z, U, V) becomes

(Ẑ, Û, V̂) =

∫
(Z, U, V)p(Z, U, V, λ, σ2|Y)

× dZ dU dV dλ dσ2 , (9)

where p(Z, U, V, λ, σ2|Y) is the joint posterior distribution

of (Z, U, V, λ, σ2).
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2) Empirical Bayes approach: The second approach treats

λ and σ2 as deterministic quantities. Their estimation is carried

out via marginal likelihood maximization, i.e.

λ̂, σ̂2 = arg max
λ≥0, σ2≥0

p(Y; λ, σ2) , (10)

where p(Y; λ, σ2) is the marginal distribution of Y (param-

eterized by λ and σ2), defined as

p(Y; λ, σ2) =

∫
p(Y, Z, U, V; λ, σ2) dZ dU dV . (11)

Once λ and σ2 are fixed, the estimate of (Z, U, V) can be

computed using (8).

Both of the two approaches require computation of integrals

that are not analytically tractable. Therefore, we shall make use

of Monte Carlo approximations of the type

Ẑ =
1

M

M∑
k=1

Zk , Û =
1

M

M∑
k=1

Uk , V̂ =
1

M

M∑
k=1

Vk , (12)

where Zk, Uk, Vk, are samples drawn from the posterior

density of (Z, U, V). In particular, the structure of the

problem under study and the modeling assumptions of Section

III allow for the use of the Gibbs sampler as detailed in the

next sections.

Remark 1: Another estimation approach that we will not

treat in this paper is based on the maximum-a-posteriori

(MAP) technique, that is

Ẑ, Û, V̂ = argmax p(Z, U, V|Y) (13)

= argmax p(Y|Z)p(Z|U, V)p(U)p(V) .

Taking the logarithm of the above problem, it can be shown

that it is equivalent to solving

Ẑ, Û, V̂ = argmin
1

σ2
‖Z−UVT ‖2F +

1

λ
‖U‖2F + ‖V‖2F

s.t. zmin
ij < zij ≤ zmax

ij (14)

where zmin
ij and zmax

ij are determined by (3). The resulting

problem is considerably harder than standard matrix factor-

ization problems, so ALS are not directly applicable in this

case.

IV. THE FULL BAYES APPROACH

We first describe the full Bayes approach to solve Problem

1. Recall that in this case, also the quantities λ and σ2 are

considered as random. Thus, they are to be considered in the

integration scheme.

To use the Gibbs sampler, we must be able to sam-

ple from the conditional densities of the joint posterior

p(Z, U, V, λ, σ2|Y). Let us introduce the vectors

z := vec [Z], u := vec [U], v := vec [VT ], e := vec [E] ;
(15)

then we can write (1) either as

z = (V ⊗ In)u+ e , (16)

or as

z = (Im ⊗U)v + e . (17)

Note that u ∼ N (0, λInr) and v ∼ N (0, Imr). Then the

conditionals are as follows:

• zij |{zhk}(h,k) �=(i,j), U, V, λ, σ2, Y. First note that,

since

zij = uT
i vj + eij , (18)

given U, V, for any i, j zij is independent of

{zhk}(h,k) �=(i,j) and as such it can be sampled alone.

Furthermore, from (18) it follows that zij |U, V, σ2 ∼
N (uT

i vj , σ
2). Knowing also that yij = sk for some

k ∈ {1, . . . , Q} permits to narrow the possible values

taken by zij to the range (qk−1, qk]. Thus we obtain that

zij |{zhk}(h,k)�=(i,j),U,V, λ, σ2,Y ∼ N qk
qk−1

(uT
i vj , σ

2) .

• U|Z, V, λ, σ2, Y. Given V, from (16) we see that there

is a linear relation between Z and U, which are then

jointly Gaussian. Therefore, using the vector notation for

U and Z we have

u|Z, V, λ, σ2, Y ∼ N (mu, Pu) , (19)

where

Pu =

(
1

σ2
(VT ⊗ In)(V ⊗ In) + λ−1Inr

)−1

,

mu = Pu(V
T ⊗ In)

z

σ2
. (20)

• V|Z, U, λ, σ2, Y. Given U, from (17) we see that there

is a linear relation between Z and V. Similarly to the

previous case, we obtain

v|Z, U, λ, σ2, Y ∼ N (mv, Pv) , (21)

where

Pv =

(
1

σ2
(Im ⊗UT )(Im ⊗U) + Imr

)−1

,

mv = Pv(Im ⊗UT )
z

σ2
. (22)

• λ|Z, U, V, σ2, Y. The posterior of λ depends only on

U. It is well-known [15] that, given the flat prior given

to this parameter, the posterior of its inverse becomes

λ−1|Z, U, V, σ2, Y ∼ Gamma

(
nr

2
,
‖U‖2F

2

)
.

• σ2|Z, U, V, λ, Y. From (1), given Z, U, V, we can

construct E, which is sufficient to determine the condi-

tional of σ2. Similarly to the previous case, we have

σ−2|Z, U, V, λ, Y ∼ Gamma

(
nm

2
,
‖Z−UVT ‖2F

2

)
.

Given the availability of all the conditional densities of the

posterior p(Z, U, V, λ, σ2|Y) it is straightforward to com-

pute (12) by sequentially drawing the relative samples from

the above conditional densities. The resulting procedure is
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Algorithm 1 Full-Bayes Quantized Probabilistic Matrix Fac-

torization (F-Q-PMF)

1: procedure F-Q-PMF

2: Input: Y
3: Output: Ẑ, Û, V̂
4: for k = 1 to M +M0 do
5: for i = 1 to n do
6: for j = 1 to m do
7: draw z

(k)
ij ∼ N qk

qk−1
(uT

i vj , σ
2)

8: draw U(k) ∼ N (mu, Pu)
9: draw V(k) ∼ N (mv, Pv)

10: draw λ−1(k) ∼ Gamma
(

nr
2 ,

‖U‖2F
2

)
11: draw σ−2(k) ∼ Gamma

(
nm
2 ,

‖Z−UVT ‖2F
2

)
12: Ẑ ← 1

M

∑M
k=1 Z

k

13: Û ← 1
M

∑M
k=1 U

k

14: V̂ ← 1
M

∑M
k=1 V

k

reported in Algorithm 1, where the integer M0 is introduced

for accounting for the burn-in phase of the Gibbs sampler.

In Appendix, we describe an efficient method for sampling

from (19) and (21).

V. THE EMPIRICAL BAYES APPROACH

In this section we introduce the empirical Bayes approach to

quantized probabilistic matrix factorization. We consider the

parameters λ and σ2 as deterministic. The whole procedure

amount to solving (10) to get estimates of λ and σ2, which

are in turn inserted into (11) to obtain (Ẑ, Û, V̂).

Assume λ and σ2 fixed; similarly to the full Bayes case,

computing (11) requires to devise a sampling technique to

sample from p(Y, Z, U, V; λ, σ2). This can be done using

the Gibbs sampler and following the same reasoning of the

previous section. We get that:

• zij |{zhk}(h,k) �=(i,j),U,V,Y;λ, σ2∼ N qk
qk−1

(uiv
T
j , σ

2);

• u|Z, V, Y; λ, σ2, Y ∼ N (mu, Pu), where the first

and second moments correspond to (20);

• v|Z, U, Y; λ, σ2, Y ∼ N (mv, Pv), where the first

and second moments correspond to (22).

The corresponding procedure is reported in Algorithm 2.

Now, we show how to use Algorithm 2 also to perform

the marginal likelihood maximization (10). To this end, we

introduce and use the EM algorithm. Let λ(n), σ2(n) be the

parameter estimate obtained at the n-th iteration of the EM

method. Then, n+1-th update is obtained with the following

steps:

• (E-step) Compute

Q(n)(λ, σ2) := E
[
log p(Y, Z, U, V; λ, σ2)

]
, (23)

where the expectation is taken with respect to the poste-

rior density p(Y, Z, U, V; λ(n), σ2(n)), with λ and σ2

fixed at the value λ(n), σ2(n);

Algorithm 2 Gibbs Sampler for empirical-Bayes Quantized

Probabilistic Matrix factorization (GS4-E-Q-PMF)

1: procedure GS4-E-Q-PMF

2: Input: Y, λ, σ2

3: Output: {Z(k)}Mk=1, {U(k)}Mk=1, {V(k)}Mk=1

4: for k = 1 to M +M0 do
5: for i = 1 to n do
6: for j = 1 to m do
7: draw z

(k)
ij ∼ N qk

qk−1
(uT

i vj , σ
2)

8: draw U(k) ∼ N (mu, Pu)
9: draw V(k) ∼ N (mv, Pv)

• (M-step) Compute

λ̂(n+1), σ̂2(n+1) = argmax
λ, σ2

Q(n)(λ, σ2) . (24)

The parameter updates λ̂(n+1), σ̂2(n+1) increase the marginal

likelihood compared to the estimates at the n-th step of the

method [26], guaranteeing convergence to a local solution of

(10).
We now turn our attention to the computation of the E-step.

Using the derivation reported in Appendix, we see that

−2Q(n)(λ, σ2) := nm log σ2 +
1

σ2
E
[‖Z−UVT ‖2F

]
+ nr log λ+

1

λ
E
[‖U‖2F

]
. (25)

Since these expectations are with respect to the posterior

p(Y, Z, U, V; λ(n), σ2(n)), we can use Algorithm 2 to com-

pute them numerically. Replacing

E
[‖Z−UVT ‖2F

] 
 1

M

M∑
k=1

‖Z(k) −U(k)VT (k)‖2F , (26)

E
[‖U‖2F

] 
 1

M

M∑
k=1

‖U(k)‖2F , (27)

we obtain that the M-step consists of the following two

updates:

σ2(n+1) =
1

Mnm

M∑
k=1

‖Z(k) −U(k)VT (k)‖2F , (28)

λ(n+1) =
1

Mnr

M∑
k=1

‖U(k)‖2F . (29)

The whole procedure for the empirical Bayes approach to

quantized probabilistic matrix factorization is reported in Al-

gorithm 3. It is seen that, at each iteration of the EM method,

the procedure calls 2 until the EM method has converged or

has reached a fixed amount of iterations nmax. Convergence

can be established for instance when the relative change in

the parameter estimates is below a given threshold. As a final

step, the procedure calls Algorithm 2 to get the final estimates

of (Z, U, V). The number of samples drawn by the Gibbs

sampler during the EM routine and during the final step may

differ. In particular, it is recommended to use a higher number

of samples at the final step [2].
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Algorithm 3 Empirical-Bayes Quantized Probabilistic Matrix

Factorization (E-Q-PMF)

1: procedure E-Q-PMF

2: Input: Y
3: Output: Ẑ, Û, V̂
4: while EM has not converged or n < nmax do
5: call Algorithm 2
6: σ2(n+1) ← 1

M1nm

∑M1

k=1 ‖Z(k) −U(k)VT (k)‖2F
7: λ(n+1) ← 1

M1nr

∑M1

k=1 ‖U(k)‖2F
8: n ← n+ 1

9: call Algorithm 2
10: Ẑ ← 1

M2

∑M2

k=1 Z
k

11: Û ← 1
M2

∑M2

k=1 U
k

12: V̂ ← 1
M2

∑M2

k=1 V
k

VI. EXTENSION TO MISSING VALUES

In this section we show how to extend the methods for

probabilistic matrix factorization from quantized entries that

we presented in Section IV and V to the case where not all

the entries of Y are available. For sake of brevity, we focus

only on the full Bayes approach, the extension to the empirical

Bayes approach can be done using the same arguments.

We recall that now we have available the matrix W defined

in (5) telling us which entries of Y are available. Having an

entry yij unavailable means that, when we have to draw a

sample from the conditional of the corresponding entry zij ,

we can not determine the interval to which the drawn value

must lay. In other words, the conditional distribution of an

entry zij such that wij = 0 will be a standard Gaussian with

no truncations. We thus have:

• zij |{zhk}(h,k)�=(i,j), U, V, λ, σ2, Y, wij = 1. In this

case we are in the same conditions as of Section IV.

Therefore

zij |{zhk}(h,k)�=(i,j),U,V, λ, σ2,Y, wij=1∼N qk
qk−1

(uiv
T
j , σ

2).

• zij |{zhk}(h,k) �=(i,j), U, V, λ, σ2, Y, wij = 0. In this

case we cannot bound zij and thus

zij |{zhk}(h,k)�=(i,j),U,V, λ, σ2,Y, wij= 0 ∼N (uiv
T
j , σ

2).

The other conditional distributions remain unchanged with

respect to those in Section IV. The whole procedure is reported

in Algorithm 4.

VII. NUMERICAL EXPERIMENTS

In this section we report the results of experiments made

both on synthetic and real data.

A. Simulations

First, we assess the performance of the proposed methods

on several data sets of synthetic data. To this end, we per-

form several numerical experiments, each featuring different

experimental conditions. Each numerical experiment consists

of independent 100 Monte Carlo simulations where random

data are generated according to model (1). In particular, the

Algorithm 4 Full-Bayes Quantized Probabilistic Matrix Fac-

torization with missing entries (F-Q-PMF2)

1: procedure F-Q-PMF2

2: Input: W �Y,

3: Output: Ẑ, Û, V̂
4: for k = 1 to M +M0 do
5: for i = 1 to n do
6: for j = 1 to m do
7: if wij = 1 then
8: draw z

(k)
ij ∼ N qk

qk−1
(uT

i vj , σ
2)

9: else
10: draw z

(k)
ij ∼ N (uT

i vj , σ
2)

11: draw U(k) ∼ N (mu, Pu)
12: draw V(k) ∼ N (mv, Pv)

13: draw λ−1(k) ∼ Gamma
(

nr
2 ,

‖U‖2F
2

)
14: draw σ−2(k) ∼ Gamma

(
nm
2 ,

‖Z−UVT ‖2F
2

)
15: Ẑ ← 1

M

∑M
k=1 Z

k

16: Û ← 1
M

∑M
k=1 U

k

17: V̂ ← 1
M

∑M
k=1 V

k

generating models for E, U, and V are as in (2), (6) (with

λ = 1) and (7), respectively. The size of the data matrix

Y is set to 50 × 50, and it is obtained by rounding Z to

the next integer (i.e., the map Q it is a ceil-type quantizer).

Depending on the experiment, the matrices U and V have rank

r = 3, 5, 10, 20; similarly, we run experiments with different

noise variance σ2 = 0.1, 1, 10. Combining these experimental

conditions we obtain 12 numerical experiments in total. In our

experiments, the following methods are tested:

F-Q-PMF: the full Bayes method for quantized probabilistic

matrix factorization, described in Section IV. We set M =
500, M0 = 50.

E-Q-PMF: the empirical Bayes method for quantized proba-

bilistic matrix factorization, described in Section IV. We set

M1 = 50, M2 = 200, M0 = 20. The parameters λ and σ2 are

initialized to 100 and 1, respectively.

Baseline: This method does not perform any matrix factor-

ization, but it estimates the entries zij by computing zij =
yij − 0.5. Therefore, it serves as a baseline to check whether

the probabilistic methods can reconstruct the matrix Z better.

F-Oracle: This method performs full Bayes probabilistic ma-

trix factorization. It corresponds to the approach of [21]. Since

it uses Z as data matrix, it is referred to an oracle. We use it to

check how close our reconstruction of U and V is compared

to a method that has more information available.

F-Naive: This method uses the same approach as F-Oracle,

but it uses Y as data matrix, disregarding the fact that this

matrix is a quantized version of Z.

E-Oracle: This method performs empirical Bayes probabilistic

matrix factorization, using Z as data matrix (see also [18] for

details).

E-Naive: Same as E-Oracle, but with Y as data matrix.

To evaluate the performance of the various methods, we
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Figure 2. Top panel: Box plots of the performance of the tested methods in terms of the index NMSE(Z). Bottom panel: Box plots of the performance of the
tested methods in terms of the index NMSE(UVT ).

introduce the following indices:

• The normalized mean-square error (NMSE) on Z

NMSE(Z) =
‖Ẑ− Z‖2F
‖Z‖2F

;

• The NMSE on the product UVT

NMSE(UVT ) =
‖ÛV̂T −UVT ‖2F

‖UVT ‖2F
.

Note that NMSE(Z) can be computed only for the

the algorithms F-Q-PMF, E-Q-PMF, and Baseline, while

NMSE(UVT ) can be computed for F-Q-PMF, E-Q-PMF, and

the Oracle-type and naive-type methods. The results of the

simulations are reported in Figure 2, which depicts the box

plots of the distributions of NMSE(Z) and NMSE(UVT )
obtained by the tested algorithms. From the top panel, it

can be seen that the full Bayes approach and the empirical

Bayes approach give substantially the same performance in

reconstructing the hidden matrix Z. Moreover, both are uni-

formly better than the baseline method. It should be also noted

that the performance seems to increase as the rank increases:

this is because the effect of the noise matrix E becomes

more and more negligible compared to the product UVT .

As for the ability in reconstructing the product UVT , i.e.,

the index NMSE(UVT ), the results are more surprising. All

the methods based on the empirical Bayes seem to perform
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better than those based on full Bayes approach. Nevertheless,

it can be seen that the proposed methods perform better than

the naive methods that do not account for the presence of the

quantization map, giving results that get close to the Oracle

algorithms (i.e., those algorithms having access to the matrix

Z).

B. Experiment on a real data set
We test the ability of the method proposed in Section VI

to predict the missing values of a quantized matrix. To this

end, we perform an experiment on the MovieLens 100k data

set1. This data set contains the rates given by 943 users to

1682 movies. The rates can assume integer values between

1 and 5. Since each user rated only a few movies, only 105

rates are available, so the resulting matrix Y of size 943 ×
1682 is mostly empty (approximately 6.3% of the entries are

available).
To assess the performance of the full Bayes method (pre-

cisely, Algorithm 4), we further randomly remove 20% of the

available entries to construct a test set. Then, we train the

method on the remaining entries, evaluating its performance

in predicting the test set. The procedure is repeated 20 times,

each time randomly selecting a different test set. The method

is compared with OptSpace [8], [7]. The performance is

evaluated through the following indices (see also e.g. [1]):

• The root mean-square error (RMSE)

RMSE =
1√|Ω|

√ ∑
(i,j)∈Ω

(ŷi,j − yi,j)2 , (30)

where Ω denotes the test set and |Ω| its cardinality;

• The normalized mean absolute error (NMAE)

NMAE =
1

|Ω|(max(Y)−min(Y))

∑
(i,j)∈Ω

|ŷi,j − yi,j | .

(31)

Regarding the proposed method, we test different choices

of the hidden rank, i.e., r = 3, 5, 7. The Gibbs sampler

is initialized with M = 150 and M0 = 30. Moreover,

we assume that a user, when giving a rate, tends to round

their evaluation to the next integer; so, the used quantization

map is a ceil. The method OptSpace is used with its default

settings. Table I reports the mean and standard deviation of

the above indices, obtained by the two algorithms. It can

be noted that, while OptSpace achieves a better RMSE, the

proposed method gives a lower NMAE. The reason for this

lays in the fact that the proposed method provides an integer

as an output, while OptSpace gives real-valued predictions.

Therefore, in general OptSpace commits more errors, but

with small magnitude, while, every time the proposed method

makes a wrong prediction, the magnitude of the prediction

error is larger (greater than or equal to 1). The results of

Table VII-B are then explained by the fact that the quadratic

index RMSE penalizes large errors more than NMAE. The

choice r = 3 seems to be the most effective one; note that this

correspond to the rank automatically estimated by OptSpace.

1http://grouplens.org/datasets/movielens/

Method RMSE NMAE
OptSpace 0.9579± 0.0038 0.1875± 0.0006

F-Q-PMF (r = 3) 0.9872± 0.0061 0.1763± 0.0015
F-Q-PMF (r = 5) 0.9900± 0.0060 0.1763± 0.0014
F-Q-PMF (r = 7) 0.9946± 0.0044 0.1770± 0.0013

Table I
RESULTS OF THE METHODS TESTED ON THE DATA SET MOVIELENS 100K.

VIII. CONCLUSION

We have introduced a new probabilistic matrix factoriza-

tion method for matrices having quantized measurements. To

estimate the matrix factors, we have proposed two methods.

The first is based on a full Bayes approach; the latter is

based on an empirical Bayes approach. Both approaches

rely on particular instances of the Gibbs sampler. In the

empirical Bayes approach, the Gibbs sampler is combined

with the expectation maximization algorithm to return also the

hyperparameter estimates. Numerical simulations and real data

experiments show the effectiveness of the devised methods.
In future work, we plan to integrate an automatic rank

detection for the underlying matrix factors. Also, methods

based on variational inference are under study.

APPENDIX

A. Drawing samples from (19) and (21)

The algorithms presented in this paper rely on sampling

from (19) and (21). Let us focus on (19) –the case (21) is

virtually the same. Drawing from such a distribution requires

the computation of the covariance matrix Pu, which in turn

requires the inversion of a nr×nr matrix, see (20). In general,

this operation becomes cumbersome for high size n; however,

we show that in this case we can exploit the structure of the

model to simplify dramatically this inversion. Recalling the

identity for Kronecker products (A⊗B)(C⊗D) = AC⊗BD,

we have that

Pu =

(
1

σ2
(VT ⊗ In)(V ⊗ In) + λ−1Inr

)−1

=

(
1

σ2
(VTV ⊗ In) + λ−1Ir ⊗ In

)−1

=

(
(
1

σ2
VTV + λ−1Ir)⊗ In

)−1

=

(
1

σ2
VTV + λ−1Ir

)−1

⊗ In .

Thus, obtaining Pu requires the inversion of a r × r, with

great reduction of the computational burden. The identity is

also useful for the task of drawing samples because, defining L

as the Cholesky factor of
(

1
σ2V

TV + λ−1Ir
)−1

, the Cholesky

factor of Pu is equal to L⊗ In.

B. Computation of the function Q(n)(λ, σ2)

Using the various dependencies of the variables in our

model, we first decompose the log-complete likelihood as

follows

log p(Y, Z, U, V; λ, σ2) = log p(Y|Z) (32)
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+ log p(Z|U, V; σ2) + log p(U; λ) + log p(V).

Furthermore,

−2 log p(Z|U, V; σ2) = nm log σ2 +
1

σ2
‖Z−UVT ‖2F ,

−2 log p(U; λ) = nr log λ+
1

λ
‖U‖2F ,

−2 log p(V) = mr + ‖V‖2F .

Taking the expectation of (32), we observe the following facts:

1) The first term admits the factorization

log p(Y|Z) =
n∑

i=1

m∑
j=1

log p(yij |zij) , (33)

where each factor is of the type

p(yij |zij) =
{

1 if yij=sk and zij ∈(qk−1, qk]
0 otherwise

.

(34)

When computing the expectation of this term using the

Gibbs sampler introduced throughout the paper, it is

ensured that all the generated samples z
(k)
ij belong to

the interval corresponding to the observed quantized

value yij . Hence, when we compute the expectation of

log p(Y|Z), it is ensured that each term (33) is always

equal to 1 and thus log p(Y|Z).
2) The term log p(V) does not depend on λ or σ2, therefore

it does not affect the maximum of Q(n)(λ, σ2).

Given these observations, it is straightforward to obtain (25).
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