
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received June 23, 2020, accepted July 22, 2020, date of publication July 30, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012969

SpiderTrap—An Innovative Approach to Analyze
Activity of Internet Bots on a Website
PIOTR LEWANDOWSKI , MAREK JANISZEWSKI , AND ANNA FELKNER
Research and Academic Computer Network–National Research Institute, 01-045 Warsaw, Poland

Corresponding author: Piotr Lewandowski (piotr.lewandowski@nask.pl)

ABSTRACT The main idea behind creating SpiderTrap was to build a website that can track how Internet
bots crawl it. To track bots, honeypot dynamically generates different types of the hyperlinks on the web
pages leading from one article to another and logs information passed by web clients in HTTP requests
when visiting these links. By analyzing the sequences of visited links and passed HTTP requests it is possible
to: detect bots, reveal bots’ crawling or scanning algorithms, and other characteristic features of the traffic
they generate. In our research we focused on identifying and describing whole bots’ operations rather than
just classifying single HTTP requests. This novel approach has given us insight into what different types of
Internet bots are looking for and how they work. This information can be used to optimize the websites for
search engines’ bots for a better place on a search’s results page or prepare a set of rules for tools that filter
traffic to the web pages to minimize the impact of bad and unwanted bots on the websites’ availability and
security. We present the results of the five months of SpiderTrap’s activity when honeypot was accessible by
two domains (.pl and.eu), as well as by an IP address. The results show examples of activity of well-known
Internet bots, such as Googlebot or Bingbot, unknown crawlers, and scanners trying to exploit vulnerabilities
in the most popular web frameworks or looking for active webshells (i.e. access points to control a web server
left by other attackers).

INDEX TERMS Cyber threat intelligence, honeypot, HTTP, search engines, situational awareness, web
crawlers, web search, web spiders.

I. INTRODUCTION
According to the Cisco’s white paper [1], all IP traffic
in 2017 was about 1.5 zettabytes (that is a 1.5 trillion giga-
bytes). 17% of the traffic was related to web pages and raw
data (excluding all video-related traffic or file sharing, which
took 75% and 7% respectively). Cisco estimated annual Inter-
net traffic in 2018 at around 1.8 zettabytes. According to the
Distil Networks’ report ’’2019 Bad Bot Report’’ [2] in 2018,
62.1% of all Internet requests they logged were generated by
users, 17.5% by good bots, and 20.4% by bad bots. As a bot,
we understand a computer program or a script for automatic
visiting web pages, where bad bots intend to steal information
from the websites or attack them while good bots intend to
classify or catalog websites’ content following the rules set
by the websites’ owners.

Bad bots pose different types of threats to the websites.
These threats differ from scraping content, through different

The associate editor coordinating the review of this manuscript and
approving it for publication was Ana Lucila Sandoval Orozco.

kind of Denial of Service (DoS) attacks, to overtaking users’
accounts or even financial frauds with stolen credit cards’
details. Each website owner should assess the possible risks
associated with the operation of unwanted bots and imple-
ment appropriate security measures.

There are many ways to prevent bad bots from accessing
a web page. The most popular of them are: all kinds of the
white and black lists of IPs, user agents or HTTP request’s
features, CAPTCHA (Completely Automated Public Turing
test to tell Computers and Humans Apart) or scripts moni-
toring humanlike activity on the web page (i.e. mouse cursor
movement) [3].

Most of the good bots are the ones associated with popular
search engines like Google, Bing or Yahoo. These bots crawl
websites to rank them to present the most relevant results to
the search queries. Other type of good bots are the ones run by
companies selling Search Engine Optimization (SEO) reports
to the websites’ owners. SEO reports help with adjusting
website’s content and its source code to make the website
appears higher in search results, attract more traffic and

141292 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0964-6812
https://orcid.org/0000-0001-8965-6302
https://orcid.org/0000-0003-3813-4840

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

finally generate higher revenues to the website’s owner.Many
SEO techniques available to websites’ owners are already
described (e.g. [4]) so they will not be an aim of this paper.
We would like to focus on the way how good bots crawl
the website, how they parse the source code of web pages,
whether they recognize different types of links placed on
web pages, and finally whether they abide by the restric-
tions defined in the Robots Exclusion Protocol (described in
section II-C).

SpiderTrap was developed to mimic the website and log
HTTP requests’ headers. The gathered data can be useful for
understanding how good bots crawl the websites as well as
to prepare the sets of rules for other tools to block the access
of bad bots to the legitimate web pages. This paper describes
the SpiderTrap architecture and technologies used to develop
the honeypot as well as details of data logged through nearly
five months of its operation.

The collected information can be used in two perspectives:

• Research and monitoring. The collected data – an
Internet bots intelligence – can be used to monitor the
current level of activity of web bots, both in terms of
quantity (for example frequency of requests) and in
terms of quality (the way of functioning and behavior).
This perspective is mainly covered in the paper.

• Prevention capability Thoroughly aggregated, corre-
lated and analyzed requests are used to generate action-
able information (some type of indicators of a specific
tools or bots). The generated feeds can be used by the
Web Application Firewall (WAF) to prevent potentially
malicious requests or those that do not abide by the rules
and standards.

II. STATE-OF-THE ART
Here, we would like to briefly introduce available solutions
for honeypots and website’s security that share some similar
features with SpiderTrap.

A. HONEYPOTS
There are many different sorts of honeypots available on the
Internet. We would like to present just three of them: SNARE
with TANNER, BW-Pot and Shadow Daemon as they share
some similar features with SpiderTrap.

1) SNARE WITH TANNER
SNARE is an acronym from Super Next generation Advanced
Reactive honEypot. It is developed by a non-profit organiza-
tionMushMush Foundation [5]. This honeypot has a modular
architecture. SNARE is a lightweight web server that listens
to requests. It passes them to TANNER which decides how
to respond, and passes a response back to SNARE which
sends it back to the client. TANNER is able to emulate some
kind of vulnerabilities, for example: SQL injection, command
execution or local file inclusion, using Docker images. It logs
information about requests and results of attacks (if it is
able to emulate them) in a database. TANNER also clusters

requests into sessions to get some statistics about them and to
try to determine if the traffic was generated by the attacker,
crawler, tool or the user. This honeypot can also copy an
existing website to use it as a disguise.

2) BW-POT
BW-Pot is a honeypot build on Docker images with: pop-
ular web applications like Wordpress, PhpMyAdmin or
Apache Tomcat, with a php webshell, and WOWHoneypot
(another simple honeypot). It uses nginx as an HTTP server
routing requests to appropriate application. Docker images
are reloaded everyday and updated every week for safety.
Requests are logged with nginx (HTTP requests) and tshark
(raw TCP traffic as.json and.pcap). Logs from nginx and
json files from tshark are uploaded via fluentd application to
Google BigQuery [6].

3) SHADOW DAEMON
Shadow Daemon is a Web Application Firewall (WAF) with
ability of switching to learning mode, thanks to which it
can log all requests sent to the honeypot working behind
it. For example a honeypot can be a real web application
working outside the production environment (in case it would
get compromised). Shadow Daemon is able to automatically
classify the requests using blacklist and whitelist of rules.
Some of the generic rules are predefined but more specific
ones must be prepared manually [7].

B. WEBSITE’s SECURITY
There are many ways to protect web application and its
users. To name a few: extended validity SSL certificates,
certificate pinning, HTTP Strict Transport Security (HSTS),
firewall, WAF, load balancing with protection against Dis-
tributed Denial of Service (DDoS). Some of these methods
can be incorporated for free, where some of them are paid
services.

1) COMPLEX PAID SOLUTIONS FOR WEBSITE’s SECURITY
Imperva, a cybersecurity company, offers a range of products
for securing websites and web applications. They have pub-
lished on their blog an insight into their methods of HTTP
requests classification [8], [9]. Their classification method
looks for a set of features in incoming HTTP requests: request
headers, request patterns, IP address information (such as
ASN and domain), or even fingerprinting capabilities of client
like for example JavaScript support.

2) SERVICES AND DATABASES PROVIDING ACTIONABLE
INFORMATION ABOUT HTTP REQUESTS
Web servers’ administrators can also choose to filter HTTP
request on their own, using software installed on a server.
Requests can be filtered using a firewall, web server, or with
a WAF. In the context of website protection, the firewall can
block requests from certain IP addresses, the web server can
filter HTTP requests by IP address or by matching strings in
HTTP headres, and WAF can do all of this as well as inspect

VOLUME 8, 2020 141293

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

HTTP requests and apply to them all sort of filtering rules
which can be very detailed.

Regardless of the chosen solution, there is a need for a
reliable data sources to build filtering rules. We would like
to discuss here publicly available databases of IP addresses
related to malicious or unwanted traffic and databases with
User-Agent strings. Both this information (IP addresses and
User-Agent strings) can be helpful in securing the website.

3) THE REPUTATION OF IP ADDRESSES
There are two noteworthy community driven projects gath-
ering data about malicious or unwanted activity related to
IP addresses – AbuseIPDB [10] and Project Honey Pot
[11]. They both aggregate information about malicious or
unwanted Internet traffic and process this data to create
actionable summaries about IP addresses. Both projects
gather similar data, however, AbuseIPDB accepts reports
from logged in users and anonymous ones, where Project
Honey Pot requires that honeypot software is installed on
users’ servers in order to send reports. AbuseIPDB provides
an API with different limits depending on the user’s status or
fee, while with Project Honey Pot the user needs to run their
honeypot on his own infrastructure in order to access the API.
The information provided by AbuseIPDB and Project Honey
Pot can be useful for automatically blocking traffic from IP
addresses that pose a risk to the website.

4) THE USER AGENTS LISTS
The Hypertext Transfer Protocol [12] specifies that the
User-Agent field in the HTTP request header is not manda-
tory and, if present, it should describe the browsing software
and the operating system on which it operates. The HTTP
specification does not provide any standard for creating a
User-Agent string. It depends on the developer of the software
or the software configuration, how the User-Agent string will
look like and what data will be given. The User-Agent string
can be easily spoofed, so the application can introduce itself
as any other to bypass simple filters.

We can indicate two examples of web services for pars-
ing User-Agent strings: www.whatismybrowser.com and
www.51degrees.com. Both have large User-Agent strings
databases for comparison, and their APIs return as much
details as can be obtained from the UA string. These details
can be: the name and version of the web browser, the name
and version of the underlying operating system, the type of
device (PC, smartphone, tablet etc.), and even the capabilities
of a web browser, operating system, and device.

An off-line solution, a ’’ua-parser’’ from www.
browserscope.org is a large set or regular expressions for pars-
ing User-Agent strings [13]. The advantage of this solution is
being off-line, so there is no need to buy access to any API.
However, it is not as robust as the on-line services can be.

C. WAYS OF CONTROLLING BOT ACTIVITY ON A WEBSITE
The Robots Exclusion Protocol (REP) was introduced in the
early 1990s. It is not a standard per se, but is widely acclaimed

by companies responsibly crawling the Internet. It uses the
’’robots.txt’’ file, HTML META tags and the X-Robots-Tag
in the HTTP header to control the activity of bots on the web
page such as: visiting certain web pages, indexing content
of them and following links. These methods are suitable for
controlling only good bots. It depends on the bots’ developers
whether their bots will respect such rules or not.

1) DIRECTIVES IN ROBOTS.TXT FILE
The ’’robots.txt’’ file determines which bots can access which
web pages on a website. It can also define the maximum rate
at which a bot can crawl a website. The robots.txt file can be
useful for excluding some content from being indexed by bots
(e.g. static files like pictures or documents), so they will not
affect the website ranking in search engines [14]. However,
one must use this solution with precaution, as placing links
to key pages for the security or operations of the website (i.e.
login pages or API) in the ’’robots.txt’’ makes them easily
discoverable to bad actors (bots or humans).

2) META TAGS AND X-ROBOTS-TAGS
The META tags and the X-Robots-Tag HTTP header are
returned in the HTML source of the page or in the HTTP
response (respectively). Because bots cannot know the values
of these tags before visiting a certain web page, this makes
this method suitable for controlling whether bots can index
the content of a web page and/or follow links on such a page,
but they cannot be used to stop bots from visiting certain
pages [15].

3) REL ATTRIBUTE IN <a> HTML TAG
Another method of restricting bots from following certain
links is to add ’’rel’’ attribute with the value ’’nofollow’’ to
the link tag in the HTML source code. This method is useful
if one wants to exclude only a couple of links [16].

4) BLOCKING BOTS WITH WEB SERVER
The two most popular web servers: Apache and nginx [17]
offer the ability to filter certain requests. The most common
filtering rules are based on User-Agent string or IP address
[18]. It is a simple and efficient way to block bots which
do not abide by the Robots Exclusion Protocol, but can be
easily recognized by the User-Agent string or IP address.
This method fails in the case of highly sophisticated bad bots
that connect from the dynamic range of IP addresses with
User-Agent strings of legitimate web browsers.

III. SPIDERTRAP - THE TOOL
SpiderTrap is a website developed with a Python frame-
work Django for serving web pages and PostgreSQL as a
database for storing requests data. Only valid HTTP requests
are logged by Django’s middleware. All other requests
(e.g. malformed HTTP requests, port scans, etc.) are filtered
on nginx HTTP server. There is no TCP/IP packets cap-
turing software. SpiderTrap records HTTP requests’ fields
(described in details in a subsection below). The gathered data

141294 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 1. Software stack of SpiderTrap.

is analyzed off-line in a system separated from the Virtual
Private Server (VPS) on which SpiderTrap is hosted. The
analysis takes place in two stages. Firstly, data exploration
is performed using Kibana connected to the Elasticsearch
instance. In the second step, Python scripts are used to sort
data, find interesting features, and plot graphs to visualize
them.

A. THE TECHNICAL INFORMATION
SpiderTrap is built from: nginx as HTTP server, uWSGI as
the Web Server Gateway Interface for the Django web server
and PostgreSQL database for storing HTTP requests coming
to SpiderTrap (it is depicted in Fig. 1). TheDjango framework
generates web pages which can be crawled by bots and serves
secured API to download the gathered data for analysis.
The entire SpiderTrap website is dynamically generated and
multilevel. It means that on the main page are links to pages
on level 1, on pages of level 1 are only links to pages of
level 2 and so on. The content of a website is a set of articles
from https://www.gnu.org/philosophy/ with randomly placed
links to other articles on SpiderTrap’s website. Beside links
to the original articles and to the Creative Common license
there are no other external links. SpiderTrap can generate an
arbitrary number of levels (set by operator), where every page
has a set of different types of links leading to the next level of
the website. We set maximum level to 3. Below one can find
a list of the different types of links. Types 1, 2, and 3 are on
every page while 4, 5, and 6 are present only on a main page.

1) standard <a href> links,
2) <a href rel=‘‘nofollow’’> links with nofollow attribute,
3) links directing to pages restricted with robots.txt,
4) links in buttons rendered with CSS,
5) links hidden with CSS (they are visible only for plain

HTML browsers),
6) links hidden in comments to HTML source of the web

page.
This approach makes it possible to analyze how bots crawl

the website: horizontally, vertically or in a mixed way. Hori-
zontally means that bot visits all the links found on a certain
page, and then starts to visit newly found links visiting all
links at a given level. The vertical approach means that the
bot visits one link from a certain page, and then visits one
link from the newly found and so on until it cannot go deeper.
Then it starts from the main page with other found links. The

bot can also crawl with a mixed scheme. It collects all found
links in the database and then the algorithm decides which
link it will visit next.

To track how the bot visits links scraped off the requested
pages, information about previously visited pages is encoded
in the URL. Each URL consists of a ’’slug’’, checksum,
and type of the link. ’’Slug’’ is a short title given to an
article, it is a term from newspaper publishing. Using slugs in
the URLs make them more user-friendly than, for example,
using some alphanumeric identifiers. The checksum in the
URL is a security measure to prevent crawling a honeypot
by fuzzing already crawled links. Fuzzing is a kind of a
brute force method where random values are passed to the
system to check if it returns some unpredictable results.
At the end of each URL a type of the visited link is coded
and concatenated with the codes of previously visited links.
This makes the URLs looks like this: example.eu/slug-for-an-
article,checksum,codedVisitedLinks.

B. CHARACTERISTICS OF REQUESTS GATHERED
SpiderTrap logs the following HTTP request’s fields:

• REMOTE_ADDR - client’s IP address,
• REMOTE_PORT - TCP connection client port number,
• HTTP_USER_AGENT - string describing the client
(e.g. web browser),

• HTTP_REFERER - the URL of the page that referred
the requested page,

• HTTP_ACCEPT_ENCODING - list of encoding types
accepted by the client,

• HTTP_ACCEPT_LANGUAGE - list of languages used
to display content,

• HTTP_ACCEPT - list of formats accepted by the client,
• HTTP_HOST - the name or IP address of the web server
specified in the request,

• REQUEST_URI - requested URL,
• REQUEST_METHOD - the method used for the
request, e.g. GET, POST, etc.,

• QUERY_STRING - query posted to server with request
(if present).

All the most popular web browsers (Chrome, Firefox,
Internet Explorer, Opera, Safari) fill these fields in HTTP
requests. The more of these fields have no value, the more
likely that request is from a bot than a person using a web
browser. Although it is possible to create a bot that can send
valid values in the HTTP header or even mimic the movement
of the mouse pointer and clicks [19], it is not very common.
Such sophisticated bots which can outsmart the scripts that
protect someweb pages from crawlers and scanners are rather
targeted for certain websites e.g. e-shops or booking systems.

C. DATA ENRICHMENT
Logs from honeypot can be accessed through the REST API.
The API is secured with certificate authentication (nginx) and
token (Django). The POST, PUT and DELETEmethods were
not implemented in the API to minimize the surface of the

VOLUME 8, 2020 141295

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

TABLE 1. Dataset downloaded from AbuseIPDB API for every IP address
logged by SpiderTrap.

attack. The data is downloaded using a Python script, which
enriches it with information from AbuseIPDB (described in
Table 1). Data from honeypot API, enriched with data from
AbuseIPDB is stored in the local Elasticsearch instance. The
illustration of the data analysis configuration is shown in
Fig. 1.

IV. THE METHODOLOGY OF DATA ANALYSIS
For the purpose of this paper, we distinguish some kinds of
traffic on a standard web page:

1) made by human:
a) regular web browsing (inoffensive)
b) reconnaissance (offensive)
c) exploiting vulnerabilities (offensive)

2) made by bots:
a) crawling (inoffensive)
b) scraping (inoffensive, rather unwanted)
c) reconnaissance (offensive)
d) exploiting vulnerabilities (offensive)

The main difference between the human and the bot
generated traffic is the frequency of requests and the
presence of values in the fields: HTTP_USER_AGENT,
HTTP_ACCEPT_ENCODING, HTTP_ACCEPT_LAN
GUAGE, HTTP_ACCEPT and HTTP_HOST. Bots can send
requests much more often than people, so rate limiting may
be some countermeasure for bots’ traffic.

However filtering by presence of values in HTTP’s
request headers is also effective. Querying the whole
dataset for valid requests (i.e. links that web server could
resolve) with any value in all fields: HTTP_USER_AGENT,
HTTP_ACCEPT_ENCODING, HTTP_ACCEPT_LAN
GUAGE, HTTP_ACCEPT, and HTTP_HOST shows that
only 3960 requests (about 7%) meet this criteria. In this
subset, approximately 92% of requests have a signature of
MJ12bot in HTTP_USER_AGENT field. Excluding them
and some other obvious scanners (e.g. requests where
HTTP_HOST is an IP address where it should be a domain)
gives a subset of 162 requests (about 0.3% of the whole
dataset). This subset can also be narrowed by for example
excluding traffic from VPS providers like Amazon AWS but
it may also lead to some false positives. Due to fact that our
honeypot was not promoted in any way, we assumed it would

not attract human visitors or it would be marginal number of
requests and it is compliant with this short analysis above.

By analysing the requested URIs, we have prepared a list
of rules to classify requests as: inoffensive, offensive or other.
Readers should be aware that not all of these rules are general
and can not be applied to all of the websites. For example
we classify all login panels requests as offensive because
there is no such panel on SpiderTrap. However, websites
utilizing somewell-knownweb applications like for example:
Wordpress, Drupal or PhpMyAdmin will have such panels
and not all requests to them will be offensive.

In this paper, we consider requests as inoffensive if they
are for the web pages present on a SpiderTrap’s web-
site and using the GET, HEAD or OPTIONS methods.
Exceptions are requests for files which are not present
on SpiderTrap’s website but are common among other
as they can be useful for bots or applications accessing
them. These files are: sitemap.xml, /.well-known/security.txt,
/.well-known/assetlinks.json and /.well-known/mta-sts.txt.
Another exception are requests for existing web pages with a
query string attached by Facebook. This query string consist
one parameter ’’fbclid’’ with value equal to string of 61 char-
acters (letters, numbers, dashes and underscores) e.g.
https://example.com/some_page.html?fbclid=IwAR1mv03L
WUaxjWmkCCpYwnrxgrDmfJK8GlCjXosWvh19ZStVAfT
I1J_YAnc.

We also do investigate a whole path of links visited
by a bot. This information is encoded in the URL (see
section III-A). It can be useful to distinguish bots from regular
users or check if they behave well. For example requests for
links hidden in comment to HTML code of web page or links
hidden in invisible <div> element may indicate a bot as these
links are not easily accessible to human. It is also possible
to check if bot violates robots.txt directives because we can
check if particular bot visited restricted link after accessing
robots.txt file. List of tags we use for inoffensive requests can
be found in Table 2.

As offensive requests we consider these for web pages
not present on a SpiderTrap’s website and meeting criteria
of at least one offensive rule. Rules are based on inspec-
tion of three aspects of request: method, query string and
URI. Methods: POST, PUT and DELETE are considered
as offensive because they are not implemented on Spider-
Trap’s website and their purpose is to send some data to web
server or modify existing one. There is also a PROPFIND
method which belongs to Microsoft WebDAV application.
This method can be used to scan for vulnerable WebDAV
servers so this is why we treat requests with this method
as offensive (see Table 3). As SpiderTrap is not processing
any input from visitors so most of query strings are also
considered as offensive (exception is a query string from
Facebook as mentioned above). Another reason to treat query
strings as offensive is they can also be an attack vector on the
vulnerable web applications. List of strings used to classify
query strings can be found in Table 4. To classify requests by
the requested URI we propose a list of strings which presence

141296 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

TABLE 2. A set of rules to classify inoffensive requests by requested URI.

TABLE 3. A set of rules to classify requests by method.

TABLE 4. A set of rules to classify requests by query string.

in URI indicates to which group a request belongs. Check
up of strings presence in URIs must be done according to
the list presented in Table 5 because list’s entries are ordered
frommore specific to the less one. Names of groups (tags) are
related to web applications or technologies being a target of
attack (beside ’’scanner_nmap’’ which is related to scanning
tool Nmap).

All requests tagged only as req_404with no other offensive
or inoffensive tags are treated as other (for example of such a
request see Listing 1).
The aforementioned algorithm for tagging requests is

depicted as diagram in Fig. 2 and Fig 3. First diagram presents
three algorithms for tagging request’s: URI, method, and
query independently from each other. Having a list of tags
from these three algorithms (for URI, method, and query),
there is a last step (depicted in Fig. 3) which classify a request
as offensive, inoffensive or other.

For analysis purposes we have defined crawling and scan-
ning sessions. Session is set of at least 2 requests send
from 1 IP address with the time between consequent requests
being less that 10 seconds. Crawling session must not consist
any offensive request while scanning session must consist

List. 1. Example of the request classified as other.

TABLE 5. A set of rules to classify offensive requests by requested URI.

at least one offensive request. Adjustments of number of
requests and time gap is based on the gathered data. We are
aware that one IP address can be shared between many clients
(networks behind a NAT or many applications working paral-
lel or in a chain) so one address is not always corresponding
to one client. Also this approach fails for more sophisticated
crawlers or scanners which use multiple instances from IP
addresses pools where all of these instances can share the
crawled links. There can also be problems with tools using
delays longer than 10 seconds between requests (see Fig. 4).
With SpiderTrap’s ability to serve sites with different sort of
links we managed to overcome shortcomings of this method
to identify such crawlers and scanners.

VOLUME 8, 2020 141297

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 2. Diagram of three algorithms to classify a request’s: URI,
method and a query as offensive or inoffensive.

FIGURE 3. Diagram of an algorithm to classify a request as offensive or
inoffensive.

V. RESULTS
The raw data of logged requests have been processed with
Python scripts. Firstly we tagged requests using a sets of
rules to classify them as inoffensive, offensive, or other (as
described in the previous section). Then we grouped requests
into sessions of scanning or crawling and selected repre-
sentative examples. These procedures and their results are
described in the following subsections.

FIGURE 4. Requests sent from 1 IP address on November 13, 2018 seen
as 9 different sessions. Every session seats between two vertical lines of
the same color. There was one request that did not fall into any of
sessions.

FIGURE 5. Number of requests per day.

A. THE GENERAL RESULTS
SpiderTrap was operating fromOctober 19, 2018, toMarch 8,
2019. During 140 days, honeypot registered 54054 requests
from 6067 distinct IP addresses from 127 countries. Distri-
bution of number of requests per day is depicted in Fig. 5.
Most of the requests came from: China, the United States,
France and Germany (see Fig. 6). With the list of rules that
we have prepared (described in details in section IV), requests
were divided into three groups: offensive, inoffensive and
others. Groups consist of 33070, 20602 and 382 requests
respectively (see Fig. 7). Distribution of requests per group
per day is depicted in Fig. 8. Using aforementioned defini-
tions of crawling and scanning sessions we divided the set
of requests into sessions. There were 994 crawling sessions
and 752 scanning sessions. The number of crawling and
scanning sessions per day is depicted in Fig. 9. Fig. 10 and 11
present the number of sessions of scanning and crawling
with given number of requests. For both types of sessions
the shortest one have 2 requests (as defined above) with
the crawling session lasting 0.051 seconds and the scanning
session lasting 0.679 seconds. The longest crawling session
had 1185 requests (took 510.132 sec) while the longest scan-
ning session had 370 requests (took 385.649 sec).

B. LEGITIMATE, WELL-KNOWN INTERNET BOTS
In Table 6, we present summary for top ten the most
active legitimate Internet bots that crawled our honeypot.

141298 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 6. Number of requests per country.

FIGURE 7. Number of requests per group.

FIGURE 8. Number of requests per group per day.

FIGURE 9. Number of crawling and scanning sessions per day.

The number of requests was counted by looking up the
User-Agent strings used by these bots (a standard and a
mobile versions of the crawlers, if applicable). Number of
requests per day is depicted in Fig. 12. The IP addresses
from which requests came to the honeypot were checked to
see if they can be matched with bots’ operators. For 5 bots:

FIGURE 10. Number of scanning sessions with given number of requests.
Additional bar chart with histogram of number of scanning sessions with
given number of requests.

FIGURE 11. Number of crawling sessions with given number of requests.
Additional bar chart with top 30 most common number of requests per
crawling session.

Googlebot, Bingbot, Ahrefs, YandexBot, and Nimbostratus
it was possible, for Dataprovider.com it was partially pos-
sible, and for 4 others it was impossible. We also checked
if requests with other User-Agent strings came from these
IP addresses to exclude obvious User-Agent spoofing. There
were only three requests with different User-Agent string
(looking like a Chrome browser working on Samsung Galaxy
S6 Edge with Android 5.1.1) from IP addresses related to
Dataprovider.com.

From these ten bots we choose six to describe them in
details as they are best known (like Google or Bing) or
presented some unexpected behavior. For other bots, beyond
information from Table 6, we observed that: YetiBOT visited
only the main page and the first level of sub pages, Yan-
dexBot’s second user agent was a mobile one (presented itself
as an iPhone), and Nimbostratus visited only a main page.
Analysis of DotBot’s requests did not show any additional
features to one presented in Table 6.

1) GOOGLEBOT
Google as the most popular web search engine [17] can
enforce new trends in creating websites. Google promotes
sites with: enabled communication’s encryption (HTTPS),
support for mobile devices (through dynamic matching of
content to different resolutions and screen sizes), and lastly

VOLUME 8, 2020 141299

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

TABLE 6. Summary of features of requests made by top ten the most actively crawling SpiderTrap’s website legitimate Internet bots.

FIGURE 12. Stacked bar graph with number of requests made by crawling
bots per day.

ProgressiveWeb Apps (PWA) – websites which can act as the
applications on smartphones. To correctly identify web pages
that meet these requirements, Google has three variants of its
bot, which present itself as:

• Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.
google.com/bot.html)

• Mozilla/5.0 (Linux; Android 6.0.1; Nexus 5X Build/
MMB29P) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/41.0.2272.96 Mobile Safari/537.36
(compatible; Googlebot/2.1; +http://www.google.com/
bot.html)

• Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/49.0.2623.75 Safari/
537.36 Google Favicon

The first user agent is a standard Googlebot that crawls
pages. It is able to render web pages using CSS and
JavaScript. The second is a bot introducing itself as Google
Nexus 5X smartphone. It checks if the website’s content can
dynamically be fitted to the mobile device’s screen to be
readable. The third, the ‘‘Google Favicon’’ bot crawls the
main pages just to download the ’’favicon’’, a small picture
that can be seen next to the URL in the web browser’s address
bar or on the quick access page in modern web browsers.
Googlebot sometimes requests a page with name consisting
of 9 random letters and digits to test if the web server can
correctly serve 404 error for a non-existing web page. It also
looks for assetlinks.json file. Web developers can put a link
to their own or third party’s Android applications that sup-

FIGURE 13. Number of requests made by Googlebots per day.

port the content of web page [37]. It was also looking for
subdomains forum. and homo. (but only for .eu domain).
According to our analysis, Googlebot respects the Robots
Exclusion Protocol. Fig. 13 presents the number of requests
from all types of Googlebots per day.

All recorded IP addresses have been positively verified
with the method provided by Google. One must check if
reverse DNS lookup of IP address points to domain with
’’google.com’’ or ’’googlebot.com’’ string. If so, check if the
DNS lookup of domain points to the same IP address. For
this task we used the host tool available in most of the Linux
distributions.

2) BINGBOT
Bing is a web search engine developed by Microsoft. This is
the second most popular search engine [17]. Microsoft crawls
websites with two different types of bots – standard and a
mobile. The mobile Bingbot presents itself as an iPhone. List
of User-Agent strings logged by the honeypot:
• Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.
com/bingbot.htm)

• Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac
OS X) AppleWebKit/537.51.1 (KHTML, like Gecko)
Version/7.0 Mobile/11A465 Safari/9537.53 (compati-
ble; bingbot/2.0; +http://www.bing.com/bingbot.htm)

SpiderTrap logged Bingbot’s request for a page restricted
with robots.txt. The sequence of the surrounding requests is
presented in Fig. 14 (link restricted by robots.txt is marked
as yellow cirlce). The requests came from three different IP

141300 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 14. Sequence of Bingbot’s requests with request for a page
restricted with robots.txt.

FIGURE 15. Number of requests from Bingbots per day.

addresses. IP addresses have been checkedwith theMicrosoft
website [38] and all of them belong to the pool ofMicrosoft IP
addresses for Bingbot. Such a situation took place only once,
so it is rather some glitch in bot’s operation. It seems that
Bingbot does not fully respect the Robots Exclusion Protocol
due to visiting links restricted by the ‘‘robots.txt’’ file.

To verify all 418 IP addresses, we tested them using a
method similar to that provided by Google. We did reverse
DNS check on IP addresses to see if the host tool returns the
domains containing ’’msnbot’’. We did not use the Microsoft
web page as it requires resolving CAPTCHA for each IP
address check. A reverse DNS check failed for 2 IP addresses
from 13.66.139.0/24 address space. These addresses also
failed a check up with aforementioned Microsoft web page.
However, the entire address space belongs to Microsoft
according to WHOIS. Fig. 15 depicts the number of requests
from Bingbot aggregated daily.

3) MJ12bot
MJ12bot is a web crawler developed by Majestic company.
According to their web page [39] MJ12bot crawls links to
create a map of the Internet with connections between the
web pages. Based on this information, Majestic sells Search
Engine Optimization (SEO) reports to sites owners. MJ12bot
made the largest number of requests among web crawlers.
Mostly with five crawls from around 250 to 1450 requests
per day, while for the rest of the time it was just periodically
visiting a main page and downloading robots.txt file. Visit-
ing links with the rel=’’nofollow’’ parameter does not mean
that MJ12bot violates the Robots Exclusion Protocol (REP).
As long as such links are not taken into account in the ranking
of pages, MJ12bot is compliant with REP. The Fig. 16 shows
the number of requests per day.

The Majestic web pages [39], [40] inform that MJ12bot is
mainly driven by the community. This means that volunteers

FIGURE 16. Number of MJ12bot’s requests per day.

FIGURE 17. Number of AhrefsBot’s requests per day.

runMJ12bot instances on their servers to speed up the process
of crawling the Internet. However, we could not observe a
large diversity of IP addresses. All requests (nearly 3900)
were sent only from 51 distinct IP addresses. Comparing this
result to Googlebot, one can see that Googlebot generated
half of the MJ12bot’s traffic using 238 distinct IP addresses.
Majestic does not provide any method to verify if a spe-
cific IP is a part of their infrastructure or community. The
observed User-Agent string was: Mozilla/5.0 (compatible;
MJ12bot/v1.4.8; http://mj12bot.com/).

4) AhrefsBot
AhrefsBot is a part of the ahrefs SEO tool. According to
Imperva’s report from 2017 [41], it was the second most
active Internet bot (just behind Googlebot). Our results show
that this was the secondmost active bot on our site just behind
MJ12bot (Googlebot was third). The Fig. 17 presents number
of requests from AhrefsBot on a given days (there were no
requests from this bot on other days). Like with MJ12bot,
we can not state if AhrefsBot abides by REP or not.

The Ahrefs’s website provides the ranges of IP addresses
they are using for crawling [42]. We observed traf-
fic from three subnetworks mentioned on their website
(54.36.148.0/24, 54.36.149.0/24, 54.36.150.0/24) and from
other subnetworks not mentioned there. We have tested
if the addresses which generated traffic are registered in
domains pointing ’’ahrefs.com’’. All addresses that we have
logged passed this test. This bot presents itself with only one
User-Agent string: Mozilla/5.0 (compatible; AhrefsBot/5.2;
+http://ahrefs.com/robot/).

VOLUME 8, 2020 141301

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 18. Number of requests made by MegaIndex bot on certain dates.

FIGURE 19. Sequence of requests from MegaIndex with requests for links
restricted with robots.txt (the yellow one circles).

5) MegaIndex
MegaIndex is another SEO tool with its own web crawler.
Like Ahrefs, MegaIndex offers paid SEO reports with anal-
ysis of links directing to and from the client’s page. Our
honeypot has been crawled only four times by MegaIndex
(see Fig. 18).

In contrary to the information on the MegaIndex web page
[43] we observed violations of robots.txt. However, it visits
restricted links only from the main page i.e. this bot does not
visit restricted links if it finds them on any other page than the
main one. Fig. 19 shows an example of a robots.txt violation.
Bot visits the main page and downloads robots.txt and then
starts crawling the links found on the main page (marked as
’’level 1’’). The yellow circles represent links restricted with
robots.txt. It also visits link hidden in div (presented as an
orange circle on a graph).

As stated in the Table 6 we observed only one
User-Agent string: Mozilla/5.0 (compatible; MegaIn-
dex.ru/2.0; +http://megaindex.com/crawler) for this bot. Two
IP addresses cannot be verified because MegaIndex does not
provide any verification method if they really use a given IP
addresses. However, we did not observe any other activities
from these two IP addresses.

6) DATAPROVIDER
According to the Dataprovider’s web page [44], their bot
collects all sort of information about websites, such as content
(e.g. business information), technical aspects (e.g. payment
operator) or even properties of hosting (e.g. details of an SSL

FIGURE 20. Crawls made by Dataprovider.com.

FIGURE 21. Scheme of Dataprovider.com crawl.

certificate). All this data can help business owners get better
insight into the visibility of their on-line business as well as
compare with businesses of their competitors.

The Dataprovider bot was active on SpiderTrap’s website
only on three days. All of them meet criteria of crawling
session. Dates of crawls with number of requests can be seen
in the Fig. 20. Interestingly, crawls have identical order of
requests. Bot looks for: main page, robots.txt, sitemap.xml,
main page (again), nine random links from the main page
and the ads.txt file. The ads.txt file is a standard file for
web pages that inform advertising networks which companies
can advertise on a certain web page. Dataprovider is also
one of the few web crawlers which visits links hidden in
the comments on the HTML code of the web page. Visiting
links hidden in HTML comments does not contradict Robot
Exclusion Policy (of course, if such link is not restricted by
some rule from ’’robots.txt’’). The Dataprovider’s crawling
sequences are presented in Fig. 21 (requests for ads.txt file
are represented as gray circle labeled req_404).

Dataprovider does not provide any method to verify if
the given IP address belongs to them. However, all three
IP addresses return a similar domain names. Domains have

141302 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 22. First 100 requests from 1184 long crawling session made by
crawler4j bot. Gray line is added to make reading a sequence easier.

a distinctive pattern: spider-X.lipperhey.com, where X is a
number. The bot’s User-Agent string is: Mozilla/5.0 (com-
patible; Dataprovider.com).

C. CRAWLERS AND SCANNERS
Except requests made by legitimate web crawling bots,
we also observed other types of traffic. We can distinguish
three main groups:

1) web crawling bots which present themselves as stan-
dard browsers

2) web technologies’ vulnerabilities scanners
3) other scanners
All three groups with representative examples will be

described in the following sections.

1) WEB CRAWLERS
We observed several web crawlers pretending to be a regular
web browser and one spoofing legitimate web crawling bot’s
User-Agent string.

The largest recorded web crawling activity was carried
out from one IP address from Canada, using probably the
’’crawler4j’’ software. This is an open source web crawler
written in Java. Two things that make us think it was a
crawler4j are, of course, the User-Agent string ’’crawler4j
(https://github.com/yasserg/crawler4j/)’’ and a requests pat-
tern which indicates multi-threading operation. Fig. 22
presents a beginning of this crawling session. After visit-
ing a main page, bot visits couple of links from first and
second level and then it visits links from all three levels in
random order. We believe this is because one thread gener-
ates a pool of links from scrapped web pages while other
threads are visiting these links to scrape next ones. This bot
crawled 1185 web pages of our honeypot in about 4 minutes.

The second most active crawler was a bot operating from
China and pretending to be a multitude of devices (computers
and smartphones) working with different versions of web
browsers. This bot was operating from October 30, 2018 to
February 6, 2019. It performed 964 requests from 270 differ-
ent IP addresses (all located in China, within 3 subnetworks).
This bot was spotted by observing sequences of requests
in crawling sessions. We selected crawling sessions starting
with requests for links at level 1, 2 or 3 which means the

bot had to had these links beforehand, and then we checked
if given IP address crawled these links in the past. As the
sequence of previously visited kind of links is encoded in
URLs (see Table. 7, it is last 6 digits of URL) we could
look up for such requests. One of these visited URLs lead
us to a possible source. The suspicious request was sent
on December 2, 2018 and the only one matching source
URL was visited on November 15, 2018. It was sent from
a different IP address which also sent requests only for links
of level 2 and 3. Going back and forth on the timeline and
by checking for correlation in visited URLs and dates of
visits, we were able to isolate requests from this bot. For
all these requests, the bot used 933 different User-Agent
strings. The ten examples of User-Agent strings used by this
bot can be found in a Table 11. The first three of them
pretend to be a Windows XP (’’Windows NT 5.1’’) with
different web browsers (respectively): Chinese QQ browser
and 2 different versions of the Opera. The fourth looks like
Safari 5.1.7 web browser running on a 64 bit (’’WOW64’’)
Windows 7 (’’Windows NT 6.1’’). The rest of the examples
are User-Agent strings of different versions of the Chrome
web browser running on the Samsung S5 version for the
American Sprint Network (’’SM-G900P’’) with the Android
5.0 ’’Lollipop’’ operating system. This bot crawled the links
restricted with robots.txt (it did not download this file) and
the links in the hidden div element, but did not visit the link
hidden in the comment to the HTML source code of the main
page. It is an example of a sophisticated crawling bot. It used
many instances from different IP addresses, it was sharing
crawled links between instances and it was pretending to be
random users just browsing a website. Nevertheless, thanks
to the dynamical generation of the hyperlinks implemented
in the SpiderTrap, we were able to detect it.

Another example is a crawler operating from the United
States. It used 3 different IP addresses and only one user agent
‘‘Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.2)’’,
which can be interpreted as Internet Explorer 7 working
on 64 bits version of Windows XP. This is a very rare set up
of operating system and web browser. This bot crawled Spi-
derTrap’s website four times, visiting only the links gathered
from the main page (level 1), including the link hidden in the
HTML comment (see Fig. 23).
There is also an example of a wrongly implemented web

crawler that concatenated the scraped links. The bot was able
to successfully scrape links from the main page and the first
level, but trying to access the second level of the website,
it sent requests to second levels links with the concatenated
link of first level at the beginning (see Fig. 24, malformed
links are depicted as gray circles). All 132 requests were
sent from one IP address in Germany with one user agent
’’Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWe-
bKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.84
Safari/537.36’’ pretending to be Chrome 68 running on
Windows 10.

All of these bots did not download the ’’robots.txt’’ file,
so they are not compliant with the Robots Exclusion Protocol.

VOLUME 8, 2020 141303

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

FIGURE 23. Five crawling sessions done by bot presenting itself with very
rare User-Agent string: ’’Mozilla/4.0 (compatible; MSIE 7.0; Windows NT
5.2)’’ and using 3 different IP addresses.

FIGURE 24. Crawling session made by bot with flaw in the source code.

TABLE 7. Example of crawling session (Dec 2, 2018 from 5:48:41 AM to
5:49:06 AM) where bot starts with visiting links of level 3. It visits the
same link four times (two times with trailing slash and two without) and
then two times the main page.

Even though these bot have only crawled links found on the
SpiderTrap web pages, this activity can be seen as unwanted
by some site owners.

2) WEB TECHNOLOGIES’ VULNERABILITIES SCANNERS
As presented in the Table 5, we were able to pick up from the
requested URLs the keywords distinctive for the web facing

TABLE 8. Number of offensive request with given set of tags.

applications that can be exploited in certain circumstances to
get an access to the web server hosting them. Top five the
most popular scanning requests were looking for: webshells
(14546 requests with POST method and 6870 with GET),
PhpMyAdmin login page (6168 GET requests), MySQL
login page (1300), other login pages (1233) and Wordpress
(799). Statistics for the offensive requests can be found in
Table 8.

For example on December 18, 2018, the f5 published
an article about attacks on websites that use the ThinkPHP
framework [45]. We have observed 91 such scans between
December 13, 2018 and January 12, 2019. An example of

141304 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

TABLE 9. Top 20 the most frequent scanning patterns. ID is
corresponding to ID in Figure 26. List of tags is an aggregation of all the
tags appearing in given scanning session. Order of appearing of tags as
well as number of certain tags differs between sessions with given ID.
N is the number of scanning session with given ID.

such HTTP request sent to our honeypot is presented in
Listing 25.

Having all requests tagged, we could inspect a list of
tags appearing in scanning sessions. We were able to check

FIGURE 25. Details of the HTTP request sent by ThinkPHP’s vulnerability
scanner.

FIGURE 25. Two different sessions made by 1 IP address on
December 22 and 27, 2018. There is a difference in a total number of
requests and the session made on December 27 has additional requests
with tags: method_post scanner_pma req_404 and method_post
scanner_sql req_404. It means that scanner was trying to get an access to
PhpMyAdmin and other SQL server by sending payload with POST
method.

what kind of the scans were chained in scanning sessions
and calculate the checksums of the lists of tags to find
similar scanning sessions. We observed 752 scanning ses-
sions from 427 unique IP addresses where 79 of them per-
formed more than one scanning session (ranging from 2 to
27 sessions). Of this 79 IP addresses, 32 performed scanning
sessions on different days, and 13 of these 32 changed the
list of scanned vulnerabilities between scans (for an example
of such scans see Fig. 25). The remaining 47 IP addresses
performed more than one scanning session on the same dates.
Multiple scans from one IP address on the same day can be
an effect of two factors: a scanner rerun or the 10 seconds
time-out between requests, as described in the definition of
the scanning session (see sec. IV). Top 20 the most common

VOLUME 8, 2020 141305

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

TABLE 10. Details of four scans performed from four different Chinese IP addresses on our honeypot.

FIGURE 26. Violin plot with top 20 the most common recorded scanning
sessions. Every dataset is described by the minimum, maximum and
median value of number of requests per scanner’s ID. Additionally the
contour represents distribution of number of requests. Numbers in
parenthesis are the total number of sessions with the given scanner’s ID.
Descriptions for IDs can be found in Table 9.

types of scanning sessions with information about distribu-
tion of number of requests per type are presented in Fig. 26
and in Table 9.

Looking at the scanning sessions with ID 12, we observed
that among all 15 scans of this type there were 4 identical
scans with 338 requests and 3 with 331, all from 7 different
IP addresses (5 from China, 1 from Mexico and 1 from
Russia). For example the entire scan with 338 requests can
be divided into five parts with different numbers of requests
of different types. The first group is one request with the
PROPFIND method and without the User-Agent string. The
second group is a request for /webdav/ catalog with a rather
peculiar User-Agent string ’’Mozilla/5.0’’. The third group
are 43 requests with the GET method for. php files with web-
shells, incorrectly configured databases, or plugins for web
frameworks likeWordpress or Drupal. The fourth group is the
most numerous. It consists of 220 requests using the POST
method for. php webshells. The last group has 70 requests
for login pages to incorrectly configured databases. Requests
from the third, fourth and fifth groups come with the same
User-Agent string within the group per scan. During each

FIGURE 27. Four the same scanning sessions made by 4 different IP
address.

scan one can observe five or six different user agents. Graphs
presenting these scans can be found in Fig. 27 while details
of these scans can be found in the Table 10.

D. USER-AGENT STRING SPOOFING

As stated in the section IV, it is not trivial to distinguish
requests sent by bots and people only by checking the HTTP
headers, whether the bot uses the legitimateUser-Agent string

141306 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

TABLE 11. Example of ten User-Agent strings used by crawling bot operating from China.

TABLE 12. Examples of fake user agents.

of a web browser and sends sane values for other fields
in the header. Although lists of legitimate user agents are
available on the Internet, bot developers tend to automatically
generate User-Agent strings using some algorithms. This
sometimes lead to a situation in which user agent can be
easily recognized as spoofed. For an example let analyze
such User-Agent string: ’’Mozilla/1.22 (compatible; MSIE
10.0; Windows 3.1)’’. ’’Mozilla/1.22’’ indicates compatibil-
ity with old Mozilla version 1.22. ’’MSIE 10.0’’ implies
Internet Explorer version 10, and the ’’Windows 3.1’’ part
is obvious. All this information together, indicates that the
user agent is Internet Explorer 10 working on Windows 3.1.
It is impossible as Internet Explorer 10 can work only on
Windows 7, 8, and 10.

In the Table 12 we present examples of fake User-Agent
strings that we observed, together with explanations.

E. MIMICRY OF WELL-KNOWN INTERNET BOTS
We observed only one incident of spoofing the well-known
bot’s User-Agent string. One bot was impersonating as
a Baidu spider. Baidu is a Chinese technology company
with services similar to Google. Lack of access to Google
services from China (due to the censorship) makes the
Baidu search engine the fourth most popular one in the
World [17].

SpiderTrap registered 64 requests for the main page
from 23 different Chinese IP addresses in two address spaces
of /24. These requests came in pairs within about 30 seconds.
The first one had a user agent: Mozilla/5.0 (compatible;
Baiduspider-render/2.0; +http://www.baidu.com/search/
spider.html) and the second had: Mozilla/5.0 (iPhone 84;
CPU iPhone OS 10_3_3 like Mac OS X) AppleWe-
bKit/603.3.8 (KHTML, like Gecko) Version/10.0 MQQ

VOLUME 8, 2020 141307

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

Browser/7.8.0 Mobile/14G60 Safari/8536.25 MttCusto-
mUA/2 QBWebViewType/1 WKType/1. Both requests in
pairs came from the same IP address. The second User-Agent
string can be interpreted as QQ Browser 7.8 on iOS 10.3.
QQ Browser is a web browser written by Tencent, another
Chinese technology company (better known of the WeChat
application), a Baidu competitor.

According to the Baidu web page [46] the way to check
if IP address belongs to Baiduspider’s pool is to do a reverse
DNS search for this IP address. DNS look up should give a
domain with ’’.baidu.com’’ or ’’.baidu.jp’’. As we checked,
all 23 IP addresses did not have a registered domain and
therefore we suppose that this is an example of spoofing
well-known bot user agent.

VI. SUMMARY AND FUTURE WORKS
The results of the first version of SpiderTrap are very promis-
ing. LoggingHTTP requests with a set of basic HTTP headers
and knowing relations between links generated on Spider-
Trap’s website turned out to be enough to track down many
sorts of bots, even these more sophisticated. Using a simple
list of rules we were able to classify requests as offensive
or inoffensive. Merging these two sorts of data gives the
ability to create rules applicable to the web servers or web
application firewalls to filter out traffic from unwanted bots.
At the moment, updated version of SpiderTrap is collect-
ing new data. We would like to check how bots handle the
Robots Exclusion Protocol directives sent in HTTP response
and META tags in the HTML code. We are also interested
in testing the ability of bots to run JavaScript and to store
Cookies. The large number of offensive bots detected during
this experiment made us to add to SpiderTrap an ability to
record the logins and passwords used by these bots to brute
force login pages. New version also has implemented the
comments section to log the activity of spam bots as well
as the content they post on websites. We hope that these
enhancements will provide better insight into the operation
of wide range of tools targeting websites, not only bots.
Moreover, we would like to correlate our results with selected
Cyber Threat Intelligence (CTI) feeds to get even more
detailed information that could help to improve the automatic
methods of fingerprinting and classifying requests coming to
the website.

REFERENCES
[1] Cisco, ‘‘Cisco visual networking index: Forecast and trends,

2017–2022,’’ Cisco, San Jose, CA, USA, Tech. Rep. 1551296909190103,
Feb. 2019. Accessed: May 21, 2019. [Online]. Available: https://www.
cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.pdf

[2] Distil Networks. (2019). Bad Bot Report 2019: The Bot Arms Race Con-
tinues. Accessed: May 21, 2019. [Online]. Available: https://resources.
distilnetworks.com/white-paper-reports/bad-bot-report-2019

[3] Z. Chu, S. Gianvecchio, A. Koehl, H. Wang, and S. Jajodia, ‘‘Blog
or block: Detecting blog bots through behavioral biometrics,’’
Comput. Netw., vol. 57, no. 3, pp. 634–646, Feb. 2013. Accessed:
Apr. 6, 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S1389128612003593

[4] S. Zhang and N. Cabage, ‘‘Search engine optimization: Comparison of
link building and social sharing,’’ J. Comput. Inf. Syst., vol. 57, no. 2,
pp. 148–159, Apr. 2017. [Online]. Available: https://www.tandfonline.
com/doi/full/10.1080/08874417.2016.1183447

[5] MushMush. Accessed: Mar. 26, 2020. [Online]. Available: http://
mushmush.org/

[6] K. Isono. (Dec. 2019). Graneed, BW-Pot. (in Japanese). Accessed:
Mar. 31, 2020. [Online]. Available: https://github.com/graneed/bwpot

[7] Shadow Daemon Open-Source Web Application Firewall. Accessed:
Mar. 31, 2020. [Online]. Available: https://shadowd.zecure.org/overview/
introduction/

[8] O. Cassetto. (Dec. 2014). Banishing Bad Bots With Incapsula.
Accessed: May 21, 2019. [Online]. Available: https://www.imperva.
com/blog/banishing-bad-bots/

[9] E. Roberts. (Sep. 2018). The Evolution of Hi-Def Fingerprinting
in Bot Mitigation. Accessed: Mar. 31, 2020. [Online]. Available:
https://www.imperva.com/blog/the-evolution-of-hi-def-fingerprinting-in-
bot-mitigation/

[10] AbuseIPDB. (May 2019). AbuseIPDB—IP Address Abuse Reports—
Making the Internet Safer, One IP at a Time. Accessed: May 21, 2019.
[Online]. Available: https://www.abuseipdb.com/

[11] Project Honey Pot. (May 2019). The Web’s Largest Community Tracking
Online Fraud & Abuse | Project Honey Pot. Accessed: May 21, 2019.
[Online]. Available: https://www.projecthoneypot.org/

[12] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content, document RFC7231, Jun. 2014. Accessed:
May 21, 2019. [Online]. Available: https://www.rfc-editor.org/info/
rfc7231

[13] (May 2019). UA-Parser. Accessed: May 21, 2019. [Online]. Available:
https://github.com/ua-parser

[14] Google. (Jan. 2020). Robots.txt Specifications | Search for Develop-
ers. Accessed: Apr. 3, 2020. [Online]. Available: https://developers.
google.com/search/reference/robots_txt

[15] Metatags Company Inc. (May 2019). How to Use<Meta Name=‘Robots’
Content=‘Index, Follow’> | the Meaning of Meta Name Robots | Meta
Tags Search Engine Promotion. Accessed: May 21, 2019. [Online]. Avail-
able: https://www.metatags.org/meta_name_robots

[16] Google. Qualify Your Outbound Links to Google—Search Console Help.
Accessed: Apr. 3, 2020. [Online]. Available: https://support.google.
com/webmasters/answer/96569?hl=en

[17] StatCounter Global Stats. (May 2019). Search Engine Market
Share Worldwide. Accessed: May 21, 2019. [Online]. Available:
http://gs.statcounter.com/search-engine-market-share

[18] Nocinit. (Jan. 2020).Bad Bots Blocking—Apache, Nginx&CSF—Tutorial.
Accessed: Apr. 3, 2020. [Online]. Available: https://nocinit.com/blog/bad-
bots-blocking-apache-nginx-csf-tutorial/

[19] Selenium 3.14 Documentation. Accessed: Mar. 31, 2020. [Online]. Avail-
able: https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.
webdriver.common.action_chains.html?highlight=move#selenium.
webdriver.common.action_chains.ActionChains.move_by_offset

[20] I. Mathiopoulos. (Mar. 2017). Number of Internet Facing Vulnerable
IIS 6.0 to CVE-2017–7269. Accessed: Mar. 25, 2020. [Online]. Avail-
able: https://medium.com/@iraklis/number-of-internet-facing-vulnerable-
iis-6-0-to-cve-2017-7269-8bd153ef5812

[21] A. Remillano. (Jan. 2019). ThinkPHP Vulnerability Abused by Botnets
Hakai and Yowai. Accessed: Mar. 25, 2020. [Online]. Available:
https://blog.trendmicro.com/trendlabs-security-intelligence/thinkphp-
vulnerability-abused-by-botnets-hakai-and-yowai/

[22] Sensepost/autoDANE. Accessed: Mar. 25, 2020. [Online]. Available:
https://github.com/sensepost/autoDANE

[23] Git—Getting a Git Repository. Accessed: Mar. 25, 2020.
[Online]. Available: https://git-scm.com/book/en/v2/Git-Basics-
Getting-a-Git-Repository

[24] D. Kundel. (Jan. 2017). How to Set Environment Variables.
Accessed: Mar. 25, 2020. [Online]. Available: https://www.twilio.com/
blog/2017/01/how-to-set-environment-variables.html

[25] G. P. Rodrigues, R. de Oliveira Albuquerque, F. G. de Deus,
R. de Sousa, Jr., G. de Oliveira Júnior, L. G. Villalba, and T.-H. Kim,
‘‘Cybersecurity and network forensics: Analysis of malicious traffic
towards a honeynet with deep packet inspection,’’ Appl. Sci., vol. 7,
no. 10, p. 1082, Oct. 2017. Accessed: Mar. 25, 2020. [Online]. Available:
http://www.mdpi.com/2076-3417/7/10/1082

141308 VOLUME 8, 2020

P. Lewandowski et al.: SpiderTrap—Innovative Approach to Analyze Activity

[26] Yealink. (Jan. 2019). Yealink SIP—T2 Series T4 Series T5 Series CP920
IP Phones Administrator Guide. Accessed: Mar. 25, 2020. [Online]. Avail-
able:http://support.yealink.com/previewPdf?file=http

[27] M. Kassner. (Jul. 2011). What do Microsoft and NCSI Have
in Common? Accessed: Mar. 25, 2020. [Online]. Available:
https://www.techrepublic.com/blog/data-center/what-do-microsoft-
and-ncsi-have-in-common/

[28] SNTP—Simple Network Time Protocol (SNTP) Client. Accessed:
Mar. 25, 2020. [Online]. Available: http://doc.ntp.org/current-
stable/sntp.html

[29] SonicWall Capture Labs Threat Research Team. (Jan. 2019).
Hackers Actively Scanning for Horde IMP Vulnerability—SonicWall.
Accessed: Mar. 25, 2020. [Online]. Available: https://securitynews.
sonicwall.com/xmlpost/hackers-actively-scanning-for-horde-imp-
vulnerability/

[30] K. P. Choubey. (Sep. 2019). Zero Day Initiative—Patch Analysis: Exam-
ining a Missing Dot-Dot in Oracle WebLogic. Accessed: Mar. 25, 2020.
[Online]. Available: https://www.thezdi.com/blog/2019/9/16/patch-
analysis-examining-a-missing-dot-dot-in-oracle-weblogic

[31] X. Mertens. (Aug. 2017). Increase of phpMyAdmin Scans. Accessed:
Mar. 25, 2020. [Online]. Available: https://isc.sans.edu/forums/
diary/22688/

[32] E. Staff. (Apr. 2016). Beginner’s Guide to WordPress File and
Directory Structure. Accessed: Mar. 25, 2020. [Online]. Available:
https://www.wpbeginner.com/beginners-guide/beginners-guide-to-
wordpress-file-and-directory-structure/

[33] J. T. Bennett. (Sep. 2014). Shellshock in the Wild. Accessed:
Mar. 25, 2020. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2014/09/shellshock-in-the-wild.html

[34] CISA. (Nov. 2018). JexBoss–JBoss Verify and EXploitation Tool Analy-
sis Report (AR18-312A). Accessed: Mar. 25, 2020. [Online]. Available:
https://www.us-cert.gov/ncas/analysis-reports/AR18-312A

[35] R. VandenBrink. (Feb. 2014). More on HNAP—What is it, How to
Use it, How to Find it. Accessed: Mar. 25, 2020. [Online]. Available:
https://isc.sans.edu/forums/diary/17648/

[36] Y. Guo, H. Marco-Gisbert, and P. Keir, ‘‘Mitigating webshell attacks
through machine learning techniques,’’ Future Internet, vol. 12, no. 1,
p. 12, Jan. 2020. Accessed: Mar. 25, 2020. [Online]. Available:
https://www.mdpi.com/1999-5903/12/1/12

[37] Google. (Mar. 2019). Asset Links Specification. Accessed: May 21, 2019.
[Online]. Available: https://github.com/google/digitalassetlinks

[38] Microsoft. (May 2019). Verify Bingbot. Accessed: May 21, 2019. [Online].
Available: https://www.bing.com/toolbox/verify-bingbot

[39] Majestic. (May 2019). MJ12Bot | Home | from Majestic. Accessed:
May 21, 2019. [Online]. Available: https://mj12bot.com/

[40] Majestic-12. (May 2019). Majestic-12: Distributed Search Engine.
Accessed: May 21, 2019. [Online]. Available: https://www.majestic12.
co.uk/

[41] I. Zeifman and D. Breslaw. (Feb. 2017). A Closer Look at the Most
Active Good Bots | Imperva. Accessed: May 21, 2019. [Online]. Available:
https://www.imperva.com/blog/most-active-good-bots/

[42] Ahrefs. (May 2019). What is the List of Your IP Ranges? Accessed:
May 21, 2019. [Online]. Available: https://help.ahrefs.com/getting-started-
with-ahrefs/ahrefs-explained/what-is-the-list-of-your-ip-ranges

[43] MegaIndex. (May 2019). Crawler. Accessed: May 21, 2019. [Online].
Available: https://megaindex.com/crawler

[44] (May 2019). Dataprovider.com—We Index the Web and Structure the
Data. Accessed: May 21, 2019. [Online]. Available: https://www.
dataprovider.com/

[45] G. Goldshtein. (Dec. 2018). ThinkPHP 5.x Remote Code Execution Vulner-
ability. Accessed: May 21, 2019. [Online]. Available: https://devcentral.
f5.com/s/articles/thinkphp-5x-remote-code-execution-vulnerability-
32902

[46] Baidu. FAQs of Baiduspider. Accessed: Apr. 3, 2020. [Online].
Available: https://help.baidu.com/question?prod_id=99&class=0&id=3001

PIOTR LEWANDOWSKI received the M.Sc.
degree in applied physics from the Warsaw Uni-
versity of Technology.

He is currently a Senior Specialist with the
Information Security Methods Team, Center of
Research and Technology Transfer, Research and
Academic Computer Network–National Research
Institute. His research interest includes practical
aspects of operating systems’ security.

MAREK JANISZEWSKI is currently pursuing the
Ph.D. degree with the Telecommunication Insti-
tute, Warsaw University of Technology.

He is also a Research Associate with the
Information Security Methods Team, Center of
Research and Technology Transfer, Research and
Academic Computer Network–National Research
Institute. His research interests include intrusion
detection systems, penetration testing, personal
data and identity management, and trust and
reputation management systems.

ANNA FELKNER received the Ph.D. degree in
information technology from the Warsaw Univer-
sity of Technology.

She is currently an Assistant Professor
and a Manager with the Information Security
Methods Team, Center of Research and Tech-
nology Transfer, Research and Academic Com-
puter Network–National Research Institute. Her
research interests include cybersecurity systems,
risk management, trust frameworks, personal data

and identity management, national cybersecurity management, and cooper-
ation in cybersecurity.

VOLUME 8, 2020 141309

