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ABSTRACT This paper proposes a novel fault classification method with application to induction motors, 

which is based on integrating and combining with receiver operating characteristic (ROC) curve and t-

distribution stochastic neighbor embedding (t-SNE). According to the feature selection methods of ReliefF, 

symmetrical uncertainty (SU), and fast correlation-based filter (FCBF), the significant features were verified. 

Additionally, support vector machine (SVM), k-nearest neighbor (KNN), and decision tree (DT) are also 

considered as classifiers to identify the simulation results. To begin with, the current signals obtained from 

distinctive four topologies of working conditions of the motor, which includes healthy, bearing damage, 

broken rotor bar, and short circuit in stator windings, respectively. The potential feature set is extracted by 

using Hilbert-Huang transform (HHT) technique. Then, three feature selection methods are adopted to select 

three optimal feature subsets from the original feature set. Finally, the classification accuracy (ACC) and 

ROC curve are used to demonstrate the capability of classifiers’ recognition. The results showed that the 

optimal feature subsets significantly reduce the number of selected features and improve the classification 

ACC and area under the curve (AUC) compared with the original feature set. In conclusion, the proposed 

method can downgrade the data, demonstrate the scatter plot more intuitively, and identify various types of 

faults, unlike with other fault diagnosis literature. 

INDEX TERMS ：ROC, t-SNE, motor failure, ReliefF, SU, FCBF, feature selection, HHT 

I. INTRODUCTION 

In the industrial age, automated production models have 

become mainstream. Electric motors are the primary source 

of power for manufacturing. Its stable operation is 

considered a desirable part of the production line. Because 

of downtime, safety considerations, and costly machinery 

repair early detection of motor’s internal faults is highly 

important [1]. In the age of unattended factories, how to 

effectively detect and identify any abnormalities, predict 

potential failures, and implement management to minimize 

performance degradation and economic costs to avoid 

dangerous situations is necessary [2]. Data-driven based 

intelligent fault pattern recognition methods have made 

fruitful achievements in recent years [3]. As far as induction 

motors are concerned, they can normally work in harsh 

environments such as high temperatures, high dust, water 

(dedicated motors), and frequency converters can change 

torque and power, which is economical. In harsh conditions, 

it has been widely used in industrial applications; however, 

some faults may lead to their failure and economic losses [4]. 

Therefore, this study will discuss the more common types of 

faults in induction motors. The measurement includes four 

conditions: healthy, bearing damage (45%), stator (35%), 

and rotor (10%) [5], [6]. The signal usually used for 

measurement is mainly the current signal, that is, the electric 

signal. Compared with vibration and temperature signals, it 

is less affected [7]. Therefore, this article chooses to use the 

current signal for measurement to facilitate subsequent 

analysis. After that, the three typical classifiers were used to 

judge the accuracy (ACC) of the features under different sets 

to obtain relevant recognition results. 

The intelligent fault diagnosis method's performance 

depends on the feature extraction of fault signals, which 

requires signal processing techniques, human knowledge, 

and labor [8]. In the last few decades, the types of signal 

analysis are quite diverse. From the earlier proposed fast 

Fourier transform (FFT), wavelet transform (WT), and then 

to Hilbert-Huang transform (HHT), they all have their 

distinct advantages and drawbacks. However, HHT is well 

suited to processing non-linear, non-stationary signals and is 

not constrained by the assumptions of stationarity and 

linearity, required for the FFT, and generates both amplitude 
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and frequency information as a function of time [9], [10]. Its 

advantage lies in using the basis of a posterior definition and 

has better noise immunity [11]. Through using empirical 

mode decomposition (EMD) to decompose the signal. Each 

intrinsic mode function (IMF) can hold specific frequency 

information to capture useful features. In terms of FFT, data 

needs to have periodicity. The selection of wavelet functions 

required for WT conversion is also more complex [12]. FFT 

and Discrete Wavelet Transform (DWT) are also not suitable 

for load imbalance and asynchronous sampling, which will 

result in failure fault identifiers and incorrect fault type [13]. 

Several works addressed extracting features through 

signal analysis methods for induction motor fault data. But 

the type, quantity, and impact of features cannot be 

quantified. Large-scale features can easily cause system size 

problems and may use excessive storage space. Also, the 

existing redundant features can easily cause excessive 

calculations. In order to solve these problems, the selection 

of features becomes more and more critical. Using typical 

methods such as ReliefF, symmetrical uncertainty (SU) and 

fast correlation-based filter (FCBF) for feature selection can 

undoubtedly reduce the complexity of calculation and 

database size so that the algorithm will not change the 

original features [14], [15]. Compared with the other 

categories, feature extraction projects important features to 

facilitate visual observation and can reorganize subspaces 

and retain the original space's data structure. Feature 

extraction also plays a vital role in data-driven fault 

diagnosis and dimensionality reduction for the samples or 

datasets [16]. Nevertheless, the principal component 

analysis (PCA) is commonly used to find the main 

components of the original data and establishes a direct 

relationship between the high and low dimensional data sets, 

but it cannot capture the non-linear pattern [17]. Therefore, 

this research uses the t-distribution stochastic neighbor 

embedding (t-SNE) to reduce the dimensionality of 

nonlinear data, which can visualize high-dimensional 

complex signal patterns. Compared with the original SNE, it 

uses t-distribution to solve the probability distribution in 

low-dimensional situations to alleviate the data crowding 

problem. Simultaneously, this method uses joint probability 

instead of conditional probability to recalculate KLD to 

obtain symmetry [18], [19]. 

For current fault detection, ACC is usually used to 

compare the results of different races. ACC takes the merit 

of simple structure, but it has drawbacks of prone to 

inaccurate models due to data skew. This study also uses the 

receiver operating characteristic (ROC) curve to compare 

results. ROC curve is a visual tool for classification models 

[20], [21]. It originated from the signal detection theory. In 

recent years, this method distinguishes between negative and 

positive results by dividing race into two categories and 

comparing them with ACC. By plotting true positive rate 

(TPR) and false positive rate (FPR) curves, a more 

satisfactory classification can be obtained [22], [23], and the 

area under the curve (AUC) can be calculated to make it 

relatively balanced. These two indicators, they also do not 

depend on the impact of a particular category. 

This research shows the effectiveness of traditional 

methods in dimensionality reduction, feature extraction and 

feature selection. Create a novel model with the combination 

of advantages of each method. By comparing these methods 

and establishing the entire system, the important features of 

the motor and a better recognition rate can be effectively 

obtained. Among them, the main contributions of this paper 

are fourfold. First, HHT has better recognition results than 

WT and FFT. Secondly, the problem of large-scale features 

is studied. It turns out that three common feature selection 

methods can be used to select important features. Third, it is 

proposed to use the ROC curve as a reference basis and 

compare AUC with ACC. Moreover, through the support 

vector machine (SVM), K nearest neighbor (KNN) and 

decision tree (DT) three machine learning algorithms to 

compare their classification performance to select the most 

effective fault diagnosis model. Finally, based on the 

advantages and disadvantages of feature extraction and 

feature selection methods, this research achieves the 

system’s robustness through more graphical visualization 

methods such as t-SNE. Compared with other studies on 

motor fault classification methods, the new intuitive 

visualization method can effectively verify the advantages of 

important features and recognition rate by combining known 

methods. 

II. METHOD OF MEASURING MOTOR 

This section will explain the specifications of AC induction 

motors, and measure and analyze 4 types of current signals 

including normal, bearing damage, broken rotor bar and 

short circuit in stator windings. Secondly, introduce the 

equipment and methods used in the experiment and the 

overall process of this research to compare the differences 

between various types of faults and normal motors. Finally, 

the results of the identification are presented by using the 

analysis software MATLAB. 

A.  EQUIPMENT SPECIFICATIONS 

The main equipment in this study are four-pole AC induction 

motors, as shown in Table 1, and the fault types are shown 

in Fig. 1. By driving the power platform (composed of a 

torque sensor and a servo motor), and analyzing it with the 

equipment (NI PXI-1,033) and a computer, then recording 

the measured data. Through the above equipment, the signal 

measurement can be completed.  

B. EXPERIMENT PROCESS 

First of all, this research measures the current signal of AC 

induction motors in four kinds of fault (normal, bearing, 

rotor, and stator). Obtain any phase data of the motor U, V, 

and W through a signal extractor. It is noted that the data 

sampling time for each measurement is 100 seconds, the 
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sampling frequency is 1,000 Hz, and each signal is measured 

100 times for evaluation. The process is shown in Fig. 2. 

Secondly, HHT was used on the personal computer for 

MATLAB. Among them, the waveform, vibration, and 

frequency of each IMF were different. Additionally, the 

purpose of screening each layer of IMF is not only to 

eliminate the carrier but also can make the waveform more 

symmetrical. In order for the IMF decomposed by EMD to 

retain the meaning of its signal, the screening criteria must 

be set to determine the number of screening levels. This 

action will stop when the standard deviation (SD) of the two 

consecutive screening results is less than 0.1. In this research, 

IMF of 1 to 8 layers can be obtained by EMD. The following 

takes normal and bearing damage fault motor signals as 

examples, and the extracted results are shown in Fig. 3(a) 

and Fig. 3(b). Meanwhile, the instantaneous amplitude and 

TABLE 1 

SPECIFICATIONS OF AC MOTOR 

Specification of three-phase four-pole squirrel cage induction motor 

Voltage 220V/380V Frequency 60Hz Effectiveness 83.5(100%) 

Output 2Hp 1.5kW Current 5.58A/3.23A   

 

 

 
 

(a) (b) (c) 

FIGURE 1 Type of motor fault (a) bearing damage (aperture: 1.96 mm × 0.53 mm) (b) broken rotor bar (2 holes ∮8 mm deep: 10 mm) (c) short circuit in 

stator windings (2 coil short circuit) 
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FIGURE 2. Flow chart of signal measurement 
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FIGURE 3. The illustration of IMF components (a) normal motor (b) bearing damage motor 
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instantaneous frequency of each layer can be obtained by HT. 

After extracting the maximum, minimum, average, standard 

deviation and root mean square of each layer's instantaneous 

amplitude and instantaneous frequency, a total of 80 features 

can be got, as shown in Table 2. Then, the common feature 

selection methods of ReliefF, SU value, and FCBF are used 

to generate a total of 4 different sizes of feature sets for 

identification. In order to prove that the selected feature set 

can produce better recognition ability under any classifier, 

the SVM, KNN, and DT are used to generate three 

classification results for verification. Finally, this study uses 

t-SNE to transform the features and present them in two and 

three dimensions. So that the results can be observed in a 

more intuitive way to prove the feature selection has 

reference value for the identification of the current signal of 

the motor.  

In short, the entire experiment uses feature extraction and 

feature selection methods to obtain 4 different size feature 

sets and then uses common classifiers and feature 

distributions to present the research results. The process is 

shown in Fig. 4. The steps of signal processing are listed as 

follows: 

Step 1: Input the current signal of the induction motor, and 

process the signal through MATLAB software. 

Step 2: Through EMD, the signal can be decomposed into 1 

to 8 layers of IMF. 

Step 3: Use HT for analysis, which can capture the maximum, 

minimum, average, standard deviation and root mean 

square of instantaneous amplitude and instantaneous 

frequency. A total of 80 features (HHT feature set) are 

available. Steps 1 to Steps 3 are called feature 

extraction. 

Step 4: Use the 3 feature selection methods of ReliefF, SU, 

and FCBF to screen the feature set of HHT to delete 

the features that affect identification. 

Step 5: After feature selection, four feature sets can be 

generated by HHT (without feature selection), HHT-

ReliefF, HHT-SU, and HHT-FCBF. 

Step 6: Import each feature set into SVM, KNN, and DT. 

They are three classifiers for identification. 

Step 7: Use ACC and ROC to present the identification 

results. 

Step 8: Finally, use the t-SNE visualization method to 

present the distribution of features to verify the 

research results. 

 III. SIGNAL ANALYSIS AND CLASSIFICATION 
METHODS 

Induction motors and other related equipment are used in 

current society. These machines usually run for a long time 

and require regular maintenance by engineers. If analysis 

methods can be used to capture the beneficial features of 

each failure and combining various classifiers, higher 

classification ACC for fault identification will be expected 

to solve the fault problem of the motor. However, many 

signal analysis techniques have been developed in current, 

and each analysis methods have their advantages and 

disadvantages. This section will explain the signal analysis 

method of the HHT. In addition, the ROC algorithm will also 

be introduced in the study.  

A.  HILBERT-HUANG TRANSFORM 

HHT was jointly proposed by Norden E. Huang et al. The 

analysis is designed based on the mathematical theory of the 

mathematician Hilbert in 1998 [24]. This analysis method has 

 

FIGURE 4. The experiment process and result framework diagram. 
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TABLE 2 

THE FEATURE DATASET 

 Fmax Fmin Fmean Fmse Fstd Amax Amin Amean Amse Astd 

IMF1 F1 F2 F3 F4 F5 F41 F42 F43 F44 F45 

IMF2 F6 F7 F8 F9 F10 F46 F47 F48 F49 F50 

IMF3 F11 F12 F13 F14 F15 F51 F52 F53 F54 F55 

IMF4 F16 F17 F18 F19 F20 F56 F57 F58 F59 F60 

IMF5 F21 F22 F23 F24 F25 F61 F62 F63 F64 F65 

IMF6 F26 F27 F28 F29 F30 F66 F67 F68 F69 F70 

IMF7 F31 F32 F33 F34 F35 F71 F72 F73 F74 F75 

IMF8 F36 F37 F38 F39 F40 F76 F77 F78 F79 F80 
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better results for unstable or nonlinear signals. It mainly 

focuses on the following steps [25], [26]: 

1) The original signal passes through the EMD to obtain 

the IMF.  

2) Apply Hilbert transform (HT) to the obtained IMF to 

obtain the instantaneous frequency. 

 1)  EMPIRICAL MODE DECOMPOSITION 

Before performing HHT, the original signals need to be 

decomposed by EMD, and the signals become IMFs 

compliant state through repeated screening. However, due to 

HHT's limitation of instantaneous frequency, if this process 

is omitted, the original signals will not be able to obtain a 

valid and complete instantaneous frequency. Therefore, by 

decomposing the original data into EMD, n IMFs and a trend 

function can be obtained respectively, and then HT can be 

performed on the obtained IMF for subsequent calculation 

of signal analysis [27]. For all function types, when the sum 

of the number of local maximum and local minima is the 

same as the number of zero crossings or the difference is 1. 

Then, when the average line of the upper envelope defined 

by local maximum and the lower envelope of upper envelope 

approaches zero at any point in time. They can be classified 

as IMF. The flowchart of the EMD is shown in Fig. 5. 

2)  HILBERT TRANSFORM 

The calculation method of HT is different from the previous 

analysis of non-linearity and non-steady state. For the 

combination of IMF, when using HT, the instantaneous 

amplitude and instantaneous frequency of the required signal 

can be obtained, as shown in (1). Conjugate complex number 

is constructed by ( )ix t  and ( )iH t , as shown in (2). Where 

( )iC t  is expressed as IMF. After HT operation, ( )iH t  can 

be obtained, where Pv represents the Cauchy principal value, 

and its purpose is to avoid being the singularity of t=  and 

=  . 

( )
( )1 i

i

C
H t Pv d

t



−

=
−



 

 (1) 

( ) ( ) ( ) ( ) ( )
= i

i i i i

j t
Z t C t jH t a t e

−
= +


 (2) 

As a result of the calculation of formula (2), the 

instantaneous amplitude ( )ia t  and instantaneous phase 

angle ( )i t  can be obtained, which can be converted into 

formulas (3) and (4) respectively. Then the instantaneous 

phase ( )i t  is differentiated against time to obtain the 

instantaneous frequency ( )i t , as shown in equation (5). 

( ) ( ) ( )2 2

i i ia t C t H t= +

 (3) 

( )
( )

( )
i

i

i

H t
t arctan

C t


 
=  

    (4) 

( )
( )i

i

d t
t

dt


 =

 (5) 

Through the above-mentioned correlation calculations, 

using the instantaneous amplitude ( )ia t  and instantaneous 

frequency ( )i t , the time, frequency, and energy 

distribution can be obtained. This result is called the HT 

spectrum. 

 B.  RECEIVER OPERATING CHARACTERISTIC 
CURVES 

Compared with the ACC, ROC is a visual tool for the 

comparison of classification models. Its use was expanded 

in the 1970s and used in the biomedical field to interpret 

medical test results. In recent years, its analysis methods 

have been widely used in machine learning and data mining 

research [28], [29]. The ROC curve is constructed in a two-

dimensional image, and the discrete classifier only predicts 

the category to which the tested object belongs. There are 

four possible results: true positive, true negative, false 

positive, and false negative. If an object is positive and is 

classified as positive, it will be regarded as a true positive 

 
FIGURE 5 Flowchart of EMD 
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(TP); if it is classified as negative, then It is a false negative 

(FN). In the same way, if the subject is negative and 

classified as negative, it will be regarded as true negative 

(TN); if it is classified as positive, it will be classified as false 

positive (FP), as shown in Fig. 6 [30]. For fair performance 

evaluation, this study proposes two different evaluation 

indicators, namely ACC as shown in (6), and area under the 

ROC curve (AUC), where AUC is drawn by TPR and FPR, 

and the equation are shown in (7), (8) and (9).  

Among them, the ROC curve takes FPR as the X-axis and 

TPR as the Y-axis, it is necessary to set different decision 

thresholds at each point to obtain different FPR and TPR, as 

shown in Fig. 7 [31], [32]. Finally, draw a curve to assess the 

trade-off. The closer the curve is to the top, the higher the 

TP, and the higher the ACC. AUC is an indicator [33]. The 

larger the AUC, the better the performance. However, for 

large-scale screening, in order to minimize FP, each 

experiment follows a hierarchical 10-fold cross-validation 

model, and the results obtained are average scores.  

IV. FEATURE SELECTION AND DIMENSIONALITY 
REDUCTION METHOD 

Nowadays, most of data is presented in a high-dimensional 

way during machine learning, which makes it difficult to 

observe high-dimensional distribution and features from 

data. When the number of features is too large, problems 

such as slower processing speed, overfitting, and difficulty 

in visualization may occur. Moreover, the curse of data 

dimensionality poses a severe challenge to many existing 

feature selection methods with respect to efficiency and 

effectiveness [34], [35]. Therefore, feature selection and data 

dimensionality reduction are essential preprocessing 

techniques in data analysis. Feature extraction is a method of 

dimensionality reduction [36]. The following research will 

introduce related applications of methods. 

A.  FEATURE SELECTION 

Feature selection methods aim to reduce the influence of 

redundant variables by selecting a subset of existing features 

[37]. Evaluate the importance of each feature by measuring 

the relationship between each individual function and the 

output category. Feature selection assigns a weight to each 

feature, which can be regarded as a ranking to produce the 

feature list [38]. Therefore, the scope of this paper falls into 

discussing the commonly used feature selection method 

ReliefF, SU, and FCBF. Among them, the threshold settings 

of the following three feature selection methods are all 

calculated by multiplying the total weight by 0.9 as the 

standard. 

1)  RELIEFF 

The ReliefF algorithm is more robust and can handle 

incomplete and noisy data compared with Relief [39]. Start by 

randomly selecting samples from its training sample set and 

take K neighboring samples H of the same category, which 

can be called Near-Hits. In addition, K samples M can be 

found from sample sets of different categories, which can be 

called Near-Misses. The distance difference is used to assign 

corresponding weights to features, and the preset threshold is 

used to effectively remove irrelevant features. 

2)  SYMMETRICAL UNCERTAINTY 

The SU method uses the average amount of information 

contained in the message as the basis for judgment. This 

method is a form of information gain normalization, which is 

based on non-linear related information variables defined by 

information entropy. Used to reconstruct the degree of 

correlation between random variables, the value ranges from 

0 to 1. When the value is larger, the correlation between X and 

 

FIGURE 6. Four elements of the confusion matrix 
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Y is greater. When the variable is 0, it means that X and Y are 

independent of each other. Otherwise, it means that there is a 

strong complementarity between each other. The formula is 

shown in formula (10), where H(X) represents information 

entropy, and I(X) is the calculation of information gain. 

( )
( )

( ) ( )

I X
SU X ,Y

H X H Y
=

+
 (10) 

3)  FAST CORRELATION-BASED FILTER 

FCBF uses symmetric uncertainty to replace information gain 

and performs the feature selection method [40]. It is an 

extended solution to SU. The advantage of the method is that 

it can remove redundant features. During the screening period, 

FCBF compares the two features and retains the feature that 

has a higher correlation with the target. Therefore, it uses the 

features with a higher correlation to complete the screening. 

This method reduces the time complexity and achieves the 

efficiency of computing while filtering, which can accelerate 

the calculation and also improve the recognition rate at the 

same time. FCBF is regarded as a fast filtering feature 

selection algorithm [41]. The calculation of this method to 

delete redundant features is shown in Fig. 8. Among them, F1, 

F2 and F4 can be regarded as similar features, and F1 is more 

related to the target, so F2 and F4 are considered redundant 

features; and on this basis, F6 and F7 can be deleted by F3. 

B.  DIMENSIONALITY REDUCTION METHOD  

1)  PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis was proposed by Pearson, K 

in 1901. It can be regarded as a linear algorithm. It mainly 

uses the variance of each characteristic variable as a 

benchmark for measurement [42]. First, this method is to 

normalize the data to establish a covariance matrix and then 

use the singular value decomposition (SVD) method to 

obtain its eigenvector and eigenvalue. The usage is shown in 

formulas (11) and (12). Finally, the obtained eigenvalues are 

presented in descending order, and the original data are 

projected onto the eigenvectors to obtain new eigenvalues.  

However, for PCA, the related variables are transformed by 

orthogonal transformation, and similar data points are placed 

in a low-dimensional space. This method is easy to cause 

underfitting of the features. This also means that the features 

of the data after dimensionality reduction will not be able to 

effectively represent the distribution of the original data. 

TA = U V  (11) 

( ) ( )

1

1 1
=

m
i i T T

i

X X X X
m m=

  =    (12) 

As shown in equation (11), A is an m×n order matrix, 

while U and TV  are m×m and n×n order matrixes, 

respectively. This decomposition can be interpreted as the 

SVD of A.   represents the singular value matrix, which is 

the eigenvalue corresponding to the A matrix. They are 

generally arranged in the diagonal in descending order, and 

to obtain the result of A, U is usually multiplied by the 

common variance matrix of formula (12) to obtain new 

features. 

2)  STOCHASTIC NEIGHBOR EMBEDDING 

Stochastic Neighbor Embedding (SNE) was proposed by 

Hinton and Roweis in 2002 [43]. This method uses 

Euclidean distance to convert to conditional probability, 

accordingly explaining high-dimensional data through 

normal distribution and explaining the similarity between 

points [44], as shown in (13). 

( )
( )

2
2

2 2

exp /2

exp /2

i j i

j|i

k i i k i

x x
p =

x x

− −

− −




 (13) 

( )p j | i  is the similarity between 
ix  and 

jx . 
i  is the 

Gaussian distribution centered on 
ix . The low-dimensional 

iy  and 
jy  correspond to the high-dimensional 

ix  and 
jx  

with ( )q j | i  considered as conditional probability. When 

setting 1 2/=  and ( ) 0q j | i = , the result can be 

obtained, and is shown in (14). Finally, the SNE algorithm 

also applies Kullback-Leibler divergence (KLD) to express 

the degree of similarity between the two distributions. The 

objective function is shown in (15). This method is to 

minimize the loss function between the two distributions. 

The stochastic gradient descent method is calculated, as 

shown in (16). 

( )
( )

2

2

exp

exp

i j

j|i

k i i k

y y
q =

y y

− −

− −
 (14) 

( ) log
j|i

i i j|i

i i j j|i

p
C KL P ||Q p

q
= =   (15) 

( ) ( ) ( ) ( )( )( )2
i jj

i

j | i q j | i p i | j q i | j y y
C

p
y

− + − −= 




 (16) 

Because the high-dimensional data cannot be completely 

retained in the low-dimensional space, a commonly known 

 
FIGURE 8. Selection method of FCBF 
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curse of dimensionality will be produced. The problems of 

crowding among various ethnic groups also cannot be 

distinguished. In addition to this, KLD is asymmetric which 

makes it possible for the SNE method to be optimized. 

3).  T-DISTRIBUTION STOCHASTIC NEIGHBOR 
EMBEDDING 

In order to improve the curse of dimensionality in SNE 

method, t-SNE has several distinct features. This method 

was proposed by Laurens van der Maaten and Geoffrey 

Hinton in 2008. It illustrates that this method is a nonlinear 

visualization method for dimensionality reduction in 

machine learning [45], [46]. t-SNE is difficult to use the 

axis/unit of the original high-dimensional data to explain the 

meaning of the graph, but when reducing the dimensional it 

is a highly used algorithm as a reference for data dimension 

reduction studies. In the most diverse applications, this 

method always presenting good results [47]. This paper will 

explain the crowding problem and the symmetry problem 

separately. 

3.1).  Crowding problem 

When the data is projected into a two-dimensional space, the 

distant points in the high-dimensional space have no position 

for projection in the low-dimensional space. Therefore, there 

are often overlap and difficulties to observe phenomena in 

the low-dimensional space, which is known as the crowding 

problem. As a solution, t-SNE method will replace the 

normal distribution used in the low-dimensional space with 

a t-distribution with 1 of freedom. The probability density 

function (PDF) of t-distribution is shown in (17) where v is 

expressed as a degree of freedom. When v=1, it can be 

simplified to formula (18). 

( )
2

1

2

1

2
1

2

vv

t
f t =

v v
v

+
−

+


+



 
 

  
 

   
 
 


 (17) 

( )
( )2

1

1
f t =

t+
 (18) 

3.2).  SYMMETRIC SNE 

This method is aimed at the problem of symmetry, using 

joint probability instead of conditional probability to 

recalculate KLD to obtain symmetry [18]. First of all, the 

equation of qij is defined as (19). It demonstrates that this 

equation has a symmetric relation. This representation 

method will condense the overall algorithm, while there will 

be situations where outliers are introduced. To solve this 

problem, the definition of joint probability can be modified 

as equation (20) and be substituted of the objective function 

(15). Furthermore, the formula of stochastic gradient descent 

is shown in (21) to obtain the minimum solution of the loss 

function which is commonly known as the best solution. 

Although t-SNE solves the symmetry problem, this 

algorithm involves quantities of calculations, which can be 

overwhelming for the system. 
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2
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k l k l
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 
− −

− −
 (19) 

2
j|i i| j

ij

p p
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4 1ij ij i j i jj
i

C
p q y y y y

y

−
 
 
 

= − − + −



 (21) 

t-SNE can not only convert data but also present the data 

in a two-dimensional or three-dimensional space for visual 

observation. The main steps of t-SNE are: First, the 

algorithm begins by calculating the similarity probability of 

data points in the high-dimensional space and the similarity 

probability of the points in the corresponding low-

dimensional space. Secondly, to make it easier to project 

data into low-dimensional space, the algorithm tries to 

minimize the difference in conditional probability between 

high-dimensional and low-dimensional data spaces. Finally, 

in order to evaluate the minimization of the t-SNE 

conditional probability difference sum, the gradient descent 

method is used to minimize the sum of the KLD of the 

original distribution and the corresponding data. This 

algorithm calculation process is shown in pseudocode 1:  

V. RESULTS OF MOTOR FAULT IDENTIFICATION 

This research measures the actual operating signals of 

induction motors and extracts features by HHT. However, 

the number and usefulness of features are unknown. To 

achieve the best performance of the algorithm, the 

importance of feature selection methods is gradually 

increasing. Among them, feature selection and feature 

Pseudocode 1: The simple version of t-SNE 

1:  Input Data  

2:  Calculate cost function using Eq. (15) // perplexity 

Perp 

3:  Set T, η, // T=Number of iterations, η=Learning rate 

4:  The target result YT=y
1
,…,y

n
  

5:  Calculate the p
j|i

 using Eq. (13) 

//p
j|i

 is the similarity between 
ix  and 

jx  

6:  Calculate the p
ij
 using Eq. (20) 

//the definition of the joint probability 

7:    for t=1:T 

8:       Calculate the q
ij
 using Eq. (19) 

9:       Calculate the 
δC

δy
i

 using Eq. (21) 

//the formula of stochastic gradient descent 

10:      Yt=Yt-1+η
dC

dY
+α(t)(Yt-1-Yt-2) 

11:   end 
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extraction are more common [34]. Feature selection is 

identifying behaviors that have a significant contribution to 

the classifier's ability or finding the best feature subset. This 

method will let the feature set not be changed, keep 

important features, and reduce the number of features [35]. 

For signal analysis, the generated information often has 

invalid data, and too many repetitive or irrelevant features 

will cause the classifier to produce over-fitting situations. 

Therefore, this study compares the feature extraction 

methods including FFT, WT, and HHT. It can be found that 

the features obtained by the HHT method have better 

recognition results in each classifier, as shown in Table 3. 

Subsequently, this paper uses ReliefF, SU, and FCBF to 

compare three feature selection methods. By these methods, 

different feature sets are generated. Among them, FCBF can 

screen out the most irrelevant features, and the selected 

features are based on their importance. Finally, through the 

ROC curve, different feature sets are presented graphically 

to facilitate ACC’s comparison. 

In this study, the feature selection methods are used to 

generate feature sets of different sizes including ReliefF, SU, 

and FCBF. Compared with HHT, the number of features can 

be reduced by 72.5%, 76.25%, and 87.5%, respectively, as 

shown in Table 4. 

A. RESULTS OF ROC CLASSIFICATION 

This study proposes to use three classifiers including SVM, 

KNN, and DT to classify the fault conditions of induction 

motors. Through these four feature sets, the unselected (It 

means all features are extracted using the HHT method and 

without using feature selection methods.) and three feature 

selection methods (ReliefF, SU, and FCBF) in different 

classification algorithms can be displayed in ROC curve 

graphs, making it easy to distinguished the performance of 

each algorithm. If the area under the curve is increased, the 

corresponding algorithm's classification effect will be better, 

and vice versa. To evaluate the pros and cons of related 

features under the classifier after feature selection, this study 

uses MATLAB software to draw ROC curves of various 

fault types under different feature sets. Taking KNN as an 

example, it can be found by drawing the curve that when 

using this classifier, the ReliefF, SU, and FCBF sets 

generated by the feature selection methods have advantages 

compared to the HHT. This result can explain that too many 

irrelevant features will misjudge the AUC and cause the 

recognition ability to decline, as shown in Fig. 9. 

This study also calculates the area under the surface AUC 

in detail, as shown in Table 5. First of all, it can be seen that 

although these classifiers have their distinct standards, they 

may prefer different algorithms in terms of performance. 

Secondly, it can be found from the calculation results that if 

the ranking corresponding to the average AUC is given, the 

feature set of HHT may have factors that affect the 

recognition rate. It will also appear weak in rankings. Finally, 

if different feature selection methods are used with different 

classifiers to distinguish, the identification ability to bearing 

faults can reach close to 1 (optimal). This result shows that 

this fault situation is the most obvious among the 4 fault 

types.  

B. COMPARISON OF AUC AND ACC RESULTS 

To present the results of identifying the types of induction 

motor faults, this study discusses the identification results by 

comparing the values of ACC and AUC. Among them, ACC 

presents the ratio of the classifier’s accurate discrimination. 

Although it can effectively reflect the classifier's 

performance, it is quite accurate in the face of extreme data 

such as negative prediction. The value of ACC is substantial. 

This situation shows that ACC cannot just effectively 

evaluate the model without the test data; on the contrary, 

AUC, as a quantitative indicator of ROC, can be drawn into 

a curve by obtaining different FPR and TPR to calculate and 

evaluate the value of the classifier model.  

This study uses two kinds of recognition rates for 

calculation, and the results are shown in Table 6. First of all, 

we can compare the three typical classifiers and find that 

using the DT classifier for identification, AUC, and ACC's 

identification ability is the best in the table. Secondly, this 

study compared four feature sets of different sizes. The result 

shows that the feature selection methods used in this research 

can effectively delete features that are not important to 

improve the recognition rate. Moreover, And AUC and ACC 

identification results of the collection after three kinds of 

feature selection are higher than the feature set of HHT by 

calculation.  

TABLE 3 

THE ACC VALUE OF EACH CLASSIFIER UNDER 

DIFFERENT FEATURE EXTRACTION SETS 

 ACC 

 FFT WT HHT 

KNN 0.698 0.703 0.713 

SVM 0.856 0.865 0.87 

DT 0.945 0.979 0.981 

 
TABLE 4 

FEATURES BY HHT 

Model 
Number of 

Features 

Sort by Important Features 

after Screening 

ReliefF 22 

F5, F45, F3, F1, F42, F2, F4, F16, 

F44, F43, F41, F61, F30, F6, F15, 

F33, F29, F77, F65, F26, F66, F55 

SU 19 

F41, F43, F44, F42, F45, F5, F1, 

F2, F4, F31, F49, F11, F3, F38, 

F67, F56, F48, F30, F15 

FCBF 10 
F41, F45, F5, F4, F31, F49, F11, 

F38, F67, F30 
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In summary, in order to show the stability of the selected 

features, this research discusses the results through three 

kinds of common classifiers of KNN, SVM, and DT. Among 

them, the recognition results given by different classifiers for 

different evaluation methods will be different. In the 

comparison of AUC and ACC, it may also be distinguished 

between advantages and disadvantages due to their different 

calculation methods, as shown in the brackets in Table 6. 

According to the effective evaluation of multiple methods, 

DT-ReliefF has the best recognition results, which are 99.7% 

and 99.6% respectively. 

  
(a) (b) 

  
(c) (d) 

FIGURE 9 Use the KNN to perform ROC mapping on (a) normal (b) bearing damage (c) broken rotor bar (d) short circuit in stator windings 

TABLE 5 

THE AUC VALUE OF EACH CLASSIFIER UNDER DIFFERENT FEATURE SETS 

Classifiers  Feature model Normal Bearing Rotor Stator Average 

KNN 

HHT 0.936 0.997 0.919 0.951 0.951 (4) 

ReliefF 0.98 1 0.968 0.976 0.981 (3) 

SU 0.985 1 0.981 0.985 0.988 (1) 

FCBF 0.974 0.999 0.981 0.977 0.983 (2) 

SVM 

HHT 0.852 1 0.998 0.938 0.947 (4) 

ReliefF 0.896 1 1 0.936 0.958 (2) 

SU 0.91 1 1 0.936 0.961 (1) 

FCBF 0.863 1 1 0.936 0.948 (3) 

DT 

HHT 0.975 1 1 0.989 0.991 (4) 

ReliefF 0.999 1 1 1 0.997 (1) 

SU 0.999 1 1 0.988 0.997 (2) 

FCBF 0.999 1 1 0.983 0.995 (3) 
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C. VERIFICATION OF t-SNE 

In order to verify that the feature selection method used 

produces feature sets of different sizes, and also can 

effectively screen out the important features of motor fault 

types. This study uses t-SNE to transform the data and 

present the results in two or three dimensions. By reducing 

the dimension, it is possible to visually judge the validity of 

the algorithm and data collection. The following will discuss 

two different sizes of feature sets, HHT (not used feature 

selection) and HHT-ReliefF (combined with feature 

selection). However, the distance of t-SNE is meaningless, it 

is just a concept of the probability distribution. 

In addition to creating clusters, t-SNE can also leave a 

certain distance between them, which simplifies the data 

visualization. This t-SNE allows simple visualization of 

graphs to understand the failure of induction motors under 

different feature sets. As shown in Figs. 10(a) and (b), HHT 

feature set is found that no matter in the two or three-

dimensional space, only the type of bearing fault can be 

easily distinguished. The other three types of faults have no 

noticeable difference in data projection. This model also 

shows that when feature selection is not used in this study, 

the features obtained due to the wrong judgment of the motor 

fault type will reduce ACC and AUC. Then, to verify the 

results presented by t-SNE with different collection sizes 

after feature selection, this research also uses the HHT-

ReliefF collection for visual observation, as shown in Figs. 

11(a) and (b). Results are found that compared with the 

feature set of HHT in the three-dimensional space, the types 

of faults are classified more clearly after feature screening. 

If it is reduced to a two-dimensional space, 4 types of clusters 

and effective classification scatter plots can be obtained. 

Finally, compare the visualize ed results with the ACC and 

AUC recognition rates of the motors in the aforementioned 

to verify the feature selection set. The basic idea of the t-SNE 

algorithm is to express the similarity of data points by using 

the joint probability between high-dimensional data points 

and analog data points corresponding to low-dimensional 

space. In the most diverse applications, this method always 

presenting good results. But for the t-SNE graph, the 

distance is meaningless. 

In order to make the advantages of the proposed 

methodology more prominent, this research also compares 

the intelligent diagnosis methods of various types of motor 

faults. As shown in Table 7. Three common failure models 

are considered to reduce the chance of further damage or 

complete motor failure due to any specific failure. 

VI. CONCLUSION 

This research proposes a simple and high-performance 

asynchronous motor fault diagnosis model based on 

traditional feature extraction, feature selection, and classifier 

construction. In this study, the four kinds of fault (a) normal, 

(b) bearing damage, (c) broken rotor bar, and (d) short circuit 

in stator windings occurrence in three-phase induction 

motors' current signal are considered. The original feature 

TABLE 6 

COMPARISON OF ACC AND AUC 

Classifiers Feature model AUC ACC 

KNN 

HHT 0.951 (4) 0.713 (4) 

ReliefF 0.981 (3) 0.848 (3) 

SU 0.988 (1) 0.890 (1) 

FCBF 0.983 (2) 0.853 (2) 

SVM 

HHT 0.947 (4) 0.870 (4) 

ReliefF 0.958 (2) 0.940 (1) 

SU 0.961 (1) 0.935 (2) 

FCBF 0.948 (3) 0.920 (3) 

DT 

HHT 0.991 (4) 0.981 (4) 

ReliefF 0.997 (1) 0.996 (1) 

SU 0.997 (2) 0.985 (2) 

FCBF 0.995 (3) 0.984 (3) 

 

  
(a) (b) 

FIGURE 10 Scatter plot of t-SNE events under HHT conditions (a) 3D (b) 2D 
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extraction methods are highly reliant on the expertise and 

prior knowledge, also have limited capacities for learning the 

relationships between the features and data. Therefore, this 

research creates a novel model with the combination of 

advantages of each method. The main contributions of this 

study are fourfold. Firstly, HHT is very suitable for 

  

(a) (b) 

FIGURE 11 Scatter plot of t-SNE events under HHT-ReliefF conditions (a) 3D (b) 2D 

TABLE 7 
THE TYPICAL FAULTS IN THE INDUCTION MOTOR 

Types of Faults Signals Analysis Methods Identification 

methods Advantages References 

Bearing Vibration WPT ANN/SVM 
Compared with different 
classifiers, SVM has higher 

ACC. 
[48] 

Rotor Current 
Harmonic frequencies/ 

corresponding 

amplitudes 
NN It is quite effective for 

detecting broken-rotor bar. [49] 

Stator Current The information between 

the phase current signals ANN Even in the case of variable 

loading and phase unbalance. [50] 

Bearing/Rotor Current spectrum analysis New artificial ant 
clustering method 

Better results for 
unsupervised learning. [51] 

Rotor/Stator Vibration Higher order statistics Fuzzy Logic ACC can more than 90% [52] 

Rotor/Stator/Phase Current FFT/WT ANN Effectively predict upcoming 

failures. [53] 

Bearing/Rotor/Stator/Phase 
Vibration/ 

Current PCA/ICA SVM 
Use feature extraction 
technology to make SVM 

have better results. 
[54] 

Bearing/Rotor/Stator Current HHT-3 kinds of feature 
selection methods SVM/KNN/DT 

Combining different feature 

selection methods, the ACC 

and AUC ability have been 

improved. 
Use ROC and t-SNE methods 

to obtain effective visual 

experimental results. 

The 

proposed 

model 

NN: Neural Network 

ANN: Artificial Neural Network 

ICA: Independent Components Analysis 
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processing nonlinear and non-stationary signals with better 

recognition results than WT and FFT. Secondly, most of the 

data is presented in a high-dimensional manner. Too much 

quantity may cause problems such as overfitting and 

difficulty in visualization. However, the ReliefF, SU and 

FCBF feature selection methods are used to select the 

important features to generate feature sets of different sizes. 

Thirdly, to show the stability of the selected features, this 

study discusses the identification results through three 

typical classifiers: KNN, SVM and DT. Finally, verify the 

results of ACC, AUC, ROC, and t-SNE to show. The most 

advantage of this research is to propose visual ROC and t-

SNE methods and combine them with traditional feature 

extraction and feature selection methods to present important 

features of induction motor fault identification. Simulation 

and experimental results show that: 

1) This study compares feature selection methods to 

improve less important or redundant features. The 

results show that more than 70% of features can be 

effectively deleted under the three different screening 

methods. 

2) This study also proposed ROC curves of different 

feature screening methods, which have advantages 

compared with HHT. Through a detailed calculation of 

AUC and ACC, it can be proved that the recognition rate 

of feature screening can be effectively increased by 2% 

to 3%. 

3) Finally, this study also proved that regardless of the 2D 

or 3D scatter plot; feature selection sets have better 

feature distributions to classification by using t-SNE. 

In the future, we will also try to add more motor fault types 

and data and use deep learning for research training. This 

model will allow a reasonable comparison between the 

simulation results and actual engine operation. Besides that, 

multiple published databases, feature selection methods, and 

other literature to compare motor fault classification have 

also become necessary. 
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