
Received January 22, 2021, accepted January 26, 2021, date of publication February 3, 2021, date of current version February 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056710

Divergence Family Contribution to Data
Evaluation in Blockchain via Alpha-EM
and Log-EM Algorithms
YASUO MATSUYAMA , (Life Fellow, IEEE)
Research Institute of Science and Engineering, Waseda University, Tokyo 169-8555, Japan

e-mail: yasuo2@waseda.jp

ABSTRACT This study interrelates three adjacent topics in data evaluation. The first is the establishment of a
relationship between Bregman divergence and probabilistic alpha-divergence. In particular, we demonstrate
that square-root-order probability normalization enables the unification of these two divergence families.
This yields a new alpha-divergence, which can be used to jointly derive the alpha-EM algorithm (alpha-
expectation-maximization algorithm) and the traditional log-EM algorithm. The second topic is the appli-
cation of the alpha-EM algorithm in the evaluation of graders scoring raw data over a network. We estimate
multinomial mixture distributions in this evaluation problem. We note that the convergence speed of the
alpha-EM algorithm is significantly higher than that of the log-EM algorithm. Finally, the third topic is
the use of this increase in convergence speed to assign the winning evaluator and miner in a blockchain
environment. This is achieved by proof-of-review using evaluation scores, which is a class of proof-of-stake.
In the second and third topics, we select terminology fromwine tasting for brevity in the exposition. However,
this formulation can be applied to a broader class of data in a network environment comprising blockchains.

INDEX TERMS Alpha-EM algorithm, blockchain, data evaluation, divergence, dynamic information bank,
log-EM algorithm, multinomial mixture distribution, proof-of-review, proof-of-stake.

I. INTRODUCTION
Measuring the divergence or distance1 between two prob-
abilities is fundamental in data evaluation. In this paper,
we present a path from a new divergence measure to
blockchain applications. As a highlighting relay point, by uti-
lizing this measure, we address the trust evaluation of graders
who score raw data.

Since the early days of the theory of information
and communication, a wide range of distance measures
have been developed: average mutual information [1],
Kullback–Leibler divergence [2], and more general diver-
gences [3]–[5]. There is a hierarchy in these quantities
according to the level of generalization. Generalization is
essential for the deepening of the theory. However, in applica-
tions to actual data, the appropriate level of abstraction should
be determined. In this study, we first establish a relationship
between Bregman divergence [6] and α-divergence [7], [8].
Here, we present a skewing technique for the probability
space by geometric methods, such as taking the square root

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .
1Strictly speaking, the distance must satisfy the symmetry and triangle

inequality. In this paper, we use the word ‘‘distance’’ to describe the dissim-
ilarity for convenience.

of probabilities. Thus, we obtain a new α-divergence that is
different from that used to derive the α-EM algorithm (alpha-
expectation-maximization algorithm) [8], [9]. This measure
is termed Type-II α-divergence. It has an important property
whereby the traditional log-EM algorithm [10] and the α-EM
algorithm [8] can be jointly derived.

The EM family has a wide range of applications in sta-
tistical data processing and machine learning. Convergence
speed is essential in every case. The α-EM algorithm has
theoretically proven faster convergence than the log-EM
algorithm [8]. Accordingly, we use the α-EM algorithm to
evaluate graders who score raw data collected in a network
environment. We employ a statistical model by mixing multi-
nomial distributions [11], [12] using the α-EM algorithm. To
provide a concrete instance, we reformulate this as a som-
melier qualification problem. The raw data for sommeliers
are wines. However, the type of these raw data may change
upon request by a data collector or bookmaker, and therefore,
the method applies to general data over a network.We present
various strategies for achieving high convergence speed.

Following these considerations regarding convergence
speed gains, we apply the α-EM algorithm in a blockchain
environment. Convergence speed becomes an additional
factor in determining the winner or the most trustable eval-

24546 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0819-9240
https://orcid.org/0000-0003-4704-5364

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

uator, whose task is to review all sommelier reports. We use
this mechanism for consensus building among miners. The
strategy is a type of proof-of-stake (PoS) [13]. As the review
of sommelier reports is essential, we term this method proof-
of-review (PoR). Only the miner who receives a winning
token can generate a new block in the blockchain. All stake-
holders contributing to this trust decision receive rewards
such as crypto-assets. This formulation can be easily recast
to other data sent from IoT devices under the framework of
this dynamic information bank.

Thus, the contributions of this study are the following:
(1) Unification of Bregman divergence and α-divergence

by skewing probability spaces: Type-II α-divergence
contributes to the joint derivation of the α-EM and
log-EM algorithms.

(2) Theory and experiments on the α-EM algorithm as an
evaluator that qualifies graders: We present this trust
evaluation by a mixture of multinomial distributions.
As a highlight, we demonstrate various strategies for
exploiting the speed of the α-EM algorithm supported
by experiments.

(3) Method for exploiting computing speed in PoR in
a blockchain environment: We present a method for
using the computing speed of the α-EM algorithm to
set up a legitimate mining right in the blockchain.

A brief preliminary partial report on the above appears
in [14]. However, by previewing Fig. 1 in Section IV-A,
the new contributions of this study can be comprehen-
sively noted.

II. MATHEMATICAL RELATIONSHIPS BETWEEN
BREGMAN DIVERGENCE AND α-DIVERGENCE
A. BREGMAN DIVERGENCE
Bregman divergence [6] quantifies the distance between two
vector points u and v by using a convex function f and its
tangent:

bf (u, v) = f (u)− f (v)−∇f (v)T (u− v). (1)

Here, ∇ denotes the gradient. As we consider information
divergence based on probabilistic quantities, u and v are
scalars, that is, u = p(x) and v = q(x). As these quantities are
probabilities, we have the following constraints. For proba-
bility densities, the constraints are∫

X p(x)dx =
∫
X q(x)dx = 1. (2)

In the case of probability masses, the integrals become sums:∑N
n=1 p(xn) =

∑N
n=1 q(xn) = 1. (3)

The constraints (2) and (3) cause the geometric skew-
ing of probability spaces, so that Bregman divergence and
α-divergence coincide.

B. PROBABILITY SPACE SKEWING FOR TYPE-I
α-DIVERGENCE
Wederive α-divergence fromBregman divergence because of
the general expression (1) for the latter. Let f (α(r) be a convex

function such that

f (α)(r)
def
= L(α)(r)×M (α)(r)
def
=

2
1+ α

(r
1+α
2 − 1)×

2
1− α

r
1−α
2 .

Here,

L(α)(r) =
2

1+ α
(r

1+α
2 − 1), (4)

with r > 0 and α < 1, is the α-logarithm [8], [9]. The limit of
L(α) as α → −1 is the usual logarithm by L’Hôspital’s rule,
whereas if α = 1, we obtain a linear function.
Let the Bregman divergence between p and q using the

convex function f (α)(q) be b(α)f (p, q):

b(α)f (p, q) = f (α)(p)− f (α)(q)−∇f (α)(q)(p− q).

Then, we have the following relationship in a skewed proba-
bility space using q

1+α
2 :∫

X q
1+α
2 b(α)f (p, q)dx = 4

1−α2
{1−

∫
X p(qp)

1+α
2 dx}. (5)

We denote the left-hand side of (5) by B(α)f (p||q). The
right-hand side can be identified as the α-divergence
D(α)
f (p||q), which was used to derive the α-EM algorithm [8].

As we present a different α-divergence in the next subsection,
we term this measure Type-I α-divergence. Then, by chang-
ing p and q, we have the following skewed dualities:

D(α)
I (p||q)

def
= D(α)

f (p||q) = B(α)f (p||q)

= B(−α)f (q||p) = D(−α)
f (q||p). (6)

The same equations can be obtained by skewing b(−α)f (q, p)

using p
1−α
2 .

C. PROBABILITY SKEWING FOR TYPE-II α-DIVERGENCE
1) DIRECT APPROACH
We can obtain another class of α-divergences. The logarith-
mic version of this measure as a spectral distance, termed
the Itakura–Saito distance, was used in speech processing
[15], [16] because of the Pythagorean theorem in spectral esti-
mation. However, we cannot use this quantity as a probabilis-
tic distance because of the presence of a constant term, the
integral of which over the probability space is infinite. How-
ever, Type-II α-divergence can be derived by the proposed
Bregman divergence approach using probability skewing as
follows.

Let the convex function for the Bregman divergence be
g(r) = − log r instead of f (u) in (1). Then, we have

bg(u, v) =
u
v
− log

u
v
− 1.

We now stretch the probabilities by u = qβ and v = pβ .
This skewing of the probability space leads to the following
equation:
1
β2

∫
X pbg(pβ , qβ)dx= 1

β2

∫
X p{(qp)

β
−log(qp)

β
−1}dx. (7)

We change the parameter by β = 1−α
2 , and denote the

left-hand side of (7) by B(α)g (p||q). Then, we have the

VOLUME 9, 2021 24547

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

following equations that define Type-II α-divergence:

B(α)g (p||q) =

(2
1−α

)2 ∫
X p

{(q
p

) 1−α
2 − log

(q
p

) 1−α
2 − 1

}
dx,

(α 6= 1)
1
2

∫
X p

(
log q

p

)2dx, (α = 1)

K (p||q), (α = −1)

def
= D(α)

II (p||q). (8)

Here, the case α = 1 is obtained by L’Hôspital’s rule.
Letting α = −1 on the right-hand side of (8) yields the
Kullback–Libler divergence [2]:

K (p||q) =
∫
X p log p

qdx. (9)

In (8), q is the target probability to be modeled by p.
This choice is compatible with the Itakura–Saito distance for
inverse filter matching [16].

2) TWO-PARAMETER APPROACH
We can obtain (8) using a two-parameter kernel, which is
related to the discrete kernel that appears in [17]. Here,
the kernel for r ∈ (0,∞) is

h(α,β)(r)
def
=

2
α−β
{

2
1−α (r − r

1−α
2)− 2

1−β (r − r
1−β
2)}. (10)

By using this kernel, we define a two-parameter divergence
as follows:

D(α,β)
h (p||q)

def
=
∫
X qh(α,β)(p/q)dx. (11)

Then, we have

D(α,1)
h (p||q) = B(α)g (p||q) = D(α)

II (p||q). (12)

Here, by L’Hôspital’s rule, we obtain the case β = 1.
Thus, Bregman divergence and α-divergence have a strong
relationship [18]. However, the probability skewing by p

1−α
2

and q
1−α
2 was required for Type-I α-divergence in (6). For

Type-II α-divergence in (8), we applied probability skewing
by ratio-stretching (qp)

β
= (qp)

1−α
2 .

We conclude this section by observing the following
relationships:

D(−1)
I (p||q) = D(−1)

II (p||q) = K (p||q) (13)

=
∫
X p log(1/q)dx−

∫
X p log(1/p)dx

def
= C(p, q)− H (p).

Here, the first term, C(p, q), is the cross-entropy, and the sec-
ond term, H (p) = C(p, p), is the entropy. We note that,
in deep-learning techniques as in [19], the cross entropy
is used to examine the convergence of learning. Then,
p = pteacher corresponds to the teacher signal, and q = qoutput
is the model output.

III. RELATIONSHIPS OF TYPE-II α-DIVERGENCE with
log-EM ALGORITHM AND α-EM ALGORITHM
As seen above, there are certain relationships between Breg-
man divergence and α-divergence. However, it is important

to determine their usefulness in practice. Herein, we demon-
strate that Type-II α-divergence can be used to jointly derive
the α-EM [8] and log-EM algorithms [10].

A. ANOTHER EXPRESSION OF TYPE-II α-DIVERGENCE
We first derive the relationship of Type-II α-divergence with
Type-I α-divergence:

D(α)
II (p||q) = 2

1−αK (p||q)− 1+α
1−αD

(−α)
I (p||q). (14)

This can be obtained directly from (8) or by computing (12)
using the definitions in (10) and (11). The derivation is rather
lengthy and is provided in Appendix A.

Hereafter, we use conventional probabilistic notations:
p(x|ψ), p(x|ϕ), p(y|ψ), p(y|ϕ), and p(x|y, ψ), and p(x|y, ϕ).
Here, ψ and ϕ are parameters that define the forms of the
probability functions. For notational simplicity, the symbols
x, y, and z below are also used for the corresponding random
variables.

The random variable x = (y, z) is complete data, com-
prising incomplete data y and missing data z. By using this
relationship, we have

p(x|y, ψ) =
p(x|ψ)
p(y|ψ)

(15)

because the incomplete data y are partial information of the
complete data x. Here, the joint probability density p(x, y|ψ)
is denoted by p(x|ψ).

B. JOINT DERIVATION OF log-EM AND α-EM
We use Type-II α-divergence to compute the distance
between two conditional probability densities p(x|y, ϕ) and
p(x|y, ψ). As the notation of this divergence is rather cum-
bersome, we abbreviate it as

D(α)
II (p(x|y, ϕ)||p(x|y, ψ))

def
= D(α)

II (ϕ||ψ).

Similarly, Type-I α-divergence is abbreviated as D(α)
I (ϕ||ψ).

We begin with the computation ofD(α)
II (ϕ||ψ), and by (14),

we have

D(α)
II (ϕ||ψ)

=
2

1−αL
(−1)
y (ψ |ϕ)− 2

1−α

{ p(y|ψ)
p(y|ϕ)

}− 1−α
2 L(−α)y (ψ |ϕ)

−
2

1−αQ
(−1)
x|y,ϕ(ψ |ϕ)+

2
1−α

{ p(y|ψ)
p(y|ϕ)

}− 1−α
2 Q(−α)

x|y,ϕ(ψ |ϕ).

(16)

Here, the probabilistic quantities are as follows:

L(−α)y (ψ |ϕ) = L(−α)(p(y|ψ)p(y|ϕ)), (17)

Q(−α)
x|y,ϕ(ψ |ϕ) =

∫
X (y)

p(x|y, ϕ)L(−α)x (ψ |ϕ)dx. (18)

The region of integration X (y) is a subset of X that generates
the incomplete data y. The derivation of (16) is presented in
Appendix B.

We now use the relationship of Type-II and Type-I
α-divergence. By using (14) and (16) and changing −α to

24548 VOLUME 9, 2021

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

α, we have

L(−1)y (ψ |ϕ)− Q(−1)
x|y,ϕ(ψ |ϕ)− K (ϕ||ψ)

= {
p(y|ψ)
p(y|ϕ) }

−
1+α
2

[
L(α)y (ψ |ϕ)− Q(α)

x|y,ϕ(ψ |ϕ)

−
1−α
2 {

p(y|ψ)
p(y|ϕ) }

1+α
2 D(α)

I (ϕ||ψ)
]
. (19)

By L’Hôspital’s rule, we have L(−1)(r) = log r . Therefore,
the left-hand side of (19) is equal to zero. This is the basic
equation [8], [9] of the log-EM algorithm:

L(−1)y (ψ |ϕ) = Q(−1)
x|y,ϕ(ψ |ϕ)+ K (ϕ||ψ). (20)

The log-EM algorithm is derived by appropriately interpret-
ing this equation.

log-EM algorithm: To increase the incomplete-data like-
lihood p(y), the incomplete-data log-likelihood
ratio L(−1)y (ψ |ϕ) should be positive. As the
Kullback–Leibler divergence K (ϕ||ψ) is positive
before convergence, the positivity of L(−1)y (ψ |ϕ)
is achieved by maximizing the Q-function
Q(−1)
x|y,ϕ(ψ |ϕ) (and thus making it positive as well).

This continues by replacing ϕ with ψ until conver-
gence is attained.

We now have the following equation from (19) and (20):

L(α)y (ψ |ϕ) = Q(α)
x|y,ϕ(ψ |ϕ)+

1−α
2 {

p(y|ψ)
p(y|ϕ) }

1+α
2 D(α)

I (ϕ||ψ).

(21)

This is the basic equation for the α-EM algorithm.

α-EM algorithm: To increase the incomplete-data like-
lihood p(y), the incomplete-data α-log-likelihood
ratio L(α)y (ψ |ϕ) should be positive for α <

1. As the second term on the right-hand side
of (21) is positive before convergence, the posi-
tivity of L(α)y (ψ |ϕ) is achieved by maximizing the

Q-function Q(α)
x|y,ϕ(ψ |ϕ).

This continues by replacing ϕ with ψ until conver-
gence is attained. We note that the case α = −1 is
the log-EM algorithm. This is verified by using (4)
and (13).

Here, we note that (21) can also be derived by directly
computing Type-I α-divergence D(α)

I (ϕ||ψ) which measures
the divergence from p(x|y, ϕ) to p(x|y, ψ). Reference [8]
adopts this method and gives detailed experimental results on
Gaussian mixture distributions.

C. INCOMPLETE-DATA LIKELIHOOD RATIO
Equation (19) can be used to jointly derive the log-EM and
α-EM algorithms. Therefore, onemay consider the joint max-
imization of Q(α)

x|y,ϕ(ψ |ϕ) and Q(−1)
x|y,ϕ(ψ |ϕ). However, this

maximization is more complicated than that of Q(α)
x|y,ϕ(ψ |ϕ)

alone. In addition, the joint incomplete-data likelihood ratio
has the following property. Let r stand for p(y|ψ)

p(y|ϕ) . Then,
the function that corresponds to the joint incomplete-data

likelihood ratio is

w(r)
def
=

2
1−α log r + (2

1−α)
2(r−

1−α
2 − 1).

w(r) is such that dw(r)/dr = 0 at r = 1. Therefore, we use
the α-EM algorithm.

In the next section, we are concerned with the second
objective of our study, that is, the application of the α-EM
algorithm as an evaluator for graders. Before this, we high-
light the significance of the results that have obtained up to
this point.
(a) α-divergence and Bregman divergence are related

through probability skewing.
(b) This skewing leads to Type-I and Type-II α-divergence.
(c) Type-II α-divergence is important because it can

be used to jointly derive the α-EM and log-EM
algorithms.

(d) It is important to note that it is theoretically ensured
that the α-EM algorithm has fast convergence. The fast
convergence for the exponential family is theoretically
ensured by Corollary 8 in [8, p. 699]: There exists β∗

such that

−1 < α < β∗ < 1,

for which, the spectral radius inequality

ρ
(
−{∂20Q(α)

x|y,ϕ(ϕ|ϕ)}
−1
)
>ρ

(
−{∂20Q(−1)

x|y,ϕ(ϕ|ϕ)}
−1
)

holds. When a larger spectral radius is achieved,
the convergence of the α-EM algorithm is faster. The
right-hand side, that is, the case α = −1, corresponds
to the log-EM algorithm, which has slow convergence.
Here, we use the notation

∂ ijf (ϕ|ϕ)
def
=
∂ i+jf (ψ |ϕ)
∂ iψ ∂ jϕ

∣∣∣
ψ=ϕ

.

IV. APPLICATION OF α-EM ALGORITHM AS AN
EVALUATOR IN A BLOCKCHAIN ENVIRONMENT
Advances in information networks have made it possible
for anyone to update content. Consequently, large amounts
of raw data may be transferred over a network. However,
some of them may be unreliable. Herein, based on the results
of the previous sections, we use the α-EM algorithm as an
evaluator for data reliability. Here, the data to be evaluated
are grader reports. The critical point is that the quality of
the evaluators will be subject to further assessment, where
network nodes and blockchain environments with various
roles appear. Therefore, we begin with an explanation of the
network configuration.

A. CREDIT EVALUATION FOR DATA IN BLOCKCHAIN
ENVIRONMENT
We first explain the general structure for evaluating data reli-
ability in a blockchain environment. This system is illustrated
in Fig. 1. All elements are nodes constituting the internet
of collaborative things (IoCT) that can communicate with
each other. However, we omit irrelevant edges for simplicity.
We explain these nodes starting from the top in the figure.

VOLUME 9, 2021 24549

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

FIGURE 1. Blockchain network by nodes.

However, the evaluators and the judge have the main tasks
in this study. Here, evaluation is the qualification of graders
by machine learning. It should be recognized that evaluators
have different capabilities, and some may be manlike liars.
Thus, the central problem is to further determine the best
evaluator. The best evaluator identifies good graders.

The agents in Fig. 1 are as follows:

Committee:The committee controls the entire data evalu-
ation process: It grants permission to a bookmaker
to set a problem, store and pay digital rewards, and
ban nonlegal evaluators and miners from carrying
out their activities.

Bookmaker:Bookmakers set a problem in which a speci-
fied class of data with trustable grading is required.
They broadcast this problem and deposits digital
rewards (e.g., crypto assets) to the committee. Thus,
a bookmaker is a type of dynamic information bank.

Reporter: Reporters send raw data by crowdXing.2 We
regard the submission of objects, such as bottles of
wine, as raw data. Reporters receive digital rewards,
such as crypto-assets, according to the quality of
data.

Depot: If a bookmaker has insufficient storage as a raw
data collection point, he/she can borrow a depot by
paying a fee.

Grader: Graders provide rating scores on raw data.
Graders themselves are further evaluated. Good
graders receive digital rewards.

Evaluator: This study is primarily concerned with the
evaluation of grading data. Evaluators use machine
learning to evaluate the data from graders. Some
evaluators may be unreliable or may cheat. Good
evaluators identified by the judge receive digital
rewards. We compare the α-EM and log-EM algo-
rithms based on the discussion in Section III-B.

Judge: The judge assesses the evaluators on the basis of
their qualities. The judge sends a winning token to
a selected miner indicating the best evaluator. We
place a conscience mechanism there, i.e., a method
whereby repeatedly benefiting only specific miners
may be avoided. The judge reports the results to the
bookmaker and the committee. The judge receives a
digital reward from the committee for his/her tasks.

Miner: The miner who received the winning token gen-
erates a new block containing the entire data on the
bookmaking and digital reward flow. After updating
this blockchain as a new ledger, he/she reports its
completion to the committee and the bookmaker.
The miner also receives a digital reward from the
committee.

Before proceeding to the mathematical setting in the next
section, we make certain essential comments on the above
agents. As shown in Fig. 1, reporters may compile various
types of raw data. In the following sections, the raw data are
wines so that the terminology becomes straightforward. In
this situation, a grader is a sommelier who submits a grading
table for wines. The evaluators are machine learning algo-
rithms that classify the sommeliers according to the submitted
grading table. In this study, the evaluators are machine learn-
ing algorithms in the EM-family. Evaluators have strengths
and weaknesses: Some of them may act as human liars with-
out reasoning. The judge excludes liars, identifies superior
evaluators, and generates a token containing the data on the
winning evaluator. The miner who obtains the token can con-
duct mining. Therefore, we make the following assumptions.
(1) Evaluators and miners are the same agents, as shown

in Fig. 1. This simplifies the entire system without
losing generality. Each evaluator can become a miner
by preparing a command execution environment for
miner.start(minerID). If the evaluators do not
have mining ability, the winning evaluator will pass

2CrowdXing stands for crowd{funding, sending, sensing, sourcing, etc.}

24550 VOLUME 9, 2021

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

the winning token to the appropriate miner. In this
case, more space is required in Fig. 1 to describe the
communication paths.

(2) For fairness, no evaluator can serve concurrently as the
judge.

(3) The committee functions independently of the other
agents.

(4) Any agent can be a reporter to send raw data. Hence-
forth, the raw data will be referred to as wine for clarity.

B. PROBLEM FORMULATION AS SOMMELIER
EVALUATION
Let w ∈ W be a source data point by crowdXing. For
each w, each grader s ∈ S provides a grading score. Before
proceeding to the next step, we note the following:

(a) For more clarity, we regard the raw data point w as a
wine brand. A grader s is a sommelier. However, this
formulation can be applied to a more comprehensive
class of trust evaluation problems, as can be understood
from Fig. 1.

(b) For notational simplicity, we use the symbol W to
denote the cardinality of the raw datasetW . Similarly,
S denotes the cardinality of the dataset S.

To each wine w, the sommelier s assigns a grading score
a ∈ G. If s has little confidence in this grading, he/she can
report the score multiple times us ∈ Us for the same wine.
However, multiple reports are possible at the cost of a final
penalty.

1) INCOMPLETE DATA, MISSING DATA, AND CONFUSION
MATRIX
Sommelier s ∈ S tests wine w ∈ W , us times, to report its
grading y(s,us)(w). The set

y = {y(s,us)(w)}w∈W , s∈S, us∈Us
is the incomplete data to be evaluated. These incomplete data
become completed if the set of missing data is obtained:

z = {Ia(w)}w∈W , a∈G.

Here,

Ia(w) =

{
1 : If the grading a for wine w is true.
0 : Otherwise.

Thus, the complete data are x = {y, z}.
In the formulation of the trust evaluation problem, we use

a mixture of multinomial distributions. The notation is as
follows:

n(s)a (w) Number of times that the sommelier s reports
the grade a for wine w.

c(s)ab Probability that the sommelier s reports the
grade b, whereas grade a is valid.

πa Probability that grade a appears by reflecting
n(s)a (w).

ha(w) Estimation of Ia(w).

Furthermore, the confusion matrix of size G × G for each
sommelier s is

C (s)
= [c(s)ab]. (22)

The confusion matrix is important because sommelier evalu-
ation is based on this quantity.

By using the above definitions, we express the basic prob-
abilities for the estimation of the multinomial mixture distri-
bution. Let the probability of the tasting result y(s,us)(w) be

Pa(y(s,us)(w)) =
∏G

b=1{c
(s)
ab}

n(s)b (w).

Here, the unknown true grade of wine w is a. As c(s)ab are
probabilities, we have the constraint∑G

b=1 c
(s)
ab = 1.

However, there is no constraint on the number of tastings∑S
s=1 n

(s)
b (w).

2) COMPLETE- AND INCOMPLETE-DATA LIKELIHOOD
For the set of all sommeliers S, we have

Pa
(∏S

s=1
∏Us

u=1 y
(s,us)(w)

)
def
=
∏S

s=1
∏G

b=1{c
(s)
ab}

n(s)b (w) (23)

by assuming independence of s and b. Here, multiple tasting
us is considered in the number of gradings n(s)b (w).
As the grading is b instead of the unknown true grading

a, we use a mixture of multinomial distributions weighted by
πa = P(a) such that∑G

a=1 πaPa(
∏S

s=1
∏G

b=1 y
(s,us)(w))

=
∑G

a=1 πa

{∏S
s=1

∏G
b=1{c

(s)
ab}

n(s)b (w)
}
.

As each data point w is independent of the others,
the incomplete-data likelihood in the form of probability
becomes

P(y) =
∏W

w=1

[∑G
a=1 πa

{∏S
s=1

∏G
b=1{c

(s)
ab}

n(s)b (w)
}]
. (24)

The corresponding complete-data likelihood is

P(x) =
∏W

w=1
∏G

a=1{πaPa(w)}
Ia(w). (25)

We verify convergence by the incomplete-data likeli-
hood (24). However, its logarithmic form should be used to
avoid numerical underflow:

L(y) def= logP(y)

=
∑W

w=1 log
[∑G

a=1 πa

{∏S
s=1

∏G
b=1{c

(s)
ab}

n(s)b (w)
}]
.

(26)

3) DERIVATION OF α-EM ALGORITHM FOR THE EVALUATOR
Using the incomplete-data likelihood (24) and complete-data
likelihood (25), we can obtain the α-EM algorithm (21) for
the evaluation of the sommeliers. The α-log likelihood in (21)
is

L(α)y (ψ |ϕ) = L(α)y
(
P(y|ψ)
P(y|ϕ)

)
. (27)

Here, ψ stands for the parameters at the (`+1)-th itera-
tion, and ϕ refers to the parameters at the `-th iteration.

VOLUME 9, 2021 24551

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

The purpose of the α-EM algorithm is to make (27) positive,
so that the incomplete-data likelihood continues to increase.
This can be achieved by keeping Q(α)

x|y,ϕ(ψ |ϕ) positive for
α < 1. Here,

Q(α)
x|y,ϕ(ψ |ϕ) =

2
1+α {S

(α)
x|y,ϕ(ψ |ϕ)− 1}. (28)

The S-function is

S(α)x|y,ϕ(ψ |ϕ) = EP(x|y,ϕ)
[
{
P(x|ψ)
P(x|ϕ) }

1+α
2

]
. (29)

Here, EP(x|y,ϕ)[·] stands for the expectation by P(x|y, ϕ).
Then, the maximization of Q(α)

x|y,ϕ(ψ |ϕ) is equivalent to that

of S(α)x|y,ϕ(ψ |ϕ).

As we have the expression for the complete-data probabil-
ity (25), we express the S-function using the indicators for the
missing data as follows. Hereafter, we denote the true grade
by g because we use the indices a and b for dummy variables.

S(α)z|y,ϕ(ψ |ϕ)

= EP(z|y,ϕ)

{∏W
w=1

∏G
g=1{π

ψ
g Pψg (w)}Ig(w)∏W

w=1
∏G
g=1{π

ϕ
g Pϕg (w)}Ig(w)

} 1+α
2

=
∏W

w=1
∑G

g=1 hg(w)
{
π
ψ
g Pψg (w)
π
ϕ
g Pϕg (w)

} 1+α
2

. (30)

Here,

hg(w) = P
(
Ig(w) = 1

∣∣ ∏S
s=1 y

(s,us)(w), ϕ
)

=
πg
∏S

s=1
∏G

b=1{c
(s)
gb(ϕ)}

n(s)b (w)∑G
a=1 πa

∏S
s=1

∏G
b=1{c

(s)
ab(ϕ)}

n(s)b (w)
, (31)

where c(s)ab(ϕ) denotes c
(s)
ab under the probability parameter of

ϕ. The second equality in (31) follows from Bayes’ theorem.
In this equation, we denote the right-hand side by hg(w),
suppressing the symbol ϕ for notational simplicity. Comput-
ing (31) is the E-step.

For the α-EM algorithm, we should compute Pψg (w) and
Pϕg (w) in (30). This implies that Pa(w) in (23) is computed
using c(s)ab(ψ) and c

(s)
ab(ϕ), and then a is replaced by g. We

provide the details of this derivation in Appendix C.
Then, we proceed to the following:

S(α)z|y,ϕ(ψ |ϕ) =
∏W

w=1

{∑G
g=1 h

(α)
g (w)

}
def
=
∏W

w=1 V
(α)(w). (32)

Here,

h(α)g (w) = hg(w)
{
π
ψ
g Pψg (w)
π
ϕ
g Pϕg (w)

} 1+α
2

. (33)

We normalize h(α)g (w) to obtain

h̃(α)g (w) =
h(α)g (w)
V (α)(w)

(34)

so that ∑G
g=1 h̃

(α)
g (w) = 1. (35)

Therefore, the E-step of the α-EM algorithm comprises two
steps: The first is the computation of (31), which is the same
as the E-step of log-EM. The second is the computation
of (34), which is termed the A-step or acceleration step.

For the M-step, we apply direct differentiations including
Lagrange multipliers. In the update of πψg , we have

πψg =

∑W
w=1 h̃

(α)
g (w)

W
. (36)

For c(s)gb(ψ), we have

c(s)gb(ψ) =

∑W
w=1 h̃

(α)
g (w)n(s)b (w)∑W

w=1
∑G

a=1 h̃
(α)
g (w)n(s)a (w)

. (37)

We provide more details regarding the derivation of the
M-step, in addition to the E-step and A-step, in Appendix C.

Thus, we have the following α-EM steps.
[Update iterations for the α-EM algorithm]
E-step: Compute (31).
A-step: Compute (34). This step is omitted from the first

cycle, where we use hg(w) instead of h̃(α)g (w).
M-step1:Compute (36).
M-step2:Compute (37).
C-step: If convergence is achieved, then stop;

otherwise, go back to E-step.
Convergence is analyzed using the incomplete-data

log-likelihood (26). In addition to the log-likelihood, we use
the maximum ripple computed on the probabilities of hg(w),
π
ψ
g , and c(α)gb (ψ).

4) FACTORS OF SOMMELIER RANKING
The evaluator uses the confusion matrix (22), which is com-
puted by (37), to evaluate the sommeliers. The evaluator
computes the following Q(s) for each sommelier s:

Q(s) =
∑G

g=1

[
f1(g)

{∑G
b=1 f2(g, b)c

(s)
gb

}]
. (38)

Here, f1(g) is either 1 or πg, and f2(g, b) is either 1 or a weight
that reflects the distance from the diagonal position. The case
f1(g) = 1 and f2(g, b) = δgb is the trace of the confusion
matrix C (s) in (22). If a sommelier s tried multiple grading,
Q(s) is multiplied by a penalty factor.

V. VERIFICATION OF α-EM ALGORITHM BY NUMERICAL
DATA
A. PREPARATION OF RAW DATA AND GRADING TABLE
As discussed in the previous section, we use wines as raw
data. The Kaggle site [20] provides a large number of wine
brands from around the world and their reputation. However,
the following preprocessing steps are required.
(1) Removing textual comments.
(2) Rescaling the grades from 0 to 10. This corresponds to

the grades from 80 to 100 on the Parker scale. The range
from 0 to 10 (rather than from 0 to 20) is used owing to
memory limitations of conventional PC.

(3) As there are many wine brands on the Kaggle site, ran-
dom sampling is necessary. The triangular distribution

24552 VOLUME 9, 2021

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

of the source data should be maintained. Rare wine
brands of grade 10 should be included as long as the
triangular distribution is maintained.

By using the above conditions, we generated a grading table,
given the memory limitations of the PC. The PC used in the
experiments has a main memory of 8 GB and runs at 1.80×2
(effective speed: 2.39) GHz. Accordingly, we generated a
table with a size of W × S = 750 × 25 = 18, 750. We
note that the scalability of the α-EM algorithm on the mixture
of multinomial distributions is only due to the main memory
size.

B. ADAPTATION OF α-EM ALGORITHM TO DISCRETE DATA
When discrete data are handled, a zero-division check for the
numerical exception is necessary.

(a) If Pψg (w) = Pϕg (w) = 0, we update (33) by

h(α)g (w) = hg(w)(π
ψ
g /π

ϕ
g)(1+α)/2.

(b) If Pψg (w) > 0 and Pϕg (w) = 0, we use h(α)g (w) = hg(w)
for the update. This method corresponds to adopting
α = −1.

(c) In case of ill-conditioned tables with πg = 0, grade g
should be removed in advance. However, this is not the
case with the prepared data table.

C. SELECTING AND CONTROLLING α

The region α < 1 is the theoretically possible region. The
case α = −1 is the traditional log-EM algorithm. In the
discussion on the spectral radius, it was pointed out that
determining β∗ ∈ (−1, 1) is important to achieve fast conver-
gence of the α-EM algorithm (see III-C(d)). As β∗ depends
on empirical data, selecting and controlling the parameter α
is essential. This situation is common in any optimization
problem applied to empirical data. Among the four methods
provided, we recommend the dynamic tuning method.

1) CONSTANT α
This method, in which an α larger than -1 is selected, is the
simplest; however, it often fails. A large value of α may
cause go-and-back in the iteration of the algorithm, which
is common in any optimization problem. Then, the choice
α = 0, which corresponds to Hellinger-distance optimiza-
tion, becomes a plausible method. However, experiments
demonstrate that the speed gain is not as high as expected.

2) GREEDY SHOTGUN OR FULL SHOTGUN FOR PARALLEL α
Inspired by the constant-α method, we use parallelism on the
A-step and M-step in (34), (36), and (37). We prepare a set
of α such that A = {α0, α1, . . . , αN } in ascending order.
Here, α0 = −1. After completing the E-step in (31), we can
compute the {A, M}-steps in parallel. Then, the algorithm
selects an αn that yields the largest log-likelihood L(y). If
the log-likelihood L(y) becomes smaller than in the previous
cycle for any αn in A, we select α0 = −1. We term this
method greedy shotgun or full shotgun. In greedy shotgun,

the choice of αN is important. Regarding the size N , we
cannot provide a processor for each αn because that system
is quite expensive. Therefore, we select αN < 1 for the
level of the multi-core PC. If we insist on αN = 1, then the
speed gain diminishes. If this choice is not properly made,
the greedy shotgun may be problematic. This is investigated
in the experiments.

3) ORDERED SHOTGUN METHOD
The ordered shotgun method also uses the set A =

{α0, α1, . . . , αN }, which is in ascending order. In this case,
α0 = −1 and αN ≤ 1. In this method, we begin with α = αN .
If the log-likelihood L(y) from the previous cycle increases,
we accept this α; otherwise, we decrease α to αN−1, and so
on. In this method, we can observe the following:

(a) Unlike in the case of the greedy shotgun, the selected
α may not maximize L(y) best among A; however,
it increases the likelihood.

(b) The necessary computational resources are far less than
for the greedy shotgun method because this method is
sequential.

(c) We can begin with αN = 1. However, an appropriately
selected αN < 1 leads to faster convergence because
changes to α become less frequent.

4) DYNAMIC TUNING
As the log-likelihood L(y) is checked at each iteration, it is
possible to tune the parameter α dynamically. If L(y) is
decreased by the previous iteration by a large α, it becomes
necessary to reduce its value.We perform this dynamic tuning
of α as follows: We first select αmax and αmin. If L(y) is
increased or retained, we accept this cycle and increase α by

α := α + η(αmax − α) (39)

for the next iteration. Here, we select η ∈ (0, 1) as a
pre-specified design parameter. If L(y) is decreased, we
recompute the A-step of this cycle using αmin. The experi-
ments demonstrate that using αmax = 1, αmin = −1, and
η = 0.1 leads to a remarkable speed increase.

D. EXPERIMENTS ON SOMMELIER EVALUATION
The log and α-EM algorithms were used as evaluators for the
prepared dataset. Although the log-EM algorithm is a special
case of α = −1, we considered this case independently.
Therefore, we can fairly compare the performance of the EM-
family {log, constant α, greedy shotgun, ordered shotgun,
dynamic tuning}.

1) PRACTICAL SETTINGS FOR EXPERIMENTS
In the experiments, we set standard rules for a fair compari-
son.

(a) Regarding the initial value for the 0-th E-step, we use

hg(w) =

∑S
s=1 n

(s)
g (w)∑G

b=1
∑(s)

s=1 n
(s)
b (w)

. (40)

VOLUME 9, 2021 24553

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

FIGURE 2. Comparison of convergence speed.

(b) We set the numeric convergence criterion as follows:
We first select a window size of L for the iterations; for
example, L = 3. Then, we verify whether both of the
following criteria are satisfied:

(1) We determine whether the following inequality
holds for iterations ` > L:

Lavg =
∣∣∣∣ L` − L`−L
L(L` − LL)

∣∣∣∣ < εL (41)

Here, εL is a prespecified small positive number.
(2) We apply a similar criterion for the convergence

of probabilities. We verify whether the ripples
of the probabilities πa, ha(w), and c

(s)
ab are suffi-

ciently small. Let p` stand for these probabilities
at cycle `. Then, we determine whether the fol-
lowing inequality holds:

max |p`/p`−1| < εP (42)

Here, εP is a prespecified small positive number.

2) EXPERIMENTS ON NUMBER OF ITERATIONS
After these preparations, we conducted evaluator comparison
experiments. Fig. 2 shows the convergence speed in terms
of the number of iterations. The horizontal axis is the scale
for the number of iterations. The vertical axis corresponds
to the incomplete-data log-likelihood L(y) in (26). As it is
the logarithm of the probability, the axis values are negative.
Larger values imply better optima.

There are six curves, or six evaluators. At the end of
each curve, we indicate the required number of iterations
as a numeral. There are three types of constant α and
three types of adjusting α. In the constant case, we con-
sider the cases α = {−1, 0, 1}. The log-EM corresponds
to α = −1. However, we considered this case independently
of the α-EMs because it provides the baseline for every com-
parison. In the case of varying α, we consider the methods of
{greedy, ordered}-shotguns and dynamic tuning.

From the experimental results shown in Fig. 2, we observe
the following regarding the required number of iterations and
converged log-likelihood. We note that these results were

obtained with additional experiments that are not shown in
the figure.

Log-EM (207 cycles): Convergence is slow even for the
discrete-value evaluation problem. Although the
common initial value in (40) is reasonable, the con-
verged log-likelihood is inferior to that of the
α-EMs.

Constant α = 0 (127 cycles): We experimented with
the case α = 0 because it corresponds to
Hellinger-distance optimization. This distance
measures the square of the difference between
two square-root probabilities. This case involves
a smaller number of iterations than log-EM. The
converged log-likelihood is close to that of log-
EM. A few decreases in the log-likelihood occurred
during the iterations.

Constant α = 1 (147 cycles): As the constant α = 1 is
the critical value for convergence, we use this result
only for reference. The converged log-likelihood is
better than that of log-EM and α = 0. However,
the number of required cycles is greater than for
α = 0. This is because frequent decreases in the
log-likelihood caused re-computations by α = −1,
thus adding cycles. The findings of this experiment
led to the following methods for α-adjusting.

Greedy shotgun (81 cycles): This method is the first step
for improving the defects of the constant α = 1. As
explained in Section V-C2, we prepared the param-
eter set A with equally spaced elements of N = 7.
We always selected α0 = −1, that is, the case log-
EM. In the initial experiments, we selected a larger
αN close to 1. In these cases, log-likelihoods infe-
rior to those of log-EM were observed. Therefore,
we selected αN = 0.5 so that −1 ≤ α ≤ 0.5. This
case outperformed log-EM by far in terms of both
iteration cycles and the converged log-likelihood.
However, the actual advantage is seen if N paral-
lel processors with little communication delay are
provided.

Ordered shotgun (91 cycles): This method is an improve-
ment of the greedy shotgun so that αN = 1 is
allowed. If the choice of αN yields a log-likelihood
decrease, the parameter becomes αN−1, and so on.
The number of iterations is slightly higher than that
of the greedy shotgun; however, it is better than that
of log-EM by far. The converged log-likelihood is
close to the value for the greedy shotgun, which is
better than for log-EM.

Dynamic tuning (57 cycles): An improvement of the
ordered shotgun is dynamic tuning. This method
relaxes the preselection ofA in the ordered shotgun
method. In the tuning method, the set A becomes
the entire region [−1, 1] without requiring parallel
processors. The only preselection is on the recov-
ery rate of η = 0.1 for α. Convergence speed
is the highest among the methods in Fig. 2. The

24554 VOLUME 9, 2021

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

converged log-likelihood is inferior to that of the
ordered shotgun method but better than that of
log-EM. The round-corner rectangle region shown
in Fig. 2 indicates the effective area that gives the
same opinion on the sommeliers. We explain the
evaluation method related to the blockchain envi-
ronment below. The pseudo code for dynamic tun-
ing in C-language style is provided in Appendix D.

E. COMPARISON OF CPU TIME
If the computational complexity of the α-EM algorithms far
exceeds that of log-EM, the speed gain in terms of the number
of iterations shown in Fig. 2 will be lost. However, this is
not an issue even for serial computing PCs. The following
experiments support the advantages of the ordered shotgun
and dynamic tuning methods.

We note that the number of required iterations remains the
same, as shown in Fig. 2. However, actual run time varies
even for fixed programming code. This fluctuation is due to
the processing speed of the program depending on the OS
status. Therefore, we used an average time of 10 runs for each
method, and observed the following.

Log-EM: The average runtime was 8601.8 ms for 207 iter-
ations. Therefore, the average run time for one cycle
was 8601.8/207=41.55 ms. We used this value as a
baseline for comparison with the α-EM algorithms.

Constant α = 0:This case required 5400.9 ms for 127 iter-
ations. The speed gain as measured by runtime over
log-EM was 1.593. One cycle required 42.53 ms.

Constant α = 1:This case required 6668.4 ms for 147 iter-
ations. The speed gain as measured by run-
time over log-EM was 1.290. One cycle required
45.36 ms. Thus, the one-cycle overhead to
log-EM was approximately 6% because (42.53 +
45.36)/2/41.55 = 1.058. Therefore, the overhead
determined using the A-step was negligible com-
pared with the speed gain of α-EM.

Greedy shotgun: This method implemented by a serial
processor exhibited no benefits. The speedup ratio
was 0.642, which is inferior to that of log-EM.How-
ever, CPU time by simulated parallel processing
exhibited a speed increase ratio of 3.353 over log-
EM.

Ordered shotgun: This method with αN = 1 converged
after 91 iterations, which required 7532.0 ms. One
cycle required 80.79 ms, which is approximately
twice as much as the time required by log-EM. The
reason is that the decrease from αn to αn−1 occurs
in several cycles. However, the speed increase ratio
was 8601.8/7352.0 = 1.170 over log-EM. By
selecting αN = 0.5, convergence was attained
after 74 iterations, which required 3406.3 ms. Then,
the speed increase ratio was 8601.8/3406.3 =
2.525. This value is close to the upper bound
207/74 = 2.797, which is the speed increase ratio

in terms of iteration count. This observation led to
the dynamic tuning method.

Dynamic tuning: This method required 2574.0 ms
until convergence after 57 iterations. There-
fore, the speed increase ratio over log-EM was
8601.8/2574.0 = 3.342. This number is close to
207/57 = 3.632, which is the upper bound of
the speed increase in terms of the iteration number
in Fig. 2. In addition, the one-cycle overhead to
log-EM was approximately 9%, arising from the
ratio 45.16/41.55 = 1.087. This overhead was
negligible compared with the speed gain.

F. PREPARATION FOR ASSESSMENT
For each evaluator, there are two more steps after the conver-
gence of the algorithm.

(1) Each evaluator, for example e, prepares reporting data
as follows:

D(e)
=

{
L(y), {πa}Ga=1, {c

(s)
ab}

G
a=1

G
b=1,

{n(s)b (w)}Gb=1
W
w=1,

{tstart , tend , fth}
}(e)

.

Here, tstart and tstart are timestamps [21] that indicate
the algorithm execution. fth is the theoretical FLOPS of
the computer used by the evaluator:

fth = (CPU clock freqency)

×(# of operations/clock)× (# of CPUs).

The evaluator e performed

te = (tend − tstart)× fth

theoretical floating-point operations.
(2) The evaluator e generates a pair of a public key K(e)

pub

and its secret key K(e)
sec. Then, by using a hash function

H (·) and the secret key K(e)
sec(·), the evaluator e gener-

ates an encrypted hash value3:

H(e)
= K(e)

sec(H (D(e))).

The evaluator e sends the pair of data (D(e),H(e)) to the
judge, as shown in Fig. 1.

VI. PROOF-OF-REVIEW FOR MINER ASSIGNMENT IN
BLOCKCHAIN BY JUDGING EVALUATOR COMPETENCE
As shown in Fig. 1, the judge is the last part of the selection
process for the champion evaluator. As each evaluator has
mining ability, the main task of the judge is to identify the
best evaluator, who is also the miner.We use the PoR strategy,
which is a type of PoS.

A. SCRUTINY OF TRANSMITTED DATA
The judge makes two levels of checks to the data sent from
evaluators.

3The evaluator e can use the Linux command openssl to generate a
pair of cryptographic keys {K(e)

pub, K
(e)
sec}, and to hash by sha256sum and

rmd160.

VOLUME 9, 2021 24555

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

1) COUNTERMEASURES AGAINST SPOOFING
In a network environment, an impersonation check is nec-
essary. We assume that the judge received the dataset
(D(e),H(x)) from person x who claims to be evaluator e. Then,
the judge performs Diffie–Hellman authentication [22] using
the public key of the evaluator. The judge computes

T̃ = K(e)
pub(H

(x)).

If T̃ = H (D(e)), the nominal evaluator x is the authentic
evaluator e. If this equality does not hold, the data-sender
impersonates the evaluator.

2) INSPECTION OF FORGED DATA
Authenticated evaluators could have sent forged data to the
judge. The judge can detect counterfeit data as follows.

(1) Through correctness of convergence: The judge re-
computes the incomplete-data log-likelihood (26). If
the result matches the sent data, the data are correct;
otherwise, the data are fabricated. We know that real-
izing a good log-likelihood value under floating-point
computation is machine learning itself.

(2) Through correctness of computing time (tstart and tend):
The timestamp [21] becomes a certificate.

B. IDENTIFICATION OF WINNING EVALUATOR
To explain the best evaluator identification method, a set of
evaluators should be examined by the judge. We have a group
of evaluators with six datasets obtained by the experiments
in Fig. 2.

1) ASSESSMENT FACTORS
Let Epassed = {E1, · · · ,Ee, · · · ,EM } be the evalua-
tors who passed the authentication and forging check of
Section VI-A2. The assessment criterion is a combination of
the achieved log-likelihood and computing speed. It consists
of five steps:

Step 1: Compute the normalized log-likelihoods:

L(y)e =
maxj L(y)j − L(y)e

maxj L(y)j −minj L(y)e
∈ [0, 1].

Here, e stands for Ee for notational simplicity, and
the same is true for j. A smaller value implies better
log-likelihood.

Step 2: Compute the normalized operation count, which is
a measure of the relative operation count:

te =
te −minj tj

maxj tj −minj tj
∈ [0, 1].

A smaller value implies a better score.
Step 3: Using a prespecified β, the judge computes the

following combination:

re = βeL(y)e + (1− β) te. (43)

Step 4: The judge imposes a handicap using a conscience
mechanism [23] if there are sufficiently many past

applications:

qe =
(# of past wins by e)+ 1
(# of past entries by e)+ 1

,

he = qe/6jqj. (44)

Step 5: The judge selects the winning evaluator by

w = argmin
e∈Epassed

(here). (45)

2) SOMMELIER SPECIFIED BY WINNING EVALUATOR
Aswas specified by (38), each sommelier s (a grader in Fig. 1)
provides the confusion matrix (22). Only the winning evalu-
ator can provide the ordering of the sommeliers using these
confusion matrices {C (s)

}
S
s=1. The diagonal elements of these

matrices indicate correct estimation for each grade g. For
each g, the number of wines differs. Therefore, we weight
each element of the confusion matrix by f1(g) = πg. Regard-
ing the selection of f2(g, b), we examine two cases. The first
is f2(g, b) = δgb, in which only correct answers are credited.
The second is to provide a weight that becomes smaller as
the distance from the correct answer increases. Through these
experiments, we arrive at the following conclusions:

(1) The first method, which counts only the correct
answers, is better than the second. By using the second
method, the weighting f2(g, b) indicates the tolerance
of the examiner and the arbitrariness of the champion.
Therefore, we select the first method: f1(g) = πg and
f2(g, b) = δgb.

(2) In the experiments shown in Fig. 2, log-EM failed to
identify the champion and runner-up sommeliers who
were selected by the α-EM methods. This is observed
when both the first and the second method described
above (1) are used. Therefore, in Fig. 2, we specified
a round-corner rectangle region. We accept only the
sommelier ordering reported by good evaluators in that
region.

C. ISSUANCE OF WINNING TOKEN
The final task for the judge is to issue a winning token to
the best evaluator based on (45). This method is PoR, which
is a type PoS. The winning token comprises the following
information:

I = {CommitteeID, BookmakerID, ProblemID,

JudgeID, BestEvaluatorID,

BestGraderID and its Grading Table}.

Communication related to the winning token is subject to
the Diffie–Hellman authentication method, as explained in
Sections V-F and VI-A.

D. MINING AND SUBSEQUENT INSPECTIONS
An eligible miner is the winning evaluator who receives the
winning token from the judge. This miner adds a block of data
I as a ledger to the blockchain. Then, we reach the final stage
of the entire procedure.

24556 VOLUME 9, 2021

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

Report:Upon receiving the completion of the blockchain
operation, the judge reports the successful evalua-
tion to the committee and bookmaker.

Payment: The bookmaker pays digital rewards to {com-
mittee, depot, best-grader, best-evaluator, judge,
miner, reporters}, using the funds deposited to the
committee.
Normally, this stage is the end of the procedure.

Nothing-at-Stake attack:There could exist an unpaid mali-
cious miner who attempts to add a wrong ledger. If
this occurs, the committee adds a block indicating
that the wrong ledger is invalid. The committee
deprives this miner of mining rights and confiscates
any deposits.

E. FINDINGS FROM ASSESSMENT EXPERIMENTS
1) ASSESSMENT OF THE BEST EVALUATOR
We use β = 0.5 in (43), which considers the normalized
log-likelihood and the normalized operation count equally.
We use he ≡ 1 in (44) because of the first bookmaking. Then,
the tuning α-EM method is the best evaluator. It reported
that the sommelier with ID-number 8 is the most reliable,
who is the sommelier that is recognized by the majority of
the evaluators. Exceptions are constant-α with α = 0 and
log-EM, which reported that the sommelier with ID-number
4 would be the best. However, log-EM is the worst evaluator;
it lost the competition because of the slow convergence to an
inferior optimum.

2) ONE-WAY PROPERTY
In Section VI-A2, illegal data were detected by using the
compatibility of L(y) with {πa}Ga=1 and {C (s)

}
S
s=1. We now

construct counterfeit data that would pass this compatibility
test. This process comprises two steps:

Step 1: Select a desirable numerical value for L(y) that
would be the champion recognized by the judge.

Step 2: Determine {πa}Ga=1 and {C
(s)
}
S
s=1 that generateL(y)

using (26).
If the above steps were possible, the set
{L(y), {πa}Ga=1, {C

(s)
}
S
s=1} reported to the judge could pass

the check for data forging. The reverse authentication process
from the above Step 2 to Step 1 using (26) is easy. How-
ever, there exists a one-way property: The computation in
Step 2 after the constraint in Step 1 requires an excessively
large amount of computational power. This process requires
the floating-point computation of the order of ‘‘2 to the
double-precision bits.’’ If someone could succeed in this task,
the judge would accept the result as valid. However, the esti-
mation method for {{πa}Ga=1, {C

(s)
}
S
s=1} in this study is signif-

icantly faster and can overcome the aforementioned method.

VII. CONCLUSION
We investigated the interrelationships among three topics.
The first is the compatibility of divergence families by skew-
ing probability spaces, presenting a new α-divergence. This
α-divergence led to the joint derivation of the log-EM and

α-EM algorithms. The second is the utilization of the α-EM
algorithm for further evaluation of graders by reviewing their
grading tables. We modeled this problem using a mixture
of multinomial distributions. The α-EM algorithm clearly
outperformed the log-EM algorithm. The third is the use of
the α-EM algorithm for consensus-building in mining. This
method is termed PoR because of the computational review
process for the judgment of the evaluators.

We focused on sommelier evaluation to avoid lengthy
terminology. However, we can apply this trust measurement
formulation to various types of counting data exchanged over
a network. In this sense, we realized a dynamic informa-
tion bank.

APPENDIX A
DERIVATION OF THE RELATIONSHIP BETWEEN TYPE-I
AND TYPE-II α-DIVERGENCES
We start from (14) of the case α 6= 1.

D(α)
II (p||q) = (2

1−α)
2
∫
X p{(qp)

1−α
2 − log(qp)

1−α
2 − 1}dx

= (2
1−α)

2
∫
X p{(qp)

1−α
2 − 1}dx

+
2

1−α

∫
X p log(pq)dx

=
2

1−α

∫
X p log(pq)dx

−
1+α
1−α

4
1−α2
{1−

∫
X p(qp)

1−α
2 }dx

=
2

1−αK (p||q)− 1+α
1−αD

(−α)
I (p||q).

The second term vanishes through the substitution α = −1.
The case α = +1 follows by using L’Hôspital’s rule.

APPENDIX B
RELATIONSHIPS AMONG TYPE-II α-DIVERGENCE AND
LIKELIHOOD RATIOS
We first compute K (p(x|y, ϕ)||p(x|y, ψ))

def
= K (ϕ||ψ), which

is the Kullback–Leibler divergence of (9). For the case α 6= 1,
we have

2
1−αK (ϕ||ψ)

=
2

1−α log
p(y|ψ)
p(y|ϕ) −

2
1−α

∫
X (y) p(x|y, ϕ) log

p(x|ψ)
p(x|ϕ) dx

(B.1)

because of (15). Similarly, we have the following equality:
1+α
1−αD

(−α)
I (ϕ||ψ)

= (2
1−α)

2[1− { p(y|ψ)p(y|ϕ) }
−

1−α
2]

− (2
1−α)

2
{
p(y|ψ)
p(y|ϕ) }

−
1−α
2
∫
X (y) p(x|y, ϕ)[{

p(x|ψ)
p(x|ϕ) }

1−α
2 − 1]dx.

(B.2)

Then, by subtracting (B.2) from (B.1), we have

D(α)
II (ϕ||ψ)

=
2

1−αL
(−1)
y (ψ |ϕ)− 2

1−α

{ p(y|ψ)
p(y|ϕ

}− 1−α
2 L(−α)y (ψ |ϕ)

−
2

1−αQ
(−1)
x|y,ϕ(ψ |ϕ)+

2
1−α

{ p(y|ψ)
p(y|ϕ

}− 1−α
2 Q(−α)

x|y,ϕ(ψ |ϕ)

by (14).

VOLUME 9, 2021 24557

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

APPENDIX C
DERIVATION OF E-STEP, A-STEP, AND M-STEP
A. DERIVATION OF E-STEP AND A-STEP
The derivation of E-step or (31) follows [11]. By using Bayes’
theorem applied to the first line of (31), we have

hg(w) = P1P2/P3.

Here,

P1 = P
(∏S

s=1
∏Us

u=1 y
u(w)|Ig(w)

)
=
∏S

s=1
∏Us

u=1 Pg(y
(u)(w)),

P2 = P(Ig(w) = 1) = πg,

and

P3 =
∑G

a=1 πa
∏S

s=1
∏Us

u=1 Pa(y
(u)(w)).

As

Pa(y(u)(w)) =
∏G

b=1{c
(s)
ab(ϕ)}

n(u)b (w),

we have∏Us
u=1 Pa(y

(u)(w)) =
∏G

b=1{c
(s)
ab(ϕ)}

6
Us
u=1n

(u)
b (w)

=
∏G

b=1{c
(s)
ab(ϕ)}

n(s)b (w).

Therefore, we obtain the E-step in (31) by substituting the
obtained expressions of P1, P2, and P3.
The A-step (34) is the normalization of h(α)g (w) by V (α)(w).

We compute h(α)g (w) in (33) using (23), and we obtain

Pψg =
∏S

s=1
∏G

b=1{c
(s)
gb(ψ)}

n(s)b (w).

Pϕg has the same form as above except for ψ . As V (α)(w) has
the form in (32), we compute

V (α)
=
∑G

g=1 h
(α)
g (w).

Thus, we can compute the A-step in (34).

B. DERIVATION OF M-STEP FOR πψg
We start from the following differentiation for the
maximization:

∂

∂π
ψ
g

{
Q(α)
z|y,ϕ(ψ |ϕ)+ λ(

∑G
j=1 π

ψ
j − 1)

}
= 0.

Then, we have

2
1+α

∂S(α)z|y,ϕ (ψ |ϕ)

∂π
ψ
g
+ λ = 0 (C.1)

because of (28). For the computation of
∂S(α)z|y,ϕ (ψ |ϕ)

∂π
ψ
g

, we start

from the logarithm of S(α)z|y,ϕ(ψ |ϕ), which we denote by S(α)

here.
From (32), we have

log S(α) =
∑W

w=1 logV
(α)(w).

Therefore, differentiating with respect to πψg and multiplying
by S(α) yield

∂S(α)

∂π
ψ
g
= S(α)

∑W
w=1

1
V (α)(w)

∂V (α)(w)
∂π

ψ
g
.

One of the factors on the right-hand side is

∂V (α)(w)
∂π

ψ
g
=

1+α
2

h(α)g (w)

π
ψ
g
.

Therefore, by the definition of h̃(α)g (w) of (34), we have

∂S(α)(w)
∂π

ψ
g
=

1+α
2

S(α)

π
ψ
g

∑W
w=1 h̃

(α)
g (w). (C.2)

Then, by using (C.1) and (C.2), we have

S(α)
∑W

w=1 h̃
(α)
g (w)+ λπψg = 0.

By summing over g and using (35), we have

λ = −S(α)W .

Therefore, we have the update equation (36).

C. DERIVATION OF M-STEP FOR c(s)
gb (ψ)

Here, c(s)gb(ψ) refers to the updated version of c
(s)
gb(ϕ). We start

from the following differentiation for maximization:

∂

∂c(s)gb (ψ)

{
Q(α)
z|y,ϕ(ψ |ϕ)+ λ(

∑G
a=1 c

(s)
ga(ψ)− 1)

}
= 0.

Then, we have
2

1+α
∂S(α)(ψ |ϕ)
∂c(s)gb (ψ)

+ λ = 0

from (28). By differentiating log S(α), we have

∂S(α)

∂c(s)gb (ψ)
= S(α)

∑W
w=1

1
V (α)(w)

∂V (α)(w)
∂c(s)gb (ψ)

.

To compute the right-hand side of (37), we start from the
differentiation of logV (α)(w). Then, we have

1
V (α)(w)

∂V (α)(w)
∂c(s)gb (ψ)

=
1+α
2 h̃(α)g (w) ∂

∂c(s)gb (ψ)
logPψg (w)

=
1+α
2 h̃(α)g (w)

n(s)b (w)

c(s)gb (ψ)
.

Therefore, we have

S(α)
∑W

w=1 h̃
(α)
g (w)n(s)b + λc

(s)
gb(ψ) = 0. (C.3)

By using
∑G

b=1 c
(s)
gb(ψ) = 1, we have

λ = −S(α)
∑W

w=1
∑G

b=1 h̃
(α)
g (w)n(s)b (w)

= −S(α)
∑W

w=1
∑G

a=1 h̃
(α)
g (w)n(s)a (w). (C.4)

By substituting (C.4) into (C.3) and by cancelling out S(α),
we have the update equation (37) in the main text.

APPENDIX D
PSEUDO CODE OF DYNAMIC-TUNING α-EM
We provide a simple code to understand the dynamic tuning
α-EM quickly. Here, we suppressed various control key-
words, such as while, continue, and break.

#define W, S, G // array sizes
#define T, L // constants
#define EPSL, EPSD // for convergence check
int t_start, t_end; // for clock()
short table[W][S], nwsb[W][S][G], penalty[S];
int main() {
fopen input and output files;
prepare local variables in main();

24558 VOLUME 9, 2021

Y. Matsuyama: Divergence Family Contribution to Data Evaluation in Blockchain via Alpha-EM and Log-EM Algorithms

/* data preparation */
read sommelier table as input data;
count nwsb[w][s][b];
multiple tasting penalty[s]++, if~exists;
input alpha_max, alpha_min;
input alpha_adj, start_alpha;
t_start=clock(); // clock start
intitial value assignment by (40);
/* main loop */
for(count=0; count<=T; count++) {
// initial cycle
if(count==0) use \text{log-EM} by (31), (36), (37);
/* \text{alpha-EM} starts from count==1 */
if(count>=1) {
compute \text{E-step} by (31);
compute lkhd[count] by (26);
/* convergence check if count>L */
if(count>L) {
compute lkhd_ratio by (41);
if(lkhd[count] decreased)
alpha=alpha_min;
compute max_pdist by (42);
convergence check by (41) and (42);
if((convergence achieved) {
CONVCOUNT=count;
t_end=clock(); // clock end
compute sommelier evaluation;
penalize multiple tastings;
sorting by descending order;
print out results;
exit(0);
}
} // end of if(count>L)
compute \text{A-step} for count>=1 by (34);
compute \text{M-step} by (36) and (37);
increase alpha by (39);
} // end of each cycle of the alpha-EM
} // end of all iterations
// No convergence (this case did not occur)
printf("No convergence. T~is over!\n");
exit(0);
}

REFERENCES
[1] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.

Tech. J., vol. 27, no. 3, pp. 379–423, Jul./Oct. 1948.
[2] S. Kullback and R. A. Leibler, ‘‘On information and sufficiency,’’ Ann.

Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.
[3] A. Rényi, ‘‘Onmeasures of entropy and information,’’ inProc. 4th Berkeley

Symp. Math. Statist. Probab., vol. 1, 1961, pp. 547–561.
[4] S. M. Ali and S. D. Silvey, ‘‘A general class of coefficients of divergence of

one distribution from another,’’ J. Roy. Stat. Soc., Ser. B Methodol., vol. 28,
no. 1, pp. 131–142, Jan. 1966.

[5] I. Csiszár, ‘‘Information-type measures of difference of probability distri-
butions and indirect observations,’’ Studia Sci. Math. Hungarica, vol. 2,
pp. 299–318, Jan. 1967.

[6] L. M. Bregman, ‘‘The relaxation method of finding the common point of
convex sets and its application to the solution of problems in convex pro-
gramming,’’ USSR Comput. Math. Math. Phys., vol. 7, no. 3, pp. 200–217,
Jan. 1967.

[7] S. Amari and H. Nagaoka,Methods Inf. Geometry, Tokyo, Japan: Iwanami,
1993.

[8] Y. Matsuyama, ‘‘The α-EM algorithm: Surrogate likelihood maximization
using α-logarithmic information measures,’’ IEEE Trans. Inf. Theory,
vol. 49, no. 3, pp. 692–706, Mar. 2003.

[9] Y.Matsuyama, ‘‘The alpha-HMM estimation algorithm: Prior cycle guides
fast paths,’’ IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3446–3461,
2017.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood from
incomplete data via the EM algorithm (with discussions),’’ J. Roy. Statist.
Soc. B Methodol., vol. 29, pp. 1–38, Sep. 1977.

[11] A. P. Dawid and A. M. Skene, ‘‘Maximum likelihood of observer error-
rates using the EM algorithm,’’ Appl. Statist., vol. 28, no. 1, pp. 20–28,
1979.

[12] J. Wang, M. Li, Y. He, H. Li, K. Xiao, and C. Wang, ‘‘A blockchain based
privacy-preserving incentive mechanism in crowdsensing applications,’’
IEEE Access, vol. 6, pp. 17545–17556, 2018.

[13] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, ‘‘Proof-of-Stake consensus mechanisms for future
blockchain networks: Fundamentals, applications and opportunities,’’
IEEE Access, vol. 7, pp. 85727–85745, 2019.

[14] Y. Matsuyama, ‘‘Divergence family attains blockchain applications via
α-EM algorithm,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris,
France, Jul. 2019, pp. 727–731.

[15] R. Gray, A. Buzo, A. Gray, and Y. Matsuyama, ‘‘Distortion measures for
speech processing,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. 28,
no. 4, pp. 367–376, Aug. 1980.

[16] Y. Matsuyama and R. Gray, ‘‘Voice coding and tree encoding speech
compression systems based upon inverse filter matching,’’ IEEE Trans.
Commun., vol. 30, no. 4, pp. 711–720, Apr. 1982.

[17] B. D. Sharma and D. B. Mittal, ‘‘New non-additive measure of entropy for
discrete probability distributions,’’ J. Math. Sci., vol. 10, pp. 28–40, 1975.

[18] S.-I. Amari, ‘‘α-divergence is unique, belonging to both F-divergence and
bregman divergence classes,’’ IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 4925–4931, Nov. 2009.

[19] F. Chollet, Deep Learn. with Python. Shelter Island, NY, USA: Manning
Publications, 2018.

[20] Z. Thoutt. Wine Reviews. Accessed: Nov. 2018. [Online]. Available:
https://www.kaggle.com/zynicide/wine-reviews/version/4

[21] H. Massias, S. Avila, and J.-J. Quisquater, ‘‘Timestamp: Main issues on
their use and implementation,’’ in Proc. IEEE Int. Workshop Enabling
Technol., Infrastruct. Collaborative Enterprises, Stanford CA, USA,
Jun. 1999, pp. 178–183.

[22] W. Diffie andM. Hellman, ‘‘New directions in cryptography,’’ IEEE Trans.
Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[23] DeSieno, ‘‘Adding a conscience to competitive learning,’’ in Proc. IEEE
Int. Conf. Neural Netw., San Diego CA, USA, 1988, pp. 117–124.

YASUO MATSUYAMA (Life Fellow, IEEE)
received the B.Eng. and M.Eng. degrees and the
Dr.Eng. degree in stochastic neural signal process-
ing fromWaseda University, Japan, in 1969, 1971,
and 1974, respectively, and the Ph.D. degree in
data compression theory and practice from Stan-
ford University, Stanford, CA, USA, in 1978.
He was granted a JSPS–Fulbright–IIE US–Japan
Exchange Fellowship. Since 1996, he has been
with Waseda University, where he is currently a

Professor Emeritus and an Honorary Researcher. He was with the National
Personnel Authority as a Co-Chairperson of the governmental personnel
selection, in 1994. His research interests include statistical machine learning
theory and its applications to the Internet of Collaborative Things. He is a
Fellow of IEICE and IPSJ. He received the Outstanding Paper Award from
the IEEE on the Transactions on Neural Networks, in 2001, and the Best
Paper Award from the ACM-IEEE at the International Conference on Soft
Computing as Transdisciplinary Science and Technology (CSTST), in 2008.

VOLUME 9, 2021 24559

