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ABSTRACT Blind source separation (BSS) is a problem that appears in many research fields. Fast 

Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers 

have verified the effectiveness of the technique through the offline analysis of the public datasets. The 

development of a real-time portable system involving such a computationally complex analysis requires an 

efficient hardware implementation of FastICA. A Field programmable gate array (FPGA) and an application-

specific integrated circuit (ASIC) are two promising hardware platforms to implement FastICA. This work 

proposes a new method, called ALgebraic Jacobi Method (ALJM), for performing eigenvalue decomposition 

(EVD) required for the implementation of FastICA. We use a simplification, a polynomial approximation, 

and the Newton-Raphson method for calculating the Jacobi rotation. In this way, we ensure hardware 

reusability between the EVD stage and the weight vector estimation (WVE) stage of FastICA which reduces 

the computational complexity and the power consumption, without compromising its computation speed. We 

evaluate the ALJM-based FastICA by performing BSS on the linear mixtures of the deterministic and the 

random signals and comparing the performance results with the existing methods. After verifying its 

functionality and numerical stability, we propose a scalable systolic processing array (SPA) for the ALJM-

based FastICA and implement it on Spartan-6 FPGA. By comparing the existing implementations of 

FastICA, in terms of speed, area, and power, we conclude that the ALJM-based FastICA is one of the most 

efficient methods for prototyping and commercializing a real-time portable system comprising FastICA.        

INDEX TERMS Application-specific integrated circuit, ASIC, blind source separation, commercialization, 

eigenvalue decomposition, field-programmable gate array, FastICA, Fixed-point Designer, independent 

components analysis, Jacobi method, VLSI

I. INTRODUCTION 

Independent component analysis (ICA) is a statistical 

technique for decomposing a multivariate signal into 

statistically independent components (ICs) having non-

Gaussian probability distributions [1]. This technique has 

many variants, such as FastICA [2], [3], [4], and the scope of 

its applications is ever-growing [5]. After evaluating the 

technique's effectiveness through offline analysis on the 

available public datasets [6], the researchers have started 

deploying this computationally complex technique in real-

time portable applications [7], [8]. Many efforts have been 

made for developing the portable hardware implementing ICA 

followed by some artificial intelligence (AI) or machine 

learning (ML) algorithms in real-time [9]. Some of them are 

summarized below. 

A wearable neuro-feedback system (NFS) is developed in 

[10]. This system implements FastICA for removing the 

artifacts in real-time. A hardware design of FastICA for 

epileptic seizure detection is proposed in [11]. In [12], a 

hardware architecture for a cost-effective 16-channels 

FastICA is reported for the processing of 

electroencephalographic (EEG) signals in real-time. Another 

wearable mental state monitoring system is developed in [13] 

by implementing FastICA in the ASIC for removing the 

artifacts. A VLSI design of 3-channel ICA is presented in [14] 

for separating and localizing the acoustic sources. In [15], 
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[16], ICA is also used for removing the artifacts in real-time. 

A System-on-Chip (SoC) based implementation of FastICA 

for dynamic background subtraction in real-time and portable 

vision devices is deployed in [17]. A field-programmable gate 

array (FPGA) based implementation of ICA is adopted in [18] 

for digital pre-distortion (DPD) in wireless communication 

systems. Moving average ICA for real-time applications is 

evaluated in [19]. Another FPGA implementation of FastICA, 

using a reference input for rearranging the independent 

components (ICs), is reported in [20]. 

The literature listed above shows that FastICA is the most 

frequently used variant of ICA. In FastICA data whitening is 

followed by weight vector estimation (WVE). Data whitening 

mainly consists of eigenvalue decomposition (EVD), whereas 

WVE consists of matrices multiplications and non-linearity 

computation. In hardware, EVD is computed by the Jacobi 

method [21] because it can be parallelized on a systolic 

processor array (SPA), as in [22], [23]. The Jacobi method can 

be implemented in two ways, the exact Jacobi method (EJM) 

and the approximate Jacobi method (AJM). The EJM, having 

quadratic convergence, is implemented using COordinate 

Rotation DIgital Computer (CORDIC) blocks [24], [25], [26], 

whereas the AJM, having almost linear convergence, is 

implemented with shift-and-add operations [27], [28]. The 

EVD stage occupies more than 50% of chip area in the 

FastICA implementation [11]. To share the hardware between 

the two stages, [24] implements FastICA using CORDIC 

blocks, whereas [12] uses the Gram-Schmidt 

orthonormalization. But these approaches save silicon area at 

the expense of computation speed.  

The approaches listed above, either optimize both the stages 

separately or merge the hardware for both the stages by using 

the slow iterative processes. So, the computational complexity 

of FastICA is still limiting its use for real-time portable 

platforms.  

To solve the issue stated above, the current work contributes 

in the following three ways.  

1) We propose a new method for computing EVD in the 

whitening process of FastICA. This method is named as 

ALgebraic Jacobi Method (ALJM) based on its 

computational nature.  

2) The theoretical performance of FastICA based on the 

ALJM, the EJM, and the AJM is evaluated by varying 

the wordlength and the dimensionality (number of 

channels). 

3) A SPA for FastICA is proposed based on the ALJM. The 

SPA based architecture is area-efficient, high-speed, 

scalable, and can fit into a low-cost FPGA device.  

Contrary to the EJM or the AJM, the ALJM does not use 

CORDIC elementary angles for computing the Jacobi 

rotations. We use a polynomial approximation followed by an 

inverse square root operation, using the Newton-Raphson 

method, for computing the tangent of the Jacobi rotation angle. 

Fixed-point Designer tool of MATLAB [29] is used for the 

theoretical evaluation because it supports the datatypes and the 

arithmetic operations of embedded hardware for bit-true 

simulation. Quantization error level, convergence speed, and 

cross-correlation coefficient (CCC) are used as the 

performance metrics. The proposed method is also evaluated 

on the hardware level using Spartan-6 FPGA. The evaluation 

proves that the ALJM-based FastICA can be used for rapid 

prototyping and commercialization of the real-time portable 

systems, as demonstrated in Fig. 1.    

We organize this article into seven sections. In Section II, 

we review the existing methods and formulate the problem. 

The ALJM is described in Section III followed by the 

proposed VLSI architecture for the ALJM-based FastICA in 

Section IV. The theoretical evaluation of the method is 

detailed in Section V followed by the hardware evaluation in 

Section VI. Finally, the conclusion and future work is listed in 

Section VII. In the article, we use bold italic capital letters for 

naming matrices and bold italic small letters for denoting one-

dimensional vectors. The transpose of a matrix or a vector is 

represented by superscript T on its name.  

II. LITERATURE REVIEW AND PROBLEM 
FORMULATION: 

The efficient implementation of FastICA on a hardware 

platform demands some knowledge of statistics, numerical 

linear algebra, advanced digital design, and modern digital 

design technologies. So, in the following sub-sections, we 

discuss the relevant concepts for understanding the research 

problem. 

A. MATHEMATICAL DESCRIPTION OF ICA 

Let S and X be the two matrices of order 𝑛 × 𝑚 representing 

a set of some non-Gaussian latent source signals and a set of 

the corresponding observable signals, respectively. If the 

observable signals are linear mixtures of the source signals, as 

in (1), then we can use FastICA to compute 𝑾 for estimating 

the source signals, as in (2). Here, 𝑺̂ represents the estimate 

of the source signals, 𝑛  is the number of the observable 

signals, 𝑚 is the number of the trials or observations, 𝑨 is the 

mixing matrix, and W is the matrix of weight vectors.  

FIGURE 1. A Real-time Portable System Capable of FastICA 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM 

3 VOLUME XX, 2021 

𝑿 = 𝑨 𝑺 (1) 

𝑺̂ = 𝑾𝑻 𝑿 (2) 

1) DATA WHITENING PROCESS 

FastICA is used for estimating super-Gaussian and sub-

Gaussian latent sources ( including one Gaussian source), but 

it demands zero-mean and unit-variance mixed signals as its 

inputs [30]. So, the mean of each mixed signal is subtracted 

and a new zero-mean mixed-signal matrix 𝑿̃  is used to 

update X, as in (3). The update operator ∶=  is used 

throughout the text to indicate the update operation of the 

scalers, vectors, or matrices, as in computer programming.         

𝑿 ≔ 𝑿̃ (3) 

Covariance matrix 𝑪𝑋𝑋 of order 𝑛 × 𝑛 is obtained from 

X, as in (4), where 𝜉[ ] denotes the expectation operator of 

statistics. Using EVD of 𝑪𝑋𝑋 [31] , the eigenvalues and the 

eigenvectors are computed using the diagonal matrix ⋀ and 

the orthogonal matrix E respectively, as in (5), and these are 

used for the whitening process, as in (6), where H is the 

whitening matrix and Z is the zero-mean unit-variance data 

matrix. 

𝑪𝑋𝑋 = 𝜉[𝑿 𝑿𝑻] (4) 

𝑪𝑋𝑋 = 𝑬 ⋀ 𝑬𝑇  (5) 

𝑯 = ⋀−1 2⁄ 𝑬𝑇  ⟹  𝒁 = 𝑯 𝑿 (6) 

2) WEIGHT VECTORS ESTIMATION 

FastICA separates the sources by measuring the non-

Gaussianity of Z. An approximation to negentropy of the data 

can be used as a measure of non-Gaussianity, and 

 𝑔(x) = tanh(𝑥 )  can be used as a derivative of the non-

quadratic function used for approximating negentropy. So, 

each column of W, denoted by 𝒘𝑖 , is updated, as in (7) and 

(8), whereas ‖𝒘𝑖‖ is the Euclidean norm of 𝒘𝑖 . 

𝒘𝒊 ≔ 𝜉[𝒁 ( 𝑔(𝒘𝒊
𝑇 𝒁) )𝑇] − 𝜉[𝑔′(𝒘𝒊

𝑇𝒁)]𝒘𝒊 (7) 

𝒘𝒊 ∶= 𝒘𝒊 ‖𝒘𝒊‖⁄ , 𝑤ℎ𝑒𝑟𝑒𝑎𝑠 𝑖 = 1,2, … , 𝑛 (8) 

Using (9), W is normalized, and then its symmetric 

decorrelation is performed, as in (10), iteratively until the 

convergence of W.    

𝑾 ≔ 𝑾/√‖𝑾 𝑾𝑇‖ (9) 

𝑾 ∶= 1.5 𝑾 − 0.5 𝑾𝑾𝑇 𝑾 (10) 

After the convergence of W in (10), the computations from 

(7) to (10) are repeated for the overall convergence of W, so 

that it can be used for the estimation of the source signals, as 

in (2). In (9), ‖𝑾 𝑾𝑇‖ is 2-norm of 𝑾 𝑾𝑇  and (11) can 

also be used for estimating the sources signals. 

𝑺̂ = 𝑾𝑻 𝒁 (11) 

B. EVD BY THE EXACT JACOBI METHOD 

By using EVD, a real square symmetric matrix S of order 

𝑛 × 𝑛 can be expressed in the form of (12), where V is an 

orthogonal matrix with the columns as eigenvectors of S and 

D is a diagonal matrix with the diagonal entries as eigenvalues 

of S. By using the Jacobi method [21], the two matrices are 

obtained by rotating S through a series of two-sided 

orthogonal rotations (also called the Jacobi rotations) until it is 

diagonalized, as in (13). The purpose of these rotations is to 

annihilate off-diagonal elements of S. These rotations are 

performed iteratively, as in (14), where 𝑺⃡ denotes a rotated 

version of S, and after each rotation, S is updated as 𝐒 ∶= 𝐒⃡. 

𝑺 = 𝑽 𝑫 𝑽𝑇 (12) 

𝑫 = 𝑽𝑇 𝑺 𝑽 (13) 

𝑺⃡ = 𝑸𝒊
𝑇  𝑺 𝑸𝒊 (14) 

𝑸𝑖 is the Jacobi rotation during the ith iteration, as in (15). 

The Jacobi rotation differs from the identity matrix only at 

𝑝𝑡ℎ& 𝑞𝑡ℎ rows and columns. For ith iteration, the pair (p, q) is 

selected according to the sequence of (16) or (17), which have 

a one-to-one correspondence. The completion of these n(n-

1)/2 rotations is called a sweep, and 𝛤  denotes the total 

number of the two-sided Jacobi rotations in one sweep. 

𝑸𝒊 =

[
 
 
 
 
 
 
1 … 0 … 0 … 0
⋮ ⋮ ⋮ ⋮
0 … 𝑐 … 𝑠 …
⋮ ⋮ ⋮ ⋮
0 … −𝑠 … 𝑐 …
⋮ ⋮ ⋮ ⋮
0 … 0 … 0 … 1 ]

 
 
 
 
 
 

← 𝑝

← 𝑞

 

        ↑ 𝑝 ↑ 𝑞  

(15) 

(𝑝, 𝑞) = (1,2), (1,3), … (1, 𝑛), (2,3),… (2, 𝑛), … (𝑛 − 1, 𝑛) (16) 

𝑖 = 1,2, … 𝑛 − 1, 𝑛, … ,2𝑛 − 2,… 𝛤  

 𝑤ℎ𝑒𝑟𝑒𝑎𝑠 𝛤 =  𝑛(𝑛 − 1)/2 

(17) 

In the EJM, 𝑐 & 𝑠 are calculated using (18), where apq is 

the element of S from 𝑝𝑡ℎ row and 𝑞𝑡ℎ column. The result 

of the first sweep can be represented by 𝑺Γ, as in (19) and 

(20). 

𝛳𝑖 = 
1

2
𝑡𝑎𝑛−1

2𝑎𝑝𝑞

𝑎𝑝𝑝 + 𝑎𝑞𝑞

, 𝑐 = 𝑐𝑜𝑠𝛳𝑖 , 𝑠 = 𝑠𝑖𝑛𝛳𝑖  (18) 

𝑺𝛤 = (∏ 𝑸𝒊
𝑇

𝛤

𝑖=1

)  𝑺 (∏𝑸𝒊

𝛤

𝑖=1

) (19) 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072495, IEEE Access

 M. Sajjad: An Efficient VLSI Architecture for FastICA by using the ALJM 

4 VOLUME XX, 2021 

𝑽𝛤 = (∏ 𝑸𝒊

𝛤

𝑖=1

) (20) 

𝑺∶=𝑺𝛤  (21) 

𝑫 = 𝑺𝛤  𝑎𝑛𝑑 𝑽 = 𝑽𝛤  (22) 

If 𝑺Γ is not a diagonal matrix at the end of a sweep, then 

the next sweep is performed by updating S with 𝑺Γ, as in (21), 

and if 𝑺Γ becomes a diagonal matrix, then (22) is used for 

finding D and V matrices. 

C. CORDIC OR VOLDER’s ALGORITHM     

CORDIC algorithm is a hardware-friendly iterative technique 

developed for implementing the elementary functions of 

mathematics by using only add and shift operations [26]. It can 

be used for computing sine, cosine, and arctangent in EVD by 

the EJM [32], [33]. If N is the total number of CORDIC 

iterations, which usually is equal to the wordlength of the 

hardware architecture, then mathematically CORDIC can be 

described using the equations from (23) to (26), where 𝑖 =
0, 1, 2, … . , 𝑁 and 𝑑𝑖 = ±1. 

𝑥𝑖+1 = 𝐾𝑖(𝑥𝑖 −𝑦𝑖 . 𝑑𝑖 . 2
−𝑖) (23) 

𝑦𝑖+1 = 𝐾𝑖(𝑦𝑖 +𝑥𝑖 . 𝑑𝑖 . 2
−𝑖) (24) 

𝑧𝑖+1 = 𝑧𝑖 − 𝑑𝑖 . 𝑡𝑎𝑛−1(2−𝑖) (25) 

𝐾𝑖 = 1  √1 + 2−2𝑖⁄  (26) 

A lookup table with N entries is required to store the 

elementary angles, 𝜃(𝑖) = 45.00, 26.56, 14.03, … , 0.0017 

(expressed in degree), for calculating 𝑑𝑖  during each 

iteration. In vectoring mode, CORDIC can be used to compute 

𝜃𝑟 = tan−1(𝑁𝑢𝑚/𝐷𝑒𝑛) . During each iteration, 𝑑𝑖  is 

selected such that 𝑦𝑖+1 → 0. In this mode, the initial and the 

final states of CORDIC are given by (27) and (28), 

respectively. In rotation mode, CORDIC can be used to 

compute sin(𝜃𝑟) and cos(𝜃𝑟) of an input angle 𝜃𝑟. During 

each iteration, 𝑑𝑖  is selected such that 𝑧𝑖+1 → 0 . In this 

mode, the initial and the final states of CORDIC are given by 

(29) and (30), respectively. 

𝑥0 = 𝐷𝑒𝑛, 𝑦0 = 𝑁𝑢𝑚 𝑎𝑛𝑑 𝑧0 =0 (27) 

𝑥𝑁 ≈ √𝑥0
2 + 𝑦0

2, 𝑦𝑁 ≈ 0 𝑎𝑛𝑑 𝑧𝑁 ≈ 𝜃𝑟 (28) 

𝑥0 = 1
𝐴𝑁

⁄ , 𝑦0 = 0 𝑎𝑛𝑑 𝑧0 = 𝜃𝑟𝑜𝑡 (29) 

𝑥𝑁 ≈ 𝑐𝑜𝑠(𝜃𝑟) , 𝑦𝑁 ≈ 𝑠𝑖𝑛 (𝜃𝑟) 𝑎𝑛𝑑 𝑧𝑁 ≈ 0 (30) 

 

 

D. EVD BY THE APPROXIMATE JACOBI METHOD     

We know that the symmetric matrix S is rotated by using the 

Jacobi rotations to annihilate its off-diagonal elements 𝑎𝑝𝑞 

and convert it to a diagonal matrix D. But complete 

annihilation is neither possible nor mandatory because the 

annihilation efforts from one rotation are destroyed by the 

subsequent rotations during each sweep except for the last few 

sweeps before the convergence. This observation leads to a 

new method called the AJM [27], which is faster and more 

efficient than the EJM, as reported by [28]. According to the 

AJM, any Jacobi rotation which satisfies the condition in (31) 

can be used for annihilating 𝑎𝑝𝑞 . In other words, the AJM 

computes 𝑐 𝑎𝑛𝑑 𝑠 approximately.  

𝑎𝑝𝑞 ≔ 𝑑𝑎𝑝𝑞   𝑤ℎ𝑒𝑟𝑒𝑎𝑠   0 ≤ |𝑑| < 1 (31) 

𝑎𝐷 = 𝑎𝑞𝑞 − 𝑎𝑝𝑝 (32) 

𝜏 =
𝑎𝐷

2𝑎𝑝𝑞

 (33) 

𝑘 = 𝑒𝑥𝑝 (|𝑎𝐷|) − 𝑒𝑥𝑝 (|𝑎𝑝𝑞|) (34) 

(2𝑙 − 2−𝑙+1)|𝑎𝐷|  ≤  |𝑎𝐷| + 2−1|𝑎𝐷|

< (2𝑙+1 − 2−𝑙)|𝑎𝑝𝑞| 
(35) 

𝑙 = {

0                       𝑖𝑓 𝑘 ≤ −2
0, 1                𝑖𝑓 𝑘 = −1,0

𝑘 − 1, 𝑘, 𝑘 + 1   𝑖𝑓 𝑘 > 0
 (36) 

Here, 𝑑 in (31) represents the depth of the annihilation, 

and 𝑒𝑥𝑝 ( )  in (34) represents the exponent of a number 

when it is expressed in base-2 scientific notation. In this 

method, 𝑘  is calculated using (34), and then the possible 

values of 𝑙  are chosen using the conditions in (36). The 

comparison operations of (35) are used to select a specific 

value for 𝑙 . For avoiding the square root operation in the 

scaling factor, 𝑙 is incremented as in (37), whereas (38) is 

used for computing approximate values of c  and 𝑠 . 

Similarly, for avoiding the division operation of the scaling 

factor 𝐾𝑙
2 , mathematical recursion is used, as in (40). The 

inequality in (41) represents the accuracy limit of fixed-point 

hardware architecture with a wordlength of w-bit. 

𝑙 ∶= 𝑙 + 1 (37) 

𝑐 ≈ 𝐾𝑙
2(1 − 2−2𝑙), 𝑠 ≈ 𝑠𝑖𝑔𝑛(𝜏)𝐾𝑙

22−𝑙+1 (38) 

𝐾𝑙
2 =

1

1 + 2−2𝑙
 (39) 

𝐾𝑖+1
2 = 𝐾𝑖

2(1 + 2−2𝑖+1𝑙), 𝐾1
2 = 1 − 2−𝑙 (40) 

2𝑖+1𝑙 ≤ 𝑤 (41) 
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So, using the AJM, the division and the square root can be 

avoided but at the expense of losing quadratic convergence to 

almost linear convergence for EVD. For the AJM, the 

maximum absolute annihilation has an upper bound of 0.6. 

 E. SYSTOLIC PROCESSING ARRAY FOR EVD      

The Jacobi rotation 𝑸𝒊 only affects the elements of 𝑺 from 

𝑝𝑡ℎ & 𝑝𝑡ℎ  rows and columns. For parallelizing the 

computations of the Jacobi rotations 𝑸𝒊  on a SPA, 2 × 2 

matrices 𝑸𝒊
𝒔𝒖𝒃, 𝐕𝐬𝐮𝐛, and 𝑺𝒔𝒖𝒃 are introduced, as in (42). A 

SPA of  𝑛/2 × 𝑛/2 processing elements (PEs), as shown in 

Fig. 2, is used for performing 𝑛/2 disjoint Jacobi rotations 

(which do not share any row or column) in parallel as in [22]. 

A sweep is completed after performing 𝑛-1 steps of the 𝑛/2 

disjoint rotations. The diagonal processing elements (DPEs) 

on the systolic array compute 𝑐 & 𝑠 using (18) or (38) and 

then rotate their elements by 𝑸𝑖
𝑠𝑢𝑏 . The non-diagonal 

processing elements (NPEs) only rotate their elements by the 

rotation parameters provided on their dotted-line inputs by the 

NPEs. After each step of the 𝑛/2 disjoint rotations, row-wise 

and column-wise swapping of the elements of 𝑺 is performed 

according to the patterns shown on the top and left of Fig. 2. 

After the performing the swapping for 𝑛-1 times, the elements 

come to their original position. The crossed diagonal 

interfaces between the PEs are used for the swapping of the 

elements. In this way, we get eigenvalues and eigenvectors of 

𝑺. 

𝑄𝑖
𝑠𝑢𝑏 = (

𝑐 𝑠
−𝑠 𝑐

) , 𝑆𝑠𝑢𝑏 = (
𝑎𝑝𝑝 𝑎𝑝𝑞

𝑎𝑞𝑝 𝑎𝑞𝑞
) , 𝑉𝑠𝑢𝑏 = (

1 0
0 1

) (42) 

𝑎𝑝𝑝 ∶= 𝑐2𝑎𝑝𝑝 + 𝑠2𝑎𝑞𝑞 − 𝑐𝑠(𝑎
𝑝𝑞

+ 𝑎𝑞𝑝) (43) 

𝑎𝑝𝑞 ∶= 𝑐2𝑎𝑝𝑞 − 𝑠2𝑎𝑞𝑝 + 𝑐𝑠(𝑎
𝑝𝑝

− 𝑎𝑞𝑞) 

𝑎𝑞𝑝 ∶= 𝑐2𝑎𝑞𝑝 − 𝑠2𝑎𝑝𝑞 + 𝑐𝑠(𝑎𝑝𝑝 − 𝑎𝑞𝑞) 

𝑎𝑞𝑞 ∶= 𝑐2𝑎𝑞𝑞 + 𝑠2𝑎𝑝𝑝 − 𝑐𝑠(𝑎𝑝𝑞 + 𝑎𝑞𝑝) 

𝑉𝑠𝑢𝑏 ∶= (
𝑐𝑎𝑝𝑝 − 𝑠𝑎𝑝𝑞 𝑐𝑎𝑝𝑞 + 𝑠𝑎𝑝𝑝

𝑐𝑎𝑞𝑝 − 𝑠𝑎𝑞𝑞 𝑐𝑎𝑞𝑞 + 𝑠𝑎𝑞𝑝
) 𝑉𝑠𝑢𝑏 (44) 

F. PROBLEM FORMULATION    

The EJM and the AJM have been proposed for computing 

eigenvalues and eigenvectors using shift and add operations. 

These operations are the only options for implementing 

mathematical functions in the first generation of FPGAs [22], 

[24], [27]. With the availability of hardware-based multipliers 

(in the form of DSP blocks) in the second/third generations of 

FPGAs and the popularity of ASIC-based designs, the scaling 

and the rotation operations of both methods are implemented 

using the hardware multipliers [28], [33]. To implement the 

EJM on the SPA, each DPE needs to be equipped with two 

CORDIC [34] blocks for computing 𝛳𝑖 , 𝑐, 𝑎𝑛𝑑 𝑠 as in (18). 

CORDIC algorithm can be realized with shift and add 

operations but it has a slow convergence rate. To overcome 

this issue, unrolled CORDIC [35], parallel CORDIC [36], or 

pipelined CORDIC [20] blocks are introduced but the EJM 

cannot be implemented using these blocks on the SPA, at least 

under the constraints originating from real-time portable 

systems. Non-systolic architectures for the EJM [13], [37] are 

also efficient with a small channel count but scalability cannot 

be achieved with such arrangements. Systolic architectures for 

the AJM using hardware multipliers for the scaling operation 

of (39) are also used to implement FastICA [28], [38]. But for 

avoiding the square root of the scaling operation on the SPA, 

𝐾𝑙
2 is computed by recursion, as in (45). For calculating 𝑙, as 

in (36), in a single clock cycle a lot of variable-shifters and 

priority decoders along with some adders are required within 

each DPE. So, it is difficult to bring the required hardware 

efficiency even with the AJM. According to [28] the AJM is 

superior to the EJM in terms of efficiency (eigenvalues 

produced per second per unit chip area) but both methods are 

still in use [23], [38], [39], [40] for implementing FastICA on 

FPGAs or ASICs. In the AJM, 𝑐 𝑎𝑛𝑑 𝑠 are approximated to 

the closest CORDIC iteration values, that is why the existing 

two methods are considered as CORDIC-based methods. 

𝐾𝑙
2 = (1 − 2−2𝑙)(1 + 2−4𝑙)(1 + 2−8𝑙)(1 + 2−16𝑙)  

𝑤ℎ𝑒𝑛 𝑙 = 0,    𝐾𝑙
2 = 1 2⁄  

(45) 

ASIC-based implementations of FastICA can be optimized 

with respect to speed or power [32] and hardware complexity 

can be neglected to some extent because even a complex 

design can be optimized for power by carefully selecting 

technology node and operating voltage as in [11], [13]. ASIC-

based designs are useful at the commercialization stage. But 

FIGURE 2. A Systolic Processing Array for EVD of an 8x8 Matrix 
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from [9], we know that 65% of AI algorithms are being 

implemented on FPGAs because of their flexibility and rapid 

prototyping capability. With the availability of low-cost and 

high-performance FPGAs [41], we can also use them at the 

commercialization stage after optimizing the algorithms for 

power. In the EJM and AJM based implementations of 

FastICA, the nonreusable EVD stage makes the 

implementations area-inefficient and power-hungry (because 

of the quiescent current flowing through this stage) [42]. 

Based on this observation we are going to propose a new 

method, called the ALJM, for computing EVD for FastICA. 

Th ALJM also leads to a new scalable efficient SPA for 

FastICA.          

III. INTRODUCING THE ALJM 

The EJM, the AJM, and the ALJM differ in the way they 

compute the values of sine and cosine of the rotation angle, as 

in (18), (38), and (46). These values should be computed such 

that the Jacobi rotation remains an orthogonal transformation 

(in other words, 𝑐2 + 𝑠2 = 1 ). The EJM uses CORDIC 

block, and its outputs satisfy this condition. The AJM and the 

ALJM approximately compute the tangent of the angle, as in 

(46). This way helps in orthogonalizing the approximate 

Jacobi rotation, as explained in [27]. The relation between 

𝑡𝑎𝑛𝛳𝑖 and 𝜏 is shown in (47). From (33) we can see that 𝜏 

keeps growing in magnitude during the EVD computation 

because 𝑎𝑝𝑞  is annihilated in each step. This observation 

leads to the simplification in (48). The quantities 𝑒 and 𝑓
𝑟
 

of (49) can be easily computed at hardware level using a 

cascade connection of priority decoder and variable left 

shifter. 

𝑡 ≈ 𝑡𝑎𝑛𝛳𝑖  , 𝑐 ≈
1

√1+𝑡2
  , s ≈ 𝑐𝑡 (46) 

𝑡𝑎𝑛𝛳𝑖 =
𝑠𝑖𝑔𝑛(𝜏)

|𝜏| + √1 + 𝜏2
 (47) 

𝑡 ≈
𝑠𝑖𝑔𝑛(𝜏)

2|𝜏|
≈

𝑎𝑝𝑞

𝑎𝐷

 (48) 

𝑒 = 𝑒𝑥𝑝(𝑎𝐷) , 𝑓𝑟 = 2−𝑒𝑎𝐷 − 1 (49) 

𝑃 = 0.3275𝑓𝑟
2 − 0.8042𝑓𝑟 + 0.9861 (50) 

𝑡𝑟 = 2−𝑒 𝑎𝑝𝑞 𝑃 (51) 

𝑡 ≈ {
1     𝑖𝑓 𝑡𝑟 ≥ 1 
 𝑡𝑟   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (52) 

After computing 𝑃 of (50), 𝑡 can be computed using (51) 

and (52) and this is a very good approximation for 𝑡𝑎𝑛𝛳𝑖, as 

compared to the approximation used in the AJM, because it 

keeps the convergence rate almost intact. Then the inverse 

square root by the Newton-Raphson method [43], described 

from (53) to (55), is used to compute 𝑐 𝑎𝑛𝑑 𝑠, as in (56). This 

is how we can avoid the square root and division operations in 

a non-CORDIC implementation of EVD and the same set of 

multipliers can be used for calculating the Jacobi rotation 

entries, the scaling operation, and performing the two-sided 

rotation. In the ALJM 𝑠 and 𝑐  can be computed within 7 

clock cycles including the five iterations of the Newton-

Raphson method. The AJM also takes 6 clock cycles for 

computing 𝑠 and 𝑐  because it performs the comparison 

operations of (35) and the recursion of (40). But the AJM uses 

a lot of reconfigurable logic for computing 𝑐 𝑎𝑛𝑑 𝑠 and the 

DSP blocks for the scaling whereas the ALJM uses the DSP 

blocks for both the tasks. 

𝑥 = 1 + 𝑡2 (53) 

𝑥0 = 2−𝑒𝑥𝑝(𝑥)/2  (54) 

𝑥1 = 𝑥0

𝑥

2
 ,  𝑥0 ∶= 𝑥0 (1.5 − 𝑥0 𝑥1) (55) 

𝑐 = 𝑥0 𝑎𝑛𝑑 𝑠 = 𝑐 𝑡 (56) 

Almost all modern FPGAs are equipped with such DSP 

blocks [41], [44], [45]. These blocks can be operated at 

frequencies greater than 300MHz and the number of the 

blocks can vary from 10 to 3600 within a single FPGA. They 

have a 25 × 18 or 18 × 18 multiplier followed by a 48-bit 

accumulator which ensures accuracy and overflow control. 

The blocks can operate in an asynchronous mode, or in 

pipelined mode using the built-in high-speed registers. The 

DSP blocks are more optimized for speed and power than the 

configurable logic blocks (CLBs) and transferring the 

computational load of any algorithm to these units results in a 

good balance of operating speed and power consumption. So, 

we can expect that the ALJM-based FastICA, which engages 

the blocks during EVD and WVE, can beat the existing 

methods with respect to area, speed, and power. The speed 

performance of ALJM is expected because it retains the 

quadratic convergence of the EVD stage, contrary to the AJM 

which has almost linear convergence.  

Modern FPGA devices have all the necessary features to 

implement a SPA which can be used for both EVD and WVE 

stages. The advanced silicon modular block (ASMBL) is 

adapted to overcome geometric layout constraints for 

combining blocks of different functionality. In ASMBL, DSP 

blocks are stacked in a column-wise arrangement, which is 

parallel as well as adjacent to Block RAM column-wise 

arrangement. Moreover, in case of higher dimensionality, a 

super logic region (SLR), containing DSP blocks, can be 

connected to the neighboring SLRs using super logic lines 

(SLL) in Xilinx 7-Series FPGAs as explained in [46]. The SLL 

has very low latency compared to the reconfigurable logic. 

IV. PROPOSED HARDWARE ARCHITECTURE 

In the previous section, we have demonstrated how the whole 

EVD stage can be mapped to a SPA based on the DSP blocks 
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of modern low-cost FPGAs. For performing both the EVD and 

the WVE stages on a single SPA, which is the primary purpose 

of the current work, we also need to simplify the operations of 

the WVE stage. Therefore, the following subsections are 

dedicated to implementing both the stages using a two-

dimensional array of DSP blocks connected by a network of 

data buses. Moreover, we are currently targeting low-cost 

FPGAs for ALJM-based FastICA, but the concept is equally 

valid for ASIC platforms which will be considered in the 

future. We need to replace the DSP blocks with fixed-point 

multiply-accumulate (MAC) IPs and the Block RAM 

(BRAM) modules with dual-port flipflop-based memory.        

D. TOWARDS A SPA FOR FastICA 

For the implementation of the WVE stage of FastICA, we 

need the three types of matrix multiplications, as in (57), 

where the subscripts are showing the dimensions of the 

matrices involved, P denotes the product matrix, L denotes the 

left-hand side matrix, and R denotes the right-hand side 

matrix. Calculating 𝑡𝑎𝑛ℎ 𝑥 at high-speed is also required in 

the WVE stage. As shown in (58), after piecewise 

linearization, this function can be implemented by using some 

comparators and the DSP blocks of FPGAs. The comparators 

are required for selecting the values of 𝐴(𝑥)  and 𝐵(𝑥) 

based on the value of 𝑥. 

𝑷𝑛×𝑚 = 𝑳𝑛×𝑛𝑹𝑛×𝑚 , 𝑷𝑛×𝑛 = 𝑳𝑛×𝑚𝑹𝑚×𝑛 

𝑷𝑛×𝑛 = 𝑳𝑛×𝑛𝑹𝑛×𝑛 

(57) 

𝑡𝑎𝑛ℎ 𝑥 = 𝐴(𝑥) 𝑥 + 𝐵(𝑥) (58) 

In addition, there are the two norm operations followed by 

the two division operations for the WVE stage, as in (8) and 

(9). The simulation trials performed during the theoretical 

evaluation of FastICA, as described in the next section, show 

that the two norm operations be simplified, as in (59) and (60), 

without any significant effect on the separation quality of the 

extracted signals 𝑺̂ of (2).   

𝒘𝒊 ∶= 𝒘𝒊  𝑚𝑎𝑥 (𝑎𝑏𝑠(𝒘𝒊))⁄  (59) 

𝑾 ≔ 𝑾/𝑚𝑎𝑥 (𝑎𝑏𝑠(𝑾 𝑾𝑇)) (60) 

We can also replace the division operations, as verified in 

the next section using the fixed-point mathematical models for 

FastICA, with the shift operations as shown in (61) and (62) 

without significantly degrading CCC between the actual 

sources and the extracted sources. So, we can approximately 

perform the divisions by shifting the input operand by the 

binary places equal to the output of a signed priority encoder. 

Now we can describe the design of the SPA for FastICA based 

on the ALJM.  

𝒘𝒊 ∶= 𝒘𝒊  2𝑒𝑥𝑝(𝑚𝑎𝑥(𝑎𝑏𝑠(𝒘𝒊)))⁄  (61) 

𝑾 ≔ 𝑾/ 2𝑒𝑥𝑝(𝑚𝑎𝑥(𝑎𝑏𝑠(𝑾𝑾𝑇))) (62) 

A. THE PROPOSED SPA FOR FastICA 

The proposed SPA for performing 4-channel FastICA is 

shown in Fig. 3. This architecture consists of a 2-D array of 

processing elements labeled with their position (PEij), a 1-D 

array of BRAM modules for each channel, a network of the 

bidirectional buses, and a distribution of the configurable 

connectors for routing one bus to another bus. The BRAM 

modules are labeled (BRAM Chi) according to the channel 

they store. Each bus is represented by a different line style and 

has a name like BXYZ which describes its functionality, listed 

below the architecture. There are three types of the 

configurable connectors and each type is represented by a 

different shape. The PEs on the main diagonal (DPEs, colored 

in light green) and the off diagonal/non-diagonal PEs (NPEs, 

colored in light orange) have different functionality and 

architecture.  

The NPEs have a built-in controller whereas the NPEs only 

have an instruction decoder. The controller inside each DPE 

dictates the operation of all the NPEs in the same column. It 

also controls the BRAM module for the corresponding 

channel. The NPEs of each column receive instructions from 

the corresponding controller, decode them, and act 

accordingly. The instructions specify the operation (addition, 

multiplication, or MAC) and the operands involved. The bus 

named BNPE is used to carry these instructions from a DPE to 

the NPEs in the same column. 

The buses named BVMM and BHMM are used for implementing 

the matrix multiplications. DSP blocks inside each PE are used 

for performing the MAC operations during the matrix 

multiplications. The multiplications are performed over the 

data from the BRAM modules or distributed RAM (DRAM, 

implemented using LUTs) inside each PE. The bus BTMM is 

used to implement multiplication involving transpose of a 

matrix such as the multiplications during the symmetric 

decorrelation of FastICA. The BMAC is used for cascading the 

outputs of the DSP Blocks for performing the decomposition 

operations of the EVD and the WVE stages (decomposing 𝑿 

and 𝒁 using 𝑯 and 𝑾 respectively). The two buses BMCV 

and BMVM are used for the sorting operations performed on 𝑾. 

BMCV is used for directing the maximum value of a column 

vector (such as 𝐰𝐢 during the norm or normalization step) to 

the DPE for normalizing each column vector whereas BMVM is 

used for directing the maximum value of the matrix (such as 

𝑾) to the DPEs so that the matrix can be normalized as in (62).  

The configurable connectors represented by the circles are 

used for directing BHMM to BVMM during the covariance matrix 

calculation as in (4) and (7). The configurable connectors 

represented by the triangles are used for directing input or 

output ports of the RAM modules to BHMM during the 

covariance and data whitening operations whereas the 

configurable connectors represented by the squares are used 

for directing BTMM to BVMM during the symmetric decorrelation 

operation, as in (9) and (10). The buses connected to the PEs 

through double-headed arrows are bi-directional buses (they 

carry both the inputs and the outputs to/from the PEs). Some 
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hardware platforms, such as modern FPGA, cannot synthesize 

bi-directional signals and use multiplexers to implement 

bidirectional logic as shown in Fig. 4.               

A. THE ARCHITECTURE FOR DPE 

The architecture of a DPE and its connections to the 

surrounding buses is shown in Fig. 5(a). The control unit block 

not only controls the operation of all components inside the 

DPE, but it also dictates the operation of the NPEs within the 

same column, as shown by its connection to BNPE. Three 

multiplexers are used for directing different operands to the 

DSP block. The operands can come from the DRAM block or 

through the surrounding buses. Dedicated lines are used for 

directing 1 and 0 to multiplier and adder of the DSP block, 

respectively, because of their frequent use. The DRAM block 

stores the linearization coefficients of tanh() function, the 

polynomial coefficients used in (50), one element from each 

FIGURE 3. Architecture of the Proposed Systolic Processing Array (SPA) for implementing the ALJM-Based FastICA in Hardware (Spartan-6) 
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of 𝑫, 𝑽, and 𝑾, and intermediate variables generated while 

performing FastICA. The signed priority encoder (which 

operates on the absolute value of its input), variable shifter 

(which shifts its input in the direction and the position 

determined by its control input) and Rounding & Truncation 

block are used for generating initial guess for the square root 

operation during data whitening. These blocks are also used 

for performing the inverse square root operation during EVD. 

The data from the DSP block and the surrounding buses can 

be stored in the DRAM block. The circle having symbol >= is 

showing the sorting operation performed on the input data 

from BMCV and the element of 𝑾 stored in the DRAM block. 

The tanh() Select block computes the region of linearization 

for tanh() function and the control unit selects the 

corresponding coefficients from the DRAM block. Abs() and 

2sC() blocks are used to take absolute and 2’s complement 

(whenever it is required, otherwise they are bypass by the 

control unit) of the contents addressed in the DRAM block, 

respectively. The size of the DRAM block in the case of the 

ALJM-based FastICA is typically 16x18.  

 

B. THE ARCHITECTURE FOR NPE 

The architecture of NPE is a simplified version of the DPE 

architecture. The NPEs run in slave mode and the instructions 

are decoded by the Command Decoder block, as in Fig. 5(b). 

The size of the dual-port RAM block in the case of the ALJM 

based FastICA is typically 4x18. Both the types of PEs can 

direct data from BHMM and BVMM to the DSP block and place 

the addressed content of the DRAM block to BTMM.  

C. BRAM AND ITS INTERFACING  

Symmetric decorrelation of FastICA is redefined, as in (63), 

in terms of matrix multiplications. This redefinition helps 

understanding memory allocation and mapping FastICA on 

the SPA. There is a BRAM module for every channel on the 

SPA. The size of the module is 1024x18 for calculating 

FastICA of 512 samples. Initially, one channel of multivariate 

signal 𝑿 is stored in the first 512 locations of the module. 

Then during the centering operation, each sample of 𝑿  is 

replaced by 𝑿̃. During data whitening, matrix 𝑿̃ is replaced 

by 𝒁 in the module. The last 512 locations of the BRAM 

modules are used for storing H. After the convergence of 𝑾, 

𝑺̂ is estimated and it replaces H at the last 512 locations. At 

the end of the computations, we have 𝒁  at the first 512 

locations and 𝑺̂ at the last 512 locations of the module. So, 

we can say that the SPA for ALJM-based FastICA is memory 

efficient as compared to the existing architectures.   

𝑾 ∶=
1

𝑚
(𝒁𝑯𝑇 − 𝑑𝑖𝑎𝑔 (∑(1 − 𝑯2))𝑾) 

𝑯 = 𝑡𝑎𝑛ℎ(𝑾𝑇𝒁) 

(63) 

D. MAPPING EVD ON THE SPA 

The SPA for computing EVD, as shown in Fig. 2, can be 

merged into the SPA for FastICA, as shown in Fig. 3. The 

FIGURE 4. Implementing a Tri-State bus in Modern FPGAs 

FIGURE 5. Digital Architecture for DPE and NPE of the SPA used for Implementing the ALJM based FastICA 
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swapping operations and data exchange between the PEs can 

be performed using the buses such as BVMM, BHMM, and BTMM. 

For computing s 𝑎𝑛𝑑 𝑐, we divide SPA for FastICA into the 

groups of four PEs labeled as PEii, PEij, PEji, and PEjj 

whereas i=1, 3, 5, …Cc and j=2, 4, 6, ...Cc. Here Cc is the 

channel count for FastICA and the first value of ‘i’ and ‘j’ 

select the first group and the second value selects the second 

group and so on. During the first cycle of the EVD stage, each 

group is configured as shown in Fig. 6(a). In this 

configuration, 𝑓
𝑟
2  and 2−𝑒 𝑎𝑝𝑞  of (51) are computed and 

stored in the DRAM block of PEii. In the second cycle, each 

group is configured as shown in Fig. 6(b). The stored variables 

from the previous clock cycle are used to calculate the initial 

guess for the inverse square root of (55), and the guess is stored 

in the DRAM block. During the next five clock cycles, this 

initial guess is updated, as shown in Fig. 6(c), and finally, we 

get the inverse square root. In this way, each group computes 

s 𝑎𝑛𝑑 𝑐 for performing the Jacobi rotation. 

The first group performs the Jacobi rotation on the 1st & 2nd 

rows and columns of the SPA during the next two clock cycles 

and updates the corresponding elements of 𝑫  and 𝑽  for 

computing eigenvalues and eigenvectors. The elements 

𝑎𝑖𝑖 , 𝑎𝑖𝑗 , 𝑎𝑗𝑖  𝑎𝑛𝑑 𝑎𝑗𝑗  of any group takes six additional clock 

cycles for completing update operation, meanwhile, the 

second group starts updating the 3rd & 4th rows and columns 

for the subsequent two clock cycles. In this way, the Jacobi 

rotations are computed in parallel and performed in pipelined 

mode. When all the groups complete the rotations by updating 

their elements, the swapping operation is performed using the 

relevant buses and the next step of the ongoing sweep is 

performed.  

V. THEORETICAL PERFORMANCE EVALUATION  

Usually, hardware platforms execute algorithms using fixed-

point representation. But the development of such algorithms 

is carried out using a floating-point representation on a 

numerical computing environment such as MATLAB [47]. 

Fixed-point Designer [29] is a MATLAB tool, which 

facilitates optimizing and evaluating the hardware-oriented 

algorithms. This tool moves the analysis from the hardware 

domain to the software domain hence saving time and effort. 

It offers customizable datatypes and configurable modes for 

mathematical and logical operations. We use this tool, 

contrary to the analysis carried out in [48], [49], for evaluating 

and comparing the theoretical performance of the ALJM-

based FastICA with the existing methods. This performance 

counts for functional accuracy, numerical stability, 

convergence rate, and quality of separation. The settings of the 

tool are customized to match the properties of the arithmetic 

operations performed on the targeted hardware. For example, 

the tool offers the two options, ‘Round’ and ‘Zero’ for 

truncation. We choose ‘Zero’ because in hardware, truncation 

is done by dropping the extra bits. Rounding fractions to the 

nearest integer needs additional hardware, and usually, it is not 

implemented for fixed-point computations. Similarly, the tool 

also offers the two actions, ‘Wrap’ and ‘Saturate’ for 

overflow. But we choose ‘Wrap’ because during the fixed-

point computations, the results are wrapped at overflows. 

Moreover, the precision for both sum and product modes is 

specified according to the widths of the adder and multiplier 

in the DSP block. 

A. EVALUATION SETUP AND BENCHMARKING  

We evaluate the proposed and the existing algorithms under 

the same environment with the same datasets. We develop 

parameterized fixed-point software models of the three 

algorithms so that their sensitivity to the parametric variations 

can be evaluated before implementing them on actual 

hardware. In real-time applications that perform FastICA such 

as BCIs, the latent sources are supposed to be non-Gaussian. 

So, we generate non-Gaussian random signals as the source 

signals 𝑺 , as in (1), and then create their linear mixtures, 

represented by X, as in (1). EVD, whitening, and FastICA are 

performed separately using each of the three algorithms. We 

evaluate and compare the algorithms by measuring their 

average performance over 50 trials. 

FIGURE 6. Configurating the SPA to Compute ALJM-based EVD 
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B. INTEGER LENGTH OPTIMIZATION  

In the fixed-point implementation of an algorithm, wordlength 

(WL) is defined as the sum of inter length (IL) (including the 

sign bit) and fraction length (FL). FL is related to the 

computational accuracy of the algorithm. For minimizing the 

required hardware resources, knowing the bare minimum IL is 

the first step towards the optimization of an algorithm. We use 

‘buildInstrumentedMex’ and ‘showInstrumentationResults’ 

features of Fixed-point Designer for optimizing IL for the 

proposed method. After scaling the covariance matrix CXX of 

(5) so that its elements lie in the range (-1,+1) inclusive, IL=4 

is recommended by the tool over the 50 trials of simulation for 

the EVD stage, and IL=1 is recommended for the WVE stage 

for increasing the separation quality.  

C. DEFINING PERFORMANCE METRICS 

From the simulation results of the algorithms with Fixed-point 

Designer, we note that the amount of error in each eigenvalue 

depends on its magnitude. So, for measuring the quality of the 

eigenvalues 𝜎̂𝑖  computed by the algorithms, we use the 

relative error in each eigenvalue, as defined in (64), where n is 

the order of 𝐶𝑋𝑋 . Reference for the relative error is the 

eigenvalues 𝜎𝑖 computed by MATLAB 2020b eig function.      

𝑚𝑎𝑥 [100 × 𝑎𝑏𝑠(𝜎𝑖 − 𝜎̂𝑖) / 𝜎𝑖] 

𝑖 = 1,2, … . 𝑛 

(64) 

As we know that eigenvalues are unique, but the 

corresponding eigenvectors can vary with the computation 

tools and methods. But they are always orthogonal to each 

other. So, we decide to measure the quality of their 

orthogonality. So, the percent error in orthogonality between 

any two eigenvectors 𝜐̂𝑖  and 𝜐̂𝑗 , computed by any of the 

three algorithms, is defined in (65).   

100 − 𝑚𝑖𝑛 [100 (𝑎𝑏𝑠(𝜐̂𝑖 . 𝜐̂𝑖 − 𝜐̂𝑖. 𝜐̂𝑗)/𝜐̂𝑖 . 𝜐̂𝑖] 

𝑖 = 1,2, … . 𝑛, 𝑗 = 1,2,… 𝑛, 𝑖 ≠ 𝑗 

(65) 

After computing the EVD of 𝑪𝑿𝑿, the inverse square roots 

of the eigenvalues 𝜎̂𝑖 are calculated to obtain the whitening 

matrix H, as in (6). In each of the algorithms, the inverse 

square roots are calculated using the Newton-Raphson 

method. The whitening matrix H is used to obtain zero-mean 

unit variance (whitened) data matrix Z, as in (6). After this, 

𝑪𝑿𝑿 for Z is computed with each of the algorithms. Ideally, 

𝑪𝑿𝑿 should be the identity matrix, but due to the quantization 

in the fixed-point implementations, it is only close to the 

identity matrix. So, for comparing the quality of the whitening 

process, we use (66) to compute percent errors, where 𝑐̂𝑖 and 

𝑐̂𝑗 are any two columns of 𝑪𝑿𝑿. 

100 − 𝑚𝑖𝑛 [(𝑎𝑏𝑠(𝑐̂𝑖 . 𝑐̂𝑖 − 𝑐̂𝑖 . 𝑐𝑗̂)/𝑐̂𝑖 . 𝑐̂𝑖] 

𝑖 = 1,2, … . 𝑛, 𝑗 = 1,2, … 𝑛, 𝑖 ≠ 𝑗 

(66) 

The quality of separation is estimated by calculating the 

cross-correlation coefficient 𝐶𝐶𝐶(𝑥, 𝑦)  between the input 

source signals and the extracted signals. This coefficient is 

calculated as in (67), where 𝑥 is the input signal and 𝑦 is the 

estimated signal. When 𝐶𝐶𝐶(𝑥, 𝑦) = 100  then the source 

signal and the extracted signal are identical. 

𝐶𝐶𝐶(𝑥, 𝑦) =
100

𝑛 − 1
∑ (

𝑥 − 𝜇𝑥

𝜎𝑥

) (
𝑦 − 𝜇𝑦

𝜎𝑦

)
𝑛

𝑖=1
 (67) 

Each of the three algorithms computes 1/𝜏 , directly or 

indirectly, as defined in (33) before performing the Jacobi 

rotation. When this factor is equal to zero (or less than the 

accuracy of the fixed-point representation used) then the 

Jacobi rotation becomes a unity matrix. During the 50 trials, 

the maximum absolute value for 𝑎𝐷 is always less than 4. In 

(68) and (69) we calculate the annihilation limit of 𝑎𝑝𝑞 which 

is set as the convergence limit for the EVD stage. 

1/𝜏 =
2𝑎𝑝𝑞

𝑎𝐷

≤ 2−𝐹𝐿  (68) 

𝑎𝑝𝑞 ≤ 2−𝐹𝐿+1 (69) 

During the WVE stage, the convergence of weight vectors 

matrix W is defined in (70) and (71) where 𝑾𝒊  is weight 

vectors matrix during ith iteration. Because of the 

normalization, as in (8) and (9), elements of 𝑾𝒊 are always 

less than unity. So, we can say that W converges within 1% 

and this is enough to ensure a cross-correlation coefficient of 

99.8%, as observed during the trials.   

∆𝑾𝒊 = 𝑾𝒊 − 𝑾𝒊−𝟏 (70) 

𝑚𝑎𝑥(∆𝑾𝒊) ≤ 0.01 (71) 

D. EFFECTS OF LIMITED WORDLENGTH       

Currently, most of the FPGAs have built-in 18 × 18 

multipliers. In addition to this, intellectual properties (IPs) for 

16-bit to 24-bit ASIC designs are also available on every 

technology node. As we know that IL=4 is recommended by 

Fixed-point Designer, so we decide to vary FL from 12-bit to 

20-bit for analyzing the algorithms over WL of 16 to 24 bits. 

In Fig. 7, we plot the mean value of the three errors (defined 

in (64), (65), and (66)), CCC (defined in (67)), and the two 

iteration counts (defined in (69) and (71)) against the different 

values of FL for the 50 trials performed with each of the three 

algorithms. In each trial, we use eight different non-Gaussian 

random source signals 𝑺  and mix them using a different 

randomly generated mixing matrix 𝑨 of order 8 × 8. We 

observe that the EJM is performing the worst over the initial 

values of FL, contrary to the expectations. The reason for such 

behavior is that the performance of CORDIC, the algorithm 

used by the EJM, is poor over these values of FL. 

Orthogonality error in the computation of 𝑐 𝑎𝑛𝑑 𝑠  is the 

main reason for such behavior. The other two methods use an 

approximation for tangent of the rotation angle before 
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computing 𝑐 𝑎𝑛𝑑 𝑠  which produces better orthogonality 

even at the initial values of FL. The error in data whitening 

originates from both the error in eigenvalues and the error in 

eigenvectors. So, the EJM is again performing poorly 

compared to the other two methods at the initial values of FL. 

Similarly, the imperfection in CCC is also determined by the 

errors in data whitening or EVD because the WVE stage of all 

the methods is the same. The EJM has the least CCC due to 

the progression of the errors from the EVD stage at the initial 

values of FL. The iteration count for EVD which is the number 

of iterations required for diagonalizing the matrix 𝑺 by the 

Jacobi rotations is almost 4. The reason for such a low iteration 

count is the quadratic convergence of the EJM. The ALJM is 

very close to the EJM in terms of the iteration count for EVD 

because it uses a very good approximation compared to the 

AJM. The iteration count for the WVE stage or the number of 

iterations required for convergence of W also depends on the 

quality of the data whitening. This is the reason for the poor 

iteration count for the initial values of FL. From all the six 

graphs showing the average relative errors, CCCs, or the 

iteration counts, we can easily observe that the ALJM is 

performing better than or at least equal to the other two 

methods. Such performance of the ALJM ensures its superior 

separation quality at the hardware level before actually 

creating the hardware. 

         

E. EFFECTS OF CHANGING DIMENSIONALITY      

We can estimate from the systolic array architecture that the 

required amount of hardware resources varies with the square 

of dimensionality or channel count. This is why the real-time 

portable applications of ICA, as in [10, 13], can hardly 

accommodate eight channels. So, we decide to change 

dimensionality from 4 to 10 for studying the quantization 

errors in the case of low-cost FPGAs with WL=14+4=18 to 

match the built-in DSP blocks. In Fig. 8, we plot the mean 

value of the three errors (defined in (64), (65), and (66)), CCC 

(defined in (67)), and the two iteration counts (defined in (69) 

and (71)) against the dimensionality (from 4 to 10 channels 

inclusive) for another set of 50 trials. In each trial, we use non-

Gaussian random source signals 𝑺  and mix them using a 

different randomly generated mixing matrix 𝑨  of order 

𝑛 × 𝑛. We set WL=18 to deeply analyze the dimensionality 

variations in case of the low-cost FPGAs such as Spartan-6.   

The reason for showing the performance results with the 

varying dimensionality is to see how the errors, caused by the 

quantization, grow with the increasing amount of 

computation. We know that the amount of computation 

increases with the square of the dimensionality. The error in 

eigenvalues, eigenvectors, and data whitening is growing with 

the increasing dimensionality. This is due to the growing 

amount of computation. CCC is also dropping with the 

increasing dimensionality and this indicates that for getting a 

FIGURE 7. The relative Errors and the Iteration Count at Different Fraction Length (FL) for 8-channel ALJM based FastICA 
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CCC better than 95%, in the case of more than 10-channel, the 

required FL is greater than 14. The iteration count for EVD is 

almost independent of the dimensionality at least for the EJM 

and the ALJM, whereas the iteration count for WVE reflects 

the errors and imperfections from the data whitening and the 

EVD stage.    

F. EXTRACTING THE DETERMINISTIC SIGNALS     

For visually inspecting the performance of FastICA based on 

the three methods, we use four deterministic signals and 

generate the four mixed signals by randomly mixing them (by 

using a randomly generated mixing matrix A of order 4 × 4). 

These signals are selected to model some of the common 

contamination sources in EEG acquisition (sudden muscle 

movement, power line interference, and thermal noise) and an 

EEG signal itself (from gamma frequency band). In Fig. 9 (a), 

(b), and (c), we plot the sources with red dotted style and the 

extracted independent components (ICs) black solid style for 

the three algorithms. In this part of the evaluation, we set 

FL=14 and WL=18 to target the DSP blocks of the FPGAs for 

designing the SPA for FastICA. S1 to S4 denote the source 

signals, and IC1 to IC4 denote the extracted signals. We can 

see the performances of the algorithms under this setup are 

almost equal, as indicated by the cross-correlation label and 

visual inspection. We know that FastICA has the capability of 

extracting one Gaussian source [2]. We can conclude that the 

ALJM-based FastICA can also extract a Gaussian source and 

the other signals with a CCC of 99.5%.  

We perform these trials to study and compare the numerical 

stability of ALJM-based FastICA with limited WL in the 

fixed-point implementations. With the help of the 50 trials 

with random source signals and their randomly generated 

mixtures, we test the ALJM-based FastICA against any 

abnormal behavior resulting from some abnormal conditions 

due to the fixed-point computation. When very small 

eigenvalues appear (𝜎𝑖 < 0.002 with 𝐹𝐿 = 14), then each of 

the algorithms stops to meet the convergence, so we replace 

such a small eigenvalue with zero to ensure the numerical 

stability and convergence of the algorithms. All the 

observations made during this section are not possible without 

generating such software models of the methods. In the 

hardware domain comparing the methods to such dynamic 

conditions is tedious and time taking. So, the current work, in 

contrast to the existing approaches, introduces a new 

methodology for comparing, evaluating, and optimizing the 

hardware-oriented algorithms before realizing them on real 

hardware platforms.             

VI. HARDWARE PERFORMANCE EVALUATION 

After verifying the functionality, statistical performance, and 

numerical stability of the ALJM-based FastICA, we now 

analyze the hardware performance and efficiency of the 

method. The architecture for FastICA presented in Section IV 

FIGURE 8. The relative Errors and the Iteration Count at Different Dimensionality (n) for 8-channel ALJM based FastICA 
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can be implemented in different FPGAs and ASIC technology 

nodes. For proving the efficiency of the architecture, we 

implement it on Spartan-6 FPGA because this is a low-cost in-

production FPGA series and meets the requirement of real-

time portable system development. It is also available in small 

size packages. The DSP Blocks in Spartan-6 are called 

DSP48A1. The performance analysis is based on resource 

utilization, computation time, and power consumption. The 

functionality of the method is also verified through the post-

layout simulation results and actual hardware implementation 

results. Performing FastICA gives a useful insight into the 

nature of latent sources. The actual sources can be extracted 

by FastICA only if they have non-Gaussian (sub/super-

Gaussian) distributions and the mixed signals are linear 

combinations of the source signals. That is the reason for using 

the linear mixtures of non-Gaussian source signals throughout 

the theoretical evaluation of the FastICA. In the hardware 

evaluation, we also use eight random (non-Gaussian) source 

signals represented by 𝑺  and mix them using a random 

mixing matrix 𝑨 for generating the mixed signals 𝑿.   

A. BENCHMARK FOR THE HARDWARE 
FUNCTIONALITY    

For setting a benchmark for the functionality, we use the 

floating-point double-precision MATLAB model of FastICA 

[30] (developed and distributed freely for research purposes 

by Helsinki University of Technology, Finland). This model 

is fed with the mixed multivariate signal X and it extracts the 

multivariate signal 𝑺̂. The model for FastICA is customized 

(by choosing tanh() as the non-linearity function and 

symmetric method for decorrelation), to match the hardware 

implementation, through the provided MATLAB GUI. 

We use the Fixed-point Designer model of the ALJM-based 

FastICA for segregating quantization errors (errors caused by 

fixed-point 2’s complement representation with WL=18) and 

the hardware implementation errors (errors caused by 

imperfect translation and hardware circuitry). As explained in 

Section V, this model is also customized for implementation 

on Spartan-6 FPGA. The quantized versions of both 𝑿 

(denoted by 𝑿𝒒 ) and 𝑺̂  (denoted by 𝑺̂𝑞 ) are used for 

comparison with the hardware results in the next subsection. 

𝑿𝒒 is produced when 𝑿 is imported to Fixed-point Designer 

(fixed-point 2’s complement representation with WL=14+4) 

whereas 𝑺̂𝑞 represents the extracted sources from the model 

in Fixed-point Designer. 

B. POST-LAYOUT SIMULATION AND 
IMPLEMENTATION 

After hand-coding of the 8-channel ALJM-based FastICA for 

Spartan-6 XC6SLX75-2FGG484C in Verilog HDL, we 

FIGURE 9. Comparing the Three Implementations of FastICA using the Four Synthetic Signals 
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generate a testbench, post-place & route model, and a standard 

data format (SDF) file using Xilinx Integrated Software 

Environment (ISE 14.7 Webpack) running on Windows 10  

64-bit. 𝑿𝒒 is loaded into the BRAM modules by generating 

COE files. Similarly, the linearization coefficients for tanh() 

are loaded in the DRAM blocks. All these files are used for 

performing post-layout simulation using Isim tool, integrated 

with Xilinx ISE 14.7, and ModelSim PE 10.4 (Student 

Edition) tool from Mentor Graphics. The extracted signals 

from the Post-layout simulation 𝑺̂𝑞  are imported in 

MATLAB 2020b for comparison with the extracted sources 

by the model in Fixed-point Designer.  

After the post-layout simulation, we use XPower Analyzer 

tool of ISE 14.7 for calculating the quiescent and dynamic 

power consumption of the design using the Switching Activity 

Interchange Format (SAIF) file from the post-layout 

simulation. We interface a Verilog HDL-based memory 

reading module with the model of the ALJM-based FastICA 

so that we can read the content of the BRAM modules and 

write the content to simulation output files for comparison. 

After successfully performing the post-layout simulation, 

the bitstream file of the HDL model is downloaded to a custom 

board, containing XC6SLX75-2FGG484C and supporting a 

10MHz external clock source, through a USB JTAG 

programming and debugging interface. The HDL model of 

FastICA is accompanied by the memory reading module and 

a ChipScope Definition and Connection (CDC) file for 

reading back the content of the Block RAM modules 

representing the extracted sources. Using appropriate trigger 

signals, the content of the BRAM modules is read using 

ChipScope Pro tool of ISE 14.7 and then the data files are 

imported to MATLAB for comparing them with the extracted 

sources from both the post-layout simulation and the Fixed-

point Designer model. The comparison of the extracted 

sources from the three fixed-point platforms is discussed in the 

next subsection. 

C.  EXTRACTING THE RANDOM SOURCE SIGNALS     

In Fig. 10 (a) we plot 𝑿 (represented by dashed blue lines 

with an offset of 2 for visibility) and 𝑺̂ (represented by solid 

red lines without any offset) which are the inputs and the 

outputs of the double-precision MATLAB model of FastICA, 

respectively. Here, S is used to denote a source, and IC is used 

to represent the corresponding independent component or 

extracted source signal. Only 60 samples, out of 512, are 

shown for maintaining clarity in the graphs. CCC between the 

input and the extracted outputs is also shown below the legend. 

This is considered as the theoretical limit for the separation 

quality because there are no truncation or quantization errors 

in this model.  

FIGURE 10. Comparing Floating-point (Software-based) and Fixed-point (Hardware-Based) Implementations of the ALJM-based FastICA 
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The extracted signals 𝑺̂𝑞 are generated by the Fixed-point 

Designer and they are treated as the benchmark for hardware 

implementation of the ALJM-based FastICA because this 

model only accounts for quantization errors and no hardware-

related error appears at this stage. So, we set our target for 

generating these output signals, first from the post-layout 

simulation and then from the hardware implementation. That 

can ensure the functionality of the hardware design at the 

operating frequency recommended by ISE 14.7 during the 

post-layout simulation. We compare the results imported to 

MATLAB from the post-layout simulation and the hardware 

implementation with these benchmark results from Fix-point 

Designer. The three sets of results are identical point by point. 

This not only verifies the validity of the post-layout simulation 

followed the real implementation but also the capability of 

Fixed-point Designer to simulate the algorithm for its 

hardware behavior. To avoid redundancy, we only plot the 

results from the real implementation in Fig. 10 (b) where 𝑿𝒒 

(represented by dashed blue lines with an induced offset of 2) 

and 𝑺̂𝑞 (represented by solid red lines, no offset). We label 

the results as fixed-point 18-bit 2’s complement version of the 

ALJM based FastICA because it applies to all three platforms 

which produce the same results. As we can see from the figure 

that all the independent components extracted are, at least, 

97% correlated with their theoretical versions (those extracted 

by the double-precision MATLAB model). 

The degradation in CCC, as compared to Fig 10 (a), is due to 

the quantization resulting from the fixed-point arithmetic 

which is necessary for saving hardware resources. As we can 

see from [10], [11] that the performance of most of the AI or 

ML algorithms remains acceptable with a small degradation in 

CCCs. By compromising CCC to some extent, we can 

increase computation speed and save hardware resources as 

well as power consumption manyfold. That is clear from the 

figure that a 64-bit implementation (double-precision 

MATLAB model) of the algorithm is extracting the sources 

with a CCC of 99.7% whereas the 18-bit implementation 

(fixed-point FPGA) extracts the sources CCC up to 97.5%. 

D.  COMPARING DESIGN PARAMETERS 

Table I lists the current and the past FastICA hardware 

implementations (published during the past decade with 

sufficient implementation detail) along with the design and 

performance parameters. We can see that most of the 

implementations are on ASIC platforms. Power consumption 

can be better optimized on ASICs than on FPGAs as explained 

in Section III. But ASIC implementations of AI or ML 

algorithms are not suitable for the rapid prototype 

development during the research phase. There is no 

recommended way for comparing the silicon area between 

ASIC and FPGA implementations of an algorithm. Higher 

design speed can be achieved with ASIC implementation 

because FPGA has programmable interconnects which brings 

ultimate flexibility but reduce design speed. Some other 

methods such as QR-Decomposition (QRD) and Gram-

Schmidt Orthogonalization (GSO) are also reported for 

computing EVD. These methods use square root and division, 

and they are frequently used on software platforms because of 

their hardware complexity. Using a divider and a square root 

circuit to perform all the operations of FastICA can save 

hardware resources but speed performance cannot be achieved 

in such cases as in [12]. In [50] a System on Chip (SoC, 

programable logic along with an Arm processor) is used for 

TABLE I  
COMPARING DESIGN SPECIFICATIONS OF THE HARDWARE IMPLEMENTATIONS OF FASTICA 

 (2008) 

[51] 

(2011) 

[33] 

(2014) 

[10] 

(2015) 

[53] 

(2015) 

[11] 

(2015) 

[52] 

(2016) 

[12] 

(2018) 

[50] 

(2019) 

[54] 

(2019) 

[39] 

(2020) 

[20] 

This 

Work 

EVD Method QRD EJM EJM EJM AJM EJM GSO QRD GSO EJM AJM ALJM 

Channels Count 2 8 16 4 8 4 2-16 2 6 8 4 8 

Window Size 3000 256 512 256 256 256 512 64000 1024 1024 512 512 

Architecture 

Width (bits) 

32 32 NP NP 16 16 32 32 32 32 18 18 

Design Speed 

(MHz) 

50 100 20 172 11 100 100 100 240 100 100 10 

Power Demand 

(mW) 

NA 16.35 4.45 NP 0.0816 NP 16.35 4200 0.5703 65.0 321 152 

Gates Required 

(x1000) 

NA 272 NA NA 69.2 NA 401 NA NA 840 NA NA 

Computation 

Time (ms) 

3 290 Variable 2.5 84.2 10 1850  68.1 NA 150 7.5 3.2 

Process Node 
(nm) 

90 90 130 40 90 45 90 28 90 90 28 45 

Platform FPGA ASIC ASIC FPGA ASIC FPGA ASIC SoC ASIC ASIC FPGA FPGA 

Correlation 

Coefficient (%) 

> 99 > 99 > 95 NP  > 95 NP > 96 NP 96 > 96 > 96 > 96 

QRD: QR-Decomposition, GSO: Gram-Schmidt Orthogonalization, NA: Not Applicable, NP: Not Provided, SoC: System on Chip (Xilinx Zynq 7000) 
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implementing these operations. In [51] no hardware utilization 

or power consumption is reported so we cannot have a fair 

comparison.         

We can see that our work is the fastest 8-channel FastICA 

implementation with a CCC greater than 96. It meets the speed 

and accuracy requirements for the most real-time portable 

applications while leaving a sufficient execution time for any 

subsequent post-processing algorithm. For developing a 

prototype for system-level evaluation of a real-time portable 

system that incorporates FastICA (for example, epileptic 

seizure detection using EEG or background noise removal in 

audio systems), the proposed method is the most suitable 

approach. 

In our implementation, we transfer computational load from 

reconfigurable logic to the dedicated DSP blocks and BRAM 

modules. In this way, we take advantage of ASIC design while 

maintaining the design flexibility offered by FPGA. That is 

only possible by using the ALJM-based FastICA. So, we can 

say this is the reason that the design efficiency of the current 

work is not only better than the other FPGA implementations 

but also competing with the ASIC implementations in all three 

aspects of a digital design (area, speed, and power).                  

E.  COMPARING COMMERCIAL ASPECTS 

After comparing our work in terms of speed with the previous 

works, we now compare our design in terms of hardware 

resources and power consumption with the most relevant 

designs. We know that FPGA resources consist of BRAM, 

DSP blocks, lookup tables, and flipflops. Table II lists 4-

channel FPGA-based FastICA implementations. We scale the 

ALJM-based FastICA to 4-channel and map it to Spartan-6 

device XC6SLX9-2CPG196C to perform a fair comparison. 

The FPGA implementations are also compared in terms of the 

commercial aspects such as power, size, and cost. 

In [52] a non-scalable implementation based on the EJM is 

reported. Although non-scalable implementations can be 

better optimized compared to scalable implementations but 

adapting them to changing dimensionality needs a redesign. In 

[53] a high-speed scalable implementation is reported for a 

Virtex-6 device. These devices are high performance but have 

large packaging sizes and high cost. So, they cannot meet the 

requirements of a low-cost real-time portable system 

development. Another implementation for the AJM based 

FastICA [20] is reported using Xilinx 7-series device Kintex-

7. This is a middle-range device with respect to cost and 

performance. This is a scalable implementation and uses the 

AJM along with the hardware-based multipliers. This is one 

of the most optimized implementations, from the previous 

works, for developing a real-time portable system. The results 

of the current work show that the ALJM-based FastICA saves 

70% lookup tables, 40% DSP blocks, and 50% BRAM 

modules and still achieves a speed of three times compared to 

the state-of-the-art approach in [20]. Moreover, 70% power 

saving is also achieved by using the power-optimized 

hardware like the DSP blocks (DSP48A1) and the BRAM 

modules. Based on these results we can say that the current 

work is the most suitable implementation for the targeted 

systems.  

F.  HARDWARE SAVING BY THE SPA   

As stated before, one of the contributions of the current work 

is introducing the scalable SPA for FastICA implementation. 

The SPA can be used for FastICA using any of the three 

methods for EVD but the ALJM is the most optimized method 

because it uses no additional component and the components 

of the WVE stage are reused for computing EVD. In Table III, 

we list the number of additional components required for the 

EJM and the AJM, in the case 8-channel FastICA is 

implemented on the SPA. The 72 registers are 18-bit wide and 

are used to implement CORDIC blocks for the EJM. The 

shifters are variable signed shifters. They are combinational 

circuits and the amount and direction of the shifts are 

determined by the signed integer at the selection input of the 

circuit. The encoders represent the signed priority encoders 

TABLE III 

COMPARING THE EVD METHODS ON THE SPA FOR FASTICA 

 EJM AJM ALJM 

Additional 

Hardware  
for EVD Stage 

72 Registers 

10 Shifters 
12 Adders 

12 Encoders 

20 Shifters 
20 Adders 

Nothing 

Convergence Rate Quadratic 
Almost 

Linear 

Almost 

Quadratic 

Clock Cycles 

for cos𝛳𝑖 & sin𝛳𝑖 
36 5 6 

Maximum Sweeps 

for Convergence 
4 9 5 

Total Clock 
Cycles for EVD 

1568 1575 840 

 

TABLE II 

COMPARING THE FPGA-BASED FASTICA IMPLEMENTATIONS 

 (2015) 

[53] 

(2015) 

[52] 

(2020) 

[20] 

This 

Work 

EVD Method EJM EJM AJM ALJM 

Scalability Yes No Yes Yes 

Device Series Virtex-6 Spartan-6 Kintex-7 Spartan-6 

Target Device 
Price (USD) 

715 25 160 18 

Target Device 

Size (mm2) 

23×23 8×8 23×23 8×8 

Computation 

Time (ms) 

2.5 10 7.5 1.9 

Power Demand 

(mW) 

NP NP 321 91 

Slice Utilization 
  LUTs 

 Flip-Flops 

NP 
132811 

160629 

14760 
NP 

NP 

NP 
12821 

13595 

1056 
4180 

  114 

Block RAM 

(KB) 

45 60 18 9 

DSP48 Slices 440 29 25 16 
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that find the binary exponent of a number in 2’s complement. 

The EJM requires the maximum number of clock cycles for 

computing cos𝛳𝑖 & sin𝛳𝑖 because of the slow convergence of 

CORDIC blocks. The required number of clock cycles can be 

reduced for the AJM by using more memory, shifters, and 

adders. But such hardware components increase quiescent 

power because they cannot be reused in the WVE stage. So, 

we can say that the ALJM-based FastICA is again the most 

optimized implementation. 

VII. CONCLUSION AND FUTURE WORK 

We know that ICA is the most widely used technique for 

artifact removal and feature extraction from a multivariate 

signal and FPGAs are the most popular hardware platform for 

implementing AI or ML algorithms. For rapidly prototyping 

real-time portable systems capable of performing ICA 

followed by some ML algorithm, we have proposed a new 

method, named the ALJM, for computing EVD during 

FastICA (the most powerful and frequently used variant of 

ICA). Using Fixed-point Designer, we have verified the 

superior theoretical performance of the ALJM-based FastICA. 

Quantization errors, iteration counts, and CCC have been used 

as performance metrics for the comparison. Based on the 

ALJM, we have proposed the SPA architecture for performing 

FastICA on the hardware platforms. We have implemented the 

SPA on Spartan-6 FPGA and compared its performance with 

the previous works. The hardware performance comparison is 

based on the parameters such as computation time (latency), 

channel count, power consumption, and design cost/size. This 

comparison concludes that the ALJM-based FastICA 

implemented, even on low-cost FPGA devices, performs 

better than the existing implementations with the same 

channel count. So, the proposed SPA is one of the best choices 

for prototyping and commercializing FastICA based AI 

systems. 

In this work, we have hand-coded the design to generate its 

HDL model for low-cost FPGAs. The process of hand-coding 

requires time, effort, and relevant experience and these are 

rarely available to the researchers developing algorithms in 

MATLAB. So, in future work, we will translate the Fixed-

point Designer model to the HDL model using different high-

level synthesis (HLS) tools and compare their translation 

performance in terms of hardware design aspects. This 

methodology will help the researchers in the rapid prototyping 

of their systems. Moreover, we have compared the ALJM with 

the existing methods only in the context of FastICA 

implementation. In future work, we will also extend this 

comparison to solely EVD/SVD computation efficiency. 
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