
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

VOLUME XX, 2021 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier XX.XXXX/ACCESS.2021.Doi Number

An Efficient VLSI Architecture for FastICA by
using the Algebraic Jacobi Method for EVD

Muhammad Sajjad1, Mohd Zuki Yusoff1, Member, IEEE, and Norashikin Yahya1, Member,
IEEE, and Ali Shahbaz Haider2, Member, IEEE
1Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
2Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, USA

Corresponding author: Muhammad Sajjad (muhammad_19001746@utp.edu.my).

This work was supported in part by the Ministry of Education Malaysia through the Higher Institutional Centre of Excellence (HICoE) Scheme awarded to

the Centre for Intelligent Signal and Imaging Research (CISIR), in part by the Graduate Assistantship Scheme of Universiti Teknologi PETRONAS, and in

part by the YUTP Fund under Grant 015LC0-239.

ABSTRACT Blind source separation (BSS) is a problem that appears in many research fields. Fast

Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers

have verified the effectiveness of the technique through the offline analysis of the public datasets. The

development of a real-time portable system involving such a computationally complex analysis requires an

efficient hardware implementation of FastICA. A Field programmable gate array (FPGA) and an application-

specific integrated circuit (ASIC) are two promising hardware platforms to implement FastICA. This work

proposes a new method, called ALgebraic Jacobi Method (ALJM), for performing eigenvalue decomposition

(EVD) required for the implementation of FastICA. We use a simplification, a polynomial approximation,

and the Newton-Raphson method for calculating the Jacobi rotation. In this way, we ensure hardware

reusability between the EVD stage and the weight vector estimation (WVE) stage of FastICA which reduces

the computational complexity and the power consumption, without compromising its computation speed. We

evaluate the ALJM-based FastICA by performing BSS on the linear mixtures of the deterministic and the

random signals and comparing the performance results with the existing methods. After verifying its

functionality and numerical stability, we propose a scalable systolic processing array (SPA) for the ALJM-

based FastICA and implement it on Spartan-6 FPGA. By comparing the existing implementations of

FastICA, in terms of speed, area, and power, we conclude that the ALJM-based FastICA is one of the most

efficient methods for prototyping and commercializing a real-time portable system comprising FastICA.

INDEX TERMS Application-specific integrated circuit, ASIC, blind source separation, commercialization,

eigenvalue decomposition, field-programmable gate array, FastICA, Fixed-point Designer, independent

components analysis, Jacobi method, VLSI

I. INTRODUCTION

Independent component analysis (ICA) is a statistical

technique for decomposing a multivariate signal into

statistically independent components (ICs) having non-

Gaussian probability distributions [1]. This technique has

many variants, such as FastICA [2], [3], [4], and the scope of

its applications is ever-growing [5]. After evaluating the

technique's effectiveness through offline analysis on the

available public datasets [6], the researchers have started

deploying this computationally complex technique in real-

time portable applications [7], [8]. Many efforts have been

made for developing the portable hardware implementing ICA

followed by some artificial intelligence (AI) or machine

learning (ML) algorithms in real-time [9]. Some of them are

summarized below.

A wearable neuro-feedback system (NFS) is developed in

[10]. This system implements FastICA for removing the

artifacts in real-time. A hardware design of FastICA for

epileptic seizure detection is proposed in [11]. In [12], a

hardware architecture for a cost-effective 16-channels

FastICA is reported for the processing of

electroencephalographic (EEG) signals in real-time. Another

wearable mental state monitoring system is developed in [13]

by implementing FastICA in the ASIC for removing the

artifacts. A VLSI design of 3-channel ICA is presented in [14]

for separating and localizing the acoustic sources. In [15],

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

2 VOLUME XX, 2021

[16], ICA is also used for removing the artifacts in real-time.

A System-on-Chip (SoC) based implementation of FastICA

for dynamic background subtraction in real-time and portable

vision devices is deployed in [17]. A field-programmable gate

array (FPGA) based implementation of ICA is adopted in [18]

for digital pre-distortion (DPD) in wireless communication

systems. Moving average ICA for real-time applications is

evaluated in [19]. Another FPGA implementation of FastICA,

using a reference input for rearranging the independent

components (ICs), is reported in [20].

The literature listed above shows that FastICA is the most

frequently used variant of ICA. In FastICA data whitening is

followed by weight vector estimation (WVE). Data whitening

mainly consists of eigenvalue decomposition (EVD), whereas

WVE consists of matrices multiplications and non-linearity

computation. In hardware, EVD is computed by the Jacobi

method [21] because it can be parallelized on a systolic

processor array (SPA), as in [22], [23]. The Jacobi method can

be implemented in two ways, the exact Jacobi method (EJM)

and the approximate Jacobi method (AJM). The EJM, having

quadratic convergence, is implemented using COordinate

Rotation DIgital Computer (CORDIC) blocks [24], [25], [26],

whereas the AJM, having almost linear convergence, is

implemented with shift-and-add operations [27], [28]. The

EVD stage occupies more than 50% of chip area in the

FastICA implementation [11]. To share the hardware between

the two stages, [24] implements FastICA using CORDIC

blocks, whereas [12] uses the Gram-Schmidt

orthonormalization. But these approaches save silicon area at

the expense of computation speed.

The approaches listed above, either optimize both the stages

separately or merge the hardware for both the stages by using

the slow iterative processes. So, the computational complexity

of FastICA is still limiting its use for real-time portable

platforms.

To solve the issue stated above, the current work contributes

in the following three ways.

1) We propose a new method for computing EVD in the

whitening process of FastICA. This method is named as

ALgebraic Jacobi Method (ALJM) based on its

computational nature.

2) The theoretical performance of FastICA based on the

ALJM, the EJM, and the AJM is evaluated by varying

the wordlength and the dimensionality (number of

channels).

3) A SPA for FastICA is proposed based on the ALJM. The

SPA based architecture is area-efficient, high-speed,

scalable, and can fit into a low-cost FPGA device.

Contrary to the EJM or the AJM, the ALJM does not use

CORDIC elementary angles for computing the Jacobi

rotations. We use a polynomial approximation followed by an

inverse square root operation, using the Newton-Raphson

method, for computing the tangent of the Jacobi rotation angle.

Fixed-point Designer tool of MATLAB [29] is used for the

theoretical evaluation because it supports the datatypes and the

arithmetic operations of embedded hardware for bit-true

simulation. Quantization error level, convergence speed, and

cross-correlation coefficient (CCC) are used as the

performance metrics. The proposed method is also evaluated

on the hardware level using Spartan-6 FPGA. The evaluation

proves that the ALJM-based FastICA can be used for rapid

prototyping and commercialization of the real-time portable

systems, as demonstrated in Fig. 1.

We organize this article into seven sections. In Section II,

we review the existing methods and formulate the problem.

The ALJM is described in Section III followed by the

proposed VLSI architecture for the ALJM-based FastICA in

Section IV. The theoretical evaluation of the method is

detailed in Section V followed by the hardware evaluation in

Section VI. Finally, the conclusion and future work is listed in

Section VII. In the article, we use bold italic capital letters for

naming matrices and bold italic small letters for denoting one-

dimensional vectors. The transpose of a matrix or a vector is

represented by superscript T on its name.

II. LITERATURE REVIEW AND PROBLEM
FORMULATION:

The efficient implementation of FastICA on a hardware

platform demands some knowledge of statistics, numerical

linear algebra, advanced digital design, and modern digital

design technologies. So, in the following sub-sections, we

discuss the relevant concepts for understanding the research

problem.

A. MATHEMATICAL DESCRIPTION OF ICA

Let S and X be the two matrices of order 𝑛 × 𝑚 representing

a set of some non-Gaussian latent source signals and a set of

the corresponding observable signals, respectively. If the

observable signals are linear mixtures of the source signals, as

in (1), then we can use FastICA to compute 𝑾 for estimating

the source signals, as in (2). Here, 𝑺̂ represents the estimate

of the source signals, 𝑛 is the number of the observable

signals, 𝑚 is the number of the trials or observations, 𝑨 is the

mixing matrix, and W is the matrix of weight vectors.

FIGURE 1. A Real-time Portable System Capable of FastICA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

3 VOLUME XX, 2021

𝑿 = 𝑨 𝑺 (1)

𝑺̂ = 𝑾𝑻 𝑿 (2)

1) DATA WHITENING PROCESS

FastICA is used for estimating super-Gaussian and sub-

Gaussian latent sources (including one Gaussian source), but

it demands zero-mean and unit-variance mixed signals as its

inputs [30]. So, the mean of each mixed signal is subtracted

and a new zero-mean mixed-signal matrix 𝑿̃ is used to

update X, as in (3). The update operator ∶= is used

throughout the text to indicate the update operation of the

scalers, vectors, or matrices, as in computer programming.

𝑿 ≔ 𝑿̃ (3)

Covariance matrix 𝑪𝑋𝑋 of order 𝑛 × 𝑛 is obtained from

X, as in (4), where 𝜉[] denotes the expectation operator of

statistics. Using EVD of 𝑪𝑋𝑋 [31] , the eigenvalues and the

eigenvectors are computed using the diagonal matrix ⋀ and

the orthogonal matrix E respectively, as in (5), and these are

used for the whitening process, as in (6), where H is the

whitening matrix and Z is the zero-mean unit-variance data

matrix.

𝑪𝑋𝑋 = 𝜉[𝑿 𝑿𝑻] (4)

𝑪𝑋𝑋 = 𝑬 ⋀ 𝑬𝑇 (5)

𝑯 = ⋀−1 2⁄ 𝑬𝑇 ⟹ 𝒁 = 𝑯 𝑿 (6)

2) WEIGHT VECTORS ESTIMATION

FastICA separates the sources by measuring the non-

Gaussianity of Z. An approximation to negentropy of the data

can be used as a measure of non-Gaussianity, and

 𝑔(x) = tanh(𝑥) can be used as a derivative of the non-

quadratic function used for approximating negentropy. So,

each column of W, denoted by 𝒘𝑖 , is updated, as in (7) and

(8), whereas ‖𝒘𝑖‖ is the Euclidean norm of 𝒘𝑖 .

𝒘𝒊 ≔ 𝜉[𝒁 (𝑔(𝒘𝒊
𝑇 𝒁))𝑇] − 𝜉[𝑔′(𝒘𝒊

𝑇𝒁)]𝒘𝒊 (7)

𝒘𝒊 ∶= 𝒘𝒊 ‖𝒘𝒊‖⁄ , 𝑤ℎ𝑒𝑟𝑒𝑎𝑠 𝑖 = 1,2, … , 𝑛 (8)

Using (9), W is normalized, and then its symmetric

decorrelation is performed, as in (10), iteratively until the

convergence of W.

𝑾 ≔ 𝑾/√‖𝑾 𝑾𝑇‖ (9)

𝑾 ∶= 1.5 𝑾 − 0.5 𝑾𝑾𝑇 𝑾 (10)

After the convergence of W in (10), the computations from

(7) to (10) are repeated for the overall convergence of W, so

that it can be used for the estimation of the source signals, as

in (2). In (9), ‖𝑾 𝑾𝑇‖ is 2-norm of 𝑾 𝑾𝑇 and (11) can

also be used for estimating the sources signals.

𝑺̂ = 𝑾𝑻 𝒁 (11)

B. EVD BY THE EXACT JACOBI METHOD

By using EVD, a real square symmetric matrix S of order

𝑛 × 𝑛 can be expressed in the form of (12), where V is an

orthogonal matrix with the columns as eigenvectors of S and

D is a diagonal matrix with the diagonal entries as eigenvalues

of S. By using the Jacobi method [21], the two matrices are

obtained by rotating S through a series of two-sided

orthogonal rotations (also called the Jacobi rotations) until it is

diagonalized, as in (13). The purpose of these rotations is to

annihilate off-diagonal elements of S. These rotations are

performed iteratively, as in (14), where 𝑺⃡ denotes a rotated

version of S, and after each rotation, S is updated as 𝐒 ∶= 𝐒⃡.

𝑺 = 𝑽 𝑫 𝑽𝑇 (12)

𝑫 = 𝑽𝑇 𝑺 𝑽 (13)

𝑺⃡ = 𝑸𝒊
𝑇 𝑺 𝑸𝒊 (14)

𝑸𝑖 is the Jacobi rotation during the ith iteration, as in (15).

The Jacobi rotation differs from the identity matrix only at

𝑝𝑡ℎ& 𝑞𝑡ℎ rows and columns. For ith iteration, the pair (p, q) is

selected according to the sequence of (16) or (17), which have

a one-to-one correspondence. The completion of these n(n-

1)/2 rotations is called a sweep, and 𝛤 denotes the total

number of the two-sided Jacobi rotations in one sweep.

𝑸𝒊 =

[

1 … 0 … 0 … 0
⋮ ⋮ ⋮ ⋮
0 … 𝑐 … 𝑠 …
⋮ ⋮ ⋮ ⋮
0 … −𝑠 … 𝑐 …
⋮ ⋮ ⋮ ⋮
0 … 0 … 0 … 1]

← 𝑝

← 𝑞

 ↑ 𝑝 ↑ 𝑞

(15)

(𝑝, 𝑞) = (1,2), (1,3), … (1, 𝑛), (2,3),… (2, 𝑛), … (𝑛 − 1, 𝑛) (16)

𝑖 = 1,2, … 𝑛 − 1, 𝑛, … ,2𝑛 − 2,… 𝛤

 𝑤ℎ𝑒𝑟𝑒𝑎𝑠 𝛤 = 𝑛(𝑛 − 1)/2

(17)

In the EJM, 𝑐 & 𝑠 are calculated using (18), where apq is

the element of S from 𝑝𝑡ℎ row and 𝑞𝑡ℎ column. The result

of the first sweep can be represented by 𝑺Γ, as in (19) and

(20).

𝛳𝑖 =
1

2
𝑡𝑎𝑛−1

2𝑎𝑝𝑞

𝑎𝑝𝑝 + 𝑎𝑞𝑞

, 𝑐 = 𝑐𝑜𝑠𝛳𝑖 , 𝑠 = 𝑠𝑖𝑛𝛳𝑖 (18)

𝑺𝛤 = (∏ 𝑸𝒊
𝑇

𝛤

𝑖=1

) 𝑺 (∏𝑸𝒊

𝛤

𝑖=1

) (19)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

4 VOLUME XX, 2021

𝑽𝛤 = (∏ 𝑸𝒊

𝛤

𝑖=1

) (20)

𝑺∶=𝑺𝛤 (21)

𝑫 = 𝑺𝛤 𝑎𝑛𝑑 𝑽 = 𝑽𝛤 (22)

If 𝑺Γ is not a diagonal matrix at the end of a sweep, then

the next sweep is performed by updating S with 𝑺Γ, as in (21),

and if 𝑺Γ becomes a diagonal matrix, then (22) is used for

finding D and V matrices.

C. CORDIC OR VOLDER’s ALGORITHM

CORDIC algorithm is a hardware-friendly iterative technique

developed for implementing the elementary functions of

mathematics by using only add and shift operations [26]. It can

be used for computing sine, cosine, and arctangent in EVD by

the EJM [32], [33]. If N is the total number of CORDIC

iterations, which usually is equal to the wordlength of the

hardware architecture, then mathematically CORDIC can be

described using the equations from (23) to (26), where 𝑖 =
0, 1, 2, … . , 𝑁 and 𝑑𝑖 = ±1.

𝑥𝑖+1 = 𝐾𝑖(𝑥𝑖 −𝑦𝑖 . 𝑑𝑖 . 2
−𝑖) (23)

𝑦𝑖+1 = 𝐾𝑖(𝑦𝑖 +𝑥𝑖 . 𝑑𝑖 . 2
−𝑖) (24)

𝑧𝑖+1 = 𝑧𝑖 − 𝑑𝑖 . 𝑡𝑎𝑛−1(2−𝑖) (25)

𝐾𝑖 = 1 √1 + 2−2𝑖⁄ (26)

A lookup table with N entries is required to store the

elementary angles, 𝜃(𝑖) = 45.00, 26.56, 14.03, … , 0.0017

(expressed in degree), for calculating 𝑑𝑖 during each

iteration. In vectoring mode, CORDIC can be used to compute

𝜃𝑟 = tan−1(𝑁𝑢𝑚/𝐷𝑒𝑛) . During each iteration, 𝑑𝑖 is

selected such that 𝑦𝑖+1 → 0. In this mode, the initial and the

final states of CORDIC are given by (27) and (28),

respectively. In rotation mode, CORDIC can be used to

compute sin(𝜃𝑟) and cos(𝜃𝑟) of an input angle 𝜃𝑟. During

each iteration, 𝑑𝑖 is selected such that 𝑧𝑖+1 → 0 . In this

mode, the initial and the final states of CORDIC are given by

(29) and (30), respectively.

𝑥0 = 𝐷𝑒𝑛, 𝑦0 = 𝑁𝑢𝑚 𝑎𝑛𝑑 𝑧0 =0 (27)

𝑥𝑁 ≈ √𝑥0
2 + 𝑦0

2, 𝑦𝑁 ≈ 0 𝑎𝑛𝑑 𝑧𝑁 ≈ 𝜃𝑟 (28)

𝑥0 = 1
𝐴𝑁

⁄ , 𝑦0 = 0 𝑎𝑛𝑑 𝑧0 = 𝜃𝑟𝑜𝑡 (29)

𝑥𝑁 ≈ 𝑐𝑜𝑠(𝜃𝑟) , 𝑦𝑁 ≈ 𝑠𝑖𝑛 (𝜃𝑟) 𝑎𝑛𝑑 𝑧𝑁 ≈ 0 (30)

D. EVD BY THE APPROXIMATE JACOBI METHOD

We know that the symmetric matrix S is rotated by using the

Jacobi rotations to annihilate its off-diagonal elements 𝑎𝑝𝑞

and convert it to a diagonal matrix D. But complete

annihilation is neither possible nor mandatory because the

annihilation efforts from one rotation are destroyed by the

subsequent rotations during each sweep except for the last few

sweeps before the convergence. This observation leads to a

new method called the AJM [27], which is faster and more

efficient than the EJM, as reported by [28]. According to the

AJM, any Jacobi rotation which satisfies the condition in (31)

can be used for annihilating 𝑎𝑝𝑞 . In other words, the AJM

computes 𝑐 𝑎𝑛𝑑 𝑠 approximately.

𝑎𝑝𝑞 ≔ 𝑑𝑎𝑝𝑞 𝑤ℎ𝑒𝑟𝑒𝑎𝑠 0 ≤ |𝑑| < 1 (31)

𝑎𝐷 = 𝑎𝑞𝑞 − 𝑎𝑝𝑝 (32)

𝜏 =
𝑎𝐷

2𝑎𝑝𝑞

 (33)

𝑘 = 𝑒𝑥𝑝 (|𝑎𝐷|) − 𝑒𝑥𝑝 (|𝑎𝑝𝑞|) (34)

(2𝑙 − 2−𝑙+1)|𝑎𝐷| ≤ |𝑎𝐷| + 2−1|𝑎𝐷|

< (2𝑙+1 − 2−𝑙)|𝑎𝑝𝑞|
(35)

𝑙 = {

0 𝑖𝑓 𝑘 ≤ −2
0, 1 𝑖𝑓 𝑘 = −1,0

𝑘 − 1, 𝑘, 𝑘 + 1 𝑖𝑓 𝑘 > 0
 (36)

Here, 𝑑 in (31) represents the depth of the annihilation,

and 𝑒𝑥𝑝 () in (34) represents the exponent of a number

when it is expressed in base-2 scientific notation. In this

method, 𝑘 is calculated using (34), and then the possible

values of 𝑙 are chosen using the conditions in (36). The

comparison operations of (35) are used to select a specific

value for 𝑙 . For avoiding the square root operation in the

scaling factor, 𝑙 is incremented as in (37), whereas (38) is

used for computing approximate values of c and 𝑠 .

Similarly, for avoiding the division operation of the scaling

factor 𝐾𝑙
2 , mathematical recursion is used, as in (40). The

inequality in (41) represents the accuracy limit of fixed-point

hardware architecture with a wordlength of w-bit.

𝑙 ∶= 𝑙 + 1 (37)

𝑐 ≈ 𝐾𝑙
2(1 − 2−2𝑙), 𝑠 ≈ 𝑠𝑖𝑔𝑛(𝜏)𝐾𝑙

22−𝑙+1 (38)

𝐾𝑙
2 =

1

1 + 2−2𝑙
 (39)

𝐾𝑖+1
2 = 𝐾𝑖

2(1 + 2−2𝑖+1𝑙), 𝐾1
2 = 1 − 2−𝑙 (40)

2𝑖+1𝑙 ≤ 𝑤 (41)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

5 VOLUME XX, 2021

So, using the AJM, the division and the square root can be

avoided but at the expense of losing quadratic convergence to

almost linear convergence for EVD. For the AJM, the

maximum absolute annihilation has an upper bound of 0.6.

 E. SYSTOLIC PROCESSING ARRAY FOR EVD

The Jacobi rotation 𝑸𝒊 only affects the elements of 𝑺 from

𝑝𝑡ℎ & 𝑝𝑡ℎ rows and columns. For parallelizing the

computations of the Jacobi rotations 𝑸𝒊 on a SPA, 2 × 2

matrices 𝑸𝒊
𝒔𝒖𝒃, 𝐕𝐬𝐮𝐛, and 𝑺𝒔𝒖𝒃 are introduced, as in (42). A

SPA of 𝑛/2 × 𝑛/2 processing elements (PEs), as shown in

Fig. 2, is used for performing 𝑛/2 disjoint Jacobi rotations

(which do not share any row or column) in parallel as in [22].

A sweep is completed after performing 𝑛-1 steps of the 𝑛/2

disjoint rotations. The diagonal processing elements (DPEs)

on the systolic array compute 𝑐 & 𝑠 using (18) or (38) and

then rotate their elements by 𝑸𝑖
𝑠𝑢𝑏 . The non-diagonal

processing elements (NPEs) only rotate their elements by the

rotation parameters provided on their dotted-line inputs by the

NPEs. After each step of the 𝑛/2 disjoint rotations, row-wise

and column-wise swapping of the elements of 𝑺 is performed

according to the patterns shown on the top and left of Fig. 2.

After the performing the swapping for 𝑛-1 times, the elements

come to their original position. The crossed diagonal

interfaces between the PEs are used for the swapping of the

elements. In this way, we get eigenvalues and eigenvectors of

𝑺.

𝑄𝑖
𝑠𝑢𝑏 = (

𝑐 𝑠
−𝑠 𝑐

) , 𝑆𝑠𝑢𝑏 = (
𝑎𝑝𝑝 𝑎𝑝𝑞

𝑎𝑞𝑝 𝑎𝑞𝑞
) , 𝑉𝑠𝑢𝑏 = (

1 0
0 1

) (42)

𝑎𝑝𝑝 ∶= 𝑐2𝑎𝑝𝑝 + 𝑠2𝑎𝑞𝑞 − 𝑐𝑠(𝑎
𝑝𝑞

+ 𝑎𝑞𝑝) (43)

𝑎𝑝𝑞 ∶= 𝑐2𝑎𝑝𝑞 − 𝑠2𝑎𝑞𝑝 + 𝑐𝑠(𝑎
𝑝𝑝

− 𝑎𝑞𝑞)

𝑎𝑞𝑝 ∶= 𝑐2𝑎𝑞𝑝 − 𝑠2𝑎𝑝𝑞 + 𝑐𝑠(𝑎𝑝𝑝 − 𝑎𝑞𝑞)

𝑎𝑞𝑞 ∶= 𝑐2𝑎𝑞𝑞 + 𝑠2𝑎𝑝𝑝 − 𝑐𝑠(𝑎𝑝𝑞 + 𝑎𝑞𝑝)

𝑉𝑠𝑢𝑏 ∶= (
𝑐𝑎𝑝𝑝 − 𝑠𝑎𝑝𝑞 𝑐𝑎𝑝𝑞 + 𝑠𝑎𝑝𝑝

𝑐𝑎𝑞𝑝 − 𝑠𝑎𝑞𝑞 𝑐𝑎𝑞𝑞 + 𝑠𝑎𝑞𝑝
) 𝑉𝑠𝑢𝑏 (44)

F. PROBLEM FORMULATION

The EJM and the AJM have been proposed for computing

eigenvalues and eigenvectors using shift and add operations.

These operations are the only options for implementing

mathematical functions in the first generation of FPGAs [22],

[24], [27]. With the availability of hardware-based multipliers

(in the form of DSP blocks) in the second/third generations of

FPGAs and the popularity of ASIC-based designs, the scaling

and the rotation operations of both methods are implemented

using the hardware multipliers [28], [33]. To implement the

EJM on the SPA, each DPE needs to be equipped with two

CORDIC [34] blocks for computing 𝛳𝑖 , 𝑐, 𝑎𝑛𝑑 𝑠 as in (18).

CORDIC algorithm can be realized with shift and add

operations but it has a slow convergence rate. To overcome

this issue, unrolled CORDIC [35], parallel CORDIC [36], or

pipelined CORDIC [20] blocks are introduced but the EJM

cannot be implemented using these blocks on the SPA, at least

under the constraints originating from real-time portable

systems. Non-systolic architectures for the EJM [13], [37] are

also efficient with a small channel count but scalability cannot

be achieved with such arrangements. Systolic architectures for

the AJM using hardware multipliers for the scaling operation

of (39) are also used to implement FastICA [28], [38]. But for

avoiding the square root of the scaling operation on the SPA,

𝐾𝑙
2 is computed by recursion, as in (45). For calculating 𝑙, as

in (36), in a single clock cycle a lot of variable-shifters and

priority decoders along with some adders are required within

each DPE. So, it is difficult to bring the required hardware

efficiency even with the AJM. According to [28] the AJM is

superior to the EJM in terms of efficiency (eigenvalues

produced per second per unit chip area) but both methods are

still in use [23], [38], [39], [40] for implementing FastICA on

FPGAs or ASICs. In the AJM, 𝑐 𝑎𝑛𝑑 𝑠 are approximated to

the closest CORDIC iteration values, that is why the existing

two methods are considered as CORDIC-based methods.

𝐾𝑙
2 = (1 − 2−2𝑙)(1 + 2−4𝑙)(1 + 2−8𝑙)(1 + 2−16𝑙)

𝑤ℎ𝑒𝑛 𝑙 = 0, 𝐾𝑙
2 = 1 2⁄

(45)

ASIC-based implementations of FastICA can be optimized

with respect to speed or power [32] and hardware complexity

can be neglected to some extent because even a complex

design can be optimized for power by carefully selecting

technology node and operating voltage as in [11], [13]. ASIC-

based designs are useful at the commercialization stage. But

FIGURE 2. A Systolic Processing Array for EVD of an 8x8 Matrix

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

6 VOLUME XX, 2021

from [9], we know that 65% of AI algorithms are being

implemented on FPGAs because of their flexibility and rapid

prototyping capability. With the availability of low-cost and

high-performance FPGAs [41], we can also use them at the

commercialization stage after optimizing the algorithms for

power. In the EJM and AJM based implementations of

FastICA, the nonreusable EVD stage makes the

implementations area-inefficient and power-hungry (because

of the quiescent current flowing through this stage) [42].

Based on this observation we are going to propose a new

method, called the ALJM, for computing EVD for FastICA.

Th ALJM also leads to a new scalable efficient SPA for

FastICA.

III. INTRODUCING THE ALJM

The EJM, the AJM, and the ALJM differ in the way they

compute the values of sine and cosine of the rotation angle, as

in (18), (38), and (46). These values should be computed such

that the Jacobi rotation remains an orthogonal transformation

(in other words, 𝑐2 + 𝑠2 = 1). The EJM uses CORDIC

block, and its outputs satisfy this condition. The AJM and the

ALJM approximately compute the tangent of the angle, as in

(46). This way helps in orthogonalizing the approximate

Jacobi rotation, as explained in [27]. The relation between

𝑡𝑎𝑛𝛳𝑖 and 𝜏 is shown in (47). From (33) we can see that 𝜏

keeps growing in magnitude during the EVD computation

because 𝑎𝑝𝑞 is annihilated in each step. This observation

leads to the simplification in (48). The quantities 𝑒 and 𝑓
𝑟

of (49) can be easily computed at hardware level using a

cascade connection of priority decoder and variable left

shifter.

𝑡 ≈ 𝑡𝑎𝑛𝛳𝑖 , 𝑐 ≈
1

√1+𝑡2
 , s ≈ 𝑐𝑡 (46)

𝑡𝑎𝑛𝛳𝑖 =
𝑠𝑖𝑔𝑛(𝜏)

|𝜏| + √1 + 𝜏2
 (47)

𝑡 ≈
𝑠𝑖𝑔𝑛(𝜏)

2|𝜏|
≈

𝑎𝑝𝑞

𝑎𝐷

 (48)

𝑒 = 𝑒𝑥𝑝(𝑎𝐷) , 𝑓𝑟 = 2−𝑒𝑎𝐷 − 1 (49)

𝑃 = 0.3275𝑓𝑟
2 − 0.8042𝑓𝑟 + 0.9861 (50)

𝑡𝑟 = 2−𝑒 𝑎𝑝𝑞 𝑃 (51)

𝑡 ≈ {
1 𝑖𝑓 𝑡𝑟 ≥ 1
 𝑡𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (52)

After computing 𝑃 of (50), 𝑡 can be computed using (51)

and (52) and this is a very good approximation for 𝑡𝑎𝑛𝛳𝑖, as

compared to the approximation used in the AJM, because it

keeps the convergence rate almost intact. Then the inverse

square root by the Newton-Raphson method [43], described

from (53) to (55), is used to compute 𝑐 𝑎𝑛𝑑 𝑠, as in (56). This

is how we can avoid the square root and division operations in

a non-CORDIC implementation of EVD and the same set of

multipliers can be used for calculating the Jacobi rotation

entries, the scaling operation, and performing the two-sided

rotation. In the ALJM 𝑠 and 𝑐 can be computed within 7

clock cycles including the five iterations of the Newton-

Raphson method. The AJM also takes 6 clock cycles for

computing 𝑠 and 𝑐 because it performs the comparison

operations of (35) and the recursion of (40). But the AJM uses

a lot of reconfigurable logic for computing 𝑐 𝑎𝑛𝑑 𝑠 and the

DSP blocks for the scaling whereas the ALJM uses the DSP

blocks for both the tasks.

𝑥 = 1 + 𝑡2 (53)

𝑥0 = 2−𝑒𝑥𝑝(𝑥)/2 (54)

𝑥1 = 𝑥0

𝑥

2
 , 𝑥0 ∶= 𝑥0 (1.5 − 𝑥0 𝑥1) (55)

𝑐 = 𝑥0 𝑎𝑛𝑑 𝑠 = 𝑐 𝑡 (56)

Almost all modern FPGAs are equipped with such DSP

blocks [41], [44], [45]. These blocks can be operated at

frequencies greater than 300MHz and the number of the

blocks can vary from 10 to 3600 within a single FPGA. They

have a 25 × 18 or 18 × 18 multiplier followed by a 48-bit

accumulator which ensures accuracy and overflow control.

The blocks can operate in an asynchronous mode, or in

pipelined mode using the built-in high-speed registers. The

DSP blocks are more optimized for speed and power than the

configurable logic blocks (CLBs) and transferring the

computational load of any algorithm to these units results in a

good balance of operating speed and power consumption. So,

we can expect that the ALJM-based FastICA, which engages

the blocks during EVD and WVE, can beat the existing

methods with respect to area, speed, and power. The speed

performance of ALJM is expected because it retains the

quadratic convergence of the EVD stage, contrary to the AJM

which has almost linear convergence.

Modern FPGA devices have all the necessary features to

implement a SPA which can be used for both EVD and WVE

stages. The advanced silicon modular block (ASMBL) is

adapted to overcome geometric layout constraints for

combining blocks of different functionality. In ASMBL, DSP

blocks are stacked in a column-wise arrangement, which is

parallel as well as adjacent to Block RAM column-wise

arrangement. Moreover, in case of higher dimensionality, a

super logic region (SLR), containing DSP blocks, can be

connected to the neighboring SLRs using super logic lines

(SLL) in Xilinx 7-Series FPGAs as explained in [46]. The SLL

has very low latency compared to the reconfigurable logic.

IV. PROPOSED HARDWARE ARCHITECTURE

In the previous section, we have demonstrated how the whole

EVD stage can be mapped to a SPA based on the DSP blocks

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

7 VOLUME XX, 2021

of modern low-cost FPGAs. For performing both the EVD and

the WVE stages on a single SPA, which is the primary purpose

of the current work, we also need to simplify the operations of

the WVE stage. Therefore, the following subsections are

dedicated to implementing both the stages using a two-

dimensional array of DSP blocks connected by a network of

data buses. Moreover, we are currently targeting low-cost

FPGAs for ALJM-based FastICA, but the concept is equally

valid for ASIC platforms which will be considered in the

future. We need to replace the DSP blocks with fixed-point

multiply-accumulate (MAC) IPs and the Block RAM

(BRAM) modules with dual-port flipflop-based memory.

D. TOWARDS A SPA FOR FastICA

For the implementation of the WVE stage of FastICA, we

need the three types of matrix multiplications, as in (57),

where the subscripts are showing the dimensions of the

matrices involved, P denotes the product matrix, L denotes the

left-hand side matrix, and R denotes the right-hand side

matrix. Calculating 𝑡𝑎𝑛ℎ 𝑥 at high-speed is also required in

the WVE stage. As shown in (58), after piecewise

linearization, this function can be implemented by using some

comparators and the DSP blocks of FPGAs. The comparators

are required for selecting the values of 𝐴(𝑥) and 𝐵(𝑥)

based on the value of 𝑥.

𝑷𝑛×𝑚 = 𝑳𝑛×𝑛𝑹𝑛×𝑚 , 𝑷𝑛×𝑛 = 𝑳𝑛×𝑚𝑹𝑚×𝑛

𝑷𝑛×𝑛 = 𝑳𝑛×𝑛𝑹𝑛×𝑛

(57)

𝑡𝑎𝑛ℎ 𝑥 = 𝐴(𝑥) 𝑥 + 𝐵(𝑥) (58)

In addition, there are the two norm operations followed by

the two division operations for the WVE stage, as in (8) and

(9). The simulation trials performed during the theoretical

evaluation of FastICA, as described in the next section, show

that the two norm operations be simplified, as in (59) and (60),

without any significant effect on the separation quality of the

extracted signals 𝑺̂ of (2).

𝒘𝒊 ∶= 𝒘𝒊 𝑚𝑎𝑥 (𝑎𝑏𝑠(𝒘𝒊))⁄ (59)

𝑾 ≔ 𝑾/𝑚𝑎𝑥 (𝑎𝑏𝑠(𝑾 𝑾𝑇)) (60)

We can also replace the division operations, as verified in

the next section using the fixed-point mathematical models for

FastICA, with the shift operations as shown in (61) and (62)

without significantly degrading CCC between the actual

sources and the extracted sources. So, we can approximately

perform the divisions by shifting the input operand by the

binary places equal to the output of a signed priority encoder.

Now we can describe the design of the SPA for FastICA based

on the ALJM.

𝒘𝒊 ∶= 𝒘𝒊 2𝑒𝑥𝑝(𝑚𝑎𝑥(𝑎𝑏𝑠(𝒘𝒊)))⁄ (61)

𝑾 ≔ 𝑾/ 2𝑒𝑥𝑝(𝑚𝑎𝑥(𝑎𝑏𝑠(𝑾𝑾𝑇))) (62)

A. THE PROPOSED SPA FOR FastICA

The proposed SPA for performing 4-channel FastICA is

shown in Fig. 3. This architecture consists of a 2-D array of

processing elements labeled with their position (PEij), a 1-D

array of BRAM modules for each channel, a network of the

bidirectional buses, and a distribution of the configurable

connectors for routing one bus to another bus. The BRAM

modules are labeled (BRAM Chi) according to the channel

they store. Each bus is represented by a different line style and

has a name like BXYZ which describes its functionality, listed

below the architecture. There are three types of the

configurable connectors and each type is represented by a

different shape. The PEs on the main diagonal (DPEs, colored

in light green) and the off diagonal/non-diagonal PEs (NPEs,

colored in light orange) have different functionality and

architecture.

The NPEs have a built-in controller whereas the NPEs only

have an instruction decoder. The controller inside each DPE

dictates the operation of all the NPEs in the same column. It

also controls the BRAM module for the corresponding

channel. The NPEs of each column receive instructions from

the corresponding controller, decode them, and act

accordingly. The instructions specify the operation (addition,

multiplication, or MAC) and the operands involved. The bus

named BNPE is used to carry these instructions from a DPE to

the NPEs in the same column.

The buses named BVMM and BHMM are used for implementing

the matrix multiplications. DSP blocks inside each PE are used

for performing the MAC operations during the matrix

multiplications. The multiplications are performed over the

data from the BRAM modules or distributed RAM (DRAM,

implemented using LUTs) inside each PE. The bus BTMM is

used to implement multiplication involving transpose of a

matrix such as the multiplications during the symmetric

decorrelation of FastICA. The BMAC is used for cascading the

outputs of the DSP Blocks for performing the decomposition

operations of the EVD and the WVE stages (decomposing 𝑿

and 𝒁 using 𝑯 and 𝑾 respectively). The two buses BMCV

and BMVM are used for the sorting operations performed on 𝑾.

BMCV is used for directing the maximum value of a column

vector (such as 𝐰𝐢 during the norm or normalization step) to

the DPE for normalizing each column vector whereas BMVM is

used for directing the maximum value of the matrix (such as

𝑾) to the DPEs so that the matrix can be normalized as in (62).

The configurable connectors represented by the circles are

used for directing BHMM to BVMM during the covariance matrix

calculation as in (4) and (7). The configurable connectors

represented by the triangles are used for directing input or

output ports of the RAM modules to BHMM during the

covariance and data whitening operations whereas the

configurable connectors represented by the squares are used

for directing BTMM to BVMM during the symmetric decorrelation

operation, as in (9) and (10). The buses connected to the PEs

through double-headed arrows are bi-directional buses (they

carry both the inputs and the outputs to/from the PEs). Some

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

8 VOLUME XX, 2021

hardware platforms, such as modern FPGA, cannot synthesize

bi-directional signals and use multiplexers to implement

bidirectional logic as shown in Fig. 4.

A. THE ARCHITECTURE FOR DPE

The architecture of a DPE and its connections to the

surrounding buses is shown in Fig. 5(a). The control unit block

not only controls the operation of all components inside the

DPE, but it also dictates the operation of the NPEs within the

same column, as shown by its connection to BNPE. Three

multiplexers are used for directing different operands to the

DSP block. The operands can come from the DRAM block or

through the surrounding buses. Dedicated lines are used for

directing 1 and 0 to multiplier and adder of the DSP block,

respectively, because of their frequent use. The DRAM block

stores the linearization coefficients of tanh() function, the

polynomial coefficients used in (50), one element from each

FIGURE 3. Architecture of the Proposed Systolic Processing Array (SPA) for implementing the ALJM-Based FastICA in Hardware (Spartan-6)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

9 VOLUME XX, 2021

of 𝑫, 𝑽, and 𝑾, and intermediate variables generated while

performing FastICA. The signed priority encoder (which

operates on the absolute value of its input), variable shifter

(which shifts its input in the direction and the position

determined by its control input) and Rounding & Truncation

block are used for generating initial guess for the square root

operation during data whitening. These blocks are also used

for performing the inverse square root operation during EVD.

The data from the DSP block and the surrounding buses can

be stored in the DRAM block. The circle having symbol >= is

showing the sorting operation performed on the input data

from BMCV and the element of 𝑾 stored in the DRAM block.

The tanh() Select block computes the region of linearization

for tanh() function and the control unit selects the

corresponding coefficients from the DRAM block. Abs() and

2sC() blocks are used to take absolute and 2’s complement

(whenever it is required, otherwise they are bypass by the

control unit) of the contents addressed in the DRAM block,

respectively. The size of the DRAM block in the case of the

ALJM-based FastICA is typically 16x18.

B. THE ARCHITECTURE FOR NPE

The architecture of NPE is a simplified version of the DPE

architecture. The NPEs run in slave mode and the instructions

are decoded by the Command Decoder block, as in Fig. 5(b).

The size of the dual-port RAM block in the case of the ALJM

based FastICA is typically 4x18. Both the types of PEs can

direct data from BHMM and BVMM to the DSP block and place

the addressed content of the DRAM block to BTMM.

C. BRAM AND ITS INTERFACING

Symmetric decorrelation of FastICA is redefined, as in (63),

in terms of matrix multiplications. This redefinition helps

understanding memory allocation and mapping FastICA on

the SPA. There is a BRAM module for every channel on the

SPA. The size of the module is 1024x18 for calculating

FastICA of 512 samples. Initially, one channel of multivariate

signal 𝑿 is stored in the first 512 locations of the module.

Then during the centering operation, each sample of 𝑿 is

replaced by 𝑿̃. During data whitening, matrix 𝑿̃ is replaced

by 𝒁 in the module. The last 512 locations of the BRAM

modules are used for storing H. After the convergence of 𝑾,

𝑺̂ is estimated and it replaces H at the last 512 locations. At

the end of the computations, we have 𝒁 at the first 512

locations and 𝑺̂ at the last 512 locations of the module. So,

we can say that the SPA for ALJM-based FastICA is memory

efficient as compared to the existing architectures.

𝑾 ∶=
1

𝑚
(𝒁𝑯𝑇 − 𝑑𝑖𝑎𝑔 (∑(1 − 𝑯2))𝑾)

𝑯 = 𝑡𝑎𝑛ℎ(𝑾𝑇𝒁)

(63)

D. MAPPING EVD ON THE SPA

The SPA for computing EVD, as shown in Fig. 2, can be

merged into the SPA for FastICA, as shown in Fig. 3. The

FIGURE 4. Implementing a Tri-State bus in Modern FPGAs

FIGURE 5. Digital Architecture for DPE and NPE of the SPA used for Implementing the ALJM based FastICA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

10 VOLUME XX, 2021

swapping operations and data exchange between the PEs can

be performed using the buses such as BVMM, BHMM, and BTMM.

For computing s 𝑎𝑛𝑑 𝑐, we divide SPA for FastICA into the

groups of four PEs labeled as PEii, PEij, PEji, and PEjj

whereas i=1, 3, 5, …Cc and j=2, 4, 6, ...Cc. Here Cc is the

channel count for FastICA and the first value of ‘i’ and ‘j’

select the first group and the second value selects the second

group and so on. During the first cycle of the EVD stage, each

group is configured as shown in Fig. 6(a). In this

configuration, 𝑓
𝑟
2 and 2−𝑒 𝑎𝑝𝑞 of (51) are computed and

stored in the DRAM block of PEii. In the second cycle, each

group is configured as shown in Fig. 6(b). The stored variables

from the previous clock cycle are used to calculate the initial

guess for the inverse square root of (55), and the guess is stored

in the DRAM block. During the next five clock cycles, this

initial guess is updated, as shown in Fig. 6(c), and finally, we

get the inverse square root. In this way, each group computes

s 𝑎𝑛𝑑 𝑐 for performing the Jacobi rotation.

The first group performs the Jacobi rotation on the 1st & 2nd

rows and columns of the SPA during the next two clock cycles

and updates the corresponding elements of 𝑫 and 𝑽 for

computing eigenvalues and eigenvectors. The elements

𝑎𝑖𝑖 , 𝑎𝑖𝑗 , 𝑎𝑗𝑖 𝑎𝑛𝑑 𝑎𝑗𝑗 of any group takes six additional clock

cycles for completing update operation, meanwhile, the

second group starts updating the 3rd & 4th rows and columns

for the subsequent two clock cycles. In this way, the Jacobi

rotations are computed in parallel and performed in pipelined

mode. When all the groups complete the rotations by updating

their elements, the swapping operation is performed using the

relevant buses and the next step of the ongoing sweep is

performed.

V. THEORETICAL PERFORMANCE EVALUATION

Usually, hardware platforms execute algorithms using fixed-

point representation. But the development of such algorithms

is carried out using a floating-point representation on a

numerical computing environment such as MATLAB [47].

Fixed-point Designer [29] is a MATLAB tool, which

facilitates optimizing and evaluating the hardware-oriented

algorithms. This tool moves the analysis from the hardware

domain to the software domain hence saving time and effort.

It offers customizable datatypes and configurable modes for

mathematical and logical operations. We use this tool,

contrary to the analysis carried out in [48], [49], for evaluating

and comparing the theoretical performance of the ALJM-

based FastICA with the existing methods. This performance

counts for functional accuracy, numerical stability,

convergence rate, and quality of separation. The settings of the

tool are customized to match the properties of the arithmetic

operations performed on the targeted hardware. For example,

the tool offers the two options, ‘Round’ and ‘Zero’ for

truncation. We choose ‘Zero’ because in hardware, truncation

is done by dropping the extra bits. Rounding fractions to the

nearest integer needs additional hardware, and usually, it is not

implemented for fixed-point computations. Similarly, the tool

also offers the two actions, ‘Wrap’ and ‘Saturate’ for

overflow. But we choose ‘Wrap’ because during the fixed-

point computations, the results are wrapped at overflows.

Moreover, the precision for both sum and product modes is

specified according to the widths of the adder and multiplier

in the DSP block.

A. EVALUATION SETUP AND BENCHMARKING

We evaluate the proposed and the existing algorithms under

the same environment with the same datasets. We develop

parameterized fixed-point software models of the three

algorithms so that their sensitivity to the parametric variations

can be evaluated before implementing them on actual

hardware. In real-time applications that perform FastICA such

as BCIs, the latent sources are supposed to be non-Gaussian.

So, we generate non-Gaussian random signals as the source

signals 𝑺 , as in (1), and then create their linear mixtures,

represented by X, as in (1). EVD, whitening, and FastICA are

performed separately using each of the three algorithms. We

evaluate and compare the algorithms by measuring their

average performance over 50 trials.

FIGURE 6. Configurating the SPA to Compute ALJM-based EVD

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

11 VOLUME XX, 2021

B. INTEGER LENGTH OPTIMIZATION

In the fixed-point implementation of an algorithm, wordlength

(WL) is defined as the sum of inter length (IL) (including the

sign bit) and fraction length (FL). FL is related to the

computational accuracy of the algorithm. For minimizing the

required hardware resources, knowing the bare minimum IL is

the first step towards the optimization of an algorithm. We use

‘buildInstrumentedMex’ and ‘showInstrumentationResults’

features of Fixed-point Designer for optimizing IL for the

proposed method. After scaling the covariance matrix CXX of

(5) so that its elements lie in the range (-1,+1) inclusive, IL=4

is recommended by the tool over the 50 trials of simulation for

the EVD stage, and IL=1 is recommended for the WVE stage

for increasing the separation quality.

C. DEFINING PERFORMANCE METRICS

From the simulation results of the algorithms with Fixed-point

Designer, we note that the amount of error in each eigenvalue

depends on its magnitude. So, for measuring the quality of the

eigenvalues 𝜎̂𝑖 computed by the algorithms, we use the

relative error in each eigenvalue, as defined in (64), where n is

the order of 𝐶𝑋𝑋 . Reference for the relative error is the

eigenvalues 𝜎𝑖 computed by MATLAB 2020b eig function.

𝑚𝑎𝑥 [100 × 𝑎𝑏𝑠(𝜎𝑖 − 𝜎̂𝑖) / 𝜎𝑖]

𝑖 = 1,2, … . 𝑛

(64)

As we know that eigenvalues are unique, but the

corresponding eigenvectors can vary with the computation

tools and methods. But they are always orthogonal to each

other. So, we decide to measure the quality of their

orthogonality. So, the percent error in orthogonality between

any two eigenvectors 𝜐̂𝑖 and 𝜐̂𝑗 , computed by any of the

three algorithms, is defined in (65).

100 − 𝑚𝑖𝑛 [100 (𝑎𝑏𝑠(𝜐̂𝑖 . 𝜐̂𝑖 − 𝜐̂𝑖. 𝜐̂𝑗)/𝜐̂𝑖 . 𝜐̂𝑖]

𝑖 = 1,2, … . 𝑛, 𝑗 = 1,2,… 𝑛, 𝑖 ≠ 𝑗

(65)

After computing the EVD of 𝑪𝑿𝑿, the inverse square roots

of the eigenvalues 𝜎̂𝑖 are calculated to obtain the whitening

matrix H, as in (6). In each of the algorithms, the inverse

square roots are calculated using the Newton-Raphson

method. The whitening matrix H is used to obtain zero-mean

unit variance (whitened) data matrix Z, as in (6). After this,

𝑪𝑿𝑿 for Z is computed with each of the algorithms. Ideally,

𝑪𝑿𝑿 should be the identity matrix, but due to the quantization

in the fixed-point implementations, it is only close to the

identity matrix. So, for comparing the quality of the whitening

process, we use (66) to compute percent errors, where 𝑐̂𝑖 and

𝑐̂𝑗 are any two columns of 𝑪𝑿𝑿.

100 − 𝑚𝑖𝑛 [(𝑎𝑏𝑠(𝑐̂𝑖 . 𝑐̂𝑖 − 𝑐̂𝑖 . 𝑐𝑗̂)/𝑐̂𝑖 . 𝑐̂𝑖]

𝑖 = 1,2, … . 𝑛, 𝑗 = 1,2, … 𝑛, 𝑖 ≠ 𝑗

(66)

The quality of separation is estimated by calculating the

cross-correlation coefficient 𝐶𝐶𝐶(𝑥, 𝑦) between the input

source signals and the extracted signals. This coefficient is

calculated as in (67), where 𝑥 is the input signal and 𝑦 is the

estimated signal. When 𝐶𝐶𝐶(𝑥, 𝑦) = 100 then the source

signal and the extracted signal are identical.

𝐶𝐶𝐶(𝑥, 𝑦) =
100

𝑛 − 1
∑ (

𝑥 − 𝜇𝑥

𝜎𝑥

) (
𝑦 − 𝜇𝑦

𝜎𝑦

)
𝑛

𝑖=1
 (67)

Each of the three algorithms computes 1/𝜏 , directly or

indirectly, as defined in (33) before performing the Jacobi

rotation. When this factor is equal to zero (or less than the

accuracy of the fixed-point representation used) then the

Jacobi rotation becomes a unity matrix. During the 50 trials,

the maximum absolute value for 𝑎𝐷 is always less than 4. In

(68) and (69) we calculate the annihilation limit of 𝑎𝑝𝑞 which

is set as the convergence limit for the EVD stage.

1/𝜏 =
2𝑎𝑝𝑞

𝑎𝐷

≤ 2−𝐹𝐿 (68)

𝑎𝑝𝑞 ≤ 2−𝐹𝐿+1 (69)

During the WVE stage, the convergence of weight vectors

matrix W is defined in (70) and (71) where 𝑾𝒊 is weight

vectors matrix during ith iteration. Because of the

normalization, as in (8) and (9), elements of 𝑾𝒊 are always

less than unity. So, we can say that W converges within 1%

and this is enough to ensure a cross-correlation coefficient of

99.8%, as observed during the trials.

∆𝑾𝒊 = 𝑾𝒊 − 𝑾𝒊−𝟏 (70)

𝑚𝑎𝑥(∆𝑾𝒊) ≤ 0.01 (71)

D. EFFECTS OF LIMITED WORDLENGTH

Currently, most of the FPGAs have built-in 18 × 18

multipliers. In addition to this, intellectual properties (IPs) for

16-bit to 24-bit ASIC designs are also available on every

technology node. As we know that IL=4 is recommended by

Fixed-point Designer, so we decide to vary FL from 12-bit to

20-bit for analyzing the algorithms over WL of 16 to 24 bits.

In Fig. 7, we plot the mean value of the three errors (defined

in (64), (65), and (66)), CCC (defined in (67)), and the two

iteration counts (defined in (69) and (71)) against the different

values of FL for the 50 trials performed with each of the three

algorithms. In each trial, we use eight different non-Gaussian

random source signals 𝑺 and mix them using a different

randomly generated mixing matrix 𝑨 of order 8 × 8. We

observe that the EJM is performing the worst over the initial

values of FL, contrary to the expectations. The reason for such

behavior is that the performance of CORDIC, the algorithm

used by the EJM, is poor over these values of FL.

Orthogonality error in the computation of 𝑐 𝑎𝑛𝑑 𝑠 is the

main reason for such behavior. The other two methods use an

approximation for tangent of the rotation angle before

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

12 VOLUME XX, 2021

computing 𝑐 𝑎𝑛𝑑 𝑠 which produces better orthogonality

even at the initial values of FL. The error in data whitening

originates from both the error in eigenvalues and the error in

eigenvectors. So, the EJM is again performing poorly

compared to the other two methods at the initial values of FL.

Similarly, the imperfection in CCC is also determined by the

errors in data whitening or EVD because the WVE stage of all

the methods is the same. The EJM has the least CCC due to

the progression of the errors from the EVD stage at the initial

values of FL. The iteration count for EVD which is the number

of iterations required for diagonalizing the matrix 𝑺 by the

Jacobi rotations is almost 4. The reason for such a low iteration

count is the quadratic convergence of the EJM. The ALJM is

very close to the EJM in terms of the iteration count for EVD

because it uses a very good approximation compared to the

AJM. The iteration count for the WVE stage or the number of

iterations required for convergence of W also depends on the

quality of the data whitening. This is the reason for the poor

iteration count for the initial values of FL. From all the six

graphs showing the average relative errors, CCCs, or the

iteration counts, we can easily observe that the ALJM is

performing better than or at least equal to the other two

methods. Such performance of the ALJM ensures its superior

separation quality at the hardware level before actually

creating the hardware.

E. EFFECTS OF CHANGING DIMENSIONALITY

We can estimate from the systolic array architecture that the

required amount of hardware resources varies with the square

of dimensionality or channel count. This is why the real-time

portable applications of ICA, as in [10, 13], can hardly

accommodate eight channels. So, we decide to change

dimensionality from 4 to 10 for studying the quantization

errors in the case of low-cost FPGAs with WL=14+4=18 to

match the built-in DSP blocks. In Fig. 8, we plot the mean

value of the three errors (defined in (64), (65), and (66)), CCC

(defined in (67)), and the two iteration counts (defined in (69)

and (71)) against the dimensionality (from 4 to 10 channels

inclusive) for another set of 50 trials. In each trial, we use non-

Gaussian random source signals 𝑺 and mix them using a

different randomly generated mixing matrix 𝑨 of order

𝑛 × 𝑛. We set WL=18 to deeply analyze the dimensionality

variations in case of the low-cost FPGAs such as Spartan-6.

The reason for showing the performance results with the

varying dimensionality is to see how the errors, caused by the

quantization, grow with the increasing amount of

computation. We know that the amount of computation

increases with the square of the dimensionality. The error in

eigenvalues, eigenvectors, and data whitening is growing with

the increasing dimensionality. This is due to the growing

amount of computation. CCC is also dropping with the

increasing dimensionality and this indicates that for getting a

FIGURE 7. The relative Errors and the Iteration Count at Different Fraction Length (FL) for 8-channel ALJM based FastICA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

13 VOLUME XX, 2021

CCC better than 95%, in the case of more than 10-channel, the

required FL is greater than 14. The iteration count for EVD is

almost independent of the dimensionality at least for the EJM

and the ALJM, whereas the iteration count for WVE reflects

the errors and imperfections from the data whitening and the

EVD stage.

F. EXTRACTING THE DETERMINISTIC SIGNALS

For visually inspecting the performance of FastICA based on

the three methods, we use four deterministic signals and

generate the four mixed signals by randomly mixing them (by

using a randomly generated mixing matrix A of order 4 × 4).

These signals are selected to model some of the common

contamination sources in EEG acquisition (sudden muscle

movement, power line interference, and thermal noise) and an

EEG signal itself (from gamma frequency band). In Fig. 9 (a),

(b), and (c), we plot the sources with red dotted style and the

extracted independent components (ICs) black solid style for

the three algorithms. In this part of the evaluation, we set

FL=14 and WL=18 to target the DSP blocks of the FPGAs for

designing the SPA for FastICA. S1 to S4 denote the source

signals, and IC1 to IC4 denote the extracted signals. We can

see the performances of the algorithms under this setup are

almost equal, as indicated by the cross-correlation label and

visual inspection. We know that FastICA has the capability of

extracting one Gaussian source [2]. We can conclude that the

ALJM-based FastICA can also extract a Gaussian source and

the other signals with a CCC of 99.5%.

We perform these trials to study and compare the numerical

stability of ALJM-based FastICA with limited WL in the

fixed-point implementations. With the help of the 50 trials

with random source signals and their randomly generated

mixtures, we test the ALJM-based FastICA against any

abnormal behavior resulting from some abnormal conditions

due to the fixed-point computation. When very small

eigenvalues appear (𝜎𝑖 < 0.002 with 𝐹𝐿 = 14), then each of

the algorithms stops to meet the convergence, so we replace

such a small eigenvalue with zero to ensure the numerical

stability and convergence of the algorithms. All the

observations made during this section are not possible without

generating such software models of the methods. In the

hardware domain comparing the methods to such dynamic

conditions is tedious and time taking. So, the current work, in

contrast to the existing approaches, introduces a new

methodology for comparing, evaluating, and optimizing the

hardware-oriented algorithms before realizing them on real

hardware platforms.

VI. HARDWARE PERFORMANCE EVALUATION

After verifying the functionality, statistical performance, and

numerical stability of the ALJM-based FastICA, we now

analyze the hardware performance and efficiency of the

method. The architecture for FastICA presented in Section IV

FIGURE 8. The relative Errors and the Iteration Count at Different Dimensionality (n) for 8-channel ALJM based FastICA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

14 VOLUME XX, 2021

can be implemented in different FPGAs and ASIC technology

nodes. For proving the efficiency of the architecture, we

implement it on Spartan-6 FPGA because this is a low-cost in-

production FPGA series and meets the requirement of real-

time portable system development. It is also available in small

size packages. The DSP Blocks in Spartan-6 are called

DSP48A1. The performance analysis is based on resource

utilization, computation time, and power consumption. The

functionality of the method is also verified through the post-

layout simulation results and actual hardware implementation

results. Performing FastICA gives a useful insight into the

nature of latent sources. The actual sources can be extracted

by FastICA only if they have non-Gaussian (sub/super-

Gaussian) distributions and the mixed signals are linear

combinations of the source signals. That is the reason for using

the linear mixtures of non-Gaussian source signals throughout

the theoretical evaluation of the FastICA. In the hardware

evaluation, we also use eight random (non-Gaussian) source

signals represented by 𝑺 and mix them using a random

mixing matrix 𝑨 for generating the mixed signals 𝑿.

A. BENCHMARK FOR THE HARDWARE
FUNCTIONALITY

For setting a benchmark for the functionality, we use the

floating-point double-precision MATLAB model of FastICA

[30] (developed and distributed freely for research purposes

by Helsinki University of Technology, Finland). This model

is fed with the mixed multivariate signal X and it extracts the

multivariate signal 𝑺̂. The model for FastICA is customized

(by choosing tanh() as the non-linearity function and

symmetric method for decorrelation), to match the hardware

implementation, through the provided MATLAB GUI.

We use the Fixed-point Designer model of the ALJM-based

FastICA for segregating quantization errors (errors caused by

fixed-point 2’s complement representation with WL=18) and

the hardware implementation errors (errors caused by

imperfect translation and hardware circuitry). As explained in

Section V, this model is also customized for implementation

on Spartan-6 FPGA. The quantized versions of both 𝑿

(denoted by 𝑿𝒒) and 𝑺̂ (denoted by 𝑺̂𝑞) are used for

comparison with the hardware results in the next subsection.

𝑿𝒒 is produced when 𝑿 is imported to Fixed-point Designer

(fixed-point 2’s complement representation with WL=14+4)

whereas 𝑺̂𝑞 represents the extracted sources from the model

in Fixed-point Designer.

B. POST-LAYOUT SIMULATION AND
IMPLEMENTATION

After hand-coding of the 8-channel ALJM-based FastICA for

Spartan-6 XC6SLX75-2FGG484C in Verilog HDL, we

FIGURE 9. Comparing the Three Implementations of FastICA using the Four Synthetic Signals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

15 VOLUME XX, 2021

generate a testbench, post-place & route model, and a standard

data format (SDF) file using Xilinx Integrated Software

Environment (ISE 14.7 Webpack) running on Windows 10

64-bit. 𝑿𝒒 is loaded into the BRAM modules by generating

COE files. Similarly, the linearization coefficients for tanh()

are loaded in the DRAM blocks. All these files are used for

performing post-layout simulation using Isim tool, integrated

with Xilinx ISE 14.7, and ModelSim PE 10.4 (Student

Edition) tool from Mentor Graphics. The extracted signals

from the Post-layout simulation 𝑺̂𝑞 are imported in

MATLAB 2020b for comparison with the extracted sources

by the model in Fixed-point Designer.

After the post-layout simulation, we use XPower Analyzer

tool of ISE 14.7 for calculating the quiescent and dynamic

power consumption of the design using the Switching Activity

Interchange Format (SAIF) file from the post-layout

simulation. We interface a Verilog HDL-based memory

reading module with the model of the ALJM-based FastICA

so that we can read the content of the BRAM modules and

write the content to simulation output files for comparison.

After successfully performing the post-layout simulation,

the bitstream file of the HDL model is downloaded to a custom

board, containing XC6SLX75-2FGG484C and supporting a

10MHz external clock source, through a USB JTAG

programming and debugging interface. The HDL model of

FastICA is accompanied by the memory reading module and

a ChipScope Definition and Connection (CDC) file for

reading back the content of the Block RAM modules

representing the extracted sources. Using appropriate trigger

signals, the content of the BRAM modules is read using

ChipScope Pro tool of ISE 14.7 and then the data files are

imported to MATLAB for comparing them with the extracted

sources from both the post-layout simulation and the Fixed-

point Designer model. The comparison of the extracted

sources from the three fixed-point platforms is discussed in the

next subsection.

C. EXTRACTING THE RANDOM SOURCE SIGNALS

In Fig. 10 (a) we plot 𝑿 (represented by dashed blue lines

with an offset of 2 for visibility) and 𝑺̂ (represented by solid

red lines without any offset) which are the inputs and the

outputs of the double-precision MATLAB model of FastICA,

respectively. Here, S is used to denote a source, and IC is used

to represent the corresponding independent component or

extracted source signal. Only 60 samples, out of 512, are

shown for maintaining clarity in the graphs. CCC between the

input and the extracted outputs is also shown below the legend.

This is considered as the theoretical limit for the separation

quality because there are no truncation or quantization errors

in this model.

FIGURE 10. Comparing Floating-point (Software-based) and Fixed-point (Hardware-Based) Implementations of the ALJM-based FastICA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

16 VOLUME XX, 2021

The extracted signals 𝑺̂𝑞 are generated by the Fixed-point

Designer and they are treated as the benchmark for hardware

implementation of the ALJM-based FastICA because this

model only accounts for quantization errors and no hardware-

related error appears at this stage. So, we set our target for

generating these output signals, first from the post-layout

simulation and then from the hardware implementation. That

can ensure the functionality of the hardware design at the

operating frequency recommended by ISE 14.7 during the

post-layout simulation. We compare the results imported to

MATLAB from the post-layout simulation and the hardware

implementation with these benchmark results from Fix-point

Designer. The three sets of results are identical point by point.

This not only verifies the validity of the post-layout simulation

followed the real implementation but also the capability of

Fixed-point Designer to simulate the algorithm for its

hardware behavior. To avoid redundancy, we only plot the

results from the real implementation in Fig. 10 (b) where 𝑿𝒒

(represented by dashed blue lines with an induced offset of 2)

and 𝑺̂𝑞 (represented by solid red lines, no offset). We label

the results as fixed-point 18-bit 2’s complement version of the

ALJM based FastICA because it applies to all three platforms

which produce the same results. As we can see from the figure

that all the independent components extracted are, at least,

97% correlated with their theoretical versions (those extracted

by the double-precision MATLAB model).

The degradation in CCC, as compared to Fig 10 (a), is due to

the quantization resulting from the fixed-point arithmetic

which is necessary for saving hardware resources. As we can

see from [10], [11] that the performance of most of the AI or

ML algorithms remains acceptable with a small degradation in

CCCs. By compromising CCC to some extent, we can

increase computation speed and save hardware resources as

well as power consumption manyfold. That is clear from the

figure that a 64-bit implementation (double-precision

MATLAB model) of the algorithm is extracting the sources

with a CCC of 99.7% whereas the 18-bit implementation

(fixed-point FPGA) extracts the sources CCC up to 97.5%.

D. COMPARING DESIGN PARAMETERS

Table I lists the current and the past FastICA hardware

implementations (published during the past decade with

sufficient implementation detail) along with the design and

performance parameters. We can see that most of the

implementations are on ASIC platforms. Power consumption

can be better optimized on ASICs than on FPGAs as explained

in Section III. But ASIC implementations of AI or ML

algorithms are not suitable for the rapid prototype

development during the research phase. There is no

recommended way for comparing the silicon area between

ASIC and FPGA implementations of an algorithm. Higher

design speed can be achieved with ASIC implementation

because FPGA has programmable interconnects which brings

ultimate flexibility but reduce design speed. Some other

methods such as QR-Decomposition (QRD) and Gram-

Schmidt Orthogonalization (GSO) are also reported for

computing EVD. These methods use square root and division,

and they are frequently used on software platforms because of

their hardware complexity. Using a divider and a square root

circuit to perform all the operations of FastICA can save

hardware resources but speed performance cannot be achieved

in such cases as in [12]. In [50] a System on Chip (SoC,

programable logic along with an Arm processor) is used for

TABLE I
COMPARING DESIGN SPECIFICATIONS OF THE HARDWARE IMPLEMENTATIONS OF FASTICA

 (2008)

[51]

(2011)

[33]

(2014)

[10]

(2015)

[53]

(2015)

[11]

(2015)

[52]

(2016)

[12]

(2018)

[50]

(2019)

[54]

(2019)

[39]

(2020)

[20]

This

Work

EVD Method QRD EJM EJM EJM AJM EJM GSO QRD GSO EJM AJM ALJM

Channels Count 2 8 16 4 8 4 2-16 2 6 8 4 8

Window Size 3000 256 512 256 256 256 512 64000 1024 1024 512 512

Architecture

Width (bits)

32 32 NP NP 16 16 32 32 32 32 18 18

Design Speed

(MHz)

50 100 20 172 11 100 100 100 240 100 100 10

Power Demand

(mW)

NA 16.35 4.45 NP 0.0816 NP 16.35 4200 0.5703 65.0 321 152

Gates Required

(x1000)

NA 272 NA NA 69.2 NA 401 NA NA 840 NA NA

Computation

Time (ms)

3 290 Variable 2.5 84.2 10 1850 68.1 NA 150 7.5 3.2

Process Node
(nm)

90 90 130 40 90 45 90 28 90 90 28 45

Platform FPGA ASIC ASIC FPGA ASIC FPGA ASIC SoC ASIC ASIC FPGA FPGA

Correlation

Coefficient (%)

> 99 > 99 > 95 NP > 95 NP > 96 NP 96 > 96 > 96 > 96

QRD: QR-Decomposition, GSO: Gram-Schmidt Orthogonalization, NA: Not Applicable, NP: Not Provided, SoC: System on Chip (Xilinx Zynq 7000)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

17 VOLUME XX, 2021

implementing these operations. In [51] no hardware utilization

or power consumption is reported so we cannot have a fair

comparison.

We can see that our work is the fastest 8-channel FastICA

implementation with a CCC greater than 96. It meets the speed

and accuracy requirements for the most real-time portable

applications while leaving a sufficient execution time for any

subsequent post-processing algorithm. For developing a

prototype for system-level evaluation of a real-time portable

system that incorporates FastICA (for example, epileptic

seizure detection using EEG or background noise removal in

audio systems), the proposed method is the most suitable

approach.

In our implementation, we transfer computational load from

reconfigurable logic to the dedicated DSP blocks and BRAM

modules. In this way, we take advantage of ASIC design while

maintaining the design flexibility offered by FPGA. That is

only possible by using the ALJM-based FastICA. So, we can

say this is the reason that the design efficiency of the current

work is not only better than the other FPGA implementations

but also competing with the ASIC implementations in all three

aspects of a digital design (area, speed, and power).

E. COMPARING COMMERCIAL ASPECTS

After comparing our work in terms of speed with the previous

works, we now compare our design in terms of hardware

resources and power consumption with the most relevant

designs. We know that FPGA resources consist of BRAM,

DSP blocks, lookup tables, and flipflops. Table II lists 4-

channel FPGA-based FastICA implementations. We scale the

ALJM-based FastICA to 4-channel and map it to Spartan-6

device XC6SLX9-2CPG196C to perform a fair comparison.

The FPGA implementations are also compared in terms of the

commercial aspects such as power, size, and cost.

In [52] a non-scalable implementation based on the EJM is

reported. Although non-scalable implementations can be

better optimized compared to scalable implementations but

adapting them to changing dimensionality needs a redesign. In

[53] a high-speed scalable implementation is reported for a

Virtex-6 device. These devices are high performance but have

large packaging sizes and high cost. So, they cannot meet the

requirements of a low-cost real-time portable system

development. Another implementation for the AJM based

FastICA [20] is reported using Xilinx 7-series device Kintex-

7. This is a middle-range device with respect to cost and

performance. This is a scalable implementation and uses the

AJM along with the hardware-based multipliers. This is one

of the most optimized implementations, from the previous

works, for developing a real-time portable system. The results

of the current work show that the ALJM-based FastICA saves

70% lookup tables, 40% DSP blocks, and 50% BRAM

modules and still achieves a speed of three times compared to

the state-of-the-art approach in [20]. Moreover, 70% power

saving is also achieved by using the power-optimized

hardware like the DSP blocks (DSP48A1) and the BRAM

modules. Based on these results we can say that the current

work is the most suitable implementation for the targeted

systems.

F. HARDWARE SAVING BY THE SPA

As stated before, one of the contributions of the current work

is introducing the scalable SPA for FastICA implementation.

The SPA can be used for FastICA using any of the three

methods for EVD but the ALJM is the most optimized method

because it uses no additional component and the components

of the WVE stage are reused for computing EVD. In Table III,

we list the number of additional components required for the

EJM and the AJM, in the case 8-channel FastICA is

implemented on the SPA. The 72 registers are 18-bit wide and

are used to implement CORDIC blocks for the EJM. The

shifters are variable signed shifters. They are combinational

circuits and the amount and direction of the shifts are

determined by the signed integer at the selection input of the

circuit. The encoders represent the signed priority encoders

TABLE III

COMPARING THE EVD METHODS ON THE SPA FOR FASTICA

 EJM AJM ALJM

Additional

Hardware
for EVD Stage

72 Registers

10 Shifters
12 Adders

12 Encoders

20 Shifters
20 Adders

Nothing

Convergence Rate Quadratic
Almost

Linear

Almost

Quadratic

Clock Cycles

for cos𝛳𝑖 & sin𝛳𝑖
36 5 6

Maximum Sweeps

for Convergence
4 9 5

Total Clock
Cycles for EVD

1568 1575 840

TABLE II

COMPARING THE FPGA-BASED FASTICA IMPLEMENTATIONS

 (2015)

[53]

(2015)

[52]

(2020)

[20]

This

Work

EVD Method EJM EJM AJM ALJM

Scalability Yes No Yes Yes

Device Series Virtex-6 Spartan-6 Kintex-7 Spartan-6

Target Device
Price (USD)

715 25 160 18

Target Device

Size (mm2)

23×23 8×8 23×23 8×8

Computation

Time (ms)

2.5 10 7.5 1.9

Power Demand

(mW)

NP NP 321 91

Slice Utilization
 LUTs

 Flip-Flops

NP
132811

160629

14760
NP

NP

NP
12821

13595

1056
4180

 114

Block RAM

(KB)

45 60 18 9

DSP48 Slices 440 29 25 16

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

18 VOLUME XX, 2021

that find the binary exponent of a number in 2’s complement.

The EJM requires the maximum number of clock cycles for

computing cos𝛳𝑖 & sin𝛳𝑖 because of the slow convergence of

CORDIC blocks. The required number of clock cycles can be

reduced for the AJM by using more memory, shifters, and

adders. But such hardware components increase quiescent

power because they cannot be reused in the WVE stage. So,

we can say that the ALJM-based FastICA is again the most

optimized implementation.

VII. CONCLUSION AND FUTURE WORK

We know that ICA is the most widely used technique for

artifact removal and feature extraction from a multivariate

signal and FPGAs are the most popular hardware platform for

implementing AI or ML algorithms. For rapidly prototyping

real-time portable systems capable of performing ICA

followed by some ML algorithm, we have proposed a new

method, named the ALJM, for computing EVD during

FastICA (the most powerful and frequently used variant of

ICA). Using Fixed-point Designer, we have verified the

superior theoretical performance of the ALJM-based FastICA.

Quantization errors, iteration counts, and CCC have been used

as performance metrics for the comparison. Based on the

ALJM, we have proposed the SPA architecture for performing

FastICA on the hardware platforms. We have implemented the

SPA on Spartan-6 FPGA and compared its performance with

the previous works. The hardware performance comparison is

based on the parameters such as computation time (latency),

channel count, power consumption, and design cost/size. This

comparison concludes that the ALJM-based FastICA

implemented, even on low-cost FPGA devices, performs

better than the existing implementations with the same

channel count. So, the proposed SPA is one of the best choices

for prototyping and commercializing FastICA based AI

systems.

In this work, we have hand-coded the design to generate its

HDL model for low-cost FPGAs. The process of hand-coding

requires time, effort, and relevant experience and these are

rarely available to the researchers developing algorithms in

MATLAB. So, in future work, we will translate the Fixed-

point Designer model to the HDL model using different high-

level synthesis (HLS) tools and compare their translation

performance in terms of hardware design aspects. This

methodology will help the researchers in the rapid prototyping

of their systems. Moreover, we have compared the ALJM with

the existing methods only in the context of FastICA

implementation. In future work, we will also extend this

comparison to solely EVD/SVD computation efficiency.

REFERENCES
[1] P. Comon, "Independent component analysis, a new concept?,"

Signal processing, vol. 36, no. 3, pp. 287-314, 1994.

[2] A. Hyvarinen, "Fast and robust fixed-point algorithms for
independent component analysis," IEEE Trans. Neural Net., vol. 10,

no. 3, pp. 626-634, 1999.

[3] A. Hyvärinen, "The fixed-point algorithm and maximum likelihood

estimation for independent component analysis," Neural Process.

Lett., vol. 10, no. 1, pp. 1-5, 1999.
[4] G. Sahonero-Alvarez and H. Calderón, "A comparison of SOBI,

FastICA, JADE and Infomax algorithms," in Proceedings of the 8th

International Multi-Conference on Complexity, Informatics and
Cybernetics, 2017, pp. 17-22.

[5] G. R. Naik and D. K. Kumar, "An overview of independent

component analysis and its applications," Informatica, vol. 35, no. 1,
2011.

[6] X. Jiang, G.-B. Bian, and Z. Tian, "Removal of artifacts from EEG

signals: a review," Sensors, vol. 19, no. 5, p. 987, 2019.
[7] C.-T. Lin et al., "Review of wireless and wearable

electroencephalogram systems and brain-computer interfaces–a

mini-review," Gerontology, vol. 56, no. 1, pp. 112-119, 2010.
[8] X. Wu, B. Zhou, Z. Lv, and C. Zhang, "To explore the potentials of

independent component analysis in brain-computer interface of

motor imagery," IEEE J. Biomed. Health Inform, vol. 24, no. 3, pp.
775-787, 2019.

[9] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, "A systematic

literature review on hardware implementation of artificial
intelligence algorithms," The Journal of Supercomputing, pp. 1-42,

2020.

[10] T. Roh, K. Song, H. Cho, D. Shin, and H.-J. Yoo, "A wearable neuro-
feedback system with EEG-based mental status monitoring and

transcranial electrical stimulation," IEEE Trans Biomed Circuits

Syst, vol. 8, no. 6, pp. 755-764, 2014.
[11] C. H. Yang, Y. H. Shih, and H. Chiueh, "An 81.6 mu W FastICA

Processor for Epileptic Seizure Detection," (in English), IEEE Trans

Biomed Circuits Syst, vol. 9, no. 1, pp. 60-71, Feb 2015, doi:
10.1109/Tbcas.2014.2318592.

[12] L.-D. Van, P.-Y. Huang, and T.-C. Lu, "Cost-effective and variable-

channel FastICA hardware architecture and implementation for EEG
signal processing," J. Signal Process. Syst., vol. 82, no. 1, pp. 91-113,

2016.

[13] T. Roh, S. Hong, H. Cho, and H. J. Yoo, "A 259.6 mu W HRV-EEG
Processor With Nonlinear Chaotic Analysis During Mental Tasks,"

IEEE Trans Biomed Circuits Syst, vol. 10, no. 1, pp. 209-218, Feb

2016, doi: 10.1109/Tbcas.2014.2369576.
[14] M. Stanaćević, S. Li, and G. Cauwenberghs, "Micropower mixed-

signal VLSI independent component analysis for gradient flow

acoustic source separation," IEEE Trans Circuits Syst I Regul Pap,
vol. 63, no. 7, pp. 972-981, 2016.

[15] A. Jafarifarmand, M.-A. Badamchizadeh, S. Khanmohammadi, M.

A. Nazari, and B. M. Tazehkand, "Real-time ocular artifacts removal
of EEG data using a hybrid ICA-ANC approach," Biomed Signal

Process Control, vol. 31, pp. 199-210, 2017.

[16] A. Acharyya, P. N. Jadhav, V. Bono, K. Maharatna, and G. R. Naik,
"Low-complexity hardware design methodology for reliable and

automated removal of ocular and muscular artifact from EEG,"

Comput Methods Programs Biomed, vol. 158, pp. 123-133, 2018.
[17] F. Carrizosa-Corral et al., "ICA-based background subtraction

method for an FPGA-SoC," Electronic Imaging, vol. 2017, no. 13,
pp. 36-41, 2017.

[18] P. Jaraut, M. Rawat, and P. Roblin, "Digital predistortion technique

for low resource consumption using carrier aggregated 4G/5G
signals," IET Microw. Antennas Propag., vol. 13, no. 2, pp. 197-207,

2018.

[19] I. Rejer and P. Górski, "MAICA: an ICA-based method for source
separation in a low-channel EEG recording," J. Neural Eng., vol. 16,

no. 5, p. 056025, 2019.

[20] Z. Li, L. Feng, J. Zhang, and X. Li, "VLSI Design of a Fast One-stage
Independent Component Extracting System Based on ICA-R

Algorithm," J. Circuits, Syst. Comput., 2020.

[21] G. E. Forsythe and P. Henrici, "The cyclic Jacobi method for
computing the principal values of a complex matrix," Trans. Am.

Math. Soc., vol. 94, no. 1, pp. 1-23, 1960.

[22] R. P. Brent and F. T. Luk, "The solution of singular-value and
eigenvalue problems on systolic arrays," in Mathematical

Programming and Numerical Analysis Workshop, 1984: Centre for

Mathematics and its Applications, Mathematical Sciences
Institute …, pp. 38-64.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

19 VOLUME XX, 2021

[23] Z. Shi, Q. He, and Y. Liu, "Accelerating Parallel Jacobi Method for

Matrix Eigenvalue Computation in DOA Estimation Algorithm,"

IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6275-6285, 2020.
[24] A. Acharyya, K. Maharatna, B. M. Al-Hashimi, and J. Reeve,

"Coordinate rotation based low complexity ND FastICA algorithm

and architecture," IEEE Trans. Circuits Sys., vol. 59, no. 8, pp. 3997-
4011, 2011.

[25] C.-C. Sun, J. Götze, and G. E. Jan, "Parallel Jacobi EVD methods on

integrated circuits," VLSI Design, vol. 2014, 2014.
[26] J. Volder, "The CORDIC computing technique," in Papers presented

at the the March 3-5, 1959, Western Joint Computer Conference,

1959, pp. 257-261.
[27] J. Gotze, S. Paul, and M. Sauer, "An efficient Jacobi-like algorithm

for parallel eigenvalue computation," IEEE Trans. Comput., vol. 42,

no. 9, pp. 1058-1065, 1993.
[28] Y. Liu, C.-S. Bouganis, and P. Y. Cheung, "Hardware architectures

for eigenvalue computation of real symmetric matrices," IET

Computers & Digital Techniques, vol. 3, no. 1, pp. 72-84, 2009.
[29] The MathWorks Inc., "Fixed-Point Designer," Getting Strated Guide

R2020b, pp. 01-06, 2020. [Online]. Available:

https://www.mathworks.com/help/pdf_doc/fixedpoint/fixedpoint_gs
.pdf [Accessed: Oct. 07, 2020].

[30] A. Hyvärinen and E. Oja, "Independent component analysis:

algorithms and applications," Neural Networks, vol. 13, no. 4-5, pp.
411-430, 2000.

[31] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997.

[32] C.-C. Sun and J. Götze, "A VLSI design concept for parallel iterative
algorithms," Advances in Radio Science: ARS, vol. 7, p. 95, 2009.

[33] L. D. Van, D. Y. Wu, and C. S. Chen, "Energy-Efficient FastICA

Implementation for Biomedical Signal Separation," (in English),
IEEE Trans. Neural Netw., vol. 22, no. 11, pp. 1809-1822, Nov 2011,

doi: 10.1109/Tnn.2011.2166979.

[34] O. Mencer, L. Semeria, M. Morf, and J.-M. Delosme, "Application
of reconfigurable CORDIC architectures," Journal of VLSI Signal

Processing Systems for Signal, Image and Video Technology, vol.

24, no. 2-3, pp. 211-221, 2000.
[35] S. M. R. Shahshahani and H. R. Mahdiani, "A High-Performance

Scalable Shared-Memory SVD Processor Architecture Based on

Jacobi Algorithm and Batcher’s Sorting Network," IEEE Trans
Circuits Syst I Regul Pap, vol. 67, no. 6, pp. 1912-1924, 2020.

[36] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, "Para-CORDIC: parallel

CORDIC rotation algorithm," IEEE Trans Circuits Syst I Regul Pap,
vol. 51, no. 8, pp. 1515-1524, 2004.

[37] I. Bravo, M. Mazo, J. L. Lázaro, P. Jiménez, A. Gardel, and M.

Marrón, "Novel HW architecture based on FPGAs oriented to solve
the eigen problem," IEEE Trans. Very Large Scale Integr. VLSI

Syst., vol. 16, no. 12, pp. 1722-1725, 2008.

[38] Z. Li, L. Feng, J. Zhang, and X. Li "VLSI Design of a Fast One-Stage
Independent Component Extracting System Based on ICA-R

Algorithm," J. Circuits, Syst. Comput., 2020. doi:

10.1142/s0218126621500444.
[39] L.-D. Van, T.-C. Lu, T.-P. Jung, and J.-F. Wang, "Hardware-oriented

memory-limited online fastica algorithm and hardware architecture
for signal separation," in ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

2019: IEEE, pp. 1438-1442.
[40] Y. Wang, J.-J. Lee, Y. Ding, and P. Li, "A Scalable FPGA Engine for

Parallel Acceleration of Singular Value Decomposition," in 2020

21st International Symposium on Quality Electronic Design
(ISQED), 2020: IEEE, pp. 370-376.

[41] Xilinx Inc., "Spartan-6 FPGA DSP48A1 Slice," Spartan-6 Family

User Guide UG389, Version 1.2, no. 1.2, pp. 07-09, 2014. [Online].
Available:

https://www.xilinx.com/support/documentation/user_guides/ug389.

pdf [Access: Oct. 05, 2020].
[42] D. Markovic, B. Nikolic, and R. W. Brodersen, "Power and area

minimization for multidimensional signal processing," IEEE Journal

of Solid-State Circuits, vol. 42, no. 4, pp. 922-934, 2007.
[43] L. V. Moroz, V. V. Samotyy, and O. Y. Horyachyy, "Modified Fast

Inverse Square Root and Square Root Approximation Algorithms:

The Method of Switching Magic Constants," Computation, vol. 9, no.
2, p. 21, 2021.

[44] Intel Corporation, "Variable Precision DSP Block," Intel® Arria® 10

Device Overview, 2018. [Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/arria-10/a10_overview.pdf [Accessed: Oct. 05, 2020].

[45] Xilinx Inc., "7 Series DSP48E1 Slice," Xilinx User Guide UG479,

Version 1.10, 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/ug479_

7Series_DSP48E1.pdf [Accessed: Oct. 05, 2020].

[46] Xilinx Inc., "7 Series FPGAs Configurable Logic Block," User Guide
UG474, Version 1.8, 2016. [Online]. Available:

https://www.xilinx.com/support/documentation/user_guides/ug474_

7Series_CLB.pdf [Accessed: Oct. 05, 2020].
[47] The MathWorks Inc., "Fixed-Point Designer 2020b," 3 Apple Hill

Drive, Natick, MA 01760-2098, 2020.

[48] D. P. Acharya, G. Panda, and Y. Lakshmi, "Effects of finite register
length on fast ICA, bacterial foraging optimization based ICA and

constrained genetic algorithm based ICA algorithm," Digit. Signal

Process., vol. 20, no. 3, pp. 964-975, 2010.
[49] D. Patil, N. Das, and A. Routray, "Implementation of Fast-ICA: A

performance based comparison between floating point and fixed

point DSP platform," Measurement Science Review, vol. 11, no. 4,
pp. 118-124, 2011.

[50] F. Carrizosa‐Corral et al., "FPGA‐SoC implementation of an ICA‐

based background subtraction method," Int. J. Circuit Theory Appl.,
vol. 46, no. 9, pp. 1703-1722, 2018.

[51] K.-K. Shyu, M.-H. Lee, Y.-T. Wu, and P.-L. Lee, "Implementation

of pipelined FastICA on FPGA for real-time blind source separation,"
IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 958-970, 2008.

[52] R. Tang, H. Wu, Y. Pak, Y. Liu, Q. Wang, and Y. Zhao, "Optimized

FPGA Implementation of ICA Based on Negentropy Maximization,"
in 2015 Fifth International Conference on Instrumentation and

Measurement, Computer, Communication and Control (IMCCC),

2015: IEEE, pp. 551-555.
[53] D. Zhao, J. Jiang, C. Wang, B. Lu, and Y. Zhu, "FPGA

Implementation of FastICA Algorithm for On-line EEG Signal

Separation," Berlin, Heidelberg, 2015: Springer Berlin Heidelberg, in
Computer Engineering and Technology, pp. 59-68.

[54] S. Bhardwaj, S. Raghuraman, and A. Acharyya, "Simplex FastICA:

an accelerated and low complex architecture design methodology for
nD FastICA," IEEE Trans. Very Large Scale Integr. VLSI Syst., vol.

27, no. 5, pp. 1124-1137, 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM

20 VOLUME XX, 2021

MUHAMMAD SAJJAD received his B.Sc.

Engineering degree in electrical engineering from

University of Engineering and Technology

Taxila, Punjab, Pakistan, in 2008.

He is currently pursuing MSc. by Research degree

from Universiti Teknologi PETRONAS (UTP),

32610 Seri Iskandar, Perak, Malaysia and is

attached to Centre for Intelligent Signal and

Imaging Research (CISIR) at UTP. His area of research is efficient

hardware architecture for brain signal processing and

electroencephalography (EEG). He was a senior digital design engineer at

Center for Advanced Research in Engineering, Pakistan, from 2008 to

2018.

Mr. Sajjad received UTP Graduate Assistantship Scheme for full-time

research students in 2019.

MOHD ZUKI YUSOFF received the B.Sc.

degree in electrical engineering from Syracuse

University, in 1988, the M.Sc. degree in

communications, networks, and software from the

University of Surrey, in 2001, and the Ph.D.

degree in electrical and electronic engineering

from Universiti Teknologi PETRONAS (UTP),

Malaysia, in 2010. His research interests include

brain computer interface, transport safety, and

telecommunications. He has international publications and holds patents.

He also has accumulated over 29 years of experience working with various

industries and academic/training institutions such as Celcom Academy,

Politeknik Sultan Abdul Halim Mu’adzam Shah (POLIMAS), the

Malaysian Institute of Microelectronic Systems (MIMOS), and

Singatronics (M) Sdn Bhd.

Currently, he is an Associate Professor with UTP and is the Director of the

Centre for Intelligent Signal and Imaging Research (CISIR) and a member

of the Institute of Health and Analytics (IHA). He is also a member of the

following learned societies and professional body: the IEEE, Tau Beta Pi—

the National Engineering Honorary Society, Eta Kappa Nu—the Electrical

and Computer Engineering Honorary Society, and the Board of Engineers

Malaysia (as a Graduate Engineer). He is a certified Curriculum Designer

and Developer awarded by the Sepang Institute of Technology (SIT) and

the Douglas Mawson Institute of TAFE, in March 1999.

NORASHIKIN YAHYA received the B.Eng.

degree (Hons) in Electronic Engineering from the

University of Sheffield, UK in 2001, MSc in

Electrical Engineering from Lehigh University,

USA in 2004 and PhD in Electrical Engineering

from Universiti Teknologi PETRONAS (UTP),

32610 Seri Iskandar, Perak, Malaysia in 2015.

Her current active research works are on image

segmentation and pattern recognition techniques

involving biomedical signals and images, seismic signals and acoustic

emission signals using deep learning architecture.

Currently, she holds a position of senior lecturer in UTP and also a member

of Centre for Intelligent Signal and Imaging Research (CISIR), one of the

Malaysia National Higher Institution Centre of Excellence (HICoE) status
focusing on neuro signal and image analysis as its research niche area.

ALI SHAHBAZ HAIDER received his B.Sc. in

Electrical Engineering from University of

Engineering and Technology (UET), Taxila,

Pakistan in 2008, and M.Sc. in Systems

Engineering from Pakistan Institute of

Engineering and Applied Sciences (PIEAS),

Islamabad, Pakistan in 2010. His research

interests include digital control, power

electronics, and electric drives. He has been a

Consultant Engineer for Dehlsen Associates, Santa Barbra, California. He

has been involved in the collaborative research with the United States

Department of Energy, Sandia National Labs, USA, and Pacific Marine

Energy Center (PMEC), USA.

Currently, he is a PhD-Fulbright-USA Scholar since 2017 in Electrical and

Computer Engineering Department at Oregon State University, USA.

