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ABSTRACT Harmonic detection and control for power grids have always been major concerns for
researchers. With the application of diverse semiconductor materials in power systems, numerous asym-
metrical loads arise, resulting in increasingly poor performance of traditional harmonic detection methods.
Ensemble empirical mode decomposition (EEMD) provides a new approach for harmonic detection in power
systems. Because the harmonic waves in power systems are indeterminate, optimal decomposition results
cannot be achieved by means of artificially configured parameters. For such cases, the development of
deep neural networks has provided a new solution for harmonic detection. In this study, particle swarm
optimization is combined with a deep neural network to establish an adaptive harmonic separation algorithm.
By training an adaptive model in this manner, adaptive EEMD can be realized. Moreover, decomposition
parameters can be established based on the harmonic content of signals to effectively separate harmonic
waves of diverse orders.

INDEX TERMS Harmonic separation, deep neural network, adaptive model, ensemble empirical mode
decomposition.

I. INTRODUCTION
With advances in industrial and computer technology, power
equipment has been extensively applied in various fields,
giving rise to increasingly serious harmonic pollution [1].
Effective detection and control of power system harmonics
have always been a focus of attention. As the basis for
enhancing production levels and conserving power resources,
the effective separation and detection of harmonic waves of
various orders have far-reaching significance for production
efficiency and the improvement of living standards [2], [3].
In recent years, extensive investigations have focused on har-
monic detection and control for power systems, and advanced
theories and solutions have been proposed from various per-
spectives. At present, the major harmonic detection methods
include fast Fourier transformation (FFT) [4]–[9], wavelet
transform methods [10]–[13], instantaneous reactive power
approaches [14]–[17], and various other methods [18]–[20]
as well as their variants. In particular, a harmonic mea-
surement method based on interpolated window FFT and

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiuye Sun .

its applications have been introduced [7]. To overcome the
spectrum leakage problem, a correction algorithm based on
multi-item cosine window interpolation has been proposed,
which can effectively improve the detection accuracy [9]. The
FFT algorithm has been improved by introducing a trigono-
metric self-convolution window [10]. Ghaemi et al. [11]
studied the application of wavelet transform methods in har-
monic detection and proposed a new method of evaluating
signals by combining the wavelet transform, the sampling
frequency, an appropriate wavelet function and a time interval
for evaluation. Zhang and Yang [12] proposed a new method
of evaluating signal distortion and harmonic impedance by
means of a synchronous wavelet transform and proved the
effectiveness of the method in practice. Barros and Diego
[13] proposed a new method of harmonic analysis based on
the application of the wavelet transform after signal decom-
position, which effectively mitigates the spectrum leakage
problem of thewavelet transform in power harmonic analysis.
Others [14]–[17] introduced the application of instantaneous
reactive power theory in harmonic analysis and discussed
the applicable scope, advantages and disadvantages of the
theory in this context. Liu and others [18], [19] proposed
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the application of support vector machines for power har-
monic analysis; in particular, Liu and Sun [18] proposed
a harmonic detection algorithm based on a support vec-
tor regression model and proved that in practice, compared
with the FFT and adaptive linear element (ADALINE) tech-
niques, the proposed method has higher applicability, detec-
tion accuracy and robustness. Bertocco et al. [20] proposed
a harmonic analysis method based on compressed sensing
that can improve the resolution efficiency without increasing
the observation time. Although these algorithms have been
improved to address different problems, they are fundamen-
tally aimed at the study of linear stationary signals; conse-
quently, these algorithms have limitations that prevent them
from effectively measuring and analyzing certain signals that
are nonlinear and unstable [3]. To consider the characteris-
tics of nonlinear instability in power system harmonics [21],
the Hilbert–Huang transform (HHT) has been introduced for
harmonic measurement in power systems, allowing further
harmonic analysis and detection to be carried out on the basis
of the instantaneous frequency and time-frequency amplitude
spectra. The HHT [22] is a novel signal analysis method
based on empirical mode decomposition (EMD). In addition
to its ability to effectively analyze certain nonstationary, non-
linear signals, this novel method can be used to decompose an
initial signal into multiple intrinsic mode functions (IMFs).
An IMF is a series of approximated simple-frequency sig-
nals. Through the Hilbert transform, an instantaneous fre-
quency and amplitude with practical physical significance
can be obtained for each simple-frequency signal. Finally,
a complete time–frequency distribution of the entire signal
is achieved; consequently, this method can perform well in
harmonic detection [23]–[25]. However, due to the problems
of the endpoint effect and low resolution, the quality of the
results of the EMD method is limited [26]. Although ensem-
ble empirical mode decomposition [27] (EEMD) overcomes
some of the limitations of EMD in terms of frequency resolu-
tion [28], it also fails to provide a reasonable decomposition
of the input signal for the following reasons. Under condi-
tions in which white noise is added, there arises a parameter
that must be artificially configured according to experience,
and the production of power harmonics is accompanied by
substantial uncertainty. Moreover, great differences arise in
the harmonic contents generated at different time points and
different locations. Recently, the rapid development of deep
neural networks has paved the way for novel approaches to
harmonic detection. To overcome the deficiencies of EEMD,
this work proposes an adaptive ensemble empirical mode
decomposition (AEMMD) method based on the training of
a deep neural network model with adaptive decomposition
parameter settings for harmonic separation in power grids.
The main contributions of this paper are as follows.

1) A harmonic separation method based on an adaptive
model, called AEEMD, is proposed. The separation param-
eters can be set adaptively in accordance with the char-
acteristics of various harmonic contents in the signals to

FIGURE 1. Schematic diagram of the AEEMD algorithm.

be separated, allowing the harmonics to be separated more
effectively.

2) During model training, particle swarm optimization is
adopted to optimize the addedwhite noise parameter values in
EEMD based on the training dataset. In this way, the reliabil-
ity and timeliness of the training data can be more effectively
ensured.

3) During the selection of the experimental data, data were
sampled from different types of power grid environments to
ensure that the trainedmodel would be as generally applicable
as possible, and a reasonable deep neural network structure
was selected on the basis of multiple experiments to ensure
the practicability and effectiveness of the trained model.

II. INTRODUCTION TO THE PRINCIPLE OF THE ADAPTIVE
ENSEMBLE EMPIRICAL MODE DECOMPOSITION (AEEMD)
ALGORITHM
The harmonic contents of power grid signals are influenced
by certain factors, such as location, time, and load. Thus,
under some conditions, the harmonic components of a given
order may differ from those of another order. In conventional
EEMD, the applied decomposition parameters are artificially
configured according to experience. Although this method
is rather simple, it does not permit the effective separation
of harmonic waves of diverse orders from complex power
grid signals that exhibit great variations and consist of many
diverse components. In view of the shortcomings of tradi-
tional EEMD for harmonic separation, an improved method
based on the use of a deep neural network structure to train
a model with adaptive parameter settings is proposed. The
principle of the AEEMD algorithm is illustrated in Figure 1.

First, a large number of actual signals are sampled from
the power grid to obtain model training data, consisting
of the EEMD results for the actual sampled signals. Then,
the Hilbert transform is used to calculate the instantaneous
frequency of each IMF. Using an improved particle swarm
optimization (PSO) algorithm, the added white noise parame-
ters of the particles are determined. By using theHilbert trans-
form to calculate the instantaneous frequencies of the IMFs
of discrete degrees and using these instantaneous frequencies
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and the sample entropy to update the fitness function for PSO,
each signal is processed to obtain the particles corresponding
to the optimal white noise parameters for decomposition.
A large number of power network signals are decomposed to
obtain sufficient original signals and corresponding optimal
white noise parameters to train the adaptive model, and the
obtained data are integrated into the training dataset. Then,
an adaptive deep neural network model based on a deep belief
network (DBN) structure with a backpropagation (BP) layer
(DBN-BP) can be trained and used to set the white noise
parameters for EEMD in accordance with the harmonic con-
tent characteristics of the actual signals. Finally, an adaptive
model is trained for AEEMD based on the optimal parame-
ters for the grid signals under test, and grid-signal-adaptive
EEMD is performed using the Hilbert transform method to
solve for the decomposition results for the harmonic param-
eters used for harmonic analysis and prediction in order to
formulate a reasonable compensation strategy.

III. INTRODUCTION TO THE PRINCIPLE OF ADAPTIVE
MODEL TRAINING
Training an adaptive model is the key to the implementa-
tion of the AEEMD algorithm. The training process mainly
includes constructing the training dataset, setting the depth
of the neural network structure, training the model, and val-
idating the trained model according to the results of model
parameter adjustment. Ensuring the validity of the data used
to train the model is a challenge. To ensure the reliability of
the training data when using PSO to optimize the parameters,
the Hilbert transform is applied, and different parameter set-
tings are used for white noise EEMD to obtain the instanta-
neous frequency of each IMF of discrete degrees; these results
are used alongwith the sample entropy to construct the fitness
function for use in the update process in the PSO algorithm.
In addition, deep neural networks with different structures are
constructed during model training, and the network structure
with the best performance is selected as the basis of the final
adaptive model.

A. DEFINITION OF A FITNESS FUNCTION BASED ON
INSTANTANEOUS FREQUENCY
The acquisition of suitable training data is a prerequisite for
training the adaptive model because the harmonic content of
the power grid varies greatly at different time points and under
different loads. An improved PSO algorithm combined with
the instantaneous frequency dispersion obtained from the
HHT and the sample entropy is used to effectively evaluate
the fitness of the white noise parameter particles with respect
to the current signal. The specific implementation process is
as follows.

First, let the measured signal from the power grid be
denoted by x(t), and let the white noise added during EEMD
be denoted by Wgn(t). Through mixing, the signal X (t) is
obtained as expressed in Equation (1).

X (t) = x(t)+Wgn(t) (1)

By performing EMD-based decomposition of X (t),
Equation (2) is derived to determine the IMF cj(t) and the
remainder r(t).

X (t) =
n∑
j=1

cj(t)+ r(t) (2)

By repeating the above two steps N times, Equation (3) is
obtained, which is then used to obtain the mixed signal Xi(t)
during the ith repetition, the jth IMF cij(t) of Xi(t), and its
remainder ri(t).

Xi(t) =
n∑
j=1

cij(t)+ ri(t) (3)

Considering that the statistical average of an uncorrelated
random sequence is 0, the average value of cj(t) for the jth

IMF acquired through i decompositions can be expressed
as given in Equation (4). Moreover, the average value of
the remainder r(t) after i decompositions is expressed in
Equation (5).

cj(t) =
1
N

N∑
i=1

cij(t) (4)

r(t) =
1
N

N∑
i=1

ri(t) (5)

If white noise components added at different times
are uncorrelated, then the noise components in each
simple-frequency signal after EMD are also not correlated
with each other. After sufficient averaging operations have
been applied, the added white noise can be eliminated or
ignored.

By obtaining the Hilbert transform of Equation (4), Equa-
tion (6) is acquired, where zj(t) represents the analytic signal
of cj(t):

zj(t) = cj(t)+ jH [cj(t)] = aj(t)ej8(t) (6)

In the above equation, aj(t) is the amplitude function of
the jth IMF, whose computational formula is expressed in
Equation (7). Similarly, 8(t) is the phase function of the jth

IMF, as expressed in Equation (8).

aj(t) =
√
c2j (t)+ H

2[cj(t)] (7)

8(t) = arctan
H [cj(t)]
cj(t)

(8)

Based on Equation (8), the instantaneous angular fre-
quency ωj(t) and the instantaneous frequency fj(t) of the jth

IMF are given by Equations (9) and (10), respectively.

ωj(t) =
d8j(t)
dt

(9)

fj(t) =
1
2π

d8j(t)
dt

(10)

FromEquation (10), the standard deviation σj of the instan-
taneous frequency of the jth IMF can be expressed as shown
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in Equation (11).

σj =

√√√√ 1
T

t∑
t=1

(
fj (t)− µj

)2 (11)

where T denotes the length of a frequency sequence and µj is
the average value of the instantaneous frequencies for the jth

IMF.
By combining the sample entropy and the degrees of dis-

persion of the IMFs, a fitness evaluation function for PSO can
be written as shown in Equation (12).

f (ω) =
M∑
j=1

(
F(σj, κj)

)
(12)

where M denotes the number of IMFs obtained through
decomposition, ω denotes the white noise parameters to be
optimized, κj represents the sample entropy of the jth IMF,
andF(σj, κj) is a joint evaluation function based on the degree
of dispersion and the sample entropy.

B. ACQUISITION OF OPTIMAL PARAMETERS BASED ON
IMPROVED PSO
As a swarm intelligence method, PSO is a search algo-
rithm based on group collaboration [29]. The white noise
parameters to be optimized are substituted into the PSO
algorithm, and the white noise parameter particle swarm in
multidimensional space is denoted by Pibest . The position and
velocity of particle i are denoted by ωi and vi, respectively,
and the optimal historical position through which the particle
has passed is stored as Pibest . The global optimal position
among all particles is stored asGbest . Under these conditions,
the velocity and position of each particle are updated based
on Equations (13) and (14), respectively.

vk+1i = vki + c1r(0, 1)(P
k
ibest − w

k
i )+ c2r(0, 1)(G

k
best − w

k
i )

(13)

wk+1i = wki + v
k+1
i (14)

where vki is the velocity of particle i during the k th iteration,
wki represents the position of particle i during the k

th iteration,
c1 and c2 are both learning factors for learning step adjust-
ment, and r(0, 1) is a function that takes a random value in
the range of [0, 1].

Because the PSO algorithm may occasionally encounter
locally optimal solutions, the optimization process may ter-
minate early. To prevent the algorithm from converging early
to a suboptimal solution, an improved method is applied to
update the particles and evaluate their fitness. It is expected
that the diversity of the particles can be boosted by this
approach. The improved velocity update formula and the fit-
ness calculation function are given as shown in Equations (15)
and (16), respectively.

vk+1i = vki + NPkc1r(0, 1)(P
k
ibest − w

k
i )

+ c2r(0, 1)(Gkbest − w
k
i ) (15)

F(ωi) = f (ωG)+ f (ωi)/HiG (16)

FIGURE 2. DBN-BP network structure.

where Npk , which has a range of (1, 2), is the similarity
gain of the optimal position among all particles during the
k th iteration and HiG is the fitness gain of the ith particle,
represented by the ratio of the number of optimal positions
occupied by this particle to the total number of iterations,
which enables particles with fewer optimal positions to be
selected.

C. DEEP NEURAL NETWORK MODEL
A deep neural network based on a DBN-BP structure is
adopted to train the adaptive model. A DBN is a network
structure formed as a stack of multiple restricted Boltzmann
machine (RBM)-generating neural network structures and is
trained via contrastive divergence (CD) [30]. A BP network
layer is added after the DBN; in the BP layer, the RBM output
is taken as the input feature vector to train an entity relation-
ship classifier in a supervised way. Accordingly, the over-
all network structure is referred to as a DBN-BP structure,
as shown in Figure 2.

The training dataset consists of measured signals from the
target power grid and the corresponding optimal white noise
parameters. First, experiments are conducted to determine the
optimal DBN structure and the number of layermodules, each
of which consists of a hidden layer and a visible layer. The
model is first pretrained step by step on the actual sampled
signals, sufficiently to allow it to extract the harmonic con-
tent of signals once the characteristic parameters have been
learned. Then, the optimal white noise parameters are used
as tags for the input data to train the BP network layer as an
entity relationship classifier and using the BP algorithm to
fine-tune the network parameters. The connectivity function
of an RBMmodule and the probability distributions for states
v and h are expressed in Equations (17) and (18), respectively.

E(v, h) = −cT v− bT h− hTWv (17)

P(v, h) =
1
Z
e−E(v,h)

P(v|h) =
P(v, h)
P(v)

(18)
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where h and v denote the value vectors of the neurons in
the hidden and visible layers, respectively; c and b represent
offset vectors for these two layers; W is a weight matrix;
and T is a normalization coefficient. A large amount of
data are used to train the model and verify its performance.
After repeated trials and adjustments, the model structure
and training parameters with the best performance are finally
obtained. Finally, the trained model is exported to be used for
the detection, analysis and verification of actual power grid
signals.

IV. EXPERIMENTAL ANALYSIS
A. DATA SOURCES AND EXPERIMENTAL PLATFORM
1) DATA SOURCES
All data for the experiment were dynamically obtained
through sampling by a DEWESoft recorder (Dewetron, Aus-
tria) at the Microgrid Laboratory of the Gansu Power Grid.
The primary sampling sites were related to distributed photo-
voltaic power generation, wind power generation, and hybrid
energy storage. The sampling frequency was set to 10 kHz,
and the sampling was conducted hourly, with each sam-
pling process lasting 3 min. Sampling was performed five
times at each site, at a total of five sites. After the sam-
pled data were segmented (500 points per set), 10,000 sets
were randomly selected from all data for model training.
Subsequently, 500 sets were randomly extracted from the
data from each sampling site for validation; thus, 2,500 sets of
data in total were obtained to validate the proposed adaptive
model.

2) EXPERIMENTAL PLATFORM
In a Windows 10 testing environment, a DBN structure was
established. An Intel Core i5-6500 processor was used, with a
CPU frequency of 3.2 Hz, four cores, and 16 GB of memory.
An Nvidia GTX 1050 Ti graphics card was utilized, with
4 GB of video memory. Python was selected as the exper-
imental programming language. The model was built using
TensorFlow, a deep learning library.

B. ACQUISITION OF THE TRAINING DATASET
First, the improved PSO algorithm was utilized to acquire,
through training, the optimal parameters for each dataset to be
tested. The number of particles was set to 30, and the number
of iterations was set to 50. The learning factors c1 and c2 each
had a default value of 1.4962, and the global inertia factor w
was 0.8. The stopping criterion for the algorithm was defined
as a maximum number of iterations. Following this approach,
the data were tested, and the corresponding validation results
are given in Figure 3.

As shown in Figure 4, the optimal parameter values for
stability were reached in the 32nd iteration. Based on the
improved PSO algorithm, the optimal parameters for all
data to be tested were obtained. From the sets of data to
be tested and their optimal parameters, a training dataset
and a test dataset were formed. Both datasets were further
used for adaptive model training based on a deep neural
network.

FIGURE 3. PSO validation chart.

FIGURE 4. BP network training errors.

C. ADAPTIVE MODEL TRAINING
1) PARAMETER DETERMINATION FOR THE ADAPTIVE
MODEL
To ensure the efficiency of the model and under the premise
of meeting the demand, the algorithm for detecting model
structure should be as compact as possible, be based on the
length of the sampling data, and should consider the harmonic
detection time. Thus, we set the number of input layer neu-
rons to 500 and the output layer neurons to 50 in the DBN.
These values provide more reasonable settings for the DBN
layers and reduce model training time. By selecting different
numbers of layers for the DBN, extracting multiple sets of
different types of data for and using them for preliminary
training, and by configuring models with different numbers
of DBN layers, the RBM reconstruction errors in each layer
of the DBNs with different numbers of layers were compared
to assess the influence of different numbers of layers on
the performance of the DBN in extracting the features of
the input signals. Relevant comparative results are presented
in Table 1.

The data listed in Table 1 show the average performance
over 50 groups of randomly selected pretraining data when
using the DBN network with different layers for pretraining.
According to Table 1, when the number of DBN layers is set
to 3 and only the reconstruction error and computing time
are considered, the final reconstruction error is comparatively
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TABLE 1. Comparison of DBNs with different numbers of layers.

FIGURE 5. Oscillograms of test signals.

low, and the corresponding computation requires only 8.3 s.
Once the features extracted by the RBM layers are passed
to the BP layer, training and trimming are performed through
BP. The BP layer design includes a three-layer neural network
structure whose input is the output of the DBN network. The
number of neurons in the hidden layer is set to 10 according
to the empirical formula. The network weights are randomly
initialized, and the absolute value range is less than 0.2. The
network learning rate is set to 0.1. In each training step, 1,000
datasets were randomly selected from the initially selected
10,000 sets for iterative training. Figure 4 shows the training
results obtained after 10 rounds of training for the case in
which the numbers of outputs of the RBM layer were set to
350, 200, and 50, successively.

Figure 5 shows that the iterative error, which decreased as
the iterations proceeded, reached 0.018 in the 10th iteration.
At this time, the training error almost coincided with the
test error. The trained model was applied to 1,000 datasets
randomly selected from the 2,500 sets reserved for testing,
and the maximum test error of the model was approximately
0.044. Moreover, the minimum and average test errors were
0.013 and 0.026, respectively.

2) MODEL VALIDATION
Two datasets were randomly selected from among all test
datasets to validate the adaptive model. Of these test datasets,
the first was derived from a photovoltaic power generation
testing group. The corresponding waveform is presented
in Figure 5(a). The second test dataset was collected from a
wind power generation testing group, and the corresponding
waveform is given in Figure 5(b).

Consistent with traditional EEMD parameter configura-
tions, the white noise parameter w was set to 0.2, and the
average number of iterations was set to 345. By decomposing
the first test dataset, the HHT frequency distribution shown
in Figure 6 was obtained.

FIGURE 6. Traditional EEMD-based instantaneous frequency distribution
for the first test dataset.

FIGURE 7. AEEMD-based instantaneous frequency distribution for the
first test dataset.

Figure 6 clearly shows that the parameters configured in
the traditional EEMD method fail to separate the 3rd-, 5th-,
and 7th-order harmonic waves; in addition, obvious aliasing
is found for the 9th-, 11th-, and 13th-order harmonic waves.
The fundamental frequency is dramatically distorted, giving
rise to a generally low harmonic resolution. For compar-
ison, the proposed AEEMD method was also adopted to
decompose the first test dataset. The white noise parameter
w acquired via the adaptive model was equal to 0.3326, and
the average number of iterations was 345. After decomposi-
tion, the HHT frequency distribution shown in Figure 7 was
obtained.

Figure 7 shows that the harmonic resolution is greatly
improved, and the main harmonic content is separated
into three IMFs. Compared with the results in Figure 6,
the components of the fundamental wave are effec-
tively separated, further enhancing the harmonic separation
efficiency.

To test the adaptivity of themodel to power signals contain-
ing diverse harmonic features, the white noise parameter w
for traditional EEMD was set to 0.33, and the corresponding
average number of iterations was set to 345. Under these
conditions, the second test dataset was decomposed, result-
ing in the HHT instantaneous frequency distribution shown
in Figure 8.

As seen in Figure 8, there is apparent aliasing of the
third-, fifth-, and seventh-order harmonic waves in two IMFs,
which is disadvantageous for subsequent detection, although
the components of the fundamental wave can be effectively
separated from the wind power signal. The proposed adaptive

VOLUME 9, 2021 21223



J. Shi, Z. Liu: Harmonic Detection Technology for Power Grids Based on Adaptive EEMD

FIGURE 8. Traditional EEMD-based instantaneous frequency distribution
for the second test dataset.

FIGURE 9. AEEMD-based instantaneous frequency distribution for
the second test dataset.

model was also adopted to decompose the second test dataset;
here, the white noise parameter w and the average number of
iterations were set to 0.5163 and 345, respectively. The HHT
instantaneous frequency distribution obtained in this way is
presented in Figure 9.

A comparison of Figures 8 and 9 demonstrates that through
adaptive-model-based decomposition, the third-, fifth-, and
seventh-order harmonic waves can be effectively separated.
Although the resolution of the fundamental wave is slightly
decreased, the overall harmonic resolution is substantially
improved.

As indicated by the experimental results, AEEMD based
on the proposed adaptive model can effectively improve the
harmonic resolution and allow harmonic waves of diverse
orders to be properly separated into respective IMFs. More-
over, this approach is highly adaptive to power signals con-
taining different harmonic components. Such signals can be
effectively separated according to specific features of their
harmonic contents.

To verify the validity of the proposed algorithm, a least-
squares support vector machine (LSSVM) was separately
adopted to predict the harmonic content [31]. To perform
related experiments, 100 datasets were randomly extracted
from the photovoltaic and wind power generation data. The
prediction results obtained by the LSSVM alone and in com-
bination with traditional EEMD-based decomposition were
compared with the LSSVM-based decomposition results
obtained in combination with AEEMD. The results of wind
power generation prediction are shown in Figure 10, and the
results of photovoltaic power generation prediction are shown
in Figure 11.

FIGURE 10. Wind power generation prediction curves.

FIGURE 11. Photovoltaic power generation prediction curves.

TABLE 2. Comparison of wind power generation prediction results.

As seen from Figures 10 and 11, the prediction results
obtained with AEEMD show a better fit to the experimental
results than the results obtained with the two other meth-
ods. For these two test datasets, the root-mean-square error
(RMSE), average error (AE), and average maximum error
(emax) are presented in Tables 2 and 3.

Tables 2 and 3 clearly show that the prediction results
achieved with AEEMD are superior to those achieved with
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TABLE 3. Comparison of photovoltaic power generation prediction
results.

traditional EEMD; in particular, the AEEMD results exhibit
smaller prediction errors and a more stable prediction pro-
cess. Moreover, the AEEMD-based prediction results show
obvious advantages for the comparatively stable wind power
signal. Compared with the LSSVM-based prediction results,
both the RMSE and AE with AEEMD are reduced by a
factor of nearly three, and the maximum error is reduced
by a factor of greater than five. In addition, compared with
the traditional EEMD prediction results, the RMSE, AE, and
maximum error with AEEMD are decreased by a factor of
almost two. For the photovoltaic power signal, the RMSE,
AE, and maximum error of the corresponding prediction
results are also reduced by a factor of nearly two. As shown
in Figure 10, the AEEMD-based prediction results show a
higher signal tracking ability than the results of the other two
prediction methods.

V. CONCLUSION
The production of harmonic power involves many uncertain-
ties; moreover, differences arise in the contents of harmonic
waves of different orders at different time points. In tradi-
tional EEMD, the relevant parameters are configured accord-
ing to experience; thus, these parameters are not optimized
for the current signal. As a result, EEMD fails to effectively
separate harmonic waves of diverse orders into the corre-
sponding IMFs, leading to errors in the results of harmonic
detection. To address these drawbacks of traditional EEMD,
this work proposes an adaptive EEMD (AEEMD) algorithm
based on an adaptive deep neural networkmodel. The training
model adaptively sets the EEMD decomposition parameters
according to the characteristics of the input signal, allowing
the model to effectively consider the influences caused by
non-linearity, randomness, time-variances and other factors
of the harmonic in the signal to be tested during the detection
process. The parameters obtained through the adaptive model
make EEMD decomposition more accurate and effectively
separate the higher harmonics in different signals into each
eigenmode function. Thus, the EEMD has a certain ability
to self-adapt based on the input signal, which improves the
separation efficiency of each harmonic and the overall accu-
racy with which each harmonic can be detected. Moreover,
this approach simplifies the structural design of the adaptive
model. After model training is complete, the time required
to acquire the adaptive parameters from the sampled data is

ignorable compared with the time required to detect the sam-
pled data. Our model not only detects the measured signals in
real time but also obtains other required parameters through
the analysis. This method may provide a more reliable basis
for analyzing distributions of harmonic content, predicting
harmonic power flows and formulating effective strategies for
harmonic elimination and compensation.
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