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ABSTRACT Accurate and reliablemeasurement of energy consumption is essential to energy optimization at
an application level. Energy predictive modelling using performance monitoring counters (PMCs) emerged
as a promising approach, one of the main drivers being its capacity to provide fine-grained component-level
breakdown of energy consumption. In this work, we compare two types of energy predictive models
constructed from the same set of experimental data and at two levels, platform and application. The first
type contains linear regression (LR) models employing PMCs selected using a theoretical model of energy
of computing. The second type contains sophisticated statistical learning models, random forest (RF)
and neural network (NN), that are based on PMCs selected using correlation and principal component
analysis. Our experimental results performed on two modern Intel multicore processors using a diverse set
of applications and a wide range of application configurations, show that the average proportional prediction
accuracy of platform-level LR models is 5.09× and 4.37× times better than the platform-level RF and
NN models. We also present an experimental methodology to select a reliable subset of four PMCs for
constructing accurate application-specific online models. Using the methodology, we demonstrate that LR
models perform 1.57× and 1.74× times better than RF and NN models. The consistent accuracy of LR
models stress the importance of taking into account domain-specific knowledge for model variable selection,
in this case, the physical significance of the PMCs originating from the conservation of energy of computing.
The results also endorse the guidelines of the theory of energy of computing, which states that any non-linear
energy model (in this case, the RF and NN models) employing PMCs only, will be inconsistent and hence
inherently inaccurate.

INDEX TERMS Energy predictive modelling, energy additivity, linear regression, neural networks, random
forest, matrix multiplication, fast Fourier transform.

I. INTRODUCTION
Energy of computing is a key environmental concern
and optimizing it has become a principal technologi-
cal challenge. Information and Communications Technol-
ogy (ICT) systems and frameworks are currently utilizing
about 2000 terawatt-hours (TWh) per year that represent
about 10% of the worldwide electricity demand [1].
Andrae and Edler [2] predict that computing systems and
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devices will consume up to 50% of global electricity
in 2030with a contribution towards greenhouse gas emissions
of 23%.

Energy optimization in computing is driven by inno-
vative developments both at system-level and application-
level. System-level optimization strategies [3]–[9] target to
improve the energy efficiency of the overall execution envi-
ronment of applications using methods including Dynamic
Voltage and Frequency Scaling (DVFS), Dynamic Power
Management (DPM) and energy-aware task scheduling.
Application-level optimization strategies [10]–[14] consider
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FIGURE 1. Number of research publications on computing energy using PMCs and in other areas of
energy in computing including frequency scaling, dynamic voltage scaling, power usage
effectiveness, energy proportional computing, and energy-efficient ethernet. The number of
publications addressing PMC based energy modelling increase by 4.5×. These statistics have been
collected from Google Scholar and Microsoft Academic.

the application-level parameters as model variables in ana-
lytic models to improve the energy efficiency of the
applications.

Accurately measuring the energy consumption during the
execution of an application is vital for energy optimiza-
tion methods at the software level. The three mainstream
approaches for energy consumption measurement include:
(a) External power meter based system-level measurements,
(b) use of on-chip voltage and current sensors, and (c) pre-
dictive models using application and system characteristics
as model variables. Fahad et al. [15] present a comprehen-
sive study of the three mainstream approaches to providing
a measurement of energy consumption during application
execution. An overview of the three methods is presented in
the related work. Briefly, power meters based system-level
physical measurements are reliable, accurate, and is consid-
ered the ground truth. The profiles obtained for the dynamic
energy consumption of the applications using on-chip sen-
sors exceptionally diverge from the ones obtained using the
ground truth. This discovery suggested that the use of on-chip
sensors based measurements do not capture the full sketch of
the dynamic energy consumption during an application run.

Energy predictive models using performance monitoring
counters (PMCs) emerged as a promising energy measure-
ment approach because of its ability to provide a fine-grained
component-level breakdown of energy consumption. PMCs
are special-purpose hardware registers provided in modern
processor architectures to record the counts of software
events, that represent the kernel-level activities such as page-
faults, context-switches, etc., and hardware events arising

from the micro-architecture core and the performance moni-
toring unit (PMU) such as CPU-cycles, branch-instructions,
cache-misses, etc. Figure 1 graphs the number of academic
publications over the years in the field of energy of computing
and shows that energy predictive modelling using perfor-
mance events has become a dominant research topic.

Modern multicore CPUs deliver a vast set of PMCs. How-
ever, the system users can obtain a limited number of PMCs
(typically 3-4 at a time) for an application execution because
of the little number of hardware registers devoted to record
them. Let us consider the Intel Haswell server (specification
in Table 1). On this platform, the Likwid tool [16] exposes
167 PMCs. An application must be run about 53 times
to collect the values of all the representative PMCs. Since
only 3-4 PMCs can be collected in a single application run,
immense programmingwork and time are needed to automate
and record all the PMCs. Therefore, selecting a reliable subset
of PMCs is crucial to the construction and prediction accuracy
of the energy predictive models. We now summarize the
mainstream approaches for selecting the PMCs:
• Approaches that take into account all the PMCs provided
by a framework or tool for a platform for a given appli-
cation with the aim to record all the activities that are
viable contributors to energy consumption. Due to the
high complexity of this approach, we did not find any
research works adopting it.

• Approaches that are based on a statistical methodol-
ogy for feature selection and feature extraction such
as correlation, principal component analysis (PCA),
etc. [17], [18].
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TABLE 1. Specification of the Intel Haswell (HCLServer1) and Intel Skylake (HCLServer2) multicore CPU Server.

• Approaches that take into account the expert advice or
intuition to select a possibly reliable subset (that may not
be exploited in one application run), which, in experts’
opinion, is a dominant contributor to energy consump-
tion [19].

• Approaches that select PMCs using a theoretical model
of the energy of computing, which is the manifestation
of the fundamental physical law of energy conservation.
[20], [21].

The theory of energy of computing has progressively
matured over the past three years starting with a proposal of
a criterion for selection of PMCs in the research work [20]
followed by a formal description of the theory and its practical
implications in [21]. Shahid et al. [20] propose a novel prop-
erty of PMCs called additivity, which is true for all PMCs,
whose count for the serial executions of two applications is
equal to the sum of counts for the sole execution of each
application. The authors study the additivity of PMCs pro-
vided by the two mainstream frameworks, Likwid [16] and
PAPI [22] on amodern Intel Haswell multicore server. Energy
additivity is based on an experimental observation that the
energy consumption of the serial execution of two or more
applications is equal to the sum of the energy consumption of
the individual applications. If a PMC is employed as a model
variable in an energy predictive model, its must follow the
rule of additivity. The authors further demonstrate that many
PMCs available on modern processors obtained using Likwid
and PAPI that are extensively used in models as crucial model

variables are non-additive. Shahid et al. [21] proposed a
novel theory of energy of computing and unified its practical
implications to increase the prediction accuracy of linear
energy predictivemodels in a consistency test, which contains
a suite of properties that include determinism, reproducibility,
and additivity to select model variables and constraints for
model coefficients. The authors show that failure to satisfy
the requirements of the test worsens the prediction accuracy
of linear energy predictive models.

In this work, we compare two types of energy predictive
models constructed from the same set of experimental data
and at two levels, platform and application. The first type
contains linear regression (LR) models employing PMCs
selected using the theoretical model of the energy of com-
puting. The second type has sophisticated statistical learning
models, random forest (RF), and neural network (NN), that
are based on PMCs selected using correlation and principal
component analysis.

We divide the experiments in this article into two main
groups: Group 1 and Group 2. In Group 1, we experimentally
compare the prediction accuracy of platform-level energy
predictive models on HCLServer1 (Table 1). The models are
analyzed in two configurations. In the first configuration,
the models are trained and tested using datasets that contain
all the applications. In the second configuration, the dataset of
applications is split into two datasets, one for training models
and the other for testing models. We demonstrate that LR
models exhibit better prediction accuracies than RF and NN
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models in both the configurations (5.09× and 4.37× times
specifically for the first configuration).

In Group 2, we examine the accuracy of application-
specific energy predictive models. The experiments in this
group are performed on HCLServer2 (Table 1) and contain
models of the two types. We choose two well-known and
highly optimized scientific kernels offered by the Intel Math
Kernel Library (MKL), 2D fast Fourier transform (FFT) and
dense matrix multiplication (DGEMM). We select a set of
nine most additive PMCs (PA) and a set of nine PMCs that
are non-additive (PNA) that are common for both the appli-
cations. PNA belongs to the dominant PMC groups reflect-
ing the energy-consuming activities and has been widely
employed in the models found in the literature (Section III).
We build LR models employing PA and PNA. We demon-
strate that the models based on PA have better prediction
accuracy than the models based on PNA. To build online
energy predictive models based on four PMCs, we compose
two subsets of PMCs, PA4 and PNA4 from PA and PNA, con-
taining four PMCs highly positively correlated with energy.
Models that use PA4 exhibit 3.44× and 1.71× better average
prediction accuracy than models using PNA4. We conclude,
therefore, that a high positive correlation of model variables
with dynamic energy consumption alone is not sufficient to
provide good prediction accuracy but should be combined
with methods such as additivity that consider the physical
significance of the model variables originating from the the-
ory of energy conservation of computing. For the same two
applications, we compare the LR models based on the set
of four most additive and highly positively correlated PMCs
(PA4) with the RF and NN models based on four PMCs
selected using correlation and PCA. The results show that the
LR model performs 1.57× and 1.74 × times better than RF
and NN models.

Based on our experiments, we conclude that linear regres-
sion models based on PMCs selected using the theoretical
model of the energy of computing perform better than RF and
NN models using the standard statistical approaches.

To summarize, our key contribution in this work is that we
present the first comprehensive experimental study compar-
ing linear regression models employing PMCs selected using
a theoretical model of the energy of computing with sophis-
ticated statistical learning models, random forest and neural
network, that are constructed using PMCs selected based on
correlation and principal component analysis. We show that
the LR models perform better than the RF and NN models
thereby highlighting two important points. First, the consis-
tent accuracy of LRmodels highlight the importance of taking
into account domain-specific knowledge for model variable
selection, in this case, the physical significance of the PMCs
originating from the conservation of energy of computing.
Second, according to the theory of energy of computing,
any non-linear energy model (in this case, the RF and NN
models) employing PMCs onlywill be inconsistent and hence
inherently inaccurate. A non-linear energy model, in order

to be accurate, must employ non-additive model variables in
addition to PMCs.

The rest of this article is organized as follows. Section 2
presents the terminology. Section 3 highlights the related
work followed by the practical implications of the theory
of energy of computing in Section 4. Section 5 presents
our experimental setup including the platform and applica-
tion details, tools, and modelling techniques. In Section 6,
we present the experimental results and discussions. Finally,
Section 7 concludes the paper.

II. TERMINOLOGY RELATED TO ENERGY, PREDICTION
ERROR MEASURES, AND STATISTICAL TECHNIQUES
A. ENERGY CONSUMPTION
Total energy consumption can be represented as a sum of
static energy and dynamic energy. We determine the static
energy consumption by multiplying the base or idle power of
the system (i.e., with no running application) with the appli-
cation’s execution time. However, we calculate the dynamic
energy consumption (energy consumption of the application)
by subtracting the static energy from the total energy utilized
by the system during the application execution. In other
words, if PS represents the base or idle power of the system,
ET is the total energy consumption of the system during
an application run for TE seconds, then the dynamic energy
consumption ED can be determined by using Equation 1.

ED = ET − (PS × TE ) (1)

The rationale backing the use of dynamic energy consump-
tion rather than total energy consumption is given in the
Appendix I.

B. PREDICTION ERROR MEASURES
We compare the prediction accuracy of models using two
measures: a) Relative error, and b) Proportional error. The
relative error p of a predicted dynamic energy consumption e
with respect to the ground truth dynamic energy consumption
r is given below:

p =
|r−e|
r
× 100 (2)

The measure p gives a lower relative error for a model
that underestimates than a model that overestimates (for
example: when you consider the same proportion for the
underestimated and the overestimated values of e with r).
This can negatively impact the interpretation of the results.
Rico-Gallego et al. [23] propose the proportional error µ to
correct the anomaly. The proportional error for model pre-
diction e with the ground truth r is a ratio of a maximum
of the two values with the minimum of the two values. It is
represented by the following equation 3.

µ =
max(r, e)
min(r, e)

(3)

µ is always greater than 1 if there exists an error, and equal
to 1 otherwise.
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C. MODEL VARIABLE SELECTION TECHNIQUES
We employ twomodel variable selection methods for random
forest and neural network models. They are: 1). Correlation,
and 2). Principal Component Analysis (PCA).

Correlation is a statistical metric to understand the rela-
tionship between two variables and is calculated using the
following Equation 4.

Cep =

∑
(ei − e)(pi − p)√∑

(ei − e)2
∑

(pi − p)2
(4)

where, Cep is the correlation coefficient between the dynamic
energy consumption e and the PMC pi. ei represents energy
consumption of an application and e is the mean of the energy
of all the applications in the data-set. pi is the PMC count and
p is it’s mean for all the applications in the data-set. The value
of the correlation coefficient is between −1 to 1. A value of
−1 forCepmeans perfect negative correlation, 0 signifying no
correlation, and+1, a perfect correlation between the energy
and the PMC.

Principal Component Analysis (PCA) [24] is applied to
determine the most statistically influential PMCs. It is a
multivariate statistical technique for feature extraction and is
used for dimensionality reduction in high-dimensional data.
It uses a correlation matrix to ease the analysis by selecting
the most valuable features in a data-set. The top principal
component captures the maximum variability in the data,
and each succeeding component has the highest variability
subject to the constraint imposing orthogonality with the
previous principal components.

III. RELATED WORK
This section presents a literature survey of mainstream
energy measurement methods and highlights their pros
and cons, dominant tools used to obtain PMCs, prominent
works towards the construction of energy predictive models,
research works that provide a critical review of PMCs, and
finally, recent developments in the energy predictive models
using PMCs.

A. ENERGY MEASUREMENT METHODS
The three mainstream methods for energy measurement dur-
ing an application execution are: (a). Power meters-based
physical measurements at platform-level, (b). on-chip sensors
based voltage and current measurements, and (c). Energy pre-
dictivemodels using application and system characteristics as
model variables.

The first method using the external power meters is known
to be accurate and considered as the ground truth. It has
been used for providing the measurements at a system-level.
Fahad et al. [25] presented the first methodology (that is,
AnMoHA) to measure the component-level energy consump-
tion of a platform using external power meters. The authors
demonstrate that their approach provides accurate energy
consumption decomposition up to socket-level. However,

the core-level granularity for energy consumption decompo-
sition has not been achieved.

The second method used on-chip voltage and current
sensors to determine power and are now supported by
popular processor vendors such as Intel, AMD, and IBM
Power CPUs, Nvidia GPUs, and Intel Xeon Phis. There are
vendor-specific libraries to acquire the power data from these
sensors. For example, Running Average Power Limit (RAPL)
[26] is used tomonitor power and control frequency (and volt-
age) of Intel CPUs. Similarly, Nvidia NVIDIA Management
Library (NVML) [27] and Intel System Management Con-
troller chip (SMC) [28] provide the power consumption by
Nvidia GPUs and Intel Xeon Phi. NVML provides the instant
power draw values with nominal accuracy up to ±5% [27].
The accuracy of Intel SMC is not available. Apart from
insufficient documentation, there are other issues with the
power data values provided by these vendor-specific libraries.
For example, it lacks details such as update frequency of
power readings and also suffers from potential complications
such as sampling interval variability of significant sensor
lag as reported by [29]. Fahad et al. [15] present the first
detailed study on the accuracy of on-chip power sensors and
show that deviations of the energy measurements provided by
on-chip sensors from the system-level power measurements
(considered as ground truth) do not motivate their use in the
optimization of applications for dynamic energy.

The third method using energy predictive models (employ-
ing application and hardware parameters as model variables)
emerged as a popular alternative to determine the energy
consumption of an application. It is because of the model’s
ability to provide fine-grained component-level (such as core-
level, cache-level, etc.) energy consumption measurements.
A vast number of these models are linear andmake use of per-
formance monitoring counters (PMCs) as model variables.
This approach forms the focus of this work.

B. TOOLS TO OBTAIN PMCs
Linux Perf [30] also called perf_events can be used to gather
the PMCs for CPUs in Linux. It also comes as a perfor-
mance profiling tool suite including perf stat, perf record, perf
report, perf annotate, perf top and perf bench.
Intel PCM [31] is used for reading PMCs of core and

uncore (which includes the QPI) components of an Intel
processor. It is exposed to programmers as a C++API and is
also able to provide energy measurements from Intel on-chip
sensors. It can further support the statistical analysis of core
frequencies, QPI power, and DRAM activities.

PAPI [22] provides a standard API for accessing PMCs
available on most modern microprocessors. It provides two
types of events, native events and present events. Native
events correspond to PMCs native to a platform. They form
the building blocks for present events. A preset event is
mapped onto one or more native events on each hardware
platform. While native events are specific to each platform,
preset events obtained on different platforms can not be
compared.
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Likwid [16] provides command-line tools and an API to
obtain PMCs for both Intel, POWER8, and AMD proces-
sors on the Linux OS. It contains a variety of performance
measurement and application tunning tools such as likwid-
pin and likwid-bench. Furthermore, Likwid is light-weight,
which means the performance overheads of Likwid is less
than 6000 cycles. The recent stable released version is Likwid
5.0 with support to extract PMCs of accelerators such as
GPUs.

For Nvidia GPUs, CUDA Profiling Tools Interface
(CUPTI ) [32] can be used for obtaining the PMCs for CUDA
applications. CUPTI provides the following APIs: Activity
API, Callback API, Event API, Metric API, and Profiler API.
Sample PMCs that can be obtained using these APIs are total
instruction count, data rate, memory load, and store counts,
cache hits and misses, number of branches instructions, etc.

C. NOTABLE ENERGY PREDICTIVE MODELS FOR CPUs
The concept of exploiting the utilization metrics of active
computing resources (such as CPU, memory, disks, and I/O)
has been widely adopted in dynamic power management
techniques [33]–[35]. Some of the initial efforts towards
energy consumption modelling correlating PMCs with power
and energy measurements include [36]–[43]. The frequently
used parameters include integer operations, floating-point
operations, memory requests due to cache misses, component
access rates, instructions per cycle (IPC), CPU/disk and net-
work utilization, etc. were trusted to be highly correlated with
energy utilization. Simple linear models have been developed
using PMCs and correlated features to predict the energy
consumption of platforms. Rivoire et al. [44] and Rivoire [45]
study and compare five full-system, real-time power models,
using a variety of machines and benchmarks. They report that
the PMC-based model is the best overall in terms of accuracy
since it accounted for the majority of the contributors to the
system’s dynamic power. Other notable PMC-based linear
models are [19], [46]–[51].

Rotem et al. [26] present RAPL, in Intel Sandybridge to
predict the energy consumption of core and uncore compo-
nents (QPI, LLC) based on PMCs (which are not disclosed).
Lastovetsky and Reddy [13] present an application-level
energy model where the dynamic energy consumption of a
processor is represented by a function of problem size. Unlike
PMC-based models that contain hardware-related PMCs and
do not consider problem size as a variable, this model takes
into account the highly non-linear and non-convex nature of
the relationship between energy consumption and problem
size for solving optimization problems of data-parallel appli-
cations on homogeneous multicore clusters for energy.

D. NOTABLE ENERGY PREDICTIVE MODELS FOR
ACCELERATORS AND HPC APPLICATIONS
Some of the promising research contributions for the
energy predictive models on GPU accelerators using PMCs
include [52]–[54]. PMCs counts can be recorded during
the application run by using the CUDA Profiling Tools

Interface (CUPTI) [32]. An instruction-level energy con-
sumption model for Xeon Phi processors forms the basis of
work presented by Shao and Brooks [55]. Another linear
instruction-level model for predicting the dynamic energy
consumption on the soft processors based on FPGA was
presented by Khatib et al. [56]. Inter-instruction effects and
the operand values of the instructions have been considered
by the proposed model.

Some notable platform-wide power models for HPC ser-
vers based on PMCs include [57]–[59]. Gschwandtner et al.
[60] presented linear regression models based on hardware
counters for prediction of energy consumption of HPC appli-
cations executing on the IBM POWER7 processor.

E. CRITIQUES OF PMCs FOR ENERGY
PREDICTIVE MODELLING
References [20], [41], [61]–[63] are research works that crit-
ically examine the accuracy of PMC based energy predictive
models and demonstrate their poor prediction accuracy. The
researchers in [61] point out the fundamental limitation to
obtain all the PMCs simultaneously or in a single application
run and argue that the linear regression models yield predic-
tion errors as high as 150%.

Fahad [15] demonstrated the state-of-the-art linear energy
predictive models employing PMCs that are selected using
statistical correlations are pruned to errors because they do
not consider the physical significance of model variables,
coefficients, and intercepts. The authors show average error
between platform level PMC models using linear regression
and the ground truth (power-meters) ranges from 14% to 32%
and the maximum reaches 100%.

F. RECENT DEVELOPMENTS IN THE ENERGY
PREDICTIVE MODELS USING PMCs
In all previous works, the causes of the inaccuracy of energy
predictive models or the reported wide variance of the accu-
racy of the models have not been studied. Furthermore,
a sound theoretical framework to understand the fundamental
significance of the model variables concerning the dynamic
energy consumption has been lacking.

The theory of energy of computing has progressively
matured over the past three years starting with a proposal of
a criterion for selection of PMCs in the research work [20]
followed by a formal description of the theory and its prac-
tical implications in [21]. Shahid et al. [20] proposed a
novel selection criterion for PMCs called additivity, which
can be used to determine the set of PMCs for accurate and
reliable energy predictive modelling. They experimentally
demonstrate that majority of PMCs exposed by Likwid and
PAPI on a modern Intel Haswell server are non-additive.
Furthermore, the authors argue that non-additive PMCs have
been employed as key model variables for energy predic-
tions thereby questioning the accuracy and reliability of such
models.

Shahid et al. [64] show that the accuracy of energy predic-
tive models based on three popular mainstream techniques
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(linear regression, random forests, and neural networks) can
be improved by selecting PMCs using the property of addi-
tivity. They show that the removal of non-additive PMCs
improves the average prediction accuracy of linear regression
models from 31% to 18%, random forest models from 38%
to 24%, and neural network models from 30% to 24%.

Shahid et al. [21] further proposed a novel theory of energy
of computing and unified its practical implications to increase
the prediction accuracy of linear energy predictive models in
a consistency test, which contains a suite of properties that
include determinism, reproducibility, and additivity to select
model variables and constraints for model coefficients. The
authors conducted a fundamental study showing the rise in
the number of non-additive PMCs along with the increase in
the number of cores employed during the execution of the
applications. The authors attribute the rise in the number of
non-additive PMCs to the inherent complexities of modern
multicore platforms such as severe resource contention and
non-uniform memory access (NUMA).

IV. THEORY OF ENERGY OF COMPUTING:
PRACTICAL IMPLICATIONS
A theory of energy of computing has been developed over
the past three years starting with the proposal of a criterion
for selection of PMCs in the research work [20] followed by
a formal description of the theory and its practical implica-
tions for improving the prediction accuracy of linear energy
predictive models in [21].

The theory of energy of computing is a formalism con-
taining properties of PMC-based energy predictive models
that are manifestations of the fundamental physical law of
energy conservation. The properties capture the essence of
single application runs and characterize the behavior of serial
execution of two applications. They are intuitive and experi-
mentally validated and are formulated based on the following
observations:

• In a fully dedicated and stable environment, with each
execution of a single application being represented by
the same PMC vector, for any two applications, the PMC
vector of their serial execution will always be the same.

• An application run that does not perform any work does
not consume or generate energy. It is represented by a
null PMC vector (where all the PMC values are zeroes).

• An application with a PMC vector that is not null
must consume some energy. Since PMCs account for
energy-consuming activities of applications, an appli-
cation with any energy-consuming activity higher than
zero activity must consume more energy than zero.

• Finally, the consumed energy of compound application
is always equal to the sum of energies consumed by
the individual applications. The serial execution of two
applications, say the base applications, forms a com-
pound application.

The practical implications of the theory for constructing
accurate and reliable linear energy predictive models are

unified in a consistency test. The test includes the following
selection criteria for model variables, model intercept, and
model coefficients:
• Each model variable must be deterministic and repro-
ducible. In the case of PMC-based energy predictive
models, the multiple runs of an application keeping the
operating environment constant must return the same
PMC count.

• Each model variable must be additive. The property of
additivity is further summarized in the following section.

• The model intercept must be zero.
• Each model coefficient must be positive.
The first two properties are combined into a additivity test

for the selection of PMCs. A linear energy predictive model
employing PMCs and which violates the properties of the
consistency test will have poor prediction accuracy.

By definition and intuition, PMCs are all pure counters
of energy-consuming activities in modern processor archi-
tectures and as such must be additive. Therefore, according
to the theory of energy of computing, any consistent, and
hence accurate, energy model, which only employs PMCs,
must be linear. This also means that any non-linear energy
model employing PMCs only, will be inconsistent and hence
inherently inaccurate. A non-linear energy model, in order
to be accurate, must employ non-additive model variables in
addition to PMCs.

A. Additivity OF PMCs
The property of additivity is based on an intuitive and simple
rule that if a PMC is intended to be employed as a model
variable in a linear energy predictive model, then its count
for a compound application should be equal to the sum of
its counts for the executions of the base applications forming
the compound application. It is based on the experimental
observation and a well-known fact that the dynamic energy
consumption of a serial run of two applications is the sum
of dynamic energy consumption observed for the sole execu-
tions of each application.

The additivity of a PMC is determined as follows. We first
obtain the counts of the PMC for the sole executions of the
base applications. Then, we run the compound application
and record its count of the PMC. Generally, the main com-
putations for the compound application consist of the main
computations of the base applications executed one after the
other. If the PMC of the compound application is equal to the
sum of the PMCs obtained for the base applications (within
a tolerance of 5.0%), the PMC is categorized as potentially
additive. Else, it is labeled as non-additive.

For each PMC, we determine the maximum percentage
error. Since the ground truth between the sum of base appli-
cations’ PMCs and the compound application PMCs is not
known, we use Equation 5 instead of Equation 2 to calculate
the percentage error for a compound application, as follows:

Error(%) = |
(eb1 + eb2)− ec
(eb1 + eb2 + ec)/2

| × 100 (5)

143312 VOLUME 8, 2020



A. Shahid et al.: Comparative Study of Techniques for Energy Predictive Modeling Using PMCs on Modern Multicore CPUs

TABLE 2. List of applications employed for studying the prediction accuracy of the models.

where ec, eb1, eb2 are the PMCs for the compound applica-
tion and the constituent base applications respectively. The
additivity test error for a PMC is the maximum of percentage
errors for all the compound applications in the experimental
test-suite.

V. EXPERIMENTAL SETUP
A. PLATFORM AND APPLICATIONS
The experiments are carried out on two modern multicore
platforms: 1). Intel Haswell dual-socket server, and 2). Intel
Skylake single-socket server. The specifications for both are
given in Table 1.
Our test suite (Table 2) contain a broad set of standard

benchmarks with highly memory-bound and compute-bound
scientific computing applications such as DGEMM and FFT
from Intel math kernel library (MKL), scientific applications
from NAS Parallel benchmark suite, Intel HPCG, stress, and
two unoptimized applications.

B. SOFTWARE TOOLS
We measure the following during an application exe-
cution: 1). Dynamic energy consumption, 2). Execution
time, and 3). PMCs. The experimental workflow is shown
in Figure 2. The dynamic energy consumption is deter-
mined using system-level power measurements provided
by WattsUp Pro power meter. The readings are recorded
programmatically using a detailed statistical methodology
employing HCLWattsUp API [65]. We periodically calibrate
the power meters by using YokogawaWT210 that is an ANSI
C12.20 revenue-grade power meter. We detail the usage of
HCLWattsUp API in Appendix II and experiments for cal-
ibration of the power-meters are presented in Appendix V.
We follow a strict statistical methodology to confirm the
experimental accuracy and reliability where a sample mean

for a response variable is obtained from several experimental
application runs (Appendix III).
Likwid package [16] has been used to record the PMCs.

On an Intel Haswell platform, it offers 164 PMCs, whereas,
385 PMCs are exposed on an Intel Skylake platform. The
PMCs with counts less than or equal to 10 have been elim-
inated considering their insignificance for modelling the
dynamic energy consumption since they are non-reproducible
over several executions of the same application on our plat-
form.

The resultant set of PMCs contains a total of 151 for Intel
Haswell and 323 for Intel Skylake. The process of collection
of all the PMCs consumes a lot of time since only four
PMCs can be recorded for one execution of an application
reason being a small number of available hardware registers
storing them. Furthermore, many PMCs need to be recorded
separately or in sets of two or three for a single application
run. Therefore, to record all the PMCs, one must execute an
application about 53 and 99 times on Intel Haswell and Intel
Skylake platform, respectively.

We use a tool called AdditivityChecker (Appendix VII),
that automates the determination of the additivity value of a
PMC.

C. TYPES OF ENERGY PREDICTIVE MODELS
The types of energy predictive models that we compare in this
work are described below:

• Linear Regression (LR): A LR based model can be
stated as follows:

ED =
n∑

k=1

βk × ek (6)

where ED is the dynamic energy consumption, β0 is
called the model intercept, the β = {β1, . . . , βn} is the
vector of regression coefficients or themodel parameters
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FIGURE 2. Experimental workflow to determine the PMCs for our HCLServer platforms.

and {e1, . . . , en} are the PMCs. In real life, there usu-
ally is stochastic noise (measurement errors). Therefore,
the measured energy is typically expressed as

ẼD =
n∑

k=1

βk × ek + ε (7)

where the error term or noise ε is a Gaussian random
variable with expectation zero and variance σ 2, written
ε ∼ N (0, σ 2).We build a specialized linear model using
a regression technique that constrains the regression
coefficients (β) to be positive.

• Random Forest (RF): A RF technique is a supervised
learning algorithm using a decision tree-based approach
to train on a data-set and output mean prediction from

individual trees. It is considered for its accuracy in
classification and regression-based tasks [66]. It is a
non-linear machine learning model build by construct-
ing many linear boundaries. The overall non-linearity
is because a single linear function can not be used to
classify and regress on each iteration of the decision tree.

• Neural Networks (NN): A NN model is inspired by
neurons of a human brain and contains an interconnected
group of nodes where each node computes weights and
biases and give an output prediction. We set the trans-
fer/activation function as linear. The learning function
is Bayesian regularization that gives optimal regulariza-
tion parameters in an automated fashion [67]. Bayesian
regularization updates the weight and biases by using
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FIGURE 3. Model training and testing pipelines for LR, RF, and NN models.

the Levenberg-Marquardt algorithm [68], which is used
to train the NN up to 100 times quicker in com-
parison with the commonly used gradient-descent and
back-propagation method.

The training parameters employed to build the models are
given in Table 3. Figure 3 explains the machine learning
model pipeline. It has four main stages: 1). Data collection,
2). PMC selection, 3). Model training, and 4). Model test-
ing or validation. After the collection of the data-set from
HCLServers, the data is passed through a PMC selection
stage which first normalizes the PMC counts. To construct
the LR models, PMCs are first checked for their additivity
using the Additivity Test, and the topmost additive PMCs
are selected as model variables. To build the RF and NN
models, the PMCs are first evaluated based on their statistical
correlation. The set of top positively correlated PMCs is then
further pruned using PCA. The correlation and PCAmethods
are explained in detail in the section VI-2. The set of selected
PMCs is then split into two subsets. One for training the
models and the other for testing their accuracy.

D. SELECTION METHODS FOR PMCs
We now summarize the steps to select model variables or
PMCs using two approaches as described below:

TABLE 3. Modelling Parameters.

1) PMCs are selected based on the consistency test from
the theory of energy of computing (Section IV) and
employed as model variables in linear regression (LR)
models. The steps for the PMC selection include:
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• The most additive PMCs for a set of applications
are selected.

• During the execution of the applications, the indi-
vidually powered computing components (mem-
ory and CPU) with activities that result in dynamic
energy-consuming are identified.

• The most additive PMCs that belong to computing
components contributing to dynamic energy con-
sumption are then selected as model variables.

2) PMCs are selected using correlation and PCA based
statistical methods and then employed in non-linear
models such as random forest (RF) and neural net-
work (NN). The selection method is composed of two
stages:

• In the first stage, we list all the PMCs in
the increasing order of positive correlation with
dynamic energy consumption. We select all the
PMCs with a correlation coefficient of over 0.90.

• In the second stage, we apply the principal com-
ponent analysis (PCA) on the PMCs selected in
the first stage to pick the most statistically influen-
tial PMCs. Figure 4 illustrates this PMC selection
process.

FIGURE 4. PMC selection process using statistical methods.

VI. EXPERIMENTAL RESULTS
We divide our experiments into two groups, Group 1 and
Group 2, as follows:

• Group 1: We employ this group to study the prediction
accuracy of the platform-level energy predictive models.

We use two experimental configurations. In the first
configuration, we split the full data-set representing all
the applications into two subsets, one for the training
and the other for testing. The training and test data-sets
contain data points encompassing all the applications.
In the second configuration, the models are trained on
a data-set for one set of applications and tested against
a different set of applications. The experiments are per-
formed on HCLServer1 (Table 1).

• Group 2: We employ this group to study the accuracy
limits of the application-level energy predictive models.
Two highly memory-bound and compute-bound scien-
tific computing applications, DGEMM and FFT from
Intel MKL, are used for this purpose. The experiments
are performed on HCLServer2 (Table 1).

Group 1: COMPARISON OF PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS
Using a diverse application set (Table 2), we build platform-
level energy predictive models employing model variables
that are selected using two aforementioned approaches, con-
sistency test, and statistical methods.

1) ENERGY PREDICTIVE MODELS
USING CONSISTENCY TEST
The experimental methodology for measuring and selecting
the PMCs follows:
• The PMCs are obtained using Likwid tool, which clas-
sifies them into performance groups. The list of the
performance groups is given inAppendixVIII.We apply
the first step of the consistency test, which is to check if
the PMCs are deterministic and reproducible using the
following two steps:
– PMCs with counts less than or equal to 10 are

removed. These PMCs have no statistical sig-
nificance on modelling energy consumption of
our platform because we found them to be non-
reproducible. Several PMCs with counts equal to
zero are also removed. The reduced set contains
151 and 298 PMCs on Intel Haswell and Intel Sky-
lake, respectively.

– We broadly compare the PMCs obtained using Lik-
wid, PAPI, and Linux Perf. We remove PMCs that
show different counts for different tools. The final
set contains 115 and 224 PMCs on Intel Haswell
and Intel Skylake platform.

• We discover that all the work performed during the
execution of the applications in our test suite is due to
CPU and memory activities. We run a set of experiments
to evaluate the contribution of both of these components
towards the dynamic energy consumption. We summa-
rize them below:
– We execute a synthetic application (app-cpu) per-

forming floating-point operations on all the proces-
sor cores for 10 seconds and measure its dynamic
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energy consumption. HCLWattsUp reports the
dynamic energy consumption to be 1337 joules.

– We then execute another synthetic application (app-
mem) performing memcpy() operations on all the
memory blocks for 10 seconds and measure the
dynamic energy consumption. We find the energy
consumption to be insignificant and can not be
measured within the statistical confidence of 95%.

– We further execute app-cpu for 20 seconds and
30 seconds and found the dynamic energy con-
sumption to be equal to 2596 joules and 3821 joules,
respectively. However, the execution of app-mem
for 20 and 30 seconds results in dynamic energy
consumption less than 5 joules.

• Based on the above experiments, we remove the PMCs
that belong to Likwid main memory group for any
further analysis due to two reasons. First, the mem-
ory activities do not reflect any contributions to the
dynamic energy consumption on our platforms. Second,
low counts for memory PMCs add noise that affects
the training of models and unduly worsen the prediction
accuracy of the models.

• The CPU activities during the application run are repre-
sented by PMCs that belong to the following dominant
groups: cache, branch instructions, micro-operations
(uops), floating-point instructions, instruction decode
queue, and cycles.

• We then study the additivity of PMCs belonging to the
dominant groups.

– We build a data-set of 277 points as base applica-
tions by executing the applications from our test
suite with different problem sizes. Each point con-
tains the dynamic energy consumption and PMCs
corresponding to the base applications.

– We execute another set of 50 compound applica-
tions from the serial combination of base applica-
tions and record their dynamic energy consumption
and PMCs.

– For all PMCs, we calculate the percentage errors of
each compound application with the sum of base
applications. The additivity test error for each PMC
is the maximum of the percentage errors for all
compound applications.

• We found no PMC to be absolutely additive (with the
additivity test error of less than 5%), in general, for
all applications in the test suite (Table 2). Therefore,
we select one top additive PMC for each dominant PMC
group.

Table 4 list the selected PMCs (PL1,· · · ,PL6) in the order
of increasing additivity test error. The PMC PL1 is highly
additive compared to the rest.

We construct a data-set of 448 points for different configu-
rations for applications in our test suite (Table 2). We split the
data-set into two subsets, 335 points for training the models,
and 113 points for testing their prediction accuracy. We used

TABLE 4. List of selected PMCs and their additivity test errors (%).

this division based on best practices and expert opinions in
this domain.

We build six LR models, {LR1, LR2, LR3, LR4, LR5,
LR6}. To impose the constraints of the consistency test,
the linear models are built using penalized linear regression
using R programming interface that forces the coefficients
to be non-negative and to have zero intercepts. The models
contain decreasing number of non-additive PMCs. Model
LR1 employs all the selected PMCs as predictor variables.
Model LR2 is based on fivemost additive PMCs. PMCPL6 is
removed because it has the highest non-additivity. Model
LR3 uses four most additive PMCs and so on until Model
LR6 containing the highest additive PMC, which is PL1.

We compare the predictions of the models with
system-level physical measurements using HCLWattsUp,
which we consider to be the ground truth [15]. The minimum,
average, and maximum prediction errors for the models are
given in Table 5. One can see that the accuracy of the models
improves as we remove the highest non-additive PMCs one
by one until Model LR5, which exhibits the least average
(p, µ) of (21.8%, 1.382), respectively. LR5 employs two
most additive PMCs, PL1 and PL2. PL1 accounts for the
floating-point operations and PL2 accounts for a portion of
micro-operations executing inside the CPU cores during the
execution of an application. We observe that LR1 has the
worst average (p, µ) of (27.9%, 1.703) due to the poor linear
fit.

Figures 5a and 5b show the plots for ground truth
and predicted dynamic energy consumptions obtained using
HCLWattsUp and LR6 against the top additive PMC (that
is, PL1) for the train and test data-sets, respectively. Sim-
ilarly, Figure 5c and 5d shows the plots for ground truth
and predicted dynamic energy consumptions obtained using
HCLWattsUp and LR5 against the top two additive PMCs
(that are, PL1 and PL2) for train and test data-sets, respec-
tively. It can be seen that the training dataset and the test
dataset include all the applications. Furthermore, the com-
bined use of PL1 and PL2 asmodel variables in LR5 increases
its prediction power and makes it the most accurate and
consistent model. This is because only one PMC (despite
being most additive) is not able to track all the dynamic
energy-consuming activities for applications in a modern
multicore CPU.
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TABLE 5. Linear regression models with their minimum, average, and maximum prediction errors.

FIGURE 5. Real and predicted dynamic energy consumptions using HCLWattsUp and linear regression models versus (a). PMC PL1 for train set
applications, (b). PMC PL1 for test set applications, (c). PMCs, PL1 and PL2, for train set applications, and (d). PMCs, PL2 and PL2, for test set applications.

The model LR5, employing PL1 and PL2 as model vari-
ables, is built using a training data set that contains all the
applications and is tested against the test dataset that also con-
tains all the applications. Let us denote this split configuration
of training and test datasets as A1. We consider a different
split configuration, A2. In A2, the test set applications do not

include the training set applications. The training set contains
335 points and the test set contains 113 points.

We then build a model LR5-A2 using the training data-set
from configuration A2. The minimum, average, and maxi-
mum p and µ for train and test set using LR5-A2 are given
in Table 6. Comparison of the average p and µ for both test
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TABLE 6. Prediction accuracies for linear regression models for configuration A2.

TABLE 7. List of PMCs selected in stage 1 of approach B where the PMCs are listed in the increasing order of positive correlation with dynamic energy
consumption .

sets using LR5 (or LR5-A1) and LR5-A2 shows only a minor
increase from 21.8% to 24% and 1.382 to 1.416, respectively.
Therefore, we conclude that the accuracy and consistency of
the LR model employing the two most additive PMCs are
generic and therefore the LR model generalizes well.

2) ENERGY PREDICTIVE MODELS USING STATISTICAL
METHODS
We first present the experimental methodology to select the
model variables. The data-set used for this purpose includes
277 base applications. Each application is represented by a
data point that contains the dynamic energy consumption and
151 PMCs. We apply the first stage of PMC selection using
statistical methods shown in Figure 4. We list all the PMCs
in the increasing order of positive correlation with dynamic
energy consumption. All the PMCs with a correlation coef-
ficient of over 0.90 are then selected. The selected PMCs
are listed in Table 7 based on their groups. In the second
stage, we apply the principal component analysis (PCA) on
the selected PMCs from the first stage. The most statistically
influential PMCs obtained after stage 2 are termed as prime
PMCs, which are shown in Table 8.

We employ prime PMCs in RF and NN models using
a data-set of 448 points. Each point in a data-set contains
dynamic energy consumption for an application with partic-
ular input and the prime PMCs. We divide the data-set into a
training dataset (335 points) and a test dataset (113 points).

TABLE 8. List of prime PMCs obtained after applying principal
component analysis.

The splitting is done using two aforementioned configura-
tions, A1 and A2.

We build two sets of models, RFS = {A1-RF, A2-RF},
and NNS = {A1-NN, A2-NN}. The RR and NN parameters
used to build the models are given in Table 3. We com-
pare the predictions of the models with the ground truth.
Tables 9 and 10 show the minimum, average, and maximum
p and µ from RFS and NNS. Figures 6a and 6b compare the
average prediction accuracies of the most accurate LR model
with the RF and NN models. The least average p and µ is
obtained for the LR model with two model variables, that is,
21.80% and 1.38. RF-A2 and NN-A2 for the test set yields
the highest average (p, µ) of (37%, 7.21) and (44%, 6.19),
respectively.

3) DISCUSSION
Following are the salient observations from the results:

• The PMCs selected for training the models should repre-
sent the dynamic energy-consuming activities during the
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TABLE 9. Prediction accuracies for random forest models.

TABLE 10. Prediction accuracies for neural network models.

FIGURE 6. Comparison of (a). average relative prediction accuracies, and (b). average proportional prediction accuracies, for LR5, RF, and NN.

application execution. We discover that, in our platform,
the contribution of memory-centric operations towards
the dynamic energy consumption is insignificant. There-
fore, we use CPU-centric PMCs such as floating-point
operations and micro-operations originating from pro-
cessor core for training the energy predictive models.

• The average relative and proportional prediction errors
for LR is better than RF andNN for all themodels. There
is a significant difference in the average prediction errors
for test applications in the configuration A2 where the
test applications do not include the training set appli-
cations. RF and NN models perform poorly for A2.
The average relative prediction accuracy of the best LR
model only degrades by 2%.We conclude that amachine
learning-based platform-level energy predictive model
employing PMCs selected using statistical methods pro-
vide good prediction accuracy when data points in the
train set and test set belong to the same set of applica-
tions. This is because of their ability to memorize well
the input domain of energy values of the applications.
However, their accuracy suffers when the train and test

data sets contain different sets of applications suggesting
their inability to provide good prediction accuracy for a
general set of applications (that is, to generalize well).

• The average prediction accuracies (p) for LR is 1.54×
and 1.84× better than RF and NN, respectively, for test
applications in A2. The proportional prediction accu-
racies (µ) for LR is 5.09× and 4.37× better than RF
and NN, respectively. This suggests that µ is better than
p for the interpretation of results.

• The results highlight two important points. First,
the consistent accuracy of LRmodels stresses the impor-
tance of taking into account domain-specific knowledge
for model variable selection, in this case, the physical
significance of the PMCs originating from the conser-
vation of energy of computing. Second, according to the
theory of energy of computing, any non-linear energy
model (in this case, the RF and NN models) employing
PMCs only, will be inconsistent and hence inherently
inaccurate. A non-linear energy model, to be accurate,
must employ non-additive model variables in addition
to PMCs.
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TABLE 11. Additive and non-additive PMCs highly correlated with dynamic energy consumption. 0 to 1 represents positive correlation of 0% to 100%.

Group 2: COMPARISION OF PREDICTION ACCURACY OF
APPLICATION-LEVEL ENERGY PREDICTIVE MODELS
In this section, we study the accuracy of application-specific
energy predictive models. The experiments are conducted
HCLServer2 (Table 1). We compare the models built using
PMCs selected via the aforementioned approaches, consis-
tency test and statistical methods. First, we build LR mod-
els that satisfy the properties of the consistency test that
is based on the theory of energy conservation of com-
puting. We also build LR models employing non-additive
PMCs that belong to the dominant PMCs groups reflecting
energy-consuming activities for application execution and
that have been widely employed by energy models found
in the literature (Section III). Finally, we build RF and NN
models employing PMCs selected using statistical methods
such as correlation and PCA.

We now present the experimental methodology using a
consistency test to build LR models:
• Out of the 385 PMCs available for this platform,
we found no PMC to be additive, in general, within
the tolerance of 5% for all applications in our test suite
(Table 2). We use this tolerance to inline the theoretical
accuracy of models with the accuracy of measurements
obtained using power-meters. However, many PMCs are
highly additive for each application. We select for two
highly optimized scientific kernels: Fast Fourier Trans-
form (FFT) and Dense Matrix-Multiplication applica-
tion (DGEMM), from IntelMathKernel Library (MKL).

• We check if the PMCs are reproducible and determinis-
tic by running the same application several timeswithout
any change in the operating environment. The PMC is
considered to be reproducible and deterministic if its

value for multiple executions of the same application lies
within the confidence interval of 95%. We discover that
323 PMCs are reproducible and deterministic.

• A data-set of 50 base applications with a range of prob-
lem sizes for DGEMM and FFT is used to study the
additivity of their representative PMCs. For DGEMM,
the problem sizes vary from 6500 × 6500 to 20000 ×
20000, and for FFT, the range of problem sizes is
22400× 22400 to 29000× 29000. These problem sizes
are selected because of the applications’ considerable
execution time (> 3 seconds) so that HCLWattsUp can
accurately capture the dynamic energy consumptions.
A data-set of 30 compound applications is build using
the serial execution of base applications. The two data
sets are then given as an input to AdditivityChecker that
returns the additivity test errors as an output. We found
some PMCs that are additive in common for both
applications.

• We select nine PMCs that are highly additive with
additivity test errors of less than 1%. We also select
nine PMCs that are non-additive for both the applica-
tions but which have been employed as predictor vari-
ables in energy predictive models given in the literature
(Section III). The set of additive PMCs are denoted by
PA and non-additive PMCs by PNA. In both sets, there
are no PMCs from the memory group because of the
insignificant contribution of memory activities towards
the dynamic energy consumption. The selected PMCs
with their correlations are given in Table 11.

• By executing DGEMM and FFT, for the problem sizes
ranging from 6400 × 6400 to 38400 × 38400 and
22400 × 22400 to 41536 × 41536, respectively, with a
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TABLE 12. Prediction accuracies of LR models using nine PMCs.

TABLE 13. Prediction accuracies of LR models using four PMCs.

constant step sizes of 64, we build a data-set containing
801 points. We record the dynamic energy consumption
and the selected PMCs (Table 11) for each application.
The data-set is further divided into two subsets, one for
training and the other for testing the models. The train
data-set contains 651 points and the test data-set contains
150 points.

• We build two linear models, {LR-A, LR-NA}. The
model LR-A is trained using PMCs belonging to PA and
the model LR-NA is trained using PMCs belonging to
PNA. Table 12 show the relative and proportional pre-
diction errors of the models. One can see that the models
based on PA have better average prediction accuracies
than the models based on PNA.

• Since only four PMCs can be collected in a single appli-
cation run, the selection of such a reliable subset is cru-
cial to the prediction accuracy of online energy models.
We use PA and PNA to build two sets of fourmost energy
correlated PMCs. The first set PA4, {AL1, AL2, AL4,
AL8}, is constructed using PA and the second set PNA4,
{AL10, AL12, AL17, AL18}, using PNA. We build two
linear models, {LR-A4, LR-NA4}. The model LR-A4 is
trained using PMCs belonging to PA4 and the models
LR-NA4 is trained using PMCs belonging to PNA4. The
training and test data-sets are the same as before.

• Table 13 shows the relative and proportional predic-
tion errors of the models. We can see that model
LR-NA4 built using highly correlated but non-additive
PMCs do not demonstratemuch improvement in average
prediction accuracies when compared to model LR-NA
based on nine non-additive PMCs. However, LR-A4 per-
forms 1.43× and 1.09× better in terms of average rela-
tive and proportional accuracies, respectively.

The experimental methodology to select PMCs using sta-
tistical methods and building RF and NN models is:

• We select the same two highly optimized scientific ker-
nels and remove the PMCs that are not reproducible and
deterministic.

• We build a data-set of 50 applications using different
problem sizes for DGEMM and FFT. The range of

TABLE 14. List of PMCs obtained for application-specific modelling using
correlation.

problem sizes used for DGEMM is 6500 × 6500 to
20000 × 20000, and for FFT is 22400 × 22400 to
29000× 29000. We select this range because of reason-
able execution time (> 3 seconds) of the applications.
We remove all the PMCs that have less than 90%positive
correlation with dynamic energy. We then select the
topmost correlated PMC from each Likwid group. The
selected prime PMCs are {AL19, AL20, . . . , AL27} and
listed in Table 14.

• Since only four PMCs can be employed in an online
model, we select the top four principal PMCs by apply-
ing principal component analysis. The final list of prime
PMCs includes {AL19, AL23, AL26, AL27}.

• We build a data-set containing 801 points representing
DGEMM and FFT for a range of problem sizes from
6400 × 6400 to 38400 × 38400 and 22400 × 22400 to
41536 × 41536, respectively, with a constant step size
of 64. We record the dynamic energy consumption and
the prime PMCs (AL19, AL23, AL26, and AL27) for
each application. The data-set is further divided into two
subsets, one for training and the other for testing the
models. The train data-set contains 651 points and the
test data-set contains 150 points.

• We build a random forest model (RF-MA) and a neural
networkmodel (NN-MA) using the training set. Table 15
shows the relative and proportional prediction errors
of the models. The average relative and proportional
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TABLE 15. Prediction accuracies of application-specific RF and NN models.

prediction accuracies for RF and NN models are 24.8%
and 2.23, and, 23.9% and 2.48, respectively.

• If we compare the average prediction accuracies of
LR-A4 with RF-MA and NN-MA, we do not see much
difference in their relative prediction accuracies. How-
ever, average proportional errors show that LR-A4 is
1.57× and 1.74× better than RF-MA and NN-MA,
respectively.

4) DISCUSSION
Following are the salient observations from the experimental
results:

• For our experiments, the training data set is constructed
by executing the DGEMM and FFT with a constant
increment of workload sizes using a fixed step size
of 64. The generation of training data is a tedious task.
However, once a model with the desired accuracy is
constructed, it represents the relationship of a specific
combination of PMCs and understands the underlying
pattern with dynamic energy consumption. Therefore,
the model can be used to predict the energy consumption
for any workload size for an application or a set of
applications.

• The statistical methods lack the ability to check
the physical significance of the model variables
with energy consumption. The PMCs used to build
the models for using this approach contains mem-
ory parameters as model variables (for example,
MEM_LOAD_RETIRED_L3_MISS in Table 14). The
practical implications of the theory of energy of comput-
ing incorporate domain knowledge for linear dynamic
energy predictive models by introducing properties for
the selection of model variables, coefficients, and inter-
cepts. In order to identify the processor components
that are the dominating contributors to dynamic energy
consumption during the application executions, we con-
ducted experiments by stressing memory and CPU.
We found that the dynamic energy consumption because
of memory operations is negligible on our platforms.
Therefore, linear regression models built using the the-
ory of energy of computing do not employ any memory
PMCs as model variables.

• The models based on most additive and highly cor-
related PMCs have better average prediction accuracy
when compared to the models based on non-additive and
highly positively correlated PMCs. We conclude, there-
fore, that correlation with dynamic energy consumption

alone is not sufficient to provide good average prediction
accuracy but should be combined with methods such as
additivity that take into account the physical significance
of the model variables originating from the theory of
energy of computing.

• Online LR models that employ PMCs selected using
the theory of energy conservation of computing perform
better in terms of average proportional accuracy than RF
and NN based models that use purely statistical methods
to select PMCs.

• While we do not see much difference in the relative
prediction accuracies (p) of LR-A4, RF-MA, and NN-
MA, average proportional errors show that LR-A4 is
1.57× and 1.74× better than RF-MA and NN-MA,
respectively. This suggests thatµ is a better statistic than
p for accurate interpretation of results.

• The consistent accuracy of LR models highlight the
importance of taking into account domain-specific
knowledge for model variable selection, in this case,
the physical significance of the PMCs originating from
the conservation of energy of computing.

• The results also endorse the guidelines of the theory of
energy of computing, which states that any non-linear
energy model (in this case, the RF and NN mod-
els) employing PMCs only, will be inconsistent and
hence inherently inaccurate. A non-linear energy model,
in order to be accurate, must employ non-additive model
variables in addition to PMCs.

VII. CONCLUSION
Accurate and reliable measurement of energy consumption
is essential to energy optimization at an application level.
Energy predictive modelling using performance monitoring
counters (PMCs) emerged as a promising approach owing to
its ability to provide a fine-grained component-level decom-
position of energy consumption.

In this work, we compared two types of energy predictive
models constructed from the same set of experimental data
and at two levels, platform and application. The first type
contains linear regression (LR) models employing PMCs
selected using a theoretical model of the energy of computing,
which is the manifestation of the fundamental physical law of
energy conservation. The second type contains sophisticated
statistical learning models, random forest (RF), and neural
network (NN), that are constructed using PMCs selected
based on correlation and principal component analysis.

We demonstrated how the accuracy of LR models can be
improved by selecting PMCs based on a theoretical model
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of the energy of computing. We compared the prediction
accuracy of LR models with RF and NN models, which are
based on PMCs selected using correlation and principal com-
ponent analysis. We employed two different configurations
of train and test datasets. In the first configuration, the train
and test datasets contain all the applications. In the second
configuration, the applications are split between the train and
test datasets. We showed that the average prediction accuracy
of the best LR model is almost the same in both the experi-
mental configurations and its average prediction accuracy is
better than RF and NN models. This highlights the consistent
accuracy of LR models. The prediction accuracy of RF and
NN models is better in the second configuration than the first
configuration. It implies that RF and NN models memorize
well the domain of inputs but are not able to predict well and
hence generalize well for a new set. This is because they use
PMC selection techniques that are domain oblivious and that
do not take into account the physical significance of the PMCs
originating from the conservation of energy of computing.

We also studied application-specific energy predictive
models. We experimentally demonstrated that the use of
highly additive PMCs results in notable improvements in the
average prediction accuracy of LR models when compared
to LR models employing non-additive PMCs. We concluded,
therefore, that a high positive correlation with dynamic
energy consumption alone is not sufficient to provide good
prediction accuracy but should be combined with selection
criteria that take into account the physical significance of
the PMCs originating from fundamental laws such as energy
conservation of computing. Finally, we presented an experi-
mental methodology to select a reliable subset of four PMCs
for constructing accurate application-specific online models.
We showed that the LR models perform better than RF and
NN models.

Our results highlight two important points. First, the con-
sistent accuracy of LR models stresses the importance of
taking into account domain-specific knowledge for model
variable selection, in this case, the physical significance of
the PMCs originating from the conservation of energy of
computing. Second, according to the theory of energy of
computing, any non-linear energy model (in this case, the RF
and NN models) employing PMCs only, will be inconsistent
and hence inherently inaccurate. A non-linear energy model,
in order to be accurate, must employ non-additive model
variables in addition to PMCs. In our future work, we will
exploremethods to improve the prediction accuracy of energy
predictive models that employ high-level model variables
such as the utilization rates of compute devices, unlike PMCs
which are pure counts.

APPENDIX I. RATIONALE BEHIND USING DYNAMIC
ENERGY CONSUMPTION INSTEAD OF TOTAL ENERGY
CONSUMPTION
We consider only the dynamic energy consumption in our
work for reasons below:

1) Static energy consumption, a major concern in embed-
ded systems, is becoming less compared to the dynamic
energy consumption due to advancements in hardware
architecture design in HPC systems.

2) We target applications and platforms where dynamic
energy consumption is the dominating energy
dissipator.

3) Finally, we believe its inclusion can underestimate the
true worth of an optimization technique that minimizes
the dynamic energy consumption. We elucidate using
two examples from published results.

• In our first example, consider a model that reports
predicted and measured the total energy consump-
tion of a system to be 16500J and 18000J. It would
report the prediction error to be 8.3%. If it is known
that the static energy consumption of the system
is 9000J, then the actual prediction error (based
on dynamic energy consumption only) would be
16.6% instead.

• In our second example, consider two different
energy prediction models (MA and MB) with the
same prediction errors of 5% for application execu-
tion on two different machines (A andB) with same
total energy consumption of 10000J. One would
consider both the models to be equally accurate.
But supposing it is known that the dynamic energy
proportions for the machines are 30% and 60%.
Now, the true prediction errors (using dynamic
energy consumption only) for the models would be
16.6% and 8.3%. Therefore, the second modelMB
should be considered more accurate than the first.

APPENDIX II. APPLICATION PROGRAMMING
INTERFACE (API) FOR MEASUREMENTS USING EXTERNAL
POWER METER INTERFACES (HCLWattsUp)
HCLServer1 and HCLServer2 have a dedicated power meter
installed between their input power sockets and wall A/C out-
lets. The power meter captures the total power consumption
of the node. It has a data cable connected to the USB port of
the node. A Perl script collects the data from the power meter
using the serial USB interface. The execution of this script is
non-intrusive and consumes insignificant power.

We useHCLWattsUpAPI function, which gathers the read-
ings from the power meters to determine the average power
and energy consumption during the execution of an applica-
tion on a given platform. HCLWattsUp API can provide the
following four types of measures during the execution of an
application:

• TIME—The execution time (seconds).
• DPOWER—The average dynamic power (watts).
• TENERGY—The total energy consumption (joules).
• DENERGY—The dynamic energy consumption (joules).

We confirm that the overhead due to the API is very mini-
mal and does not have any noticeable influence on the main
measurements. It is important to note that the power meter
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readings are only processed if the measure is not hcl :: TIME .
Therefore, for each measurement, we have two runs. One
run for measuring the execution time. And the other for
energy consumption. The following example illustrates the
use of statistical methods to measure the dynamic energy
consumption during the execution of an application.

The API is confined in the hcl namespace. Lines 10–
12 construct the Wattsup object. The inputs to the constructor
are the paths to the scripts and their arguments that read
the USB serial devices containing the readings of the power
meters.

The principal method of WattsUp class is execute. The
inputs to this method are the type of measure, the path to the
executable executablePath, the arguments to the executable
executableArgs and the statistical thresholds (pIn) The out-
puts are the achieved statistical confidence pOut, the estima-
tors, the sample mean (sampleMean) and the standard devia-
tion (sd) calculated during the execution of the executable.

The executemethod repeatedly invokes the executable until
one of the following conditions is satisfied:

• The maximum number of repetitions specified in
maxRepeats is exceeded.

• The sample mean is within maxStdError percent of the
confidence interval cl. The confidence interval of the
mean is estimated using the Student’s t-distribution.

• The maximum allowed time maxElapsedTime specified
in seconds has elapsed.

If any of the conditions are not satisfied, then a return
code of 0 is output suggesting that statistical confidence
has not been achieved. If statistical confidence has been
achieved, then the number of repetitions performed, the time
elapsed and the final relative standard error is returned in the
output argument pOut . At the same time, the sample mean
and standard deviation are returned. For our experiments,
we use values of (1000, 95%, 2.5%, 3600) for the parameters
(maxRepeats, cl,maxStdError,maxElapsedTime) respec-
tively. Since we use Student’s t-distribution for the calcu-
lation of the confidence interval of the mean, we confirm
specifically that the observations follow normal distribution
by plotting the density of the observations using the R tool.

APPENDIX III. EXPERIMENTAL METHODOLOGY TO
DETERMINE THE SAMPLE MEAN
We followed the methodology described below to make sure
the experimental results are reliable:

• The server is fully reserved and dedicated to these exper-
iments during their execution. We also made certain
that there are no drastic fluctuations in the load due to
abnormal events in the server by monitoring its load
continuously for a week using the tool sar. Insignificant
variation in the load was observed during this monitor-
ing period suggesting normal and clean behavior of the
server.

• An application during its execution is bound to the phys-
ical cores using the numactl tool.

FIGURE 7. Example illustrating the use of HCLWattsUp API for measuring
the dynamic energy consumption.

• To obtain a data point, the application is repeatedly
executed until the sample mean lies in the 95% confi-
dence interval with a precision of 0.025 (2.5%). For this
purpose, we use Student’s t-test assuming that the indi-
vidual observations are independent and their population
follows the normal distribution. We verify the valid-
ity of these assumptions using Pearson’s chi-squared
test. When we mention a single number such as exe-
cution time (seconds) or floating-point performance (in
MFLOPs or GFLOPs), we imply the sample mean deter-
mined using the Student’s t-test.
The function MeanUsingTtest , shown in Algorithm 1,
determines the sample mean for a data point. For each
data point, the function repeatedly executes the applica-
tion app until one of the following three conditions is
satisfied:

1) The maximum number of repetitions (maxReps) is
exceeded (Line 3).

2) The sample mean falls in the confidence interval
(or the precision of measurement eps is achieved)
(Lines 13-15).

3) The elapsed time of the repetitions of applica-
tion execution has exceeded the maximum time
allowed (maxT in seconds) (Lines 16-18).
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Algorithm 1 Function Determining the Mean of an Experi-
mental Run Using Student’s t-Test
1: procedureMeanUsingTtest(app,minReps,maxReps,

maxT , cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0
The maximum number of repetitions, maxReps ∈ Z>0
The maximum time allowed for the application to run,
maxT ∈ R>0
The required confidence level, cl ∈ R>0
The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made,
repsOut ∈ Z>0
The confidence level achieved, clOut ∈ R>0
The accuracy achieved, epsOut ∈ R>0
The elapsed time, etimeOut ∈ R>0
The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st ← measure(TIME)
5: Execute(app)
6: et ← measure(TIME)
7: reps← reps+ 1
8: etime← etime+ et − st
9: ObjArray[reps]← et − st

10: sum← sum+ ObjArray[reps]
11: if reps > minReps then
12: clOut ← fabs(gsl_cdf_tdist_Pinv(cl, reps −

1))
× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut × reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut ← reps; epsOut ← clOut × reps

sum
22: etimeOut ← etime; mean← sum

reps
23: end procedure

So, for each data point, the function MeanUsingTtest
returns the sample mean mean. The function Measure
measures the execution time using gettimeofday
function.

• In our experiments, we set the minimum and the max-
imum number of repetitions, minReps and maxReps,
to 15 and 100000. The values of maxT , cl, and eps are

3600, 0.95, and 0.025. If the precision of measurement
is not achieved before the completion of the maximum
number of repeats, we increase the number of repetitions
and also the allowed maximum elapsed time. Therefore,
we make sure that statistical confidence is achieved for
all the data points that we use in our experiments.

APPENDIX IV. STEPS TO ENSURE
RELIABLE EXPERIMENTS
To ensure the reliability of our results, we follow a statistical
methodology where a sample mean for a response variable is
obtained from several experimental runs. The sample mean
is calculated by executing the application repeatedly until it
lies in the 95% confidence interval and a precision of 0.025
(2.5%) has been achieved. For this purpose, Student’s t-test
is used assuming that the individual observations are inde-
pendent and their population follows the normal distribution.
We verify the validity of these assumptions by plotting the
distributions of observations.

The server is fully dedicated for the experiments.
To ensure reliable energy measurements, we took following
precautions:

1) HCLWattsUpAPI [65] gives the total energy consump-
tion of the server during the execution of an application
using physical measurements from the external power
meters. This includes the contribution from compo-
nents such as NIC, SSDs, fans, etc. To ensure that the
value of dynamic energy consumption is purely due
to CPUs and DRAM, we verify that all the compo-
nents other than CPUs and DRAM are idle using the
following steps:

• Monitoring the disk consumption before and dur-
ing the application run. We ensure that there is no
I/O performed by the application using tools such
as sar, iotop, etc.

• Ensuring that the problem size used in the execu-
tion of an application does not exceed the main
memory, and that swapping (paging) does not
occur.

• Ensuring that network is not used by the applica-
tion using monitoring tools such as sar, atop, etc.

• Bind an application during its execution to
resources using cores-pinning and memory-
pinning.

2) Our platform supports three modes to set the fans
speed: minimum, optimal, and full. We set the speed
of all the fans to optimal during the execution of our
experiments. We make sure there is no contribution to
the dynamic energy consumption from fans during an
application run, by following the steps below:

• We continuously monitor the temperature of server
and the speed of fans, both when the server is
idle, and during the application run. We obtain this
information by using Intelligent PlatformManage-
ment Interface (IPMI) sensors.
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• We observed that both the temperature of server
and the speeds of the fans remained the same
whether the given application is running or not.

• We set the fans at full speed before starting the
application run. The results from this experiment
were the same as when the fans were run at optimal
speed.

• To make sure that pipelining, cache effects, etc,
do not happen, the experiments are not executed in
a loop and sufficient time (120 seconds) is allowed
to elapse between successive runs. This time is
based on observations of the times taken for the
memory utilization to revert to base utilization and
processor (core) frequencies to come back to the
base frequencies.

APPENDIX V. CALIBRATION OF WattsUp PRO
POWER-METERS
The dynamic energy consumption during the application exe-
cution is measured using a WattsUp Pro power meter on
both servers (HCLServer1 and HCLServer2) and obtained
programmatically via the HCLWattsUp interface [65]. The
power meter is periodically calibrated using an ANSI
C12.20 revenue-grade power meter, Yokogawa WT210.
In this chapter, we explain our methodology and some results
to calibrate our power-meters.

We compare theWattsUp Pro power-meter powermeasure-
ments with Yokogawa using three methods that are explained
as follows:

1) Naked-eye visual monitoring

• We first attach the WattsUp Pro power-meters to
both servers.

• Once the servers are switched on and are in stable
condition, we monitor the WattsUp pro LCDs and
note the power readings in watts for both servers.

• we carefully plugged off the WattsUp Pro power
meters and plug the servers via Yokogawa power
meter.

• Once the servers are switched on and are in stable
condition, we monitor the Yokogawa LCDs and
note the power readings in watts for both servers.

• On comparison, we find a difference of 2 watts and
3 watts for HCLServer1 and HCLServer2, respec-
tively.

2) Monitoring server base power

• We connect both power meters to both servers one
by one and once the servers are stable, we program-
matically obtain the power readings from both
power meters.

• For WattsUp Pro, a Perl script provides the power
readings with a granularity of 1 second. Simi-
larly, Yokogawa comes with its own software and
allows us to read power readings at the granularity
of 1 second.

FIGURE 8. Calibration test for idle power using WattsUp Pro and
Yokogawa PowerMeter on (a) HCLServer1 and (b) HCLServer2.

• We measure and record the base powers of
both servers for 3.5 hours using both power
meters. Figure 8 compare the idle power pro-
files of HCLServer1 and HCLserver2 using both
power meters, respectively. It can be seen that
both profiles are almost the same. However,
HCLServer1 has more power variations and
HCLServer2 is considerably stable in terms of base
power. For HCLServer2, there are power spikes
after every half an hour for a couple of seconds.
This is because of a daemon service being trig-
gered by the OS.

• Table 16 show the minimum, average, and max-
imum power consumption for both servers and
power meters. If we compare the average,WattsUp
Pro gives 1-2 watts less power consumption than
Yokogawa.

3) Measurement of total energy consumption for two
scientific applications

• We choose two scientific applications: 1) DGEMM
and 2) FFT from Intel MKL.

• We execute DGEMM for problem sizes 4096 ×
4096 to 30720 × 30720 with a constant step
size of 1024 on HCLServer1. We then execute
DGEMM for problem sizes 15360 × 15360 to
30720×30720 with a constant step size of 1024 on
HCLServer2. We build the total energy consump-
tion profiles using both power meters for these
application executions.

• We execute FFT for problem sizes 4096× 4096 to
30720×30720 with a constant step size of 1024 on
HCLServer1. We then execute FFT for problem
sizes 8384 × 8384 to 62880 × 62880 with a con-
stant step size of 2096 on HCLServer2. We build
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TABLE 16. Minimum, maximum and average of idle power using WattsUp Pro and Yokogawa PowerMeter on HCLServer1 and HCLServer2.

TABLE 17. Comparison of minimum, average, and maximum measurement errors for DGEMM and FFT on HCLServer1 and HCLServer2 using WattsUp Pro
and Yokogawa.

FIGURE 9. Comparison of total power for Intel MKL DGEMM using
WattsUp Pro and Yokogawa PowerMeter on (a) HCLServer1 and
(b) HCLServer2.

the total energy consumption profiles using both
power meters for these application executions.

• Figure 9 and 10 show the total energy consumption
profiles for DGEMM and FFT on both servers,
respectively.

• Table 17 show the relative error in percent-
age for total energy consumptions obtained

FIGURE 10. Comparison of total power for Intel MKL FFT using WattsUp
Pro and Yokogawa PowerMeter on (a) HCLServer1 and (b) HCLServer2.

using HCLServer1 and HCLServer2. It can be
seen that the average measurement error for
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DGEMM is 4.95% and 9.25% on HCLServer2 and
HCLServer1, respectively. For FFT, the aver-
age measurement error is 6% and 7.4% on
HCLServer2 and HCLServer1, respectively.

APPENDIX VI. METHODOLOGY TO DETERMINE THE
COMPONENT-LEVEL ENERGY CONSUMPTION
USING HCLWattsUp
We provide here the details of how system-level physical
measurements using HCLWattsUp can be used to determine
the energy consumption by a component (such as a CPU)
during application execution.

We define the group of components running a given
application kernel as an abstract processor. For example,
consider a matrix multiplication application running on a
multicore CPU. The abstract processor for this application,
which we call AbsCPU, comprises of the multicore CPU
processor consisting of a certain number of physical cores
and DRAM. In this work, we use only such configura-
tions of the application which execute on AbsCPU and
do not use any other system resources such as solid-state
drives (SSDs), network interface cards (NIC) and so forth.
Therefore, the change in energy consumption of the sys-
tem reported by HCLWattsUp reflects solely the contribu-
tions from CPU and DRAM. We take several precautions in
computing energy measurements to eliminate any potential
interference of the computing elements that are not part of
the abstract processor AbsCPU. To achieve this, we take the
following precautions:

1) We ensure the platform is reserved exclusively and
fully dedicated to our experiments.

2) We monitor the disk consumption before and during
the application run and ensure that there is no I/O
performed by the application using tools such as sar,
iotop, and so forth.

3) We ensure that the problem size used in the execution
of an application does not exceed the main memory and
that swapping (paging) does not occur.

4) We ensure that the network is not used by the applica-
tion by monitoring using tools such as sar, atop, etc.

5) We set the application kernel’s CPU affinitymask using
SCHED API’s system call SCHED_SETAFFINITY.
Consider for example MKL DGEMM application ker-
nel running on only abstract processor A. To bind this
application kernel, we set its CPU affinity mask to
12 physical CPU cores of Socket 1 and 12 physical
CPU cores of Socket 2.

6) Fans are also a great contributor to energy consump-
tion. On our platform fans are controlled in two zones:
(a) zone 0: CPU or System fans, (b) zone 1: Peripheral
zone fans. There are 4 levels to control the speed of
fans:
• Standard: BMC control of both fan zones, with
CPU zone based on CPU temp (target speed 50%)
and Peripheral zone based on PCH temp (target
speed 50%)

FIGURE 11. SLOPE-PMC : Towards the automation of PMC collection on
Modern Computing Platforms.

• Optimal: BMC control of the CPU zone (target
speed 30%), with Peripheral zone fixed at low
speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed
50%), Peripheral zone fixed at 75%

• Full: all fans running at 100%

In all speed levels except the full, the speed is
subject to be changed with temperature and conse-
quently, their energy consumption also changes with
the change of their speed. Higher the temperature
of CPU, for example, higher the fans’ speed of
zone 0 and higher the energy consumption to cool
down. This energy consumption to cool the server
down, therefore, is not consistent and is dependent
on the fans’ speed and consequently can affect the
dynamic energy consumption of the given application
kernel.
Hence, to rule out the fans’ contribution to dynamic
energy consumption, we set the fans at full speed before
launching the experiments. When set at full speed,
the fans run consistently at a fixed speed until we do so
to another speed level. Hence, fans consume the same
amount of power which is included in the static power
of the platform.

7) We monitor the temperature of the platform and speed
of the fans (after setting it at full) with help of Intelli-
gent Platform Management Interface (IPMI) sensors,
both with and without the application run. We find
no considerable difference in temperature and find the
speed of fans the same in both scenarios.

Thus, we ensure that the dynamic energy consumption
obtained using HCLWattsUp reflects the contribution solely
by the abstract processor executing the given application
kernel.
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FIGURE 12. AdditivityChecker : Test PMCs for Additivity.

FIGURE 13. List of PMC groups provided by Likwid tool on HCLServer2.

APPENDIX VII. BRIEF OVERVIEW OF SLOPE-PMC AND
AdditivityChecker
SLOPE-PMC is developed on top of Likwid tool to automate
the process of PMC collection. It takes an input application
and operates in three steps. First, it identify the available
PMCs on a given platform and list them in a file. In second
step, the input application is executed several times as in
a single invocation of an application only 4 PMCs can be

collected. To ensure reliable results, we also take an average
of each PMC count using multiple executions (atleast 3) of
an application. In the final step, the PMCs are extracted with
labels in a stats file. Figure 11 summarizes the work-flow of
SLOPE-PMC.

Figure 12 describes the AdditivityChecker where it takes
as an input: 1). PMCs of two base applications A and B,
and a compound application (AB) composed of base applica-
tions and 2). user-specified tolerance in percentage. It returns
a list of additive and non-additive PMCs along with their
percentage errors.

APPENDIX VIII. LIST OF PMC GROUPS
PROVIDED BY LIKWID
The list of PMC groups provided by Likwid tool [16] on
HCLServer2 is shown in the Figure 13.
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