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ABSTRACT With the widespread application of machine learning and deep learning, image recognition
has been continuously developed. However, there are still huge challenges in the use of machine learning
and deep learning. The tuning processes of algorithms are critical and challenging for their performance.
Although there have been many previous works to improve the final accuracy of the recognition algorithms
through tuning, these works cannot consider some indicators that are also very important in the actual
environment (such as latency, central processing unit (cpu) utilization) in the tuning. In this paper, we propose
an effective tuning method based on multi-objective and knowledge transfer, which is solved the above
limitations in the image recognition. Specifically, we first use an agent to automatically tune the recognition
algorithms, and combine the prediction accuracy and the running latency of each episode as a multi-
objective reward signal to guide the update of the internal parameters of the agent. In this way, the agent
can continuously select the better algorithm configuration to improve prediction performance. In addition,
we improve the efficiency of the above tuning process by transferring knowledge. To do that, we can learn
the meta parameters from other small-scale tasks to initialize the agent. In the experiments, we apply the
proposed method to tune the eXtreme Gradient Boosting and random forest on 57 image recognition tasks
and convolutional neural network on 2 tasks. The experimental results verify that the proposed method
achieves average accuracy rankings of 1.92, 1.42 and 1.71 on three algorithms to be optimized, respectively.
Especially in terms of latency performance, the proposed method performs best on all the tasks (57 data
sets) on the three algorithms to be optimized. In addition, we verify the various components of the proposed
method through ablation experiments.

INDEX TERMS Image recognition, machine learning, deep learning, tuning, multi-objective, knowledge
transfer.

I. INTRODUCTION
So far, machine learning and deep learning has made
great progress in many works on the image recognition
field [1]–[3]. However, machine learning and deep learn-
ing still need many tedious processes in practical applica-
tions. The tedious processes include data processing, feature
engineering, algorithm selection, hyperparameter optimiza-
tion and data analysis. Among them, hyperparameter tun-
ing is a particularly important part for the performance of
the predictive algorithms, where the hyperparameters refer
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to the parameters set manually before the training model.
In this paper, we mainly solve the hyperparameter optimiza-
tion problem (HPO problem) to tune the prediction algorithm,
so as to improve the prediction performance of the algorithm.

For complex algorithms, the tuning is often a time-
consuming and tedious process, which prevents researchers
from focusing on the problem that needs to be solved.
To solve the above limitation, automatic HPO methods are
proposed and used in various fields. This automatic HPO
methods automatically select hyperparameter configuration
with as little human intervention as possible, and gradually
select the optimal hyperparameter configuration by trial and
error in the preset ranges ([4]). Subsequently, the idea of
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automation is extended to the problem of algorithm selec-
tion combined with hyperparameter tuning ([5]). In the field
of image recognition, an efficient hyperparameter tuning
method can achieve the following goals:

• it greatly reduces the threshold for the use of machine
learning and deep learning models, which makes the
application of these technologies more popular;

• for researchers, it can paymore attention to themodeling
process of problems in specific scenarios, rather than
model tuning process;

• compared with traditional manual tuning methods, it can
greatly improve optimization efficiency and the predic-
tion performance of model.

The hyperparameter tuning problem of the algorithm is
essentially an optimization problem, and its optimization
objective is to make the algorithm achieve the best prediction
performance by selecting the hyperparameter configuration.
However, this optimization problem cannot be solved directly
and efficiently due to the following reasons:

• First of all, it is not clear at present the clear functional
relationship between the selection of hyperparameters
and the performance of the prediction algorithm in dif-
ferent scenarios, so it is not possible to directly perform
gradient descent based on the optimization objective to
obtain the optimal solution.

• Second, the tuning of each algorithm is a process of
constant trial and error, which means that the tuning
process needs to be explored in the preset range of
each hyperparameter. Obviously, the search space is
high-dimensional and as the number of hyperparameters
increases exponentially, which makes the entire tuning
process very complicated and inefficient.

• Finally, in order to make the prediction performance of
the model better, the structure of the model will become
very complicated. Importantly, the above situation is
very unfavorable for deploying the model on an actual
application platform.

To solve the above limitations, many advanced works have
been proposed so far. In the algorithm tuning community
in the field of image recognition, advanced works mainly
includes two categories: tuning algorithms and tuning tools.
Tuning algorithms can be roughly divided into basic search
methods and sampling-based methods. The typical repre-
sentatives of basic search methods are grid search and ran-
dom search, while sampling-based methods mainly include
bayesian optimization methods, evolutionary optimization
methods, and optimization methods based on reinforcement
learning. Tuning tools usually focus on the actual user experi-
ence (convenience and flexibility). However, although previ-
ous works have proved that the above tuning algorithms and
tuning tools can performwell in image recognition tasks, they
often only consider the predictive performance of the model
and does not pay attention to the indicators (such as latency)
of the model in the actual environment. Moreover, most of the

FIGURE 1. The framework of multi-objective optimization.

previous works cannot carry out the transfer of experience,
which actually waste a wealth of tuning knowledge.

In this paper, we propose an effective tuningmethod (ETM)
based on multi-objective and knowledge transfer. This
method employ an agent to automatically tune the hyper-
parameters of the recognition algorithms in preset ranges,
and combine the prediction accuracy and the running latency
of each episode as a multi-objective reward signal to guide
the update of the internal parameters of the agent (as shown
in Figure 1). In this way, the recognition algorithms can
achieve high prediction performance and low actual running
latency. In addition, with the development of machine learn-
ing, the proposed method can be used for hyperparameter
optimization of traditional models, such as prediction tasks
and classification tasks.

For the algorithms in the image recognition field, we con-
sider both accuracy and latency to achieve multi-objective
optimization. This idea is inspired by the observation: the
model has higher predictive performance but may has lower
latency. Therefore, we should optimize the prediction perfor-
mance and latency of the algorithms by hyperparameters tun-
ing. In addition, since image recognition algorithms or mod-
els often are deployed in actual environments with resource
constraints, they need to meet some specific indicators (such
as response time (RT)). In this paper, multi-objective opti-
mization considering predictive performance and latency is
feasible and practical.

To further improve the efficiency of the above tuning,
this paper uses previous optimization experience to trans-
fer knowledge. Specifically, we perform meta-learning algo-
rithms (model-agnostic meta-learning: MAML [6]) on a
number of small-scale tasks to obtain the agent’s optimization
experience, which represents the agent’s meta-parameters
and is often used to initialize the agent’s internal parame-
ters. In this way, an agent can quickly adapt to new tasks.
In the experiments, the proposed method is employed to
optimize the hyperparameters of eXtreme Gradient Boosting
(XGBoost) [7] and random forest on 57 datasets and convo-
lutional neural network on 2 datasets. In this paper, we focus
on the HPO problem in algorithm tuning process. Our main
contributions are as follows:
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• To solve the problem that the optimized objective func-
tion is not clear, we use an agent to automatically select
each hyperparameter, and obtain the reward value signal
through training and update the agent with reinforce-
ment learning algorithm. In this way, we can get an agent
with good decision making.

• Compared with the traditional tuning method, the pro-
posed method can take the prediction accuracy and the
running latency as the tuning objective. Importantly,
we design an aggregation function that skillfully com-
bines multi-objective optimization with agent updating
so that agent decisions can be trade-off accuracy and
latency.

• To improve the tuning efficiency, we extend the idea
of knowledge transfer to the process of hyperparame-
ters tuning. Specifically, we gain an agent optimization
experience (i.e. meta parameters) by performing meta-
learning on multiple small tuning tasks and the agent is
initialized with the meta-parameters.

• The proposed method is compared with other tuning
methods on multiple tuning tasks of image recognition
field. The experimental results show that the proposed
method is feasible and efficient. Moreover, the effective-
ness of each component is verified by ablation experi-
ments.

The remaining of this paper will describe in detail the
related work, the specific design and process of the multi-
objective tuning method, information on how to use meta-
learning to transfer knowledge, experimental results and a
conclusion.

II. RELATED WORK
A. MULTI-OBJECTIVE OPTIMIZATION
Multi-objective optimization is an improvement on the basis
of single-objective optimization. Most single-objective opti-
mization methods are based on reinforcement learning and
optimize the objective continuously by taking the feedback
value of the objective as the reward value signal. The single-
objective optimization based on reinforcement learning are
modeled by an single-objective markov decision process
(MDP). The MDP is formed by an agent interacting with
the environment and usually expressed as a 5-tuple, which
includes a state set S, an action set A, a transition probability
function P, a reward function P, and a discount coefficient
γ . The state set S mainly includes all the states s that the
environment can be in; the action set A includes all the actions
a that the environment can execute; the transition probability
function represents the probability function of the transition
from one state to the next state; the reward function repre-
sents the feedback value of the agent’s decision; the discount
coefficient represents the confidence of the previous actions.
During theMDP, the goal of an agent is to obtain a trajectory τ
that maximizes the expected reward value, which is formally
expressed as follows:

J (π ) = Eτ∼π [R(τ )] (1)

where the trajectory τ is formed by the interaction between
the agent and the environment and includes the action,
state and reward value of multiple time steps, that is
τ = (s0, a0, r0, s1, a1, r1, . . . ); the expected reward value
represents the weighted sum of the reward values of each time
step in the trajectory, i.e. R(τ ) =

∑
∞

t=0 γ
trt .

The methods to solve the single-objective optimization
based on reinforcement learning can be roughly divided into
value-based optimization and policy-based optimization. The
value-based optimization methods first need to calculate
the expected reward value of the trajectory and takes it as
the value of the state-action pair, that is

Qπ (s, a) = Eπ [
∞∑
t=0

γ trt |S0 = s,A0 = a] (2)

To solve the single-objective optimization problem, the agent
needs the optimal decision policy to maximize the value of
the state-action pair, that is π∗(s) ∈ argmaxaQ∗(s, a), where
Q∗(s, a) denotes the optimal state-action value. Q-learning
[8] is a classical value-based optimization method, which
indirectly obtains the optimal decision policy by continuously
maximizing the expected reward value of the trajectory. This
method satisfies the basic identity of Bellman equation, that
is

Q∗(s, a) = Eπ [r + γmaxa′Q
∗(s′, a′)|S0 = s,A0 = a] (3)

An important defect of value-based optimization methods
similar to Q-learning is the curse of dimension, which makes
these methods become very difficult or even ineffective in
solving the optimization problem of continuous values. How-
ever, another policy-based optimization method can easily
address the above limitation. One well-known method is the
policy gradient method, which does not require the agent to
learn how to maximize the expected reward value but directly
optimizes the policy to improve the probability of the optimal
action, that is

∇θJ (πθ ) = Eτ∼πθ [∇θ logP(τ |θ )R(τ )] (4)

Even so, policy-based optimization methods such as policy
gradient have the disadvantage of training instability. Usu-
ally in practice, some effective tricks are used to reduce the
training variance of the optimizationmethod, such as adding a
baseline function and assigning suitable credit.More recently,
some advanced research works [9], [10] have been proposed
to combine value-based and policy-based optimization meth-
ods to achieve complementary advantages.

Based on the single-objective optimization method, the
multi-objective optimization method is usually modeled as a
multi-objective MDP, which is also represented by a 5-tuple.
Different from the single-objective optimization method, the
reward value signal is a vector composed of the feedback
values of multiple objectives rather than a scalar reward,
i.e. r ∈ Rn. In the actual optimization process, an impor-
tant challenge of multi-objective optimization method is to
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find a Pareto optimal solution to trade-off each optimiza-
tion objective. Since we cannot find an optimal solution
to satisfy multiple objectives, we often need to customize
an aggregation function to aggregate multiple reward value
signals into a scalar value. The aggregation functions can be
roughly divided into linear and nonlinear types. The method
of weighted sum is a typical linear setting method [11], while
the exponential weighting method is a nonlinear one [12].
In this paper, we implement multi-objective optimization by
customizing a nonlinear aggregation function.

Up to now, multi-objective optimization methods have
made great progress in algorithm tuning, which are mainly
used to solve the neural architecture search (NAS) problem
in image recognition field. In this paper, we mainly focus
on the hyperparameter optimization problem in the algorithm
tuning, and strive to realize the performance improvement
of the model in many aspects through the hyperparameter
tuning.

B. HYPERPARAMETER OPTIMIZATION
Hyperparameter optimization is a part of the algorithm tun-
ing pipeline. The purpose of hyperparameter optimization
is to improve the predictive performance of the algorithm
by tuning its hyperparameters. To make the hyperparameter
optimization method clearer, we first define the commonly
used symbols in the hyperparameter optimization:
• A denotes the algorithm to be tuned;
• 3 is the hyperparameter search space of the algorithm
to be tuned, which is a high-dimensional and needs to
be preset;

• n is the number of hyperparameters to be optimized;
• λ denotes the hyperparameter configuration selected by
the optimization method, which is represented by a vec-
tor composed of n hyperparameter values;

• λ∗ denotes the optimal hyperparameter configuration;
• Aλ represents the algorithm to be optimized that sets the
selected hyperparameter configuration;

• Dtrain and Dvalid represents the training set and the ver-
ification set of the target task respectively.

When given a target task, the formal expression of hyperpa-
rameter optimization is:

λ∗ = max
λ∈3

E(Dtrain,Dvalid )∼DL(Aλ,Dtrain,Dvalid ) (5)

where L(Aλ,Dtrain,Dvalid ) denotes the validation perfor-
mance of Aλ on the target task.

Generally, grid search [13] or random search [4] are widely
used for the optimization tasks with small search spaces. Grid
search is the simplest hyperparameter tuning methods, and
its main idea search the optimal solution by traversing all the
combinations of hyperparameters. Obviously, the grid search
suffers from the curse of dimensionality, so its optimization
process will consume a lot of time when faced with com-
plex tasks. Random search uses random policy instead of
traversing all combinations, which mainly idea is to perform
hyperparameter tuning by sampling randomly on all possible

combinations. Some experiments demonstrate that random
search is better than grid search when some hyperparameters
are much more crucial than others [4]. Moreover, random
search has the advantages of parallelization and flexibility.
However, random search cannot achieve the optimal opti-
mization results due to the lack of policy guidance.

Bayesian optimization (BO) is a method cluster, which
includes a series of powerful hyperparameter tuningmethods.
The main idea of bayesian optimization is to use a specific
model to fit the functional relationship between hyperpa-
rameter configuration and its performance, and to use the
acquisition function to obtain the next potential hyperparam-
eter configuration based on the functional relationship. The
bayesian optimization methods consist of surrogate model
and acquisition function. The specific process of the bayesian
optimization methods is as follows: firstly, the most poten-
tial hyperparameter configuration is obtained by sampling
of the acquisition function; then the performance evaluation
is carried out on the target task; and finally the functional
relationship is fitted by training the surrogate model on
all samples. After many iterations, the acquisition function
can finally choose a better hyperparameter configuration.
Since the efficiency and accuracy of the surrogate model are
important, most of the previous works focused on how to
select the surrogate model. At present, two popular surrogate
models are Gaussian process and tree model. Spearmint [14]
is a bayesian optimization method using Gaussian process
as the surrogate model, which is an advanced method for
low-dimensional optimization search space. The two disad-
vantages of using a Gaussian process are time-consuming
(cubic time complexity) and poor scalability. The sequential
model-based algorithm configuration (SMAC) [15] and the
tree Parzen estimators (TPE) [13] are bayesian optimization
methods using random forests and a tree of Parzen estima-
tors as the surrogate models respectively. Many studies have
shown that bayesian-based optimization methods can achieve
higher optimization results [13]. However, the tuning process
is inefficient when solving large-scale optimization tasks.

Population-based tuning approach are another competitive
HPO methods, which can be roughly divided into genetic
algorithms and evolutionary algorithms. The main idea of
population-based optimization method is to preserve a series
of populations and make them evolve through hybridization
and mutation. The covariance matrix adaption evolutionary
strategy (CMA-ES [16]) is an improved algorithm based on
evolutionary algorithm, which samples configurations from a
multivariate Gaussian distribution. More recently, CMA-ES
has proved to be a powerful black-box optimization method
and is superior to advanced Bayesian methods [17].

The bandit-based methods have been proposed to solve
HPO problem recently, such as hyperband [18] and
BOHB [19]. Hyperband method uses the idea of the suc-
cessive halving to allocate resources to each hyperparameter
configuration. The researches show that hyperband has a
strong performance during the tuning process of the deep
learning model. However, because random policy is used
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for sampling, the optimization efficiency of hyperband is
general. To solve the above limitations, a method combining
Bayesian optimization and bandit-based is proposed, which
is called BOHB [19]. This method has high efficiency at the
beginning and has good performance in the long run.

The above mainly describes the single-objective optimiza-
tion methods. Thus far, multi-objective optimization methods
are mainly focus on NAS problems [20]–[22]. The main
reason is that the neural network architecture has a great
impact on the actual running indicators. For example, due to
the limitations of hardware devices and application scenarios,
indicators such as computational complexity and resource
consumption also need to be optimized. The progress of
these multi-objective optimization methods in NAS enables
the network architecture to effectively adapt to the actual
environment. Therefore, we believe that machine learning
models that are widely used in many fields should also be
studied in the multi-objectives optimization (response time
or resource consumption), so that machine learning model
can better adapt to the actual environment in addition to good
predictive performance.

C. KNOWLEDGE TRANSFER
Knowledge transfer is an important area of research in
the image recognition community. One method of knowl-
edge transfer is transfer learning; for example, [23] uses
pretrained weights and data to improve natural language
processing (NLP) models. In algorithm tuning, [24] uses
transfer learning to learn a generalizable framework that
can speed up the search for new tasks. Another impor-
tant and recent method is meta-learning or learning-to-learn,
which has recently received interest [6], [25], [26]. The
training of meta-learning is mainly divided into two steps:
collecting meta-data of historical learning tasks or previ-
ously learned models; extracting useful knowledge from
meta-data to guide the completion of new tasks. Meta-data
includes hyperparameter configuration, neural network archi-
tecture, model evaluation results, model internal parame-
ters, and task attributes (meta-features). Meta-learning can
be divided into three categories: meta-representation, meta-
objective and meta-optimizer. The meta-objective defines
the goal of the meta-learning by selecting meta-objectives
and the associated data flow between inner loop events
and external optimization. The meta-Optimizer represents
the choice for the outer optimizer during meta train-
ing. The outer optimizer can take various forms such as
gradient descent, reinforcement learning, and evolution-
ary search. The meta-representation explains what the rep-
resentation of learning should be. Generally, representa-
tions include hyperparameters, network structure, and initial
weights.

Meta-learning achieves the goal of fast adaptation to
new tasks by learning from other tasks. Auto-sklearn is an
advanced tuning tool that applies meta-learning to select a
configuration that is likely to perform well on a new task.

III. HYPERPARAMETER TUNING BASED ON
MULTI-OBJECTIVE OPTIMIZATION
In this section, we will describe in detail hyperparameter
tuning based on multi-objective optimization. First, we illus-
trate the property of sequential decision making in the HPO
problem. Then, the HPO is extended to the multi-objective
Markov decision process. Finally, we will introduce the
design of the agent and multi-objective optimization in detail.

A. SEQUENTIAL DECISION MAKING IN HPO
For traditional hyperparameter optimization methods, they
directly choose a hyperparameter configuration in the preset
high-dimensional search space. If the model to be optimized
is very complex, the search space of the task will become very
large and grow exponentially with the number of hyperpa-
rameters. In order to solve the above problems, we consider
that there is a natural sequential decision process for the
HPO problem. The intuition behind the way to solve the
HPO problem is: Any complex high-dimensional action can
be selected incrementally, component by component, where
each component’s probability also depends on components
already selected earlier [27]. Specifically, the main idea of
the sequential decision process in HPO is: hyperparameters
are selected sequentially, and the selection of hyperparameter
depends on the selection of previous hyperparameters.

To further illustrate the advantages of the sequential deci-
sion process in HPO, wewill be compared with the traditional
method of directly selecting hyperparameter configuration in
high-dimensional spaces. We assume that the model to be
optimized has n hyperparameters to be optimized. In each
iteration, the traditional optimization method selects a hyper-
parameter configuration in the search space, where the size
of search space is 3 = 31 × 32 × . . .3n (× denotes the
Cartesian product; 3i denote the search space of the i-th
hyperparameter). In the case of sequential decision making,
hyperparameters are selected sequentially to form the config-
uration. In this method, each iteration contains n selections,
and each selection needs to be conducted in the search space
of the corresponding hyperparameter, so the size of the search
space is 3′ = 31 ∪ 32 ∪ . . .3n. Obviously, sequential
decision making not only reduces the difficulty of tuning but
also improve the efficiency of optimization.

In the process of sequential decision making, in addition to
sequential selection of hyperparameters, we should also con-
sider the interrelation of hyperparameters selection. In this
paper, we use a memorized network structure for implicit
association and set the current hyperparameter selection to
be dependent on the previous hyperparameter selection for
display association.

B. MULTI-OBJECTIVE MARKOV DECISION PROCESS
Based on the formulation of the above sequential decision
making, we further defined the HPO problem as a multi-
objective Markov decision process. With such the defini-
tion, the workflow of using agent to solve HPO problems
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can be clearly described. First of all, we define the 5-tuple
〈S,A,P,R, γ 〉 of the multi-objective Markov decision pro-
cess in the HPO problem, which are as follows:

• A is a set of all the actions that an environment can per-
form, that is, the set of all the hyperparameters that the
algorithm needs to tune. At each time-step t , the action
at = λt , and the search space of the action is3t . After n
time-steps, the agent can selects n hyperparameters, i.e.
λ = a1:n.

• S is a finite set of states, which includes all the states
the environment can be in. For the HPO problem, the
environment that interacts with an agent is composed of
a dynamic part and a static part, where the algorithm to
be optimized and the target task are the static part, and
the hyperparameters are the dynamic part. In this paper,
we only consider the dynamic part. Specifically, we take
the hyperparameter distribution at time t − 1 as the state
of the environment at time t , i.e. st = D(λt−1), where
the hyperparameter distribution is output by the agent.

• R is the reward function. In multi-objective MDP, the
reward value signal is composed of the feedback values
of multiple objective. In this paper, we take the accuracy
and latency as optimization objectives. Therefore, the
vector consisting of the accuracy and latency will be
used as a reward value signal. Specifically, rt = [0, 0]
for t ∈ [1, n) and rn = [accuracy, latency], where
accuracy denotes the validation performance ofAλ=a1:n ,
latency is the latency of Aλ=a1:n .

• P : S × A → P(S) is a state transition probability
function. We usually do not know the state transition of
the environment, otherwise the model-base method will
easily solve the problem.

• γ is a discount factor.

As shown in Figure 1, the overall framework consists of three
components: an agent to select a hyperparameter configu-
ration, a trainer to obtain the model accuracy and latency
with the selected configuration, and multi-objective rewards
including accuracy and latency. The multi-objective MDP as
follows: for a given task, the agent selects n hyperparameters
one by one based on its previous decisions. Then, themachine
learning model with the selected hyperparameters is trained
on a training set Dtrain. The accuracy and latency of a valida-
tion setDvalid are used as reward signals to update the param-
eters of the agent by an reinforcement learning algorithm.
As a result, the agent learns how to tune hyperparameters over
time.

C. DESIGN OF THE AGENT
The agent consists of an input embedding layer, an output
embedding layer and a long short-termmemory (LSTM) [28],
which is the core part of the agent. Specifically, the input
state st is converted to a high-dimensional representation by
an input embedding layer, which allows the agent to better
observe the state representation. The output of the input
embedding layer is then fed to the core network consisting

FIGURE 2. The workflow in which agent selects hyperparameters
sequentially.

of three layers of a LSTM. Although it is difficult to train
the LSTM network, the LSTM cell has been indicated to be a
powerful structure in solving the sequential problem. Finally,
the output of the LSTM is converted to a low-dimensional
representation by an output embedding layer. The output of
the agent is not a hyperparameter value but rather a distribu-
tion of the possible values. Following [10], [29], we use the
normal distribution to represent the distribution of a hyperpa-
rameter (λt ).

Thus, the output of the agent at t is N (µt , σt ), and
st = N (µt−1, σt−1), s1 = N (0, 1). As described above,
the design and workflow of the agent match the sequential
decision process very well.

D. SAMPLING FOR A HYPERPARAMETER
From the above description, it can be seen that the output of
the agent is a distribution of possible values of a hyperpa-
rameter. Therefore, we need to get the actual hyperparameter
value by sampling. A simple sampling method is random
sampling. However, due to the significant difference in the
preset range of each hyperparameter, random samplingwithin
the preset range of the hyperparameter will make the training
of agent very unstable and even ineffective. To solve the
above problems, we customize a transformation method to
scale the distribution of the hyperparameters. The transfor-
mation process is as follows:
• Scale the mean of the distribution µ to µ′ by the tanh
function in the range (−1, 1);

• Sample a value z from the new distribution N (µ′, σ );
• Scale z into the range of hyperparameter [zL , zU ] by the
following method:

z′ = zL + (zL − zU )× (1+ z)/2 (6)

λ = clip_and_convert(z′, zL , zU ) (7)

where zU and zL represent the upper and lower bounds,
respectively. The clip_and_convert function can limit the
sampling value z′ within the preset range by clipping and
make the hyperparameter meet the type requirement by type
conversion.

E. MULTI-OBJECTIVE OPTIMIZATION
The internal parameters θ of the agent represent a policy π
that can decide which action to choose based on the current
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Algorithm 1 Meta-Learning on HPO Tasks
Input:

θ : meta parameters;
α, β: step size.

Procedure:
1: randomly initialize θ
2: while not done do
3: Sample a batch of HPO tasks Ti from source datasets
4: for all Ti do
5: Sample a trajectory using πθ in Ti: τi =

(s1, a1,A1,LAT1 . . . , sn, an,An,LATn)
6: θ ′i = θ − α∇θLTi (πθ ) w.r.t τi and LTi defined in

Equation (5)
7: Sample a trajectory using πθ ′i

in Ti: τ ′i =

(s1, a1,A1,LAT1 . . . , sn, an,An,LATn)
8: end for
9: Update θ ← θ − β∇θ6TiLTi (πθ ′i ) using each τ ′i and

LTi defined in Equation (5)
10: end while

state of the environment. Follow the previous works [30],
[31], we use the PPO-clip method [10] to update θ . Compared
with the policy gradient method [32], the PPO-clip method
implements off-policy based on the important sampling and
uses KL divergence to constrain the gradient step, so as to
achieve a good training efficiency and stability. The objective
function of the PPO-clip method is defined as:

θk+1 = argmax
θ

Es,a∼πθk [L(s, a, θk , θ)] (8)

where L is given by:

L(s, a, θk , θ) = min(
πθ (a|s)
πθk (a|s)

Aπθk (s, a),

clip(
πθ (a|s)
πθk (a|s)

, 1− ε, 1+ ε)Aπθk (s, a))

(9)

where ε is a hyperparameter that controls the change to the
new policy θ from the old policy θk , ε = 0.2. For single-
objective RL, the advantage function is defined as Aπθk =
R(τk )−b, where the return R(τk ) =

∑n
t=1 rt is the cumulative

reward over the k th sample, and b is an exponential moving
average of the returns of the previous samples.

We design an aggregation function that combines the
accuracy and latency as a reward signal to achieve the
multi-objective optimization. Let L(s, a, θk , θ) incorporate
the latency and be redefined as:

L(s, a, θk , θ) = min(
πθ (a|s)
πθk (a|s)

× fscalar ,

clip(
πθ (a|s)
πθk (a|s)

, 1− ε, 1+ ε)× fscalar ))

(10)

fscalar = Aπθk (s, a)×
[
LATk
T

]w
(11)

where LATk denotes the inference latency of the k th sample
on the target task, and T is the minimum latency of all
configurations searched so far.

We use a customized weighted product method to define
the aggregation function. Here, w is the weight factor defined
as:

w =

{
α, if LATk ≤ T
β, otherwise

(12)

where α and β are application-specific constants, where
α ≥ 0 and β < 0. In fact, we can achieve the accuracy-
latency trade-off by tuning the two constants. An empirical
rule for determining α and β values is to softly adjust the
advantage value Aπθk by considering the sign of the value.
If Aπθk is positive and LATk ≤ T , which means the selected
configuration can achieve high accuracy and uses less infer-
ence latency, w is set to a negative value to increase the value
of fscalar ; otherwise, if Aπθk is negative and LATk ≤ T , w is
set a positive value to increase the value of fscalar , since even
Aπθk is negative, the constraint of latency is satisfied, and this
configuration is not too bad. Specifically, we further illustrate
the motivation of setting the weight w (α and β) by analyzing
the following four cases (Aπθk is referred to asA for simplicity
in the following):
• Case 1: A ≥ 0,LATk ≤ T is the best case, that is, the
high accuracy and the low latency. Therefore, we should
set w (α) to a negative value to increase the positive
advantage value of the action a.

• Case 2: A ≥ 0,LATk > T is suboptimal case, that is,
the accuracy objective is met and the latency objective
is ignored. We should set w (β) to a negative value to
reduce the original advantage value, thereby reducing
the positive effect of the action a.

• Case 3: A < 0,LATk ≤ T is suboptimal case, that is,
the latency objective is met and the accuracy objective
is ignored. We should set w (α) to a positive value to
increase the original advantage value, thereby reducing
the negative effect of the action a.

• Case 4: A < 0,LATk > T is the worst case, that is,
neither the accuracy objective nor the latency objective is
met.We should setw (β) to a positive value to reduce the
original advantage value, thereby increasing the negative
effect of the action a.

We consider two ways to set values of α and β, hard
constraint and soft constraint. If α = 0 and β = −1,
we obtain a hard constraint. When Aπθk is positive and
LATk ≤ T , we simply use Aπθk as the advantage value;
otherwise, we sharply penalize the advantage value to dis-
courage models from violating latency constraints. In our
experiments, we use a soft constraint that smoothly adjusts
the advantage value by setting α = −0.07 and β = −0.07 if
Aπθk is positive; otherwise α = 0.07 and β = 0.07.

IV. KNOWLEDGE TRANSFER IN HPO
For traditional tuning methods, they ignore previous experi-
ence of optimizing tasks, which means that each new task is

47222 VOLUME 9, 2021



W. Liu, C. Zhao: ETM Based on Multi-Objective and Knowledge Transfer in Image Recognition

FIGURE 3. The workflow of meta-learning in the HPO.

solved from scratch. Obviously, such this methods are unnat-
ural and inefficient. In fact, previous experience should be
accumulated and used for further exploration, similar to the
accumulation of knowledge in human experts [33]. To accel-
erate learning, wemake knowledge transfer from other tuning
tasks, i.e., we train the agent on a variety of learning tasks
on a small scale to acquire a prior experience and learn
the common feature representation. In this way, the agent
with prior experience will learn faster. Importantly, many
previous works have demonstrated the strong performance
of meta-learning in knowledge transfer community. In this
paper, we usemeta-learning to transfer knowledge in theHPO
problem.

Specifically, we use the recently proposed model-agnostic
meta-Learning algorithm to transfer knowledge (MAML).
The algorithm 1 and figure 3 give an overview and workflow
of the training process of meta-learning on different HPO
tasks respectively. A hyperparameter tuning task Ti is defined
as the optimization of hyperparameters for a given model
A on a dataset i. Following [6], there are two optimizing
steps, namely, the meta-training step (Step 6), in which a
task-specific learner θ ′ learns based on the current parameter
θ , and the meta-test step (Step 9), in which the parameter θ
updates based on the evaluation of θ ′, where α and β are the
learning rates. In this work, τi is sampled by θ and is used for
the meta-training process; τ ′i is sampled by θ ′ and is used for
the meta-test. After multiple episodes, the meta parameters
θ can be obtained from this meta-learning procedure but are
not necessarily a good one for the new task. However, these
parameters serve as a good starting point for training a good
model using only a few steps of learning.

V. SUMMARY OF THE OVERALL FRAMEWORK
To make the proposed approach clearer, we will integrate all
the above details to give a complete description of the tuning
approach (seeAlg. 2). First, the agent’smeta-parameters θ are
obtained by usingmeta-learning onmultiple small-scale tasks
and used to initialize the agent when solving a new task. Then,
the distributions of hyperparameters are output sequentially

Algorithm 2 Tuning Method Based on Multi-Objective and
Knowledge Transfer
Input:

s1: The initial state, s1 = N (0, 1);
n: The number of the algorithm hyperparameters.

Procedure:
1: The agent is initialized with the meta-parameter obtained

from the algorithm 1
2: while not done do
3: for t=1 to n do
4: The agent outputs N (µt , σt ) based on st
5: Sample at (λt ) from N (µt , σt )
6: Obtain accuracyt and LATt on the validation set

after training Aλ

7: end for
8: Use the trajectory τ =

(s1, a1,A1,LAT1 . . . ,An,LATn) to update the agent’s
parameters by PPO-clip algorithm

9: end while

by the agent, and the actual hyperparameters are obtained by
sampling and clipping. After n time steps, a hyperparameter
configuration3 with n hyperparameters λ is obtained. Then,
the selected hyperparameter configuration 3 is set to the
algorithm to be optimized A and the multi-objective reward
vector (accuracy and latency) is obtained by training Aλ on
the target task. Finally, a reinforcement learning algorithm is
used to update the agent’s internal parameters. In this way,
an agent not only quickly adapt to new task but also make
hyperparameter tuning take into account multiple objectives.

VI. EXPERIMENTS
In this section, we compare other advanced optimization
methods on 57 image recognition datasets to illustrate the per-
formance of the proposed method. The objects of algorithm
tuning include two tree-based models (random forest and
extreme gradient boosting (XGBoost)) and a deep learning
model (convolutional neural network). The experiments con-
sist of two parts: comparison experiments and ablation exper-
iments. Comparison experiments are performed to demon-
strate the performance advantages of the proposed method,
while ablation experiments are performed to show the feasi-
bility and effectiveness of each component of the proposed
method. In the following description, we first describe the
relevant details of the experiments, and then conduct com-
parison experiments and ablation experiments respectively.

A. EXPERIMENTAL SETTINGS
1) DATASETS
In this paper, we focus on datasets in the image recognition
field and use them as target tasks. Specifically, we collected a
total of 77 datasets from the two public repositories 1 (UCI2

1https://bit.ly/2LNKPex
2http://archive.ics.uci.edu/ml/datasets.php
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TABLE 1. The table shows the statistical results of the size of the dataset used in the experiment. We can clearly see that the size of the dataset used in
the experiment is wide, so we can verify the robustness of the proposed method to datasets of different sizes.

FIGURE 4. This figure shows the process that the agent directly outputs
all hyperparameters at one step. Since the agent makes decisions directly,
the horizon of each episode unrolls one step. At each episode, the agent
directly outputs µo

i and σo
i (i ∈ [1,n]) of n hyperparameter distributions,

and then the output will be used as input for the next time.

and OpenML3). In order to transfer knowledge from the
previous task, we selected 20 datasets as the source data sets
for meta-learning, and the remaining 57 datasets as the target
tasks. Importantly, in order to verify the robustness of the
optimization methods, the datasets selected in the experiment
include handwritten numbers and letters, cars, animals, and
other entities of specific scenes. Moreover, these datasets
range in size from thousands to tens of thousands, which
can verify the ability of the optimization method to adapt to
problems of different sizes (as shown in table 1).

2) COMPARISON METHODS
In this paper, the proposed method is referred to as ETM
(effective tuning method), which first initializes the agent
through knowledge transfer, then uses the agent select each
hyperparameter sequentially, and optimizes accuracy and
latency based on multi-objective optimization framework.
In the comparison experiment part, we compare the proposed
method with the following advanced optimization meth-
ods: an evolutionary algorithm-based optimization method
CMA-ES [16], three Bayes-based optimization methods TPE
[13], Speriment [14] and SMAC [15], and a recent advanced
optimization method BOHB [19]. Furthermore, the default
hyperparameter configuration of the algorithm to be opti-
mized is used as the baseline.

In order to verify the effectiveness of each component of
the proposed method, we propose two variants based on the
ETMmethod: single-ETM and TM. The single-ETMmethod

3https://www.openml.org/

uses a single-objective optimization framework, which only
considers the accuracy performance of the model to be
optimized. The other settings are consistent with the ETM
method. By comparing the ETM method and the single-
ETM method, the effectiveness of multi-objective optimiza-
tion can be verified, and the advantages of multi-objective
optimization for algorithm tuning can also be illustrated. The
TM method does not initialize the agent with the knowledge
transfer method, while the other settings are the same as the
ETM method. By comparing the ETM method and the TM
method, the influence of knowledge transfer on optimization
efficiency can be explained.

3) EVALUATION CRITERION AND EXPERIMENTAL DETAILS
Following the evaluation criterion of the state-of-the-art
papers [15], [30], the three performance indicators of accu-
racy, time and latency are calculated in each tuning experi-
ment. The above three indicators refer to the performance of
the hyperparameter configuration obtained in the training on
the test set. In fact, the accuracy performance can be used to
illustrate the impact of the tuning of the optimization method
on the predictive performance of the optimization model. The
time performance can show the optimization efficiency of the
optimization method. The latency performance can explain
the effect of the tuning of the optimization method on the
actual running time of the optimization model. In addition,
we calculate the ranking of each optimization algorithm on
the above three indicators as well as the average ranking and
standard deviation of each optimization algorithm onmultiple
tasks.

Importantly, we run each tuning method 3 times indepen-
dently and report the average performance to avoid contin-
gency. Each independent experiment is run 300 times. In the
experiment, we use PPO-clip [10] method to update the agent
and use Adam algorithm [34] to perform optimization, where
we set the learning rate to 0.008. Moreover, we evaluate the
hyperparameter configuration by using 5-fold cross valida-
tion method. During meta-learning, we sample 5 batches of
tasks, and each batch contains 3 different tasks. Afterwards,
the Adam algorithm [34] is used to perform 30meta gradients
on each batch of tasks, where α = 0.0007 and β = 0.001.
Due to the obvious difference in the size of the data set, the
partition ratio is 8 (training set)/2 (test set) for small datasets
(the size is less than 10,000), and the partition ratio is 9
(training set)/1 (test set) for big datasets (the size is larger
than 10,000). For the trade-off weight w of multi-objective
optimization, we use soft constraint to set the weight w. The
specific settings and analysis will be described in ablation
experiments section. In particular, the proposed method does
not introduce parameters of strong sensitivity.
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TABLE 2. Range of hyperparameters of algorithms to be optimized, where Lower and Upper denote the upper and lower bounds, respectively.

TABLE 3. The average rank ‘‘Rank" and standard deviation ‘‘Stdev" of accuracy, time and latency over 101 datasets. ‘‘*" and ‘‘+" denotes that the
statistically significant difference from other values in the same line is p < 0.01 and p < 0.05, respectively. The best result is in bold font.

B. COMPARE WITH OTHER METHODS
In this section, we will verify the performance advantages
of the proposed method through running comparison exper-
iments. The comparison experiments mainly take machine
learning algorithms and deep learning models in image
recognition field as tuning objects. Specifically, we use the
tuning algorithms to perform hyperparameters tuning for
the random forest, XGBoost and convolutional neural net-
work on 57 tasks. The experimental results and analysis are
described below.

1) HYPERPARAMETER TUNING FOR MACHINE LEARNING
ALGORITHMS AND DEEP LEARNING MODEL
a: SEARCH SPACE
In this experiment, we chose to optimize the hyperparame-
ters of two advanced machine learning algorithms, the ran-
dom forest and XGBoost algorithms, based on the following
reasons: the random forest algorithm is evaluated by [35]
as the best of 179 classifiers arising from 17 families; the

XGBoost algorithm contains many more hyperparameters
and has recently been dominating the Kaggle competition;
the performances of the two algorithms are sensitive to the
hyperparameter configuration. The code of two algorithms is
based on scikit-learn [36]. Six hyperparameters (continuous)
of the random forest algorithm and ten hyperparameters (con-
tinuous) of the XGBoost algorithm need to be optimized
(Table 2). In recent years, the convolutional neural network
has been widely used in the field of image recognition. There-
fore, we choose the convolutional neural network in the deep
learning models as a more complex optimization object. The
architecture of the convolutional neural network is similar to
the one proposed by [37], which includes two convolution
layers, two pooling layers, and two fully connected layers.
We choose 15 hyperparameters to be optimized, including the
stride size, kernel size, and channel size in each convolutional
layer; the pooling type, kernel size, and stride size in each
pooling layer; the number of hidden nodes in each fully con-
nected layer; and the learning rate. The specific information
of the hyperparameters is shown in Table 2.
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TABLE 4. Number of tasks with the top performance over 101 tasks. The best result is in bold font.

b: EXPERIMENTAL RESULTS AND ANALYSIS
Following the previous settings, we run the experiments and
report the experimental data. Table 3 shows the optimization
performance of each optimization method on three algo-
rithms to be tuned, which includes the average ranking of
accuracy, the average ranking of time, the average ranking of
latency, their standard deviation and significance level. It is
clear from the table 3 that our proposed approach performs
strongly in the three optimization scenarios. Specifically,
although BOHB and SMAC methods can be competitive in
terms of accuracy, the proposed method achieves optimal
(i.e., the lowest accuracy ranking) under three optimization
scenarios. In terms of time performance, the proposedmethod
can achieve the best performance under three optimization
scenarios. It is worth noting that the advantage is more pro-
nounced in the XGBoost and convolutional neural network
optimizations scenarios. This indicates that the proposed
method can be well adapted to complex optimization tasks.
In terms of latency performance, the average ranking of the
proposed method is first, that is, it achieved optimal perfor-
mance on all 57 tasks, which also indicates that considering
the multi-objective optimization of accuracy and latency at
the same time can improve latency performance while main-
taining accuracy performance. Importantly, we use the Fried-
man statistical test and Wilcoxon post-hoc test to ensure that
experimental comparisons are statistically significant [38].

In addition, we compare optimization methods from
another perspective, that is, the number of tasks that each opti-
mization method achieves optimal performance on 57 tasks.
Through the above statistics and analysis, the performance
level of each optimization method on each task can be illus-
trated. The experimental results are shown in Table 4. Obvi-
ously, our method is significantly better than other methods
(especially in latency).

To conclude, the proposed approach is superior to
other methods in most optimization scenarios and opti-
mization tasks, and the latency performance has obvious
advantages.

C. ABLATION EXPERIMENTS
In this section, we demonstrate the effectiveness of each
component in the proposed method by performing ablation
experiments. In the ablation experiments, We only choose
some tuning scenarios and target datasets in the comparison
experiments.

1) MULTI-OBJECTIVE OPTIMIZATION VS SINGLE-OBJECTIVE
OPTIMIZATION.
In this section, we verify the impact of multi-objective opti-
mization on tuning by comparing the ETM and single-ETM
methods. This ablation experiment takes XGBoost as the
algorithm to be optimized and 12 datasets as the target
task. The experiment is independently executed for 3 times,
and each experiment iteration is 300 times. The experi-
ment results are shown in Table 6, and it can be clearly
seen that the hyperparameter configuration searched by
the ETM can improve the latency performance of the
model to be optimized on the premise of ensuring accuracy
performance.

To further study of the multi-objective optimization,
we chose two sets of values of w to study the effects of
soft constraint and hard constraint. The settings of w are as
follows:

wsoft =


α =

{
−0.07, if Aπθ ≥ 0
0.07, if Aπθ < 0

if LAT ≤ T

β =

{
−0.07, if Aπθ ≥ 0
0.07, if Aπθ < 0

if LAT > T

(13)
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TABLE 5. Given the XGBoost algorithm, we set three tasks and each task corresponds to a different hyperparameter optimization order.

TABLE 6. The test performance, latency and runtime of two variants (ETM
and single-ETM). ‘‘acc’’, ‘‘latency’’ and ‘‘time’’ represent accuracy, latency
and time performance respectively. We report the mean of the 3 test
performances. The best result is in bold font.

whard =


α = 0, if LAT ≤ T

β =

{
−1, if Aπθ ≥ 0
1, if Aπθ < 0

if LAT > T

(14)

Figure 5 shows the accuracy and latency of the hyperpa-
rameter configuration under soft constraint (wsoft ) and hard
constraint (whard ) settings. When the weight coefficient w
is set as the hard constraint, the agent is more inclined to
choose a hyperparameter configuration that can improve the
latency performance, so as to avoid the severe penalty of the
advantage value. However, the hard constraint setting makes
the searched hyperparameter configuration to fall into local
optimal in terms of accuracy performance. In contrast, when
w is set as wsoft , the agent can better trade-off accuracy-
latency. As shown in Figure 5, although the latency of the hard
constraint is lower than soft constraint on most samples, the
test set accuracy of the soft constraint is significantly better
than the hard constraint onmost samples. Importantly, the soft
constraint make the agent to explore some configurations that
can achieve the best test set accuracy while with less latency.

2) KNOWLEDGE TRANSFER VS TUNING FROM SCRATCH
We compared the performances of the proposedmethod ETM
(which transfer knowledge by the meta-learning) and TM
(which does not transfer knowledge) methods on 12 target
tasks (Table 7). In terms of test results and runtime, we found
that ETM is superior to TM in all datasets, and the latency
in the real-world is not affected. Although TM method also
employs an agent to sequentially select hyperparameters,
it ignores tuning experience of the previous tasks. However,
the ETMmethod uses meta-learning to utilize the experience
of previous optimization tasks and uses meta-parameters to
initialize the agent, which accelerates the agent’s ability to
adapt to new tasks. The experimental results demonstrate
that the agent can adapt to new tasks quickly by using meta

TABLE 7. The test performance, latency and runtime of the ETM and a
variant TM. ‘‘acc’’, ‘‘latency’’ and ‘‘time’’ represent accuracy, latency and
time performance respectively. We report the mean of the 3 test
performances. The best result is in bold font.

TABLE 8. We set three orders, and the orders of selecting hyperparamters
are random and different. ‘‘acc’’, ‘‘latency’’ and ‘‘time’’ represent accuracy,
latency and time performance respectively. We report the mean of
the 3 test performances. The best result is in bold font.

parameters. In addition, it can find better configurations by
only a few samples and is not limited by suboptimal values.

3) SEQUENTIAL DECISION MAKING VS DIRECTLY OUTPUTS
CONFIGURATION
In this part, we tune the XGBoost on 12 tasks and com-
pare ETM-SDM (SDM: sequential decision making) and
ETM-DOC (directly outputs configuration) to verify the
feasibility of sequential decision making. The experimental
results are presented in Figure 9, where each method ran
for 200 episodes. We can see that the tuning of method
ETM-DOC only works on a few tasks and even fails on
some tasks. However, the ETM-SDM method, which treats
HPO as a sequential decision problem, achieved better test
set performance on all target datasets. We believe that the
reasons for this result is as follows: if the search space is very
large, it is difficult for ETM-DOC to explore a good policy
in such large space. However, ETM-SDM method makes a
new decision sequentially, the search space is reduced at each
time-step and in this way, it is much easier to handle the
problem.

To further explore sequential decision making, we ran-
domly set three different optimization orders for the XGBoost
(as shown in Table 5). By comparing the performance of three
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FIGURE 5. Comparison the test set accuracy and latency of wsoft and whard on the two target tasks. wsoft denotes soft constraint,
and whard denotes hard constraint. Each figure shows 200 samples, and the corresponding histograms are shown on the upper
side and the right side of the scatter plot respectively.

TABLE 9. The test performance, latency and runtime of two variants
(ETM-SDP and ETM-DOC). ‘‘acc’’, ‘‘latency’’ and ‘‘time’’ represent accuracy,
latency and time performance respectively. We report the mean of
the 3 test performances. The best result is in bold font.

different optimization orders, it is shown that the proposed
method is insensitive to the optimization order. We can see
from Table 8 that the random optimization order does not
affect the final tuning performance.

VII. CONCLUSION
In this paper, we focus on algorithm tuning in the field
of image recognition and propose an efficient hyperparam-
eter optimization method. This method uses an agent to
select hyperparameters sequentially. Compared with the tra-
ditional tuning method, this method is based on a multi-
objective optimization framework that simultaneously takes
accuracy and latency as optimization objectives, and cus-
tomizes an aggregation function to trade-off accuracy and
latency. Finally, we use reinforcement learning algorithm
to update the policy. In order to improve the efficiency of
tuning, we use meta-learning to obtain the meta-parameters

of the agent in the previous optimization tasks and use the
meta-parameters to initialize the agent when solving a new
task. In the experiments, we compared the proposed method
with other advanced tuning methods on 57 datasets of image
recognition fields. The experimental results show that the
proposed method can perform strongly in time, accuracy, and
latency. Specifically, the proposed method achieves average
accuracy rankings of 1.92, 1.42 and 1.71 on three algorithms
to be optimized, respectively. Especially in terms of latency
performance, the proposed method performs best on all the
tasks (57 data sets) on the three algorithms to be optimized.
In addition, we verify the effectiveness of the proposed com-
ponent by performing the ablation experiments.
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