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ABSTRACT Clustering is a classic combined optimization problem that is widely used in pattern recogni-
tion, image processing, market analysis and so on. However, the efficiency of clustering algorithms decreases
as the amount of data increases. In addition, most of the existing methods optimize only one objective
and therefore may be suitable only for datasets with certain features. To address these limitations, in this
paper, we develop a new hybrid chain-hypergraph P system (named HCHPS), which makes full use of
the parallelism of P systems as well as the advantages of chain and hypergraph topology structures for
accurate and efficient clustering. Our new P system comprises three types of subsystems, i.e., reaction
chain membrane subsystems, local communication membrane subsystems and global ensemble membrane
subsystems. Each type of subsystems is implemented end-to-end in HCHPS with new rules and membrane
structures in parallel. In particular, to obtain efficient clustering center objects and make the algorithm robust
to data with various features, the reaction chain membrane subsystems perform three different multiobjective
strategies simultaneously by new chain evolution rules. To increase the population diversity of cluster centers,
the local communication membrane subsystems utilize transport rules between membranes for coevolution
of nondominated objects. The global ensemble membrane subsystems conduct a new dense representation
multisize ensemble strategy to further improve the accuracy of the final results. Evaluations on two artificial
data sets and 17 real-life data sets demonstrate the robustness of the proposed method in correctly clustering
data sets with different dimensions and shapes. Our experimental results outperform those of both baseline
and state-of-the-art methods. Moreover, benefiting from the parallelism, HCHPS is less time consuming than
other methods, featuring an average completion time of 28.07 seconds on the 17 real-life data sets. Moreover,
an ablation study shows that our proposed components are critical for effective cluster analysis.

INDEX TERMS Chain-hypergraph P system, multiobjective optimization, cluster analysis.

I. INTRODUCTION
Clustering is regarded as a complex optimization problem
that plays an important role in data mining and is widely used
in pattern recognition, image processing, market analysis and
so on. However, the performance of clustering depends on
many parameters [1]. Most of the existing methods focus
on only one single objective, which cannot achieve optimal
results [2]–[4]. To solve this problem, the multiobjective
optimization algorithm has been applied in cluster analysis,
which can optimize different objective functions simultane-
ously and help improve the clustering performance [5]–[7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Shubhajit Roy Chowdhury.

Saha et al. [5], [6] presented a new multiobjective cluster-
ing method with two objective functions being optimized
together. They also adopted a simulated annealing-based
method in multiobjective clustering as a new optimization
strategy [7]. The results showed that these multiobjective
optimization algorithms improved the performance of cluster
analysis.

Different algorithms focus on various features of data sets,
and the clustering results are often complementary. To utilize
these complementarities in multiple algorithms and improve
the accuracy of clustering, ensemble learning has been
introduced into cluster analysis [8]–[10]. Iam-On et al. [8]
presented a new link-based approach to improve the
ensemble-information matrix. Wang [9] proposed the

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 143511

https://orcid.org/0000-0002-4535-916X
https://orcid.org/0000-0002-4952-5583


S. Yan et al.: HCHPSs for Multiobjective Ensemble Clustering

CA-tree to facilitate efficient and scalable cluster ensembles
for coassociation matrix-based algorithms. Huang et al. [10]
proposed an ensemble clustering approach based on sparse
graph representation and probability trajectory analysis.

Membrane computing model (also called a P system/
membrane system), initiated by Păun [11], is a computa-
tional model that encapsulates the data in arrangements of
‘‘membranes’’ that communicate under certain rules with
a given computational purpose. Membrane computing has
been applied in various fields, such as language generation,
electricity fault diagnosis, and image processing [12]–[15].
Clustering based on membrane systems has shown
good convergence, robustness, and parallelism [16]–[19].
Peng et al. [16] proposed a tissue-like P system based
multiobjective fuzzy clustering algorithm to optimize three
objectives simultaneously. Qin et al. [17] proposed a hybrid
clustering algorithm based on a P system and immune mech-
anism. Peng et al. [18] proposed a novel automatic fuzzy
clustering method based on an extended membrane system
with activemembranes. Gao et al. [19] presented an improved
PSO-based clustering algorithm inspired by tissue-like P sys-
tem, called TPCA. Besides, new P systems are also designed
to solve more problems. Peng et al. [20]–[22] proposed a new
kind of neural-like P systems by adding threshold, synaptic
channels and coupled mechanism. Song et al. [23] introduced
a new variant of spiking Neural P systems with learning
functions to recognize English letters. However, the methods
described above used classical P systems. For computation
purposes, the classical membrane systems are a simplification
of real membrane structures and do not use the complex
membrane structures to solve problems with complicated
structures; for example, classical P systems cannot store mul-
tivariate data with complex relationships. Therefore, there is a
pressing need to develop new P systems with complex struc-
tures to deal with more real applications. Liu and Xue [24]
first attempted to establish P systems on simple complex of
discrete objects. Luan and Liu [25] designed P systems on
a chain, which can use the directionality of membranes and
the additivity of a chain to implement crossover operation
and variation operation in genetic or differential evolution
algorithm.

In addition, hypergraph theory [26], [27] has been used in
clustering, association rule mining, spatial data mining and
so on. In hypergraph theory, objects with common attributes
belong to one set, and different abstract levels belong to
supersets, which comprise a special logic structure that can
be used to organize complex relationships between objects.
Therefore, making use of the complex structure of hyper-
graphs in membranes may improve the performance of mem-
brane systems in real applications.

Based on the above considerations, we propose hybrid
chain-hypergraph P systems (HCHPSs) to implement mul-
tiobjective ensemble clustering. We designed three new
types of subsystems with new rules and membrane struc-
tures to implement multiobjective optimization, increase
the population diversity of cluster centers and conduct an

ensemble strategy. The average F-measure on 8 University of
California Irvine (UCI) datasets [28], i.e., Iris, Newthyroid,
Wine, Diabetes, Bupa, Yeast, Glass, and Cancer are 1.00,
0.92, 0.95, 0.79, 0.78, 0.60, 0.54, 0.97, respectively, outper-
forming the results of state-of-the-art methods.

The contributions of our work can be summarized as
follows:

(1) We propose a new P system with hybrid structures,
where the hybrid structures combine the advantages of chain
and hypergraph topology structures.We also design new rules
in the new P system to solve complex real applications.

(2) A reaction chain membrane subsystem is proposed to
implement three different multiobjective strategies simulta-
neously to make the algorithm robust to data with various
features by new chain evolution rules. A local communication
membrane subsystem is also designed to increase the popu-
lation diversity of cluster centers by communication rules.

(3) We propose a new dense representation multisize
ensemble strategy to improve the accuracy of the final results
in the global ensemble membrane subsystem.

II. PROBLEM STATEMENT
A. CLUSTER ANALYSIS
Clustering is used to divide a set of objects, where objects in
the same group are more similar to each other than to objects
in different groups. Fuzzy C-means (FCM) [29] is one of the
most popular clustering algorithms and is based on the fuzzy
set principle. FCM evolves a partition matrix U (X ) during
computation and minimizes equation (1).

Jm =
N∑
j=1

I∑
i=1

µmi,j d
2 (Oi, xj) (1)

where I is the number of clusters, N denotes the number of
data,Oi is the center of the ith cluster, andm is a fuzzy factor.
ui,j ∈ U is an element of the fuzzy membership matrix U ,
which represents the membership of data xj in Oi. d2

(
Oi, xj

)
denotes the distance between xj and Oi.

By minimizing Jm with a Lagrange multiplier algo-
rithm [30], the updating equations of memberships and clus-
ter centers are shown as equation (2) and (3), respectively:

µk,j =

(
1/d

(
Ok , xj

))1/(m−1)∑I
i=1

(
1/d

(
Oi, xj

))1/(m−1) (2)

Ok =

∑N
j=1 µ

m
k,jxj∑N

j=1 µ
m
k,j

(3)

To increase the performance of FCM, multiobjective opti-
mization has been adopted [5], [6]. In general, the Pareto
solution has been used to evaluate the final results. A gen-
eral multiobjective optimization problem can be expressed as
follows:

F (P) = (F1 (P) ,F2 (P) , . . . ,FM (P))T (4)
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where F is an objective vector and M is the number of
objectives. P = (P1,P2, . . . ,PD) is a decision vector with
D-dimension.

In a Pareto relationship, solutions are divided into nondom-
inated solutions and dominated solutions. All nondominated
solutions can be considered acceptable [31].

To improve the accuracy of clustering and adapt the algo-
rithm to data with various features, ensemble clustering uses
integrated learning techniques to obtain a new clustering
result by learning multiple clustering results of the merged
dataset. First, the ensemble clustering implements several
same/different clustering algorithms to form a base clustering
pool. Then, a consistency function is employed to integrate
the cluster members to obtain a unified clustering result.

B. CHAIN AND HYPERGRAPH STRUCTURES
A q-simplex (cell) sq is the convex hull of q + 1 affinely
independent points denoted by a0, a1, . . . , aq. The integer
q is called dimension of simplex sq , while a0, a1, . . . , aq
are called vertices. A simplex sq is uniquely indicated by its
vertices and can be expressed by [a0, a1, . . . , aq].
A simplicial complex P is a collection of non-empty sim-

plices σ1, σ2, . . . , σP, where σ1 ≺ σ2 denotes that simplex σ1
is a vertex or a face of simplex σ2. Each simplex is supposed
to be oriented [24]. Therefore, a P-chain is a kind of simplicial
complex with p-dimensional simplices, defined as follows:

C(P) =
P∑
i=1

cσiσi (5)

where cσi indicates the direction of simplex σi in chain C(P).
Here, cσi = 1 and cσi = −1 represent the two directions of
chain C(P). All simplexes of the same dimension can form a
chain domain.

A hypergraph H = (v, e) is a generalization of a
graph whose edges contain an arbitrary number of ver-
tices [32]–[34]. v is a set of vertices, and e is a set of
hyperedges. A hyperedge can contain more than two ver-
tices and can be formally represented by a nonempty subset
of v. As shown in Fig. 1, hyperedge e3 contains vertices v3,
v5 and v6.
A hypergraph H = (v, e)can also be described as an

accessible matrix:

H =
{
1, v ∈ e
0, otherwise

(6)

where H = 1, if hyperedge e contains vertex v. For example,
Fig.1 can be represented by:

e1 e2 e3 e4
v1 1 0 0 0
v2 1 1 0 0
v3 1 1 1 0
v4 0 0 0 1
v5 0 0 1 0
v6 0 0 1 0
v7 0 0 0 0



FIGURE 1. An Example of a hypergraph with vertices v={v1, v2, v3, v4, v5,
v6, v7}, and hyperedges e={e1, e2, e3, e4}={{v1, v2, v3}, {v2, v3},
{v3, v4, v5}, {v4}}.

C. TISSUE-LIKE P SYSTEMS
A tissue-like P system [35], [36] associates a graph structure
consisting of nodes corresponding to cells and the envi-
ronment and edges that represent channels linking various
components. A tissue-like P system of degree m > 0 with
symport/antiport rules is formally defined as a tuple:∏

=
(
O,w1, . . . ,wq,R1, . . . ,Rq, i0

)
, (7)

where O is a finite set of objects; w1, . . . ,wq are initial
multisets of objects;Ri are finite sets of evolution rules in cell,
with 1 ≤ i ≤ q; and i0 ∈ {0, 1, . . . , q} indicates the output
cells of the system. Ri contains symport and antiport rules.
A symport rule has the form (i, u/λ, j), which means that the
multiset of objects u goes from cell i to cell j. An antiport
rule has the form (i, u/v, j), indicating that the multiset of
objects u in cell i and the multiset of objects v in cell j are
interchanged.

The m cells are computing units that work in parallel.
The tissue-like P system starts with the initial multisets
w1, . . . ,wq.Then, in each step, the symport or antiport rule is
applied. This process is repeated until a termination condition
is satisfied. When the process terminates, the final result is
embodied by the output cells.

III. HYBRID CHAIN-HYPERGRAPH P SYSTEMS FOR
MULTIOBJECTIVE ENSEMBLE CLUSTERING
In this section, we propose the framework of the HCHPS.
Firstly, chain and hypergraph topology structures are
employed; then, we further define new rules and a config-
uration for the HCHPS. An HCHPS of degree m > 0 is a
construct of the form:∏

= (O, ω1, ω2, . . . , ωm, subsysi, i0) (8)

whereO is the alphabet of objects;ω1, ω2, . . . , ωm are strings
over O, representing the multisets of objects placed in the
m cells of the system at the beginning of the computation;
HCHPS contains two types of cells, i.e., chain membranes
and hypermembranes. mh1, . . . ,mhm1 are hm1 numbers of
hypermembranes; and mc1, . . . ,mcm2 are chain membranes
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with number cm2, hm1 + cm2 = m . i0 specifies the out-
put membrane of

∏
. subsysi indicates the ith subsystem

of the HCHPS, of the form subsysi = (Wi,Ri), where,
Wi are the initial strings contained in the ith subsystem;
Ri is a finite set of rules of the ith subsystem, which are
defined in the illustration of the three subsystems (section III,
subsection B, (1)(2)(3)).

To better describe the tasks and relationships of different
membranes in HCHPS, we divided HCHPS into different
subsystems. On the one hand, each subsystem consists of
different membranes, rules and channels to implement a
part of the multiobjective ensemble clustering independently.
On the other hand, subsystems communicate with each other
to obtain the final results.

A. MEMBRANE STRUCTURES OF THE HCHPS
Chain membranes and hypermembranes are the two main
membrane structures of an HCPHS.

FIGURE 2. Chain membrane structure.

Definition 1: Based on the relevance operations of chain
structure, membrane units combine into chains. A chain
membrane is an ordered chain of connected membranes
with two directions (i.e., ‘+’ and ‘−’). As shown in Fig.2,
+ : σ1 → σ2 → σ3 → σ4 and − : σ5 → σ6 →

σ7→ σ8 are two chain membranes with different directions.
Membranes σ1, σ2, . . . , σ8 are called unit membranes. There
is a channel between any adjacent unit membranes. The
outermost membrane τ is called the max membrane. Mem-
branes σ1, σ2, . . . , σ8 including in membrane τ are called
children membranes of τ . τ is the parent of σ1, σ2, . . . , σ8.
σ1, σ2, . . . , σ8 and τ meets σ1, σ2, . . . , σ8 ≺ τ . A membrane
without any other membranes inside it is an elementary mem-
brane.
Definition 2: Based on the topology of hyper graph, hyper-

membrane is defined as a membrane with two or more upper
membranes. For two membranes m1 and m2, m1 is the upper
membrane of m2 if m2 ⊂ m1 and there is no m3 such
that m2 ⊂ m3 ⊂ m1. m2 is correspondingly the lower
membrane ofm1. Amembrane without any upper membranes
is a skin membrane. A membrane without any others inside
it is an elementary membrane. As shown in Fig.3, mem-
branes 4, 5, 6, 8, 9, 10, and 11 are elementary membranes.
In particular, membrane 9 is also a hypermembrane, which
has upper membranes 3 and 7. Membrane 1 is the skin
membrane.

FIGURE 3. Hypermembrane structure. Membrane 1 is the skin membrane.
Membranes 4, 5, 6, 8, 9, 10, and 11 are elementary membranes.
Membrane 9 is a hypermembrane, which has upper membranes 3 and 7.

B. SUBSYSTEMS OF THE HCHPS
To implement multiobjective ensemble clustering in the
HCHPS (HCHPS-MOEC), we propose three types of sub-
systems (i.e., reaction chain membrane subsystems, local
communication membrane subsystems and global ensem-
ble membrane subsystems). As shown in Fig. 4, three
upper membranes implement three multiobjective cluster-
ing algorithms (i.e., NSGA-II-FCM [37], NNIA-FCM [38]
and PESA-FCM [39]) simultaneously. NSGA-II-FCM,
NNIA-FCM and PESA-FCM are three classic multiobjective
clustering algorithms. NSGA-II-FCM is one of the best mul-
tiobjective clustering algorithms [37], which improves the
overall evolution level and evolution efficiency of the middle
population. However, NSGA-II-FCM is hard to maintain
the diversity of the population. Different from NSGA-II-
FCM, NNIA-FCM is more conducive to maintaining diver-
sity and has higher search efficiency because of its oper-
ation of obtaining superior individuals [38]. PESA-FCM
can avoid the adjustments of difficult parameters and can
easily use functions with various ranges, which are not
available in other multiobjective clustering algorithms [39].
To better use the advantages and remedy the disadvan-
tages of multiobjective clustering algorithms, we selected
NSGA-II-FCM, NNIA-FCM and PESA-FCM as the three
multiobjective clustering algorithms in our study.

Each upper membrane has a group of local communica-
tion subsystems with a reaction chain membrane subsystem
inside.

Initially, objects are generated randomly in reaction chain
membrane subsystems. Each object represents a set of clus-
ter centers. Suppose the data set to be clustered is X =
{X1,X2, . . . ,Xn} ⊆ Rn×d with K clusters, with n being the
number of data points and d the dimension. K out of n data
are randomly selected as the initial cluster centers,denoted
by Q = (z1, z2, . . . , zK ), where Zi = {zi1, zi2, . . . , zid } ⊆
Rd , with i = 1, 2, . . . ,K . Q = (z1, z2, . . . , zK ) is the
initial strings in the reaction chain membrane subsystem.
Different chain membranes conduct multiobjective clustering
algorithms with different parameters in the reaction chain
membrane subsystem in parallel to obtain local nondomi-
nated objects.
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FIGURE 4. The membrane structures of HCHPS.

Then, the local nondominated objects are sent to the cor-
responding local communication subsystem to create non-
dominated solutions. A semi-supervised method is adopted
to select the non-dominated solutions. 20% data was given
true labels before computing. Then, several optimal solutions
in the Pareto set were selected based on the FM values of the
20% data and sent out from the three upper membranes to
their hypermembrane. Afterwards, the final optimal solution
will be obtained by the ensemble clustering in the hyperme-
mbrane, which will conduct on these optimal solutions and
the remained data. To further improve the accuracy of the
final results, the global ensemble membrane subsystems con-
duct a new dense representation multisize ensemble strategy,
different numbers of optimal solutions are adopted from the
Pareto set to do the ensemble clustering. The final optimal
solution will be achieved from several results of the ensemble
clustering.

1) REACTION CHAIN MEMBRANE SUBSYSTEM
The membrane structure of the reaction chain membrane
subsystem is provided in Fig. 4. Every reaction chain mem-
brane subsystem contains two types of membranes, i.e., rel-
ative positioning membranes and chain membranes (Fig. 2).
Each chain membrane contains a set of cluster centers Q =
(z1, z2, . . . , zK ).K is the number of clusters to be divided. The
number of chain membranes is the size of the population to
be evolved. Therefore, evolution of multiobjective clustering

strategies can be conducted between any two chain mem-
branes to increase the diversity of the population. Three new
types of rules are designed to implement multiobjective clus-
tering strategies in the reaction chain membrane subsystem:
• Nondominated Object Selection Rules
Nondominated object selection rules (equation (9)) are
designed to select better objects from the same Pareto front
by comparing the crowded distances.{

(ak , al)→ ak , adk ≤ a
d
l

(ak , al)→ al, adk > adl
(9)

where ak and al are two objects, with ak 6= al . adk and
adl denote the crowded distances of ak and al , respectively.
Object with smaller crowded distance are selected.
• Crossover Rules
Crossover rules are designed to produce new objects for better
performance, defined as:(
ak(i),s + ak(i+1),s

)
/2+ f ×

(
ak(i),s + ak(i+1),s

)
→ ak(i),c

(10)(
ak(i),s + ak(i+1),s

)
/2− f ×

(
ak(i),s + ak(i+1),s

)
→ ak(i),c

(11)

where ak(i),s and ak(i+1),s are objects generated from the ith
and (i+ 1)th selection, respectively, and ak(i),c is the object
created by the ith crossover. f is a scaling factor defined
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in (12) bµ ∈ [0, 1] and bβ = 20.

f =

{
2b

1/(bβ+1)
µ , bµ ≤ 0.5(

2− 2bµ
)−1/(bβ+1) , bµ > 0.5

(12)

• Mutation Rules

After executing the selection and crossover rules, mutation
rules are conducted to increase the diversity of objects,
defined as follows:

ak + (amax − amin)× (2bµ + (1− 2bµ)
×(1− (ak − amin)/(amax − amin)))1/(bm+1)−1

→ ak,m, ak ≤ bλ, bµ ≤ 0.5
ak + (amax − amin)× (2bµ − 1+ (2bµ − 1)
×(1− (amax − ak )/(amax − amin)))1/(bm+1)

→ ak,m, ak > bλ, bµ > 0.5

(13)

where ak is an object and ak,m is the object produced by
mutation. αmax and αmin are the maximum and minimum
values of the objects, respectively. bλ = 1/D is the mutation
probability, D is the dimension of data set. bm = 20 is the
mutation parameter.

2) LOCAL COMMUNICATION MEMBRANE SUBSYSTEM
As shown in Fig. 4, local nondominated objects in differ-
ent local communication membrane subsystems in the same
upper membrane communicate with each other to increase
the population diversity through communication rules. Then,
objects with good quality are selected and sent to the corre-
sponding upper membrane. The communication rule of the
local communication membrane subsystem is:

(p, ak/q, al) (14)

where ak and al are two objects, with ak 6= al . ak in the
local communication membrane subsystem p and al in q are
interchanged.

3) GLOBAL ENSEMBLE MEMBRANE SUBSYSTEM
The global ensemble membrane subsystem is used to receive
the global nondominated solution objects and integrate them
to obtain the final clustering results. As shown in Fig. 4,
the hypermembrane has three upper membranes. Each upper
membrane contains a set of global nondominated solutions
from three multiobjective clustering algorithms (i.e., NSGA-
II-FCM, NNIA-FCM and PESA-FCM). Then, three base
clustering pools are created in their upper membrane and
sent to the according hypermembrane. To implement ensem-
ble clustering, the dense representation ensemble strategy
is conducted in the hypermembrane. Data objects X =

{X1,X2, . . . ,Xn}in base clusters Q = {Q1,Q2, . . . ,Qq} are
integrated into microcluster objects by rule (14). q is the
number of base clusters in hypermembrane. Subsequently,
consistency functions are calculated through rules (15) and
(16) to produce the final results.(

pup, (Xi,Qh) /phy, (Xi,Qh)
)

(15)

FIGURE 5. The flowchart of the multiobjective ensemble clustering.

The data value Xi of base cluster Qh is sent into hyperme-
mbrane phy from upper membrane pup; here, 1 ≤ i ≤ n, and
1 ≤ h ≤ q. (

Xi,Xj
)
→
(
Xi,y,Xj.y

)
(16)

Two data values Xi and Xj, 1 ≤ i 6= j ≤ n, are in the same
microcluster y, denoted as Xi,y and Xj.y, if and only if they
appear in the same cluster for all the base clusters.

y→ yf , (PTA,PTGP) (17)

Microcluster y changes into the final cluster yf through two
consistency functions (i.e., probability trajectory accumula-
tion (PTA) and probability trajectory based graph partitioning
(PTGP)) [10]. Specifically, in PTA, the probability trajectory
based similarity of the microclusters is calculated firstly.
Then, microclusters are merged to form several new clusters.
This process will continue until the similarity being the maxi-
mum. Final results will be obtained bymappingmicroclusters
back to data. In PTGP, the similarity of the microclusters
is computed to construct the microcluster bipartite graph.
Afterwards, the microcluster bipartite graph is partitioned
into K clusters. Final results will be obtained by mapping K
clusters back to data.

To further improve the clustering performance, we also
integrate the ensemble results under different ensemble sizes
(i.e., multisize) in the global ensemble membrane subsystem
in parallel. The ensemble size is the number of solutions
taking part in the ensemble learning.
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TABLE 1. Seventeen real-life data sets from UCI.

C. TERMINATION AND OUTPUT
The computation processes described above are repeated iter-
atively until a prescribed maximum number of computation
iterations is reached. Then, the HCHPS halts. When the sys-
tem halts, all the objects in the output membrane are regarded
as the final HCHPS solution.

IV. EXPERIMENTS AND DISCUSSION
A. DATA SETS
We compared the proposed algorithm with state-of-the-art
methods on 17 real-life data sets. Two artificial data sets
are also created to visualize the clustering results. Data sets
with different characteristics of shape, size, compactness and
symmetry are described as follows.

1) ARTIFICIAL DATA SETS
A1 has a spiral distribution with two clusters as shown
in Fig. 6(a). A2 has five clusters as shown in Fig. 6(b).

FIGURE 6. Artificial data sets: (a) A1, (b) A2.

2) REAL-LIFE DATA SETS
Seventeen real-life datasets (Table 1) from the UCI database
for machine learning [28] are employed in the experiments.

B. EVALUATION METRIC
To evaluate the clustering performance, the F − measure of
cluster k with respect to class l is calculated by

F − measure (k, l) =
2× (P (k, l)× R (k, l))
(P (k, l)+ R (k, l))

(18)

where P (k, l) = skl/sk and R (k, l) = skl/sl . P (k, l) denotes
the precision of cluster k with respect to class l, and R (k, l)
denotes the recall of cluster k with respect to class l. skl is the
number of data points belonging to both cluster k and l, sk is
the number of data points in k , and sl is the number of data
points in k . Therefore, F−measure for the whole partitioning
is calculated as

F − measure =
∑
l

sl
s
maxF − measure (k, l) (19)

where 0 ≤ F − measure ≤ 1; F − measure = 0 indi-
cates that all data are grouped in the wrong clusters, while
F − measure = 1 implies exactly correct clustering.

C. PARAMETER SETTINGS
Experiments are implemented in MATLAB 2016a (Math-
Works, Natick, MA). The iteration number is set as 30. The
parameters are set as in Table 2. The average performance is
adopted as the final performance.

D. EVALUATIONS ON DIFFERENT DATA SETS
1) COMPARISON WITH THE STATE-OF-THE-ART
METHODS ON REAL-LIFE DATA SETS
In this subsection, we compare our proposed method with
four state-of-the-art methods on 8 UCI data sets, as briefly
introduced below.
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TABLE 2. Parameter settings of HCHPS-MOEC. (D is the dimension of the data set.)

TABLE 3. Comparison of the proposed method with four state-of-the-art methods for multiobjective clustering on 8 UCI data sets. The best performing
methods are shown in bold. (The performance is described by the mean ± std.)

TABLE 4. Comparison of the proposed method with single-objective clustering algorithms on 8 UCI data sets. The best performing methods are shown in
bold. (The performance is described by the mean ± std.)

MOFC-TMS [16]: a tissue-like P-system-based multiob-
jective fuzzy clustering algorithm to optimize three objectives
simultaneously, which achieved the state-of-the-art perfor-
mance in terms of F − measure.
VAMOSA [5]: amultiobjective clusteringmethodwith two

objective functions being optimized together.
GenClustMOO [7]: amultiobjective clusteringmethod that

adopts a simulated annealing-based algorithm as the underly-
ing optimization strategy.

MOmoDEFC [6]: a multiobjective clustering technique
with XB-index and Jm being optimized together.
Table 3 compares the clustering performance of the pro-

posed method with four state-of-the-art methods, using

F − measure. The mean F − measure increases from 0.84
to 1.00 on Iris, 0.85 to 0.92 on Newthyroid, 0.87 to 0.95 on
Wine, 0.71 to 0.79 on Diabetes, 0.68 to 0.78 on Bupa, 0.59 to
0.60 on Yeast, 0.50 to 0.54 on Glass. For Cancer, the standard
deviation also decreases from 0.014 to 0.010.

As can be observed in Table 3, the clustering results of
HCHPS-MOEC are higher by the proposed method despite
the diverse shape and size of datasets.

2) EVALUATION ON TWO ARTIFICIAL DATA SETS
As shown in Fig. 7(a) and Fig. 7(b), HCHPS-MOEC has
optimal results on A1 and A2. The mean F − measures are
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TABLE 5. Comparison of the proposed method with our two single-objective versions on seventeen UCI data sets. The best performing methods are
shown in bold. (The performance is described by the mean ± std.)

TABLE 6. Comparison of the proposed method with three multiobjective clustering algorithm used in HCHPS on 17 UCI data sets. The best performing
methods are shown in bold. (The performance is described by the mean ± std.)

both 1, indicating that the proposed method can correctly
cluster A1 and A2 during all 30 iterations.

E. ABLATION STUDY
1) EVALUATION ON THE IMPACT OF
MULTIOBJECTIVE OPTIMIZATION
We compared the proposed method with three classic single-
objective clustering algorithms (i.e., the differential evolution
algorithm (DE) [40], particle swarm optimization (PSO) [41],

and FCM [29]) on 8 UCI data sets. As seen in Table 4, the
F −measure values of DE, PSO and FCM are all lower than
that of HCHPS-MOEC. Therefore, the multiobjective opti-
mization of HCHPS-MOEC improves the clustering accuracy
significantly.

We also compared the proposed method with two single-
objective algorithms (i.e., objective XB-index and Jm)
implemented by the HCHPS on 17 UCI data sets.
As confirmed in Table 5, multiobjective optimization is
useful for clustering.
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TABLE 7. Comparison of the proposed method with different ensemble sizes on 17 UCI data sets. MOCE(M)-HCHPS represents the ensemble size of the
base clustering objects. The best performing methods are shown in bold. (The performance is described by the mean ± std.)

TABLE 8. Comparison of the proposed method with classic ensemble strategies on 17 UCI data sets. The best performing methods are shown in bold.
(The performance is described by the mean ± std.)

FIGURE 7. Clustering results of HCHPS-MOEC on A1 and A2.

2) EVALUATION ON THE IMPACT OF ENSEMBLE LEARNING
To verify the efficiency of the ensemble strategy, we com-
pared the proposed method with three multiobjective

clustering methods (i.e., NSGA-II-FCM, NNIA-FCM and
PESA-FCM) on 17 UCI data sets. The experimental results
in Table 6 show that using an ensemble strategy can improve
the clustering performance.

3) EVALUATION ON DIFFERENT ENSEMBLE SIZES
Since different ensemble sizes change the fitness of data sets,
thus affecting the accuracy, we compared the performance
of multisize sets with fixed sizes of 3, 5, 7 and 10. Ben-
efiting from the distribution and parallelism of P systems,
the multisize experiment consumes the same time as a fixed-
size experiment. As shown in Table 7, our method obtains
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TABLE 9. The p-values produced by the T test compared with those of several advanced clustering approaches in terms of the F-measure.

TABLE 10. Comparison of the calculation time of the proposed method with/without HCHPS on 17 UCI data sets. The best performing methods are
shown in bold.

the best results. Because the quality distribution of the base
clusters is different, the number of base clusters with good
quality varies. If the number of base clusters with good qual-
ity is smaller than the ensemble size, the clustering result will
be disrupted by base clusters with poor quality, which will
lead to poor clustering performance. Therefore, it is useful to
consider the multisize ensemble for each data set.

4) EVALUATION ON DIFFERENT ENSEMBLE STRATEGIES
To verify the efficiency of different ensemble strategies,
we compared the proposed method with three classic ensem-
ble strategies, which are voting, weighted voting and select
voting [42], on the 17 UCI data sets. As seen in Table 8,
HCHPS-MOEC is more accurate and benefits from the find-
ing of microclusters and use of two consensus functions.
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5) SIGNIFICANCE TESTING
In this subsection, significance tests on the values of 8 UCI
data sets are computed between HCHPS-MOEC and the clas-
sic clustering algorithms introduced before. The significance
level is set at p < 0.05. The p-values are provided by
Table 9, where ‘+’ represents a significant difference and ‘−’
represents no significant difference.

6) TIME CONSUMPTION
Table 10 provides the time consumption of multiobjective
ensemble clustering with/without HCHPS systems, which
shows that the parallel mode of HCHPS can improve the
clustering efficiency.

V. CONCLUSION
In this paper, we have proposed a new P system with
hybrid structures (HCHPS) to combine the advantages of both
chain and hypergraph topology structures for multiobjective
ensemble clustering. The HCHPS establishes three types of
subsystems with new rules. The reaction chain membrane
subsystems are used to implement three different multiobjec-
tive strategies simultaneously by new chain evolution rules.
The local communication membrane subsystems are applied
to increase the population diversity of cluster centers by
communication rules. A new dense representation multisize
ensemble strategy is conducted in the global ensemble mem-
brane subsystem to obtain the final results. Benefiting from
the parallelism of P systems, the HCHPS is less time consum-
ing, featuring an average completion time of 28.07 seconds
on 17 UCI datasets. The experimental results on 17 UCI
datasets indicate that our proposed method is more accurate
than previous state-of-the-art methods and remaining robust
across different datasets.
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