
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-05984-x

1 3

Inverse reinforcement learning in contextual MDPs

Stav Belogolovsky1 · Philip Korsunsky1 · Shie Mannor1,2 · Chen Tessler1 ·
Tom Zahavy1

Received: 15 May 2020 / Revised: 30 September 2020 / Accepted: 12 April 2021
© The Author(s) 2021

Abstract
We consider the task of Inverse Reinforcement Learning in Contextual Markov Decision
Processes (MDPs). In this setting, contexts, which define the reward and transition ker-
nel, are sampled from a distribution. In addition, although the reward is a function of the
context, it is not provided to the agent. Instead, the agent observes demonstrations from
an optimal policy. The goal is to learn the reward mapping, such that the agent will act
optimally even when encountering previously unseen contexts, also known as zero-shot
transfer. We formulate this problem as a non-differential convex optimization problem and
propose a novel algorithm to compute its subgradients. Based on this scheme, we analyze
several methods both theoretically, where we compare the sample complexity and scal-
ability, and empirically. Most importantly, we show both theoretically and empirically that
our algorithms perform zero-shot transfer (generalize to new and unseen contexts). Spe-
cifically, we present empirical experiments in a dynamic treatment regime, where the goal
is to learn a reward function which explains the behavior of expert physicians based on
recorded data of them treating patients diagnosed with sepsis.

Keywords Reinforcement learning · Contextual · Inverse

Stav Belogolovsky and Philip Korsunsky have equally contributed to this work.

Editors: Yuxi Li, Alborz Geramifard, LihongLi, Csaba Szepesvari, Tao Wang.

 * Stav Belogolovsky
 stav.belo@gmail.com

 Philip Korsunsky
 philip.korsunsky@gmail.com

1 Faculty of Electrical and Computer Engineering, Technion Israel Institute of Technology, Haifa,
Israel

2 Nvidia Research, Tel Aviv, Israel

http://orcid.org/0000-0003-0923-3217
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05984-x&domain=pdf

 Machine Learning

1 3

1 Introduction

Real-world sequential decision making problems often share three important properties —
(1) the reward function is often unknown, yet (2) expert demonstrations can be acquired,
and (3) the reward and/or dynamics often depend on a static parameter, also known as
the context. For a concrete example, consider a dynamic treatment regime (Chakraborty &
Murphy 2014), where a clinician acts to improve a patient’s medical condition. While the
patient’s dynamic measurements, e.g., heart rate and blood pressure, define the state, there
are static parameters, e.g., age and weight, which determine how the patient reacts to cer-
tain treatments and what form of treatment is optimal.

The contextual model is motivated by recent trends in personalized medicine, predicted
to be one of the technology breakthroughs of 2020 by MIT’s Technology Review (Juska-
lian et al. 2020). As opposed to traditional medicine, which provide a treatment for the
“average patient”, in the contextual model, patients are separated into different groups for
which the medical decisions are tailored (Fig. 1). This enables the decision maker to pro-
vide tailored decisions (e.g., treatments) which are more effective, based on these static
parameters.

For example, in Wesselink et al. (2018), the authors study organ injury, which may occur
when a specific measurement (mean arterial pressure) decreases below a certain threshold.
They found that this threshold varies across different patient groups (contextual behavior).
In other examples, clinicians set treatment goals for the patients, i.e., they take actions to
drive the patient measurements towards some predetermined values. For instance, in acute
respiratory distress syndrome (ARDS), clinicians argue that these treatment goals should
depend on the static patient information (the context) (Berngard et al. 2016).

In addition to the contextual structure, we consider the setting where the reward itself
is unknown to the agent. This, also, is motivated by real-world problems, in which serious
issues may arise when manually attempting to define a reward signal. For instance, when
treating patients with sepsis, the only available signal is the mortality of the patient at the
end of the treatment (Komorowski et al. 2018). While the goal is to improve the patients’
medical condition, minimizing mortality does not necessarily capture this objective. This

Fig. 1 Personalized medicine in sepsis treatment. Credit: Itenov et al. (2018)

Machine Learning

1 3

model is illustrated in Fig. 2. The agent observes expert interactions with the environment,
either through pre-collected data, or through interactive expert interventions. The agent
then aims to find a reward which explains the behavior of the expert, meaning that the
experts policy is optimal with respect to this reward.

To tackle these problems, we propose the Contextual Inverse Reinforcement Learn-
ing (COIRL) framework. Similarly to Inverse Reinforcement Learning (Ng & Russell
2000, IRL), provided expert demonstrations, the goal in COIRL is to learn a reward
function which explains the expert’s behavior, i.e., a reward function for which the
expert behavior is optimal. In contrast to IRL, in COIRL the reward is not only a func-
tion of the state features but also the context. Our aim is to provide theoretical analysis
and insights into this framework. As such, throughout most of the paper we consider a
reward which is linear in both the context and the state features. This analysis enables
us to propose algorithms, analyze their behavior and provide theoretical guarantees.
We further show empirically in Sect. 4 that our method can be easily extended to map-
pings which are non-linear in the context using deep neural nets.

The paper is organized as follows. In Sect. 2 we introduce the Contextual MDPs
and provide relevant notation. In Sect. 3.1 we formulate COIRL, with a linear map-
ping, as a convex optimization problem. We show that while this loss is not differenti-
able, it can be minimized using subgradient descent and provide methods to compute
subgradients. We propose algorithms based on Mirror Descent (MDA) and Evolution
Strategies (ES) for solving this task and analyze their sample complexity. In addition,
in Sect. 3.2, we adapt the cutting plane (ellipsoid) method to the COIRL domain. In
Sect. 3.3 we discuss how existing IRL approaches can be applied to COIRL problems
and their limitations. Finally, in Sect. 3.4 we discuss how to efficiently (without re-
solving the MDP) perform zero-shot transfer to unseen contexts.

These theoretical approaches are then evaluated, empirically, in Sect. 4. We per-
form extensive testing of our methods and the relevant baselines both on toy problems
and on a dynamic treatment regime, which is constructed from real data. We evaluate
the run-time of IRL vs COIRL, showing that when the structure is indeed contextual,
standard IRL schemes are computationally inefficient. We show that COIRL is capable
of generalizing (zero-shot transfer) to unseen contexts, while behavioral cloning (log-
likelihood action matching) is sub-optimal and struggles to find a good solution. These
results show that in contextual problems, COIRL enables the agent to quickly recover

Fig. 2 The COIRL framework: a
context vector parametrizes the
environment. For each context,
the expert uses the true mapping
from contexts to rewards,W∗

, and
provides demonstrations. The
agent learns an estimation of this
mapping Ŵ and acts optimally
with respect to it

 Machine Learning

1 3

a reward mapping that explains the expert’s behavior, outperforming previous methods
across several metrics and can thus be seen as a promising approach for real-life deci-
sion making.

Our contribution is three fold: First, the formulation of COIRL problem as a con-
vex optimization problem, and the novel adaptation of the descent methods to this set-
ting. Second, we provide theoretical analysis for the linear case for all of the proposed
methods. Third, we bridge between the theoretical results and real-life application
through a series of experiments that aim to apply COIRL to sepsis treatment (Sect. 4).

2 Preliminaries

2.1 Contextual MDPs

A Markov Decision Process (Puterman 1994, MDP) is defined by the tuple
(S,A,P, �,R, �) where S is a finite state space, A a finite action space,
P ∶ S × S × A → [0, 1] the transition kernel, � the initial state distribution, R ∶ S → ℝ
the reward function and � ∈ [0, 1) is the discount factor. A Contextual MDP (Hal-
lak et al. 2015, CMDP) is an extension of an MDP, and is defined by (C,S,A,M, �)
where C is the context space, and M is a mapping from contexts c ∈ C to MDPs:
M(c) = (S,A,Pc, �,Rc, �) . For consistency with prior work, we consider the discounted
infinite horizon scenario. We emphasize here that all the results in this paper can be eas-
ily extended to the episodic finite horizon and the average reward criteria.

We consider a setting in which each state is associated with a feature vector
� ∶ S → [0, 1]k , and the reward for context c is a linear combination of the state features:
R∗

c
(s) = f ∗(c)T�(s) . The goal is to approximate f ∗(c) using a function fW (c) with param-

eters W. This notation allows us to present our algorithms for any function approximator
fW (c) , and in particular a deep neural network (DNN).

For the theoretical analysis, we will further assume a linear setting, in which the
reward function and dynamics are linear in the context. Formally:

for some convex set W . In order for the contextual dynamics to be well-defined, we assume
the context space is the standard d − 1 dimensional simplex: C = �d−1 . One interpretation
of this model is that each row in the mapping W∗ along with the corresponding transition
kernels defines a base MDP, and the MDP for a specific context is a convex combination of
these base environments.

We focus deterministic policies � ∶ S → A which dictate the agent’s behavior at each
state. The value of a policy � for context c is:

where ��

c
∶= E

�,Pc ,�
[

∑
∞

t=0
�
t
�(st)] ∈ ℝ

k is called the feature expectations of � for con-
text c. For other RL criteria there exist equivalent definitions of feature expectations; see
Zahavy et al. (2020b) for the average reward. We also denote by V�

c
(s),��

c
(s) the value and

f ∗(c) = cTW∗, fW (c) = cTW, W∗
∈ W, and Pc(s

��s, a) = cT
⎡⎢⎢⎣

P1(s
��s, a)
⋮

Pd(s
��s, a)

⎤
⎥⎥⎦

V�

c
= E

�,Pc,�

[
∞∑
t=0

�
tR∗

c
(st)

]
= f ∗(c)T��

c
,

Machine Learning

1 3

feature expectations for � = �s . The action-value function, or the Q-function, is defined
by: Q�

c
(s, a) = R∗

c
(s) + �Es�∼Pc(⋅|s,a)V

�

c
(s�) . For the optimal policy with respect to (w.r.t.) a

context c, we denote the above functions by V∗

c
,Q∗

c
,�∗

c
 . For any context c, �∗

c
 denotes the

optimal policy w.r.t. R∗

c
 , and �̂�c(W) denotes the optimal policy w.r.t. R̂c(s) = fW (c)

T
𝜙(s).

For simpler analysis, we define a “flattening” operator, converting a matrix to a vec-
tor: ℝd×k

→ ℝ
d⋅k by W =

[
w1,1,… ,w1,k,… ,wd,1,… ,wd,k

]
 . We also define the operator ⊙

to be the composition of the flattening operator and the outer product:
u⊙ v =

[
u1v1,… , u1vk,… , udv1,… , udvk

]
 . Therefore, the value of policy � for context c

is given by V𝜋

c
= cTW∗

𝜇
𝜋

c
= W∗T

(c⊙ 𝜇
𝜋

c
), where ||c⊙ 𝜇

𝜋

c
||1 ≤ k

1−𝛾
.

2.2 Apprenticeship learning and inverse reinforcement learning

In Apprenticeship Learning (AL), the reward function is unknown, and we denote the MDP
without the reward function (also commonly called a controlled Markov chain) by MDP∖ R.
Similarly, we denote a CMDP without a mapping of context to reward by CMDP∖M.

Instead of manually tweaking the reward to produce the desired behavior, the idea is to
observe and mimic an expert. The literature on IRL is quite vast and dates back to (Ng &
Russell 2000; Abbeel & Ng 2004). In this setting, the reward function (while unknown to
the apprentice) is a linear combination of a set of known features as we defined above. The
expert demonstrates a set of trajectories that are used to estimate the feature expectations
of its policy �E , denoted by �E . The goal is to find a policy � , whose feature expectations
are close to this estimate, and hence will have a similar return with respect to any weight
vector w.

Formally, AL is posed as a two-player zero-sum game, where the objective is to find a
policy � that does at least as well as the expert with respect to any reward function of the
form r(s) = w ⋅ �(s),w ∈ W . That is we solve

where � denotes the set of mixed policies (Abbeel & Ng 2004), in which a deterministic
policy is sampled according to a distribution at time 0, and executed from that point on.
Thus, this policy class can be represented as a convex set of vectors – the distributions over
the deterministic policies.

They define the problem of approximately solving Eq. (1) as AL, i.e., finding � such that

If we denote the value of Eq. (1) by f⋆ then, due to the von-Neumann minimax theorem we
also have that

We will later use this formulation to define the IRL objective, i.e., finding w ∈ W such that

Abbeel & Ng (2004) suggested two algorithms to solve Eq. (2) for the case that W is a ball
in the Euclidean norm; one that is based on a maximum margin solver and a simpler pro-
jection algorithm. The latter starts with an arbitrary policy �0 and computes its feature
expectation �0 . At step t they define a reward function using weight vector wt = 𝜇E − �̄�t−1

(1)max
�∈�

min
w∈W

[
w ⋅ �(�) − w ⋅ �E

]

(2)∀w ∈ W ∶ w ⋅ 𝜇(𝜋) ≥ w ⋅ 𝜇E − 𝜖 + f⋆.

(3)f⋆ = min
w∈W

max
𝜋∈𝛱

[
w ⋅ 𝜇(𝜋) − w ⋅ 𝜇E

]
.

(4)∀𝜋 ∈ 𝛱 ∶ w ⋅ 𝜇E ≥ w ⋅ 𝜇(𝜋) − 𝜖 − f⋆;

 Machine Learning

1 3

and find the policy �t that maximizes it. �̄�t is a convex combination of feature expectations
of previous (deterministic) policies �̄�t =

∑t

j=1
𝛼j𝜇(𝜋j). They show that in order to get that

‖‖�̄�T − 𝜇‖‖ ≤ 𝜖 , it suffices to run the algorithm for T = O(
k

(1−�)2�2
log(

k

(1−�)�
)) iterations.

Recently, Zahavy et al. (2020a) showed that the projection algorithm is in fact equiva-
lent to a Frank-Wolfe method for finding the projection of the feature expectations of the
expert on the feature expectations polytope – the convex hull of the feature expectations of
all the deterministic policies in the MDP. The Frank-Wolfe analysis gives the projection
method of Abbeel & Ng (2004) a slightly tighter bound of T = O(

k

(1−�)2�2
). In addition, a

variation of the FW method that is based on taking “away steps” (Garber & Hazan 2016;
Jaggi 2013) achieves a linear rate of convergence, i.e., it is logarithmic in �.

Another type of algorithms, based on online convex optimization, was proposed by Syed
& Schapire (2008). In this approach, in each round the “reward player” plays an online
convex optimization algorithm on losses lt(wt) = wt ⋅ (�E − �(�t)) ; and the “policy player”
plays the best response, i.e, the policy �t that maximizes the return �(�t) ⋅ wt at time t. The
results in Syed & Schapire (2008) use a specific instance of MDA where the optimization
set is the simplex and distances are measured w.r.t ‖⋅‖1. This version of MDA is known as
multiplicative weights or Hedge. The algorithm runs for T steps and returns a mixed policy
� that draws with probability 1/T a policy �t, t = 1,… , T . Thus,

where Eq. (5) follows from the fact that the policy player plays the best response, that is, �t
is the optimal policy w.r.t the reward wt; Eq. (6) follows from the fact that the reward player
plays a no-regret algorithm, e.g., online MDA. Thus, they get that
∀w ∈ W ∶ w ⋅ 𝜇(𝜓) ≥ w ⋅ 𝜇 + f ⋆ − O

�
1√
T

�
.1

2.3 Learned dynamics

Finally, we note that majority of AL papers consider the problem of learning the transition
kernel and initial state distribution as an orthogonal ’supervised learning’ problem to the
AL problem. That is, the algorithm starts by approximating the dynamics from samples
and then follows by executing the AL algorithm on the approximated dynamics (Abbeel &
Ng 2004; Syed & Schapire 2008). In this paper we adapt this principle. We also note that it
is possible to learn a transition kernel and an initial state distribution that are parametrized

(5)
f⋆ ≤

1

T

∑T

t=1
max
𝜋∈𝛱

[
wt ⋅ 𝜇(𝜋) − wt ⋅ 𝜇E

]

=
1

T

∑T

t=1

[
wt ⋅ 𝜇(𝜋t) − wt ⋅ 𝜇E

]

(6)≤ min
w∈W

1

T

T�
t=1

w ⋅
�
�(�t) − �E

�
+ O

� √
log(k)

(1 − �)

√
T

�

(7)= min
w∈W

w ⋅ (�(�) − �) + O

� √
log(k)

(1 − �)

√
T

�
,

1 The O notation hides the dependency in k and � .

Machine Learning

1 3

by the context. Existing methods, such as in Modi et al. (2018), can be used to learn con-
textual transition kernels. Furthermore, in domains that allow access to the real environ-
ment, Abbeel & Ng (2005) provides theoretical bounds for the estimated dynamics of the
frequently visited state-action pairs. Thus, we assume Pc is known when discussing sug-
gested methods in Sect. 3, which enables the computation of feature expectations for any
context and policy. In Sect. 4.5 we present an example of this principle, where we use a
context-dependent model to estimate the dynamics.

3 Methods

In the previous section we have seen AL algorithms for finding a policy that satisfies Eq.
(2). In a CMDP this policy will have to be a function of the context, but unfortunately, it
is not clear how to analyze contextual policies. Instead, we follow the approach that was
taken in the CMDP literature and aim to learn the linear mapping from contexts to rewards
(Hallak et al. 2015; Modi et al. 2018; Modi & Tewari 2019). This requires us to design an
IRL algorithm instead of an AL algorithm, i.e., to solve Eq. (4) rather than Eq. (2). Con-
cretely, the goal in Contextual IRL is to approximate the mapping f ∗(c) by observing an
expert (for each context c, the expert provides a demonstration from �∗

c
).

This Section is organized as follows. We begin with Sect. 3.1, where we formulate
COIRL as a convex optimization problem and derive subgradient descent algorithms for
it based on the Mirror Descent Algorithm (MDA). Furthermore, we show that MDA can
learn efficiently even when there is only a single expert demonstration per context. This
novel approach is designed for COIRL but can be applied to standard IRL problems as
well.

In Sect. 3.2 we present a cutting plane method for COIRL that is based on the ellipsoid
algorithm. This algorithm requires, in addition to demonstrations, that the expert evaluate
the agent’s policy and provide its demonstration only if the agent’s policy is sub-optimal.

In Sect. 3.3 we discuss how existing IRL algorithms can be adapted to the COIRL set-
ting for domains with finite context spaces and how they compare to COIRL, which we
later verify in the experiments section. Finally, in Sect. 3.4 we explore methods for efficient
transfer to unseen contexts without additional planning.

3.1 Mirrored descent for COIRL

3.1.1 Problem formulation

In this section, we derive and analyze convex optimization algorithms for COIRL that min-
imize the following loss function,

Remark 3.1 We analyze the descent methods for the linear mapping f (c) = cTW . It is pos-
sible to extend the analysis to general function classes (parameterized by W), where �f

�W
 is

computable and f is convex. In this case, �f
�W

 aggregates to the descent direction instead of
the context, c, and similar sample complexity bounds can be achieved.

(8)Loss(W) = �c max
𝜋

[
fW (c) ⋅

(
𝜇
𝜋

c
− 𝜇

∗

c

))]
= �c

[
fW (c) ⋅

(
𝜇
�̂�c(W)

c
− 𝜇

∗

c

)]
.

 Machine Learning

1 3

The following lemma suggests that if W is a minimizer of Eq. (8), then the expert policy
is optimal w.r.t. reward R̂c for any context.

Lemma 3.1 Loss(W) satisfies the following properties: (1) For any W the loss is greater
or equal to zero. (2) If Loss(W) = 0 then for any context, the expert policy is the optimal
policy w.r.t. reward R̂c(s) = cTW𝜙(s).

Proof We need to show that ∀W , Loss(W) ≥ 0, and Loss(W∗
) = 0. Fix W. For

any context c, we have that 𝜇�̂�c(W)

c is the optimal policy w.r.t. reward fW (c), thus,
fW (c) ⋅

(
𝜇
�̂�c(W)

c − 𝜇
∗

c

)
≥ 0. Therefore we get that Loss(W) ≥ 0. For W∗, we have that

𝜇
�̂�c(W)

c = 𝜇
∗

c
, thus Loss(W∗

) = 0.
For the second statement , note that Loss(W) = 0 implies that

∀c, fW (c) ⋅
(
𝜇
�̂�c(W)

c − 𝜇
∗

c

)
= 0. This can happen in one of two cases. (1) 𝜇�̂�c(W)

c = 𝜇
∗

c
, in this

case 𝜋∗

c
, �̂�c(W) have the same feature expectations. Therefore, they are equivalent in terms

of value. (2) 𝜇�̂�c(W)

c ≠ 𝜇
∗

c
, but fW (c) ⋅

(
𝜇
�̂�c(W)

c − 𝜇
∗

c

)
= 0. In this case, 𝜋∗

c
, �̂�c(W) have differ-

ent feature expectations, but still achieve the same value w.r.t. reward fW (c). Since �̂�c(W) is
an optimal policy w.r.t. this reward, so is �∗

c
. ◻

To evaluate the loss, the optimal policy �̂�c(W) and its features expectations 𝜇�̂�c(W)

c must
be computed for all contexts. Finding �̂�c(W) , for a specific context, can be solved using
standard RL methods, e.g., value or policy iteration. In addition, computing 𝜇�̂�c(W)

c is equiv-
alent to performing policy evaluation (solving a set of linear equations).

However, since we need to use an algorithm (e.g. policy iteration) to solve for the opti-
mal policy, Eq. (8) is not differentiable w.r.t. W. We therefore consider two optimization
schemes that do not involve differentiation: (i) subgradients and (ii) randomly perturbing
the loss function (finite differences). Although the loss is non-differentiable, Lemma 3.2
below shows that in the special case that fW (c) is a linear function, Eq. (8) is convex and
Lipschitz continuous. Furthermore, it provides a method to compute its subgradients.

Lemma 3.2 Let fW (c) = cTW such that Loss(W), denoted by Llin(W) , is given by

We have that:

1. Llin(W) is a convex function.
2. g(W) = �c

[
c⊙

(
𝜇
�̂�c(W)

c − 𝜇
∗

c

)]
 is a subgradient of Llin(W).

3. Llin is a Lipschitz continuous function, with Lipschitz constant L =
2

1−�
 w.r.t. ‖⋅‖

∞
 and

L =
2
√
dk

1−�
 w.r.t. ‖⋅‖2.

In the supplementary material we provide the proof for the Lemma (Appendix A). The
proof follows the definitions of convexity and subgradients, using the fact that for each
W we compute the optimal policy for reward cTW . The Lipschitz continuity of LLin(W)
is related to the simulation lemma (Kearns & Singh 2002), that is, a small change in the
reward results in a small change in the optimal value.

Note that g(W) ∈ ℝ
d×k is a matrix; we will sometimes refer to it as a matrix and some-

times as a flattened vector, depending on the context. Finally, g(W) is given in expectation

Llin(W) = �c

[
cTW ⋅

(
𝜇
�̂�c(W)

c
− 𝜇

∗

c

)]
.

Machine Learning

1 3

over contexts, and in expectation over trajectories (feature expectations). We will later see
how to replace g(W) with an unbiased estimate, which can be computed by aggregating
state features from a single expert trajectory sample.

3.1.2 Algorithms

Lemma 3.2 identifies LLin(W) as a convex function and provides a method to compute its
subgradients. A standard method for minimizing a convex function over a convex set is the
subgradient projection algorithm (Bertsekas 1997). The algorithm is given by the follow-
ing iterates:

where f (Wt) is a convex function, g(Wt) is a subgradient of f (Wt) , and �t the learning rate.
W is required to be a convex set; we will consider two particular cases, the �2 ball (Abbeel
& Ng 2004) and the simplex (Syed & Schapire 2008).2

Next, we consider a generalization of the subgradient projection algorithm that is called
the mirror descent algorithm (Nemirovsky & Yudin 1983, MDA):

where D
�
(W,Wt) is a Bregman distance,3 associated with a strongly convex function � .

The following theorem characterizes the convergence rate of MDA.

Theorem 3.1 (Convergence rate of MDA) Let � be a �-strongly convex function on W
w.r.t. ‖⋅‖ , and let D2

= supW1,W2∈W
D

�
(W1,W2) . Let f be convex and L-Lipschitz continuous

w.r.t. ‖⋅‖ . Then, MDA with �t =
D

L

√
2�

t
 satisfies:

We refer the reader to Beck & Teboulle (2003) and Bubeck (2015) for the proof. Spe-
cific instances of MDA require one to choose a norm and to define the function � . Once
those are defined, one can compute �,D and L which define the learning rate schedule.
Below, we provide two MDA instances (see, for example Beck & Teboulle (2003) for deri-
vation) and analyze them for COIRL.

Projected subgradient descent (PSGD): Let W be an �2 ball with radius 1. Fix || ⋅ ||2 ,
and �(W) =

1

2
||W||2

2
. � is strongly convex w.r.t. || ⋅ ||2 with � = 1. The associated Bregman

divergence is given by D
�
(W1,W2) = 0.5||W1 −W2||22. Thus, mirror descent is equivalent

to PSGD. D2
= maxW1,W2∈W

D
�
(W1,W2) ≤ 1, and according to Lemma 3.2, L =

2
√
dk

1−�
 .

Thus, we have that the learning rate is �t = (1 − �)

√
1

2dkt
 and the update to W is given by

Wt+1 = ProjW
{
Wt − �tg(Wt)

}
,

(9)Wt+1 = arg min
W∈W

{
W ⋅ ∇f (Wt) +

1

�t

D
�
(W,Wt)

}
,

f

(
1

T

T∑
t=1

Wt

)
− f (W∗

) ≤ DL

√
2

�T
.

2 Scaling of the reward by a constant does not affect the resulting policy, thus, these sets are not restricting.
3 We refer the reader to the supplementary material (Appendix A) for definitions of the Bregman distance,
the dual norm, etc.

 Machine Learning

1 3

and according to Theorem 3.1 we have that after T iterations,

Exponential Weights (EW): Let W be the standard dk − 1 dimensional simplex. Let
�(W) =

∑
i W(i) log(W(i)) . � is strongly convex w.r.t. || ⋅ ||1 with � = 1 . We get that the

associated Bregman divergence is given by

also known as the Kullback-Leibler divergence. In addition,

and according to Lemma 3.2, L =
2

1−�
 . Thus, we have that the learning rate is

�t = (1 − �)

√
log(dk)

2t
. Furthermore, the projection onto the simplex w.r.t. to this distance

amounts to a simple renormalization W ← W∕||W||1 . Thus, we get that MDA is equivalent
to the exponential weights algorithm and the update to w is given by

Finally, according to Theorem 3.1 we have that after T iterations,

Evolution strategies for COIRL: Next, we consider a derivative-free algorithm for com-
puting subgradients, based on Evolution Strategies (Salimans et al. 2017, ES). For convex
optimization problems, ES is a gradient-free descent method based on computing finite

W̃ = Wt − 𝛼tgt,Wt+1 = W̃∕||W̃||2,

Llin

�
1

T

�T

t=1
Wt

�
− Llin(W

∗
) ≤ O

� √
dk

(1 − �)

√
T

�
.

D
�

(
W1,W2

)
=

∑
i

W1(i) log

(
W1(i)

W2(i)

)
,

D2
= max

W1,W2∈W
D

�

(
W1,W2

)
≤ log(dk)

∀i ∈ [1..dk], W̃(i) = Wt(i) exp
(
−𝛼tgt(i)

)
,Wt+1 = W̃∕||W̃||1.

Llin

�
1

T

�T

t=1
Wt

�
− Llin(W

∗
) ≤ O

� √
log(dk)

(1 − �)

√
T

�
.

Machine Learning

1 3

differences (Nesterov & Spokoiny 2017). The subgradient in ES is computed by sampling
m random perturbations and computing the loss for them, in the following form

and the subgradient is given by

Theorem 3.2 presents the sample complexity of PSGD with the subgradient in Eq. (10) for
the case that the loss is convex, as in LLin . While this method has looser upper-bound guar-
antees compared to MDA (Theorem 3.1), Nesterov & Spokoiny (2017) observed that in
practice, it often outperforms subgradient-based methods. Thus, we test ES empirically and
compare it with the subgradient method (Sect. 3.1). Additionally, Salimans et al. (2017)
have shown the ability of ES to cope with high dimensional non-convex tasks (DNNs).

Theorem 3.2 (ES Convergence Rate (Nesterov & Spokoiny 2017)) Let Llin(W) be a non-
smooth convex function with Lipschitz constant L, such that ||W0 −W∗|| ≤ D , step size of
�t =

D

(dk+4)
√
T+1L

 and � ≤
�

2L
√
dk

 then in T =
4(dk+4)2D2L2

�2
 ES finds a solution which is bounded

by �UT−1
[Llin(ŴT)] − Llin(W

∗
) ≤ 𝜖 , where UT = {u0,… , uT} denotes the random variables

of the algorithm up to time T and ŴT = argmint=1,…,TLlin(Wt).

Practical MDA: One of the “miracles” of MDA is its robustness to noise. If we replace gt
with an unbiased estimate g̃t, such that �g̃t = gt and �‖‖g̃t‖‖ ≤ L , we obtain the same conver-
gence results as in Theorem 3.1 (Robbins & Monro 1951) (see, for example, Bubeck
2015, Theorem 6.1). Such an unbiased estimate can be obtained in the following manner: (i)
sample a context ct , (ii) compute �

�
∗

ct
(Wt)

ct
 , (iii) observe a single expert demonstration

�
E
i
= {si

0
, a0, s

i
1
, a1,… , }, where ai is chosen by the expert policy �

∗

ct
 (iv) let

�̂�i =
∑

t∈[0,…,�𝜏E
i
�−1] 𝛾 t𝜙(sit) be the accumulated discounted features across the trajectory such

that ��̂�i = 𝜇
∗

ct
.

However, for �̂�i to be an unbiased estimate of �∗

ct
 , �E

i
 needs to be of infinite length. Thus one

can either (1) execute the expert trajectory online, and terminate it at each time step with prob-
ability 1 − � (Kakade & Langford 2002), or (2) execute a trajectory of length
H =

1

1−�
log(1∕�H) . The issue with the first approach is that since the trajectory length is

unbounded, the estimate �̂�i cannot be shown to concentrate to �∗

ct
 via Hoeffding type inequali-

ties. Nevertheless, it is possible to obtain a concentration inequality using the fact that the
length of each trajectory is bounded in high probability (similar to Zahavy et al. (2020b)). The
second approach can only guarantee that ‖‖gt − �g̃t

‖‖ ≤ 𝜖H (Syed & Schapire 2008). Hence,
using the robustness of MDA to adversarial noise (Zinkevich 2003), we get that MDA con-
verges with an additional error of �H , i.e.,

For j =1, ...,m do

Sample uj ∼ N
(
0, �2

)
∈ R

dk,

gj = Loss

(
Wt +

�uj

||uj||
)

�uj

||uj|| ,
End For,

(10)gt =
1

m�

m∑
j=1

gj.

 Machine Learning

1 3

While this sampling mechanism has the cost of a controlled bias, usually it is more practi-
cal, in particular, if the trajectories are given as a set of demonstrations (offline data).

3.2 Ellipsoid algorithms for COIRL

In this section we present the ellipsoid method, introduced to the IRL setting by Amin et al.
(2017). We extend this method to the contextual setting, and focus on finding a linear map-
ping W ∈ W where W = {W ∶ ||W||

∞
≤ 1} , and W∗

∈ W . The algorithm, illustrated in
Fig. 3, maintains an ellipsoid-shaped feasibility set for W∗ . In each iteration, the algorithm
receives a demonstration which is used to create a linear constraint, halving the feasibility
set. The remaining half-ellipsoid, still containing W∗ , is then encapsulated by a new ellip-
soid. With every iteration, this feasibility set is reduced until it converges to W∗.

Formally, an ellipsoid is defined by its center – a vector u, and by an invertible matrix
Q: {x ∶ (x − u)Q−1

(x − u) ≤ 1} . The feasibility set for W∗ is initialized to be the minimal
sphere containing {W ∶ ||W||

∞
≤ 1} . At every step t, the current estimation Wt of W∗ is

defined as the center of the feasibility set, and the agent acts optimally w.r.t. the reward
function R̂c(s) = cTWt𝜙(s) . If the agent performs sub-optimally, the expert provides a dem-
onstration in the form of its feature expectations for ct : �∗

ct
 . These feature expectations are

used to generate a linear constraint (hyperplane) on the ellipsoid that is crossing its center.
Under this constraint, we construct a new feasibility set that is half of the previous ellip-
soid, and still contains W∗ . For the algorithm to proceed, we compute a new ellipsoid that
is the minimum volume enclosing ellipsoid (MVEE) around this “half-ellipsoid”. These
updates are guaranteed to gradually reduce the volume of the ellipsoid, as shown in Lemma
3.3, until its center is a mapping which induces �-optimal policies for all contexts.

Lemma 3.3 (Boyd & Barratt (1991)) If B ⊆ ℝ
D is an ellipsoid with center w, and

x ∈ ℝ
D
�{0} , we define B+

= MVEE({� ∈ B ∶ (� − w)Tx ≥ 0}) , then: Vol(B
+
)

Vol(B)
≤ e

−
1

2(D+1) .

Llin

�
1

T

T�
t=1

Wt

�
− Llin(W

∗
) ≤ O

�
1√
T

�
+ �H .

Fig. 3 The ellipsoid algorithm
proceeds in an iterative way,
using linear constraints to
gradually reduce the size of the
ellipsoid until the center defines
an �-optimal solution

Machine Learning

1 3

Theorem 3.3 below shows that this algorithm achieves a polynomial upper bound on the
number of sub-optimal time-steps. The proof, found in Appendix B, is adapted from (Amin
et al. 2017) to the contextual setup.

Theorem 3.3 In the linear setting where R∗

c
(s) = cTW∗

�(s) , for an agent acting according
to Algorithm 1, the number of rounds in which the agent is not �-optimal is
O(d2k2 log(

dk

(1−�)�
)).

Remark 3.2 Note that the ellipsoid method presents a new learning framework, where dem-
onstrations are only provided when the agent performs sub-optimally. Thus, the theoretical
results in this section cannot be directly compared with those of the descent methods. We
further discuss this in Appendix D.2.1.

Remark 3.3 The ellipsoid method does not require a distribution over contexts - an adver-
sary may choose them. MDA can also be easily extended to the adversarial setting via
known regret bounds on online MDA (Hazan 2016).

3.2.1 Practical ellipsoid algorithm

In real-world scenarios, it may be impossible for the expert to evaluate the value of the
agent’s policy, i.e. check if V∗

ct
− V

�̂�t
ct
> 𝜖 , and to provide its policy or feature expecta-

tions �∗

ct
 . To address these issues, we follow Amin et al. (2017) and consider a relaxed

approach, in which the expert evaluates each of the individual actions performed by the
agent rather than its policy (Algorithm 3). When a sub-optimal action is chosen, the
expert provides finite roll-outs instead of its policy or feature expectations. We define

 Machine Learning

1 3

the expert criterion for providing a demonstration to be Q∗

ct
(s, a) + 𝜖 < V∗

ct
(s) for each

state-action pair (s, a) in the agent’s trajectory.

Near-optimal experts: In addition, we relax the optimality requirement of the expert and
instead assume that, for each context ct , the expert acts optimally w.r.t. W∗

t
 which is close

to W∗ ; the expert also evaluates the agent w.r.t. this mapping. This allows the agent to learn
from different experts, and from non-stationary experts whose judgment and performance
slightly vary over time. If a sub-optimal action w.r.t. W∗

t
 is played at state s, the expert pro-

vides a roll-out of H steps from s to the agent. As this roll-out is a sample of the optimal
policy w.r.t. W∗

t
 , we aggregate n examples to assure that with high probability, the linear

constraint that we use in the ellipsoid algorithm does not exclude W∗ from the feasibility
set. Note that these batches may be constructed across different contexts, different experts,
and different states from which the demonstrations start. Theorem 3.4, proven in Appen-
dix B, upper bounds the number of sub-optimal actions that Algorithm 3 chooses.4

Theorem 3.4 For an agent acting according to Algorithm 3, H = ⌈ 1

1−�
log(

8k

(1−�)�
)⌉ and

n = ⌈ 512k2

(1−�)2�2
log(4dk(dk + 1) log(

16k
√
dk

(1−�)�
)∕�)⌉ , with probability of at least 1 − � , if

∀t ∶ W∗

t
∈ B

∞
(W∗,

(1−�)�

8k
) ∩ �0 the number of rounds in which a sub-optimal action is

played is O
(

d2k4

(1−�)2�2
log

(
dk

(1−�)��
log(

dk

(1−�)�
)

))
.

The theoretical guarantees of the algorithms presented so far are summarized in Table 1.
We can see that MDA, in particular EW, achieves the best scalability. In the unrealistic case

4 MDA also works with near optimal experts due to the robustness of MDA. The analysis of this case is
identical to the analysis of biased trajectories, as we discuss in the end of Sect. 3.1.

Machine Learning

1 3

where the expert can provide its feature expectations, the ellipsoid method has the lowest
sample complexity. However, in the realistic scenario where only samples are provided, the
sample complexity is identical across all methods. We also note that unlike MDA and ES,
it isn’t possible to extend the ellipsoid method to work with DNNs. Overall, the theoretical
guarantees favor the MDA methods when it comes to the realistic setting.

3.3 Existing approaches

We focus our comparisons to methods that can be used for zero-shot generalization across
contexts or tasks. Hence, we omit discussion of “meta inverse reinforcement learning”
methods which focus on few-shot generalization (Xu et al. 2018). Our focus is on two
approaches: (1) standard IRL methods applied to a model which incorporates the context
as part of the state, and (2) contextual policies through behavioral cloning (BC) (Pomerleau
1989).

3.3.1 Application of IRL to COIRL problems

We first examine the straight-forward approach of incorporating the contextual information
into the state, i.e., defining S�

= C × S , and applying standard IRL methods to one environ-
ment which captures all contexts. This construction limits the context space to a finite one,
as opposed to COIRL which works trivially with an infinite number of contexts. At first
glance, this method results in the same scalability and sample complexity as COIRL; how-
ever, when considering the inner loop in which an optimal policy is calculated, COIRL has
the advantage of a smaller state space by a factor of |C| . This results in significantly better
run-time when considering large context spaces. In Sect. 4.1, we present experiments that
evaluate the run-time of this approach, compared to COIRL, for increasingly large context
spaces. These results demonstrate that the run-time of IRL scales with |C| while the run-
time of COIRL is unaffected by |C| , making COIRL much more practical for environments
with many or infinite contexts.

3.3.2 Contextual policies

Another possible approach is to use Behavioral Cloning (BC) to learn contextual poli-
cies, i.e., policies that are functions of both state and context �(c, s) . In BC, the policy is
learned using supervised learning methods, skipping the step of learning the reward func-
tion. While BC is an intuitive method, with successful applications in various domains

Table 1 Summary of theoretical guarantees

Scalability Sample complexity Exten-
sion to
DNNsFeature expecta-

tions
Sampled trajec-
tory

Feature expecta-
tions

Sampled trajec-
tory

MDA PSGD O(dk)
O

(
1

�2

)
O

(
1

�2

)
✓

EW O(log dk) ✗
ES O(dk) O(d

2
k
2
) ✓

Ellipsoid O(d
2
k
2
) O(d

2
k
4
) O

(
log

1

�

)
✗

 Machine Learning

1 3

(Bojarski et al. 2016; Ratliff et al. 2007), it has a fundamental flaw; BC violates the i.i.d.
assumptions of supervised learning methods, as the learned policy affects the distribution
of states it encounters. This results in a covariate shift in test-time leading to compounding
errors (Ross & Bagnell 2010; Ross et al. 2011). Methods presented in Ross et al. (2011);
Laskey et al. (2017) mitigate this issue but operate outside of the offline framework. This
explains why BC compares unfavorably to IRL methods, especially with a limited number
of available demonstrations (Ho & Ermon 2016; Ghasemipour et al. 2019). In Sect. 4.4.2,
we provide experimental results that exhibit the same trend. These results demonstrate how
matching actions on the train set poorly translates to value on the test set, until much of the
expert policy is observed. While a single trajectory per context suffices for COIRL, BC
requires more information to avoid encountering unfamiliar states. We also provide a hard-
ness result for learning a contextual policy for a linear separator hypothesis class, further
demonstrating the challenges of this approach.

3.4 Transfer across contexts in test‑time

In this section, we examine the application of the learned mapping W when encountering a
new, unseen context in test-time. Unlike during training, in test-time the available resources
and latency requirements may render re-solving the MDP for every new context infeasible.
We address this issue by leveraging optimal policies {�∗

cj
}
N
j=1

 for contexts {cj}Nj=1 which were
previously calculated during training or test time. We separately handle context-independ-
ent dynamics and contextual dynamics by utilizing (1) generalized policy improvement
(GPI) (Barreto et al. 2017), and (2) the simulation lemma (Kearns & Singh 2002),
respectively.

For context-independent dynamics, the framework of Barreto et al. (2017) can be
applied to efficiently transfer knowledge from previously observed contexts {cj}Nj=1 to a new
context c. As the policies {�∗

cj
}
N
j=1

 were computed, so were their feature expectations, start-
ing from any state. As the dynamics are context-independent, these feature expectations are
also valid for c, enabling fast computation of the corresponding Q-functions, thanks to the
linear decomposition of the reward. GPI generalizes policy improvement, allowing us to
use these Q-functions to create a new policy that is as good as any of them and potentially
strictly better than them all. The following theorem, a parallel of Theorem 2 in Barreto
et al. (2017), defines the GPI calculation and provides the lower bound on its value. While
these theorems and their proofs are written for W∗ , the results hold for any W ∈ W.

Theorem 3.5 (Barreto et al. (2017)) Let �max = maxs ||W∗
�(s)||1 , {cj}Nj=1 ⊆ C , c ∈ C , and

�(s) ∈ argmaxa maxj Q
�
∗

cj

c (s, a) . If the dynamics are context independent, then:

When the dynamics are a function of the context, the feature expectations calculated for
{cj}

N
j=1

 are not valid for c, thus GPI can not be used efficiently. However, due to the linear-
ity and therefore continuity of the mapping, similar contexts induce similar environments.
Thus, it is intuitive that if we know the optimal policy for a context, it should transfer well
to nearby contexts without additional planning. This intuition is formalized in the simula-
tion lemma, which is used to provide bounds on the performance of a transferred policy in
the following theorem.

V∗

c
− V�

c
≤ 2

�max

1 − �
min
j

||c − cj||∞.

Machine Learning

1 3

Theorem 3.6 Let c, cj ∈ C,�max = maxs ||W∗
�(s)||1 , Vmax = maxc,s |V∗

c
(s)| . Then:

Remark 3.4 The bound depends on W . For example, for W = �dk−1 , the bound is
2
1−�+�d

�(1−�)2
||c − cj||∞ , and for W = B

∞
(0, 1) the bound is 2dk

�(1−�)2
||c − cj||∞.

Remark 3.5 If the dynamics are independent of the context, the term �dVmax is omitted
from the bound.

Using these methods, one can efficiently find a good policy for a new context c, either
as a good starting point for policy/value iteration which will converge faster or as the
final policy to be used in test-time. The last thing to consider is the construction of the set
{cj}

N
j=1

 . As COIRL requires computing the optimal policies for W during training, the train-
ing contexts are a natural set to use. In addition, as suggested in Barreto et al. (2017), we
may reduce this set or enhance it in a way that maintains a covering radius in C and guar-
antees a desired level of performance. If the above methods are used as initializations for
calculating the optimal policy, the set can be updated in test-time as well.

4 Experiments

In the previous sections we described the theoretical COIRL problem, proposed methods to
solve it and analyzed them. In this section our goal is to take COIRL from theory to prac-
tice. This section presents the process and the guidelines we follow to achieve this goal in a
step-by-step manner, to bridge the gap between theoretical and real-life problems through a
set of experiments.5

We begin by focusing on the grid world and autonomous driving simulation environ-
ments. As these are relatively small domains, for which we can easily compute the optimal
policy, they provide easily accessible insight into the behavior of each method and allow us
to eliminate methods that are less likely to work well in practice. Then we use the sepsis
treatment simulator in a series of experiments to test and adjust the methods towards real-
life application. The simulator is constructed from real-world data in accordance with the
theoretical assumptions of COIRL. Throughout the experiments we strip the assumptions
from the simulator and show that the methods perform well in an offline setting. Further-
more, we show that a DNN estimator achieves high performance when the mapping from
the context to the reward is non-linear.

Finally, we test the methods in sepsis treatment – without the simulator. Here, we use
real clinicians’ trajectories for training and testing. For COIRL, we estimate a CMDP∖ M
model from the train data (states and dynamics) which is used for training purposes. We
then show that COIRL achieves high action matching on unseen clinicians trajectories.

V∗

c
− V

�
∗

cj

c ≤ 2
�max + �dVmax

�(1 − �)
||c − cj||∞.

5 The code used in these experiments is provided in following repository https:// github. com/ coirl/ coirl_
code.

https://github.com/coirl/coirl_code
https://github.com/coirl/coirl_code

 Machine Learning

1 3

4.1 Grid world

The grid world domain is an n by m grid which makes |S| = n ⋅ m states. The actions are
A = {left, up, right, down} and the dynamics are deterministic for each action, i.e., if the
action taken is up, the next state will be the state above the current state in the grid (with
cyclic transitions on the borders, i.e., taking the action right at state (n − 1, y) will transition
to (0, y)). The features are one-hot vectors (�(si) = ei ∈ ℝ

n⋅m). The contexts correspond to
“preferences” of certain states on the grid. The contexts are sampled from a uniform distri-
bution over the n ⋅ m dimensional simplex.

This domain is used to evaluate the application of IRL to COIRL problems. We com-
pare the performance of PSGD (COIRL) and the projection algorithm (AL) of Abbeel &
Ng (2004) as a function of the context space size. This framework is applied on a grid
with dimensions of 3 ⋅ 4 , overall 12 states. The PSGD method trains on a CMDP model
and the projection algorithm trains on a large MDP model, with a state space that includes
the contexts, as noted in Sect. 3.3.1. The new states are s� = (s, c) , and the new features
are 𝜙(s�) = c⊙ 𝜙(s) . We measure the run-time of every iteration. The most time consum-
ing part of both methods is the optimal policy computation time for a given reward. Both
methods use the same implementation of value iteration in order to enable a comparison of
the run-time.

The results shown in Fig. 4 show that the projection algorithm in the large MDP
requires significantly more time to run as the number of contexts grows, while the run-time
of PSGD is not affected by the number of contexts.

Fig. 4 Run-time comparison
between COIRL and AL. AL
run-time grows as the number
of contexts grows while COIRL
run-time stays fixed

Fig. 5 An illustration of the driv-
ing simulator

Machine Learning

1 3

4.2 Conclusion

Applying IRL methods in a large MDP environment limits the number of contexts that
can be used, and as seen in the results, its run time grows when the number of contexts
increases. We conclude that applying IRL to COIRL problems is inefficient and exclude
this method from the following experiments (Sect. 4.2 through Sect. 4.4).

4.3 Autonomous driving simulation

While the grid world focused on comparing COIRL with the standard IRL method, in this
section we compare the various methods for performing COIRL in an autonomous driv-
ing simulator (Fig. 5). This domain involves a three-lane highway with two visible cars,
cars A and B. The agent, controlling car A, can drive both on the highway and off-road.
Car B drives in a fixed lane, at a slower speed than car A. Upon leaving the frame, car B
is replaced by a new car, appearing in a random lane at the top of the screen. The features
denote the speed of car A, whether or not it is on the road and whether it has collided
with car B. The context implies different priorities for the agent; should it prefer speed or
safety? Is going off-road a valid option? For example, an ambulance will prioritize speed
and may drive off-road, as long as it goes fast and avoids collisions, while a bus will pri-
oritize avoiding both collisions and off-road driving as safety is its primary concern. The
mapping from the contexts to the true reward is constructed in a way that induces different
behaviors for different contexts, making generalization a challenging task.

4.3.1 Ellipsoid setting

The ellipsoid method requires its own framework. Here, the agent’s policy is evaluated
by an expert for every new context revealed. Only if its value is not �-close to the optimal
policy value, an expert demonstration will be provided (feature expectations of an expert
for the revealed context). While the ellipsoid method can only perform a single update for
each demonstration, the descent methods can utilize all of the previously revealed demon-
strations and perform update steps until convergence. We measure the accumulated amount
of expert demonstrations given at each time-step and the value of the agent on a holdout
test set, for each new given demonstration.

The amount of given demonstrations is important in the ellipsoid framework, as it is
equal to the number of times that the agent is not �-close to the optimal policy value. In
addition, it is a way to measure how much intervention is required by an external expert.
We would expect a ‘good’ method to be �-optimal for most revealed contexts and therefore
it should observe a small amount of demonstrations.

The results, presented in Fig. 6, show that all methods eventually reach the expert’s
value; however, the descent methods are more sample efficient than the ellipsoid method
and require fewer expert demonstrations. While according to the theoretical guarantees
(Table 1, feature expectations setting) the ellipsoid method should have better sample
complexity, in practice it is surpassed by the results of the descent methods. Note that in
this experiment each demonstration may be used more than once by the descent methods,
hence the theoretical results are not valid for them.

 Machine Learning

1 3

4.3.2 Online setting

Here, we compare the descent methods presented in Sect. 3 in an online setting. Each
descent step is performed on a context-� pair, where the context is sampled uniformly from
the simplex and � is the feature expectations of a policy that is optimal for this context. For
each method, we measure the normalized value of the proposed policies with respect to
the real reward, the loss (Eq. (8)), and the accuracy, which represents how often the expert
and agent policies match. These criteria are evaluated on a holdout set of contexts, unseen
during training. The x-axis corresponds to the number of contexts seen during training, i.e.,
the number of subgradient steps taken.

In this setting we use two setups, which differ by the observed feature expectations.
First, in the feature expectations setup, we assume that the whole optimal policy can be
observed, therefore, for training we use the feature expectations of the expert’s policy. The
results are shown in Fig. 7. They show a strong correlation between ‘loss minimization’
and ‘value maximization’. EW converges faster than PSGD and the ES method consistently

Fig. 6 Comparison of the ellipsoid method with the ES and PSGD methods in the autonomous driving
simulation. The graph on the left compares the number of demonstrations required by each method, while
the graph on the right compares the performance at each time-step. We observe that while, as theoretically
shown, all methods eventually find an �-optimal solution, the descent methods attain better sample effi-
ciency (converge faster and require less expert interaction)

Fig. 7 Online learning curve in the autonomous driving simulation—learning from feature expectations.
The expert demonstrations are provided in the form of the feature expectations of the expert’s policy. We
compare the loss, value and accuracy, where the value and accuracy are relative to the expert’s behavior. As
can be seen, all descent methods minimize the loss and achieve high value. Additionally, we observe that
while they do attain relatively high accuracy, they find policies which are optimal yet differ from the expert
in the actions taken

Machine Learning

1 3

lies between EW and PSGD, displaying comparable sample complexity. These results
match the theoretical guarantees (Table 1, feature expectations) as EW has tighter bounds
when it comes to scalability compared to PSGD and ES.

The second setup we use is the trajectories setup. Here we construct the feature expec-
tations using a finite number of samples taken from the expert’s policy, each context cor-
respond to a finite rollout of an expert (motivated by real life limitations). The results in
Fig. 8 show that all three descent methods attain high value and accuracy in this setup. As
in the feature expectations setting, the results validate the theoretical sample complexity,
with the exception that ES performs slightly better than PSGD. Comparing the results of
the different setups we observe similar performance for training with the whole expert’s
policy or a sample of it, as expected (Sect. 3.1, practical MDA). Training with trajectories
is closer to the available data in real-life applications, since only samples of policies are
provided.

4.3.3 Conclusion

The ellipsoid method is not as sample efficient as the descent methods. Furthermore, it
demands constant expert monitoring, which in real-world problems might be unavailable.
In many real-world tasks, such as the sepsis treatment domain, there is an abundance of
offline data, yet evaluation in real-life may not be available. Thus, we do not include exper-
iments of the ellipsoid method in the sepsis treatment domain.

The ES and EW methods also have their drawbacks: ES requires computation of the
loss function at a considerably large number of points for every descent step. This require-
ment makes the ES method computationally expensive and prevents it from scaling to
larger environments. The EW method assumes that the model parameters lay within the
simplex, an assumption that limits the policy space in the linear case, and may not hold in
the non-linear case, where the mapping between the context and the reward is modeled by
a neural network. As such, we do not include these methods in the sepsis treatment domain.

4.4 Sepsis treatment simulator

This domain simulates a decision-making process for treating sepsis. Sepsis is a severe,
life-threatening infection, where the treatment applied to a patient is crucial for saving its
life. To create a sepsis treating simulator, we leverage the MIMIC-III data set (Johnson

Fig. 8 Online learning curve in the autonomous driving simulation—learning from trajectories. While
in Fig. 7 the demonstrations were in the form of feature expectations, here we provide trajectories, a less
informative approach. Although less informative, we observe that, similarly to Fig. 7, all methods perform
well, attaining similar performance as when given the full information

 Machine Learning

1 3

et al. 2016). This data set includes data from hospital electronic databases, social security,
and archives from critical care information systems, that had been acquired during routine
hospital care. We follow the data processing steps that were taken in Jeter et al. (2019) to
extract the relevant data in a form of normalized measurements of sepsis patients during
their hospital admission and the treatments that were given to each patient. The measure-
ments include dynamic measures, e.g., heart rate, blood pressure, weight, body tempera-
ture, blood analysis standard measures (glucose, albumin, platelets count, minerals, etc.),
as well as static measures such as age, gender, re-admission (of the patient), and more.

From the processed data we construct a dynamic treatment regime, modeled as a
CMDP, in which a clinician acts to improve a sick patient’s medical condition. The con-
text represents patient features that are constant during treatment, such as age and height.
The state summarizes dynamic measurements of the patient, e.g., blood pressure and EEG
readouts. The actions represent different combinations of fluids and vasopressors, drugs
commonly provided to restore and maintain blood pressure in sepsis patients. The map-
ping from the context to the true reward is constructed from the data. Dynamic treatment
regimes are particularly useful for managing chronic disorders and fit well into the broader
paradigm of personalized medicine (Komorowski et al. 2018; Prasad et al. 2017). Further-
more, dynamic treatment regimes have contextual properties; what is defined as healthy
blood pressure for a patient differs based on age and weight (Wesselink et al. 2018). In our
setting, W∗ captures this information – mapping from contextual (e.g., age) and dynamic
information (e.g., blood pressure) to reward.

As noted in previous sections, we move toward real-life application and eliminate
the inefficient methods. In this section we evaluate the PSGD and compare it with GPI
(Sect. 3.4) and contextual BC (Sect. 3.3.2).

4.4.1 Online setting

In this setting we evaluate only the PSGD method. Similarly to the autonomous driving
simulation we use two setups: (1) we train the methods with the expert’s feature expecta-
tions for each context, and (2) instead of using the expert’s feature expectations for each
given context, we use an estimation, calculated from a given expert trajectory (Sect. 3.1,

Fig. 9 Online setting in sepsis treatment. We compare the relative value and accuracy when the agent is
provided the feature expectations or finite length trajectories. We observe that while as the feature expecta-
tions are more informative, the performance is slightly better. However, notice that the difference is negligi-
ble and amounts to less than 0.5% difference in the relative value

Machine Learning

1 3

practical MDA). We present the results of both setups in the same figure, so a comparison
between the setups can be done.

We observe in Fig. 9 that PSGD performs well in both setups, with slightly better per-
formance with feature expectations, as expected. This supports the theory, as using sam-
ples should not affect the convergence results and truncation after 40 steps should incur
only a small penalty. An important observation is that high accuracy is not necessary for
high value, as our agents achieve near-perfect value with relatively low accuracy. This rein-
forces the use of IRL for imitation learning tasks, as it supports the claim that the reward
function, not the policy, is the most concise and accurate representation of the task (Abbeel
& Ng 2004).

4.4.2 Offline setting

Here, we evaluate the COIRL, GPI and contextual BC methods. We test the ability of these
methods to generalize with a limited amount of data. The motivation for this experiment
comes from real-life applications, where the data available is often limited in size. The
data, similarly to the online setting, is constructed from context-trajectory pairs. In this
setting we minimize the loss function (Eq. (8)) by taking descent steps on mini-batches
sampled from the data set, with repetition, which invalidates the theoretical results. We
conduct two experiments that evaluate the performance as a function of the train-set size
(the amount of context-trajectory pairs used for training). We consider two mappings from
the context to the reward; a linear mapping, and a non-linear mapping. For the non-lin-
ear mapping we use a DNN estimator which constitutes another step towards real-world
applicability.

Remark 4.1 Contextual BC is a method to learn a contextual policy, instead of a contextual
reward. In its implementation we use a DNN that, given a context and state-features, com-
putes a probability vector, �̂�c(s) , representing the agent’s policy – i.e., the probability to
take action a ∈ A is the a’th element of the DNN output �̂�c(s, a) . The state-features that are
given as an input greatly affect BC performance, especially when we compare it to COIRL,
which uses the real dynamics as well as features that represent each state. BC can make
good use of the dynamics, as states with similar dynamics should be mapped to similar
actions. To improve the performance for BC, we use the same state-features that COIRL
uses (HR, blood pressure, etc...), in addition to a feature-vector that represents the dynam-
ics. For each state, s ∈ S , the dynamics can be represented as a concatenation of the prob-
ability vectors,

{
P(s, a)

}
a∈A

 , where P(s, a)[i] = P(s, a, si) . The dimension of the dynamics
for each state is |S| ⋅ |A| which is relatively large in the sepsis treatment simulator, hence
we reduce its dimensionality with PCA.

In Fig. 10 we compare the performance of COIRL, GPI and contextual BC in the lin-
ear setting, when provided with a fixed amount of data. The results show that in the sep-
sis treatment domain, the COIRL and GPI methods perform similarly and able to gener-
alize well for a small amount of train data compared to contextual BC. As expected, in
Fig. 10(b) BC attains better accuracy on the train data while in Fig. 10(a) COIRL and GPI
methods attain better value on the train data. Another observation is that COIRL achieves
similar performance on the training data and on the test data; it is able to generalize to
unseen contexts, even when the amount of training data is small. On the other hand, BC
achieves almost perfect accuracy and high value on the train data but performs poorly on

 Machine Learning

1 3

the test data. This generalization gap goes away only when a large amount of data is avail-
able for training.

The non-linear setup results presented in Fig. 11. Here, the x-axis is in logarithmic
scale. The performance of all methods is similar to the linear setup; COIRL and GPI meth-
ods perform similarly and generalize to unseen contexts even when given a small amount
of train data. Contextual BC generalizes to unseen contexts only for a large amount of train
data. As in the linear setup, the BC method attains better accuracy while the COIRL and
GPI methods attain better value.

Fig. 10 Offline setting in sepsis treatment. The x-axis denotes the number of contexts in the training set.
Results on the train data are represented using circles and x’s, the results on a holdout test data-set repre-
sented as lines. Given a sufficient amount of contexts seen, GPI is comparable to re-solving the domain,
hence there is a large overlap between the results of GPI and COIRL. Contextual BC requires much more
data to generalize well

Fig. 11 Offline setting in sepsis treatment: non-linear mapping. The x-axis denotes the number of contexts
in the training set (logarithmic scale). Results on the train data are represented using circles and x’s, the
results on a holdout test data-set represented as lines. Similar to the linear setup, GPI and COIRL general-
ize well for a small amount of train data where the performance on the train data and on the test data is
similar. Contextual BC performance on the train set is almost perfect, where its performance on the test data
requires a large amount of expert demonstrations

Machine Learning

1 3

4.5 Sepsis treatment in real‑life

In the previous subsections we focused on analyzing COIRL in simulated environments.
We have taken a sequence of steps with the aim of making the simulations more and more
realistic. In all of these simulations, the expert trajectories were always generated from the
optimal policy (for a given context) w.r.t to the true context-reward mapping. Our results
suggest that the reward estimated by COIRL induces a policy that attains a close-to-expert
value in both linear and non-linear settings. Now we turn to examine our algorithms in a
real world data set. Since the true mapping is no longer known, we can only measure the
accuracy of our resulted policies. In previous sections we observed that while accuracy
does not necessarily imply value (i.e., a policy can have optimal value but not be 100%
accurate), these measures are often correlated. In addition, since the true dynamics of the
MDP is now unknown, we estimate it from the data itself.

4.5.1 Data processing

We follow the steps done in Komorowski et al. (2018) to construct a time-series data of
static and dynamic measurements. The data is divided to trajectories, where each trajec-
tory represent a different patient. We consider only trajectories of length greater than 10
that represent 40 hours. The processed data is consisted of 14, 591 trajectories, divided to
a 60-20-20 train-validation-test partition. Each trajectory corresponds to a static measure-
ments vector and a time series of dynamic measurements vectors, with time steps of 4
hours. In the following experiments each model is trained on the training set, until an early
stopping criteria is met on the validation set. We then report the accuracy (action matching
with the clinicians actions) on the holdout test set.

4.5.2 Model fitting

As in Sect. 4.4, the contexts and the states constructed from static and dynamic meas-
urements respectively. In our model, the contexts are in ℝ7 and include the gender, age,
weight, GCS, elixhauser co-morbidity score, whether the patient was mechanically ven-
tilated at s0 and whether the patient has been re-admitted to the hospital. The actions are
defined to be the amount of vasopressors given to a patient at each time slot, and five
discrete actions are constructed by dividing the possible values into five bins. The state
space is constructed by clustering the observed patient dynamic measurements from the
data with K-means (MacQueen et al. 1967). The clustering process is repeated for different
numbers of states and different weights for each measurement (to control the importance of
each measurement for the state space). Each model is evaluated by two terms: (1) number
of different actions taken on the same state for the same patient: �

𝜏

[
�s∈𝜏 [|Â𝜏

s
|]] , where

Â
𝜏

s
= {a ∈ A ∶ (s, a) ∈ 𝜏} . (2) number of different states in each trajectory: �

𝜏

[|Ŝ𝜏 |] ,
where Ŝ

𝜏

= {s ∈ S ∶ s ∈ 𝜏} . In both terms, � is a trajectory drawn from the data. We
require the first term to be as small as possible, to achieve a consistent experts policies in
the CMDP model, the second term required to be large, to force the resulted model to dis-
tinguish between different states in the same patient’s trajectory. Obviously, the model has
to be as small as possible, to enable generalization. The chosen model consists 5000 states.

 Machine Learning

1 3

While processing the data, we noticed that clinicians behavior with respect to some
measurements is random. To address this matter we consulted with clinicians and defined
a set of important dynamic measurements, among them we use the clustering process to
choose the patients relevant dynamic measurements for the states; states were clustered for
any possible single measurement and the five best dynamic measurements were chosen:
mean blood pressure, diastolic blood pressure, shock index, cumulative balance of fluids
and the fluids given to a patient. The features in this CMDP are action-dependent and set to
be a concatenation of ei ∈ ℝ

|S| and ej ∈ ℝ
|A| where ei is a vector of all zeros and a single 1

that represents each state and ej represents the action, overall the there are 5, 005 features
for each state-action pair.

As described in Sect. 2, learning the transition kernel is an orthogonal problem to the
COIRL problem, and can be viewed as a part of the model fitting process. Our dynam-
ics model is context-dependent; the contexts (patients) clustered into five clusters and the
dynamics of each cluster are then estimated using the training data.

4.5.3 Methods

For COIRL we report results for the linear and the non-linear mappings. In both setups,
we use a discount factor � = 0.7 and a mini-batch of size 32. The stopping criteria is set
to stop when five consecutive steps do not increase the validation accuracy. To speed-
up the validation process we sample a subset of 300 patients from the validation parti-
tion at the beginning of each seed and use them to validate the model. In the linear setup
the step size is �t = 0.25 ⋅ 0.95t . The non-linear setup use a DNN to learn the mapping
fW ∶ C ⟶ ℝ

|S|+|A|
= ℝ

5,005
≈ ℝ

5K , it has four layers with a Leaky ReLU activation
and batch-normalization between the first and second layers, and Leaky ReLu activation
between the second and third layers, their sizes are 20K, 10K, 10K, and 5K, respectively.
Here, the step size is �t = 0.2 ⋅ 0.95t

For BC we also use a DNN for function approximation, as we found it to work much
better than a linear model. We also experimented with different sets of features as inputs.
The features that we found to give the best performance were computed in a similar man-
ner to the features that we used for BC in Remark 4.1, using the dynamics of the estimated
CMDP, resulted with 5K features that represent each state. Concretely, the DNN received
a concatenation of the context and the features that represent the current state (size of
5, 007) and outputs a stochastic policy (softmax over the outputs of the last layer). The
network architecture is composed of three linear layers of sizes 625, 125, and 5, respec-
tively. Each layer is followed by a Leaky ReLU activation, and a Softmax activation is
used on the output. Similar to COIRL, the model is trained over the training set partition
and the stopping criteria is set to stop after 5 epochs of non-increasing validation accuracy.
The loss of the DNN is the binary cross-entropy loss between the DNN output and the

Table 2 Results on real world
data. We measure the accuracy
of each method over a holdout
test set. In the non-linear setting,
COIRL achieves the best
accuracy and outperforms BC

Method Accuracy %

COIRL Non-linear 83.74 ± 1.02

Linear 45.17 ± 7.14

BC 73.12 ± 0.82

Machine Learning

1 3

observed action, ei ∈ ℝ
|A| . The mini-batch size is 32 and the optimizer is SGD with step

size �t = 0.1 ⋅
1

1+10−7t
.

Each method trained and evaluated over five seeds, the results are presented in Table 2.
We can see that COIRL with a non-linear mapping attains the best performance, while
the linear mapping achieves poor accuracy. BC performs well overall, but not as good as
COIRL. In Lee et al. (2019) the authors use similar data set and action space. Their meth-
ods, TRIL and DSFN, achieve 80 ± 2% and 79 ± 5%, respectively, which is lower than
COIRL and with higher variance. These results suggest that the contextual hypothesis bet-
ter represents the real world, i.e., that physicians indeed use personalized treatments based
on context.

5 Discussion

Motivated by current trends in personalized medicine (Juskalian et al. 2020), we proposed
the Contextual Inverse Reinforcement Learning framework. While most works in RL
assume the agent is provided with a reward signal, we focused on a more realistic setting,
where the reward is unknown to the agent and, instead, it observes and receives feedback
from an expert. As opposed to the standard IRL setting, in the contextual case, each con-
text defines a new MDP. This leads to a new form of generalization in RL, where the agent
is trained and learns how to act optimally on a set of contexts, followed by an evaluation
procedure on a set to which the agent was not exposed during training.

We show that solving the COIRL objective can be performed by minimizing a con-
vex optimization task. As this objective is not differentiable, we proposed two schemes
based on subgradient descent (MDA and ES) and an adaptation of cutting plane methods
(ellipsoid). We analyzed the convergence properties of each algorithm and summarized the
results in Table 1.

All of the proposed methods assume that the dynamics are known, but in many appli-
cations the dynamics and even the state space are unknown. Following the description in
Sect. 2, any method that learns the dynamics efficiently can be used prior to COIRL. For
example, in online frameworks, where the expert provides demonstrations in an online
manner, the dynamics can be learned as proposed in Abbeel & Ng (2005). In this case, the
dynamics estimation and COIRL should run iteratively, such that every change in the esti-
mation of the dynamics introduces a new COIRL problem that should be solved. In offline
frameworks the dynamics can be estimated prior to COIRL, similarly to Sect. 4.5.

In addition to the theoretical analysis, we performed extensive empirical evaluation
between all proposed algorithms, including baseline approaches. Here, we see a mixed
correlation between theoretical and practical results. Regarding the ellipsoid schemes, we
observe that indeed as shown theoretically, they are sub-optimal compared to the other
methods. However, comparing MDA to ES, we see that ES matches and sometimes outper-
forms MDA even though the theoretical upper-bounds are tighter for MDA. These results
correlate with observations seen by Nemirovsky & Yudin (1983), where ES often provides
better empirical results.

Aside from comparing between our proposed methods, we also compared to a common
learning scheme—behavioral cloning. While IRL aims to find a reward function which
explains the experts behavior, behavioral cloning (log-likelihood action matching) simply
converts the RL task into a supervised learning problem. Previous works (Abbeel & Ng
2004) talk about the importance of IRL, compared to BC. In our experiments we see this

 Machine Learning

1 3

clearly. While the reward/value is smooth (Lipschitz) w.r.t. the context, the policy is not.
As a small change in the context may lead to a large switch in the policy (the optimal
actions change in certain states), we observe that BC struggles. This can also be seen in the
fact that COIRL often reaches imperfect action-matching (accuracy) yet attains the optimal
return.

We demonstrated how existing policies can be transferred to new contexts, avoiding
planning in test-time. This is important, as planning complexity is a function of the size
of the MDP, thus this form of transfer may be crucial for real-world scenarios. Our experi-
ments illustrate how combining offline COIRL with GPI eases the computational load on
the agent while maintaining strong performance with few training examples.

Finally, COIRL achieved the highest accuracy in the challenging task of predicting
the clinicians treatment in the real world sepsis treatment data set. This suggests that
sepsis treatment can be modeled as a contextual MDP; we hope that these findings will
motivate future work in using contextual MDPs to model real-world decision making.

To conclude, we proposed the COIRL framework and analyzed it under a linear map-
ping assumption. In real-world cases, where the linear assumption holds, COIRL can be
used effectively. Future work may combine COIRL with schemes such as meta-learning
(Finn et al. 2017) in order to cope with infinitely large MDPs and non-linear mappings.

Appendices

Proofs for Section 3

Definition A.1 (Bregman distance) Let � ∶ W → R be strongly convex and con-
tinuously differential in the interior of W . The Bregman distance is defined by
D

�
(x, y) = �(x) − �(y) − (x − y) ⋅ ∇�(y), where � is strongly convex with parameter �.

Definition A.2 (Conjugate function) The conjugate of a function �(y) , denoted by �∗
(y) is

Example let ‖ ⋅ ‖ be a norm on ℝn. The associated dual norm, denoted ‖ ⋅ ‖
∗
, is defined as

‖z‖
∗
= sup{z⊺x � ‖x‖ ≤ 1}. The dual norm of ‖ ⋅ ‖2 is ‖ ⋅ ‖2 , and the dual norm of ‖ ⋅ ‖1 is

‖ ⋅ ‖
∞

.
Before we begin with the proof of Lemma 3.2, we make the following observation. By

definition, �̂�c(W) is the optimal policy w.r.t. cTW; i.e., for any policy � we have that

Proof of Lemma 3.2 1. We need to show that ∀W1,W2 ∈ W,∀� ∈ [0, 1], we have that

max
x∈W

{x ⋅ y − �(x)}.

(11)cTW ⋅ 𝜇�̂�c(W)

c
≥ cTW ⋅ 𝜇𝜋

c
.

Machine Learning

1 3

where the inequality follows from Eq. (11).
2. Fix z ∈ W. We have that

where the inequality follows from Eq. (11).
3. Recall that a bound on the dual norm of the subgradients implies Lipschitz continuity

for convex functions. Thus it is enough to show that
∀W ∈ W, ‖g(W)‖p = ‖�c

�
c⊙

�
𝜇
�̂�c(W)

c − 𝜇
∗

c

��
‖p ≤ L. Let p = ∞ , we have that

where in Eq. (Jensen inequality) we used the fact that ∀� we have that ‖‖��

c
‖‖∞ ≤

1

1−�
, thus,

for any �i,�j,

Therefore, L =
2

1−�
 w.r.t. ‖⋅‖

∞
 . Since ‖⋅‖2 ≤

√
dk‖⋅‖

∞
 we get that L =

2
√
dk

1−�
 w.r.t. ‖⋅‖2 .

 ◻

Proofs for Section 3.2

Proof of Theorem 3.3

Proof of Theorem 3.3 We prove the theorem by showing that the volume of the ellipsoids
�t for t = 1, 2, ... is bounded from below. In conjunction with Lemma 3.3, which claims

Llin
(
𝜆W1 + (1 − 𝜆)W2

)
≤ 𝜆Llin(W1) + (1 − 𝜆)Llin

(
W2

)

Llin
(
𝜆W1 + (1 − 𝜆)W2

)

= �c

[
cT
(
𝜆W1 + (1 − 𝜆)W2

)
⋅
(
𝜇
�̂�c(𝜆W1+(1−𝜆)W2)

c − 𝜇
∗

c

)]

= 𝜆�c

[
cTW1 ⋅

(
𝜇
�̂�c(𝜆W1+(1−𝜆)W2)

c − 𝜇
∗

c

)]

+ (1 − 𝜆)�c

[
cTW2 ⋅

(
𝜇
�̂�c(𝜆W1+(1−𝜆)W2)

c − 𝜇
∗

c

)]

≤ 𝜆�c

[
cTW1 ⋅

(
𝜇
�̂�c(W1)

c − 𝜇
∗

c

)]
+ (1 − 𝜆)�c

[
cTW2 ⋅

(
𝜇
�̂�c(W2)

c − 𝜇
∗

c

)]

= 𝜆Llin(W1) + (1 − 𝜆)Llin
(
W2

)
,

Llin(z) = �c

[
cTz ⋅

(
𝜇
�̂�c(z)
c

− 𝜇
∗

c

)]

≥ �c

[
cTz ⋅

(
𝜇
�̂�c(W)

c
− 𝜇

∗

c

)]

= Llin(W) + (z −W) ⋅ �c

[
c⊙

(
𝜇
�̂�c(W)

c
− 𝜇

∗

c

)]
,

(Jensen inequality)
‖g(W)‖

∞
=
����cc⊙

�
𝜇
�̂�c(W)

c
− 𝜇

∗

c

����∞
≤ �c‖c⊙

�
𝜇
�̂�c(W)

c
− 𝜇

∗

c

�‖
∞

(12)≤ �c‖c‖∞����
�i
c
− �

�j

c
���∞ ≤

2

1 − �
.

‖‖‖�
�i
c
− �

�j

c
‖‖‖∞ ≤

2

1 − �
.

 Machine Learning

1 3

there is a minimal rate of decay in the ellipsoid volume, this shows that the number of
times the ellipsoid is updated is polynomially bounded.

We begin by showing that W∗ always remains in the ellipsoid. We note that in rounds
where V∗

ct
− V

�̂�t
ct
> 𝜖 , we have W∗T

(
ct ⊙

(
𝜇
∗

ct
− 𝜇

�̂�t
ct

))
> 𝜖 . In addition, as the agent acts

optimally w.r.t. the reward rt = cT
t
Wt, we have that WT

t

(
ct ⊙

(
𝜇
∗

ct
− 𝜇

�̂�t
ct

))
≤ 0 . Combining

these observations yields:

This shows that W∗ is never disqualified when updating �t . Since W∗
∈ �0 this implies

that ∀t ∶ W∗
∈ �t . Now we show that not only W∗ remains in the ellipsoid, but also a small

ball surrounding it. If � is disqualified by the algorithm: (𝜃 −W
t
)
T ⋅

(
ct ⊙

(
𝜇
∗

ct
− 𝜇

�̂�t
ct

))
< 0

. Multiplying this inequality by -1 and adding it to (13) yields:
(W∗

− 𝜃)
T ⋅

(
ct ⊙

(
𝜇
∗

ct
− 𝜇

�̂�t
ct

))
> 𝜖. We apply Hölder inequality to LHS:

Therefore for any disqualified � : ||W∗
− 𝜃||

∞
>

(1−𝛾)𝜖

2k
 , thus B

∞

(
W∗,

(1−�)�

2k

)
 is never dis-

qualified. This implies that:

Finally, let MT be the number of rounds by T in which V∗

ct
− V

�̂�t
ct
> 𝜖 . Using Lemma 3.3 we

get that:

Therefore MT ≤ 2dk(dk + 1) log
4k
√
dk

(1−�)�
= O(d2k2 log(

dk

(1−�)�
)) . ◻

(13)
(
W∗

−W
t

)T
⋅
(
ct ⊙

(
𝜇
∗

ct
− 𝜇

�̂�t
ct

))
> 𝜖 > 0.

𝜖 < LHS

≤ ||W∗
− 𝜃||

∞
⋅ ||

(
ct ⊙

(
𝜇
∗

ct
− 𝜇

�̂�t
ct

))
||1

≤
2k

1 − 𝛾
||W∗

− 𝜃||
∞

∀t ∶ vol
(
�t

)
≥ vol

(
�0 ∩ B

∞
(W∗,

(1 − �)�

2k
)

)
≥ vol

(
B
∞
(W∗,

(1 − �)�

4k
)

)
.

MT

2(dk + 1)
≤ log

�
vol(�1)

�
− log

�
vol

�
�T+1

��

≤ log
�
vol

�
MVEE(B

∞
(0, 1))

��
− log

�
vol

�
B
∞
(0,

(1 − �)�

4k
)

��

≤ log
�
vol

�
MVEE

�
B2(0,

√
dk)

���
− log

�
vol

�
B2

�
0,

(1 − �)�

4k

���

≤ log

⎛⎜⎜⎝

�
4k
√
dk

(1 − �)�

�dk⎞⎟⎟⎠

≤dk log
4k
√
dk

(1 − �)�
.

Machine Learning

1 3

Proof of Theorem 3.4

Lemma B.1 (Azuma’s inequality) For a martingale {Si}ni=0 , if |Si − Si−1| ≤ b a.s. for
i = 1, ..., n:

P

(
|Sn − S0| > b

√
2n log(

2

𝛿
)

)
< 𝛿

Proof of Theorem 3.4 We first note that we may assume that for any t: ||W∗
−Wt||∞ ≤ 2 . If

W
t
∉ �0 , we update the ellipsoid by 𝛩t ← MVEE

({
𝜃 ∈ 𝛩t ∶

(
𝜃 −W

t

)T

⋅ ej ≶ 0

})

where ej is the indicator vector of coordinate j in which W
t
 exceeds 1, and the inequality

direction depends on the sign of (W
t
)j . If Wt

∉ �0 still, this process can be repeated for a
finite number of steps until W

t
∈ �0 , as the volume of the ellipsoid is bounded from below

and each update reduces the volume (Lemma 3.3). Now we have W
t
∈ �0 , implying

||W∗
−Wt||∞ ≤ 2 . As no points of �0 are removed this way, this does not affect the cor-

rectness of the proof. Similarly, we may assume ||W∗

t
−Wt||∞ ≤ 2 as W∗

t
∈ �0.

We denote Wt which remains constant for each update in the batch by W. We define t(i)
the time-steps corresponding to the demonstrations in the batch for i = 1, ..., n . We define
z
∗,H

i
 to be the expected value of ẑ∗,H

i
 , and z∗

i
 to be the outer product of ct(i) and the feature

expectations of the expert policy for W∗

t(i)
, ct(i), �

�

t(i)
 . We also denote W∗

t(i)
 by W∗

i
 . We bound

the following term from below, as in Theorem 3.3:

(1): Since the sub-optimality criterion implies a difference in value of at least � for the
initial distribution which assigns 1 to the state where the agent errs, we may use identical
arguments to the previous proof. Therefore, the term is bounded from below by �.

(2): By assumption ||W∗
−W∗

i
||
∞
≤

(1−�)�

8k
 thus since ||(z∗

i
− zi)||1 ≤ 2k

1−�
 by Hölder’s

inequality the term is bounded by �
4
.

(
W∗

−W
)T

⋅

(
Z̄∗

n
−

Z̄

n

)

=
1

n

n∑
i=1

(
W∗

−W
)T

⋅
(
ẑ
∗,H

i
− zi

)

=
1

n

n∑
i=1

(
W∗

−W
)T

⋅
(
z∗
i
− zi

)
+

1

n

n∑
i=1

(
W∗

−W
)T

⋅
(
z
∗,H

i
− z∗

i

)
+

1

n

n∑
i=1

(
W∗

−W
)T

⋅
(
ẑ
∗,H

i
− z

∗,H

i

)

=
1

n

n∑
i=1

(
W∗

i
−W

)T
⋅
(
z∗
i
− zi

)

���������������������������������������

(1)

+
1

n

n∑
i=1

(
W∗

−W∗

i

)T
⋅
(
z∗
i
− zi

)

���

(2)

+

1

n

n∑
i=1

(
W∗

−W
)T

⋅
(
z
∗,H

i
− z∗

i

)

���

(3)

+
1

n

n∑
i=1

(
W∗

−W
)T

⋅
(
ẑ
∗,H

i
− z

∗,H

i

)

���

(4)

 Machine Learning

1 3

(3): We have ||x∗,H
i

− x∗
i
||1 ≤ k�H

1−�
 from definitions, thus ||z∗,H

i
− z∗

i
||1 ≤ k�H

1−�
 since

c ∈ �d−1 . As mentioned previously we may assume ||W∗
−Wt||∞ ≤ 2 , therefore by

Hölder’s inequality the term is bounded by �
4
 due to our choice of H:

(4): The partial sums
∑N

i=1
(W∗

−W)
T ⋅ (z

∗,H

i
− ẑ

∗,H

i
) for N = 0, ..., n form a martingale

sequence. Note that:

thus, we can apply Azuma’s inequality (Lemma B.1) with b =
4k

(1−�)
 and with our chosen n

this yields:
∑n

i=1
(W∗

−W)
T ⋅ (z

∗,H

i
− ẑ

∗,H

i
) ≤

n𝜖

4
 with probability of at least

1 −
�

2dk(dk+1) log(
16k

√
dk

(1−�)�
)

.

Thus (W∗
−W)

T ⋅ (
Z̄∗

n
−

Z̄

n
) >

𝜖

4
 and as in Theorem 3.3 this shows B

∞
(W∗,

(1−�)�

8k
) is

never disqualified, and the number of updates is bounded by 2dk(dk + 1) log(
16k

√
dk

(1−�)�
) , and

multiplied by n this yields the upper bound on the number of rounds in which a sub-opti-
mal action is chosen. By union-bound, the required bound for term (4) holds in all updates
with probability of at least 1 − � . ◻

Proofs for Section 3.4

Proof of Theorem 3.6 This proof follows the proof for Lemma 1 in (Barreto et al. 2017),
with additional arguments taken from proofs of the simulation lemma. We define
�P = maxs,a ||Pc(⋅|s, a) − Pcj

(⋅|s, a)||1, �R = maxs |R∗

c
(s) − R∗

cj
(s)|.

We first note that:

and bound each of these terms:

�
H
= (1 − (1 − �))

H

=

(
(1 − (1 − �))

1

1−�

)(1−�)H

=

(
(1 − (1 − �))

1

1−�

)log(
8k

(1−�)�
)

≤ e
− log(

8k

(1−�)�
)

=

(1 − �)�

8k
.

||z∗,H
i

||1 ≤ k

1 − 𝛾
, ||ẑ∗,H

i
||1 ≤ k

1 − 𝛾
, ||W∗

−Wt||∞ ≤ 2,

Q∗

c
(s, a) − Q

�
∗

cj

c (s, a) ≤ |Q∗

c
(s, a) − Q∗

cj
(s, a)| + |Q∗

cj
(s, a) − Q

�
∗

cj

c (s, a)|

Machine Learning

1 3

taking maxs,a of the resulting inequality and solving for LHS yields:

For the second term we follow similar steps:

taking maxs,a of the resulting inequality and solving for LHS yields:

Plugging these bounds into the first inequality yields:

Now, we express �R, �P in terms of the distance between the contexts:

|Q∗

c
(s, a) − Q∗

cj
(s, a)|

=
||R∗

c
(s) − R∗

cj
(s) + �

(∑
s�

Pc(s
�|s, a)max

b
Q∗

c
(s�, b) −

∑
s�

Pcj
(s�|s, a)max

b
Q∗

cj
(s�, b)

)
||

≤ |R∗

c
(s) − R∗

cj
(s)| + �||

∑
s�

Pc(s
�|s, a)

(
max
b

Q∗

c
(s�, b) −max

b
Q∗

cj
(s�, b)

)||+

�||
∑
s�

(
Pc(s

�|s, a) − Pcj
(s�|s, a)

)
max
b

Q∗

cj
(s�, b)||

≤ �R + �

∑
s�

Pc(s
�|s, a)||max

b
Q∗

c
(s�, b) −max

b
Q∗

cj
(s�, b)|| + �Vmax||Pc(⋅|s, a) − Pcj

(⋅|s, a)||1
≤ �R + �Vmax�P + �

∑
s�

Pc(s
�|s, a)max

b

||Q∗

c
(s�, b) − Q∗

cj
(s�, b)||

≤ �R + �Vmax�P + � max
s� ,b

|Q∗

c
(s�, b) − Q∗

cj
(s�, b)|

max
s,a

|Q∗

c
(s, a) − Q∗

cj
(s, a)| ≤ �R + �Vmax�P

1 − �
.

|Q∗

cj
(s, a) − Q

�
∗

cj

c (s, a)|
= �R + �||

∑
s�

Pc(s
�|s, a)Q∗

cj

(
s�,�∗

cj
(s�)

)
−

∑
s�

Pcj
(s�|s, a)Q�

∗

cj

c

(
s�,�∗

cj
(s�)

)||

≤ �R + �Vmax�P + �

∑
s�

Pc(s
�|s, a)||Q∗

cj

(
s�,�∗

cj
(s�)

)
− Q

�
∗

cj

c

(
s�,�∗

cj
(s�)

)||

≤ �R + �Vmax�P + �maxs� ,b|Q∗

cj
(s�, b) − Q

�
∗

cj

c (s�, b)|

max
s,a

|Q∗

cj
(s, a) − Q

�
∗

cj

c (s, a)| ≤ �R + �Vmax�P

1 − �
.

Q∗

c
(s, a) − Q

�
∗

cj

c (s, a) ≤ 2
�R + �Vmax�P

1 − �
.

 Machine Learning

1 3

which, plugged into our inequality, yields:

Note that as a special case, if the dynamics are identical for all contexts, �P = 0 , therefore:

To convert the bound to the value function, we add a dummy initial state s0 , with �(s0) = 0
and ∀a ∶ P(⋅|s0, a) = � . In this case, applying the above inequality for the initial state
yields:

 ◻

Proof of Theorem 3.5 We denote the maximizing index and action by

We have that

�P = max
s,a

�
s�

�Pc(s
��s, a) − Pcj

(s��s, a)�

= max
s,a

�
s�

�(c − cj)
T

⎡
⎢⎢⎣

P1(s
��s, a)
⋮

Pd(s
��s, a)

⎤
⎥⎥⎦
�

≤ ��c − cj��∞
�
s�

��
⎡
⎢⎢⎣

P1(s
��s, a)
⋮

Pd(s
��s, a)

⎤
⎥⎥⎦
��1

= d��c − cj��∞,
�R = max

s
�R∗

c
(s) − R∗

cj
(s)�

= max
s

��c − cj
�T
(W∗

�(s)�
≤ ��c − cj��∞ max

s
��W∗

�(s)��1
= �max��c − cj��∞

Q∗

c
(s, a) − Q

�
∗

cj

c (s, a) ≤ 2
�max + �dVmax

1 − �
||c − cj||∞.

Q∗

c
(s, a) − Q

�
∗

cj

c (s, a) ≤ 2
�max

1 − �
||c − cj||∞.

V∗

c
− V

�
∗

cj

c =
1

�

(
Q∗

c
(s0, a) − Q

�
∗

cj

c (s0, a)
)
≤ 2

�max + �dVmax

�(1 − �)
||c − cj||∞

ai, i ∈ argmaxaargmaxiQ
�
∗

i

c (s, a).

Machine Learning

1 3

where the first inequality is due to the Generalized Policy Improvement Theorem, Theo-
rem 1 in (Barreto et al. 2017), which claims: Q�

c
(s, a) ≥ Q

�
∗

cj

c (s, a) , the second inequality is
from the definition of i, ai , and the last inequality is the second to last inequality from the
previous proof. Taking minj then expectation w.r.t. s ∼ � finishes this proof. ◻

Experiments

In this section, we describe the technical details of our experiments, including the hyper-
parameters used. To solve MDPs, we use value iteration. Our implementation is based
on a stopping condition with a tolerance threshold, � , such that the algorithm stops if
|Vt − Vt−1| < 𝜏. In the autonomous driving simulation and grid world domains we use
� = 10−4 and in the dynamic treatment regime we use � = 10−3.

Grid world

The grid world domain, presented at Sect. 3.3.1 is constructed for computational compari-
sons between methods. The test data includes 100 contexts. Here we include more results
in this domain, all measured on the same setup as in Sect. 3.3.1.

The results shown in Fig. 12(a) present the value as a function of run-time for each con-
text space size |C| . In Fig. 12(b) we show the accuracy w.r.t. the expert policy in the same

V∗

c
(s) − V�

c
(s) = max

a
Q∗

c
(s, a) − Q�

c
(s, ai)

≤ max
a

Q∗

c
(s, a) − Q

�
∗

ci

c

(
s, ai

)

≤ max
a

Q∗

c
(s, a) −max

a
Q

�
∗

cj

c (s, a)

≤ max
a

(
Q∗

c
(s, a) − Q

�
∗

cj

c (s, a)

)

≤ 2
�max

1 − �
||c − cj||∞

Fig. 12 value and accuracy as a function of run-time in various context space size. The advantage of
COIRL grows as the context space grows

 Machine Learning

1 3

manner. We observe that COIRL achieves better value for any size of the train data and
that AL achieves better accuracy after convergence. The accuracy over run-time show that
the convergence of AL in a large context space takes more time and that the accuracy gap
between the methods after convergence is reduced.

Autonomous driving simulation

The environment is modeled as a tabular MDP that consists of 1531 states. The speed is
selected once, at the initial state, and is kept constant afterward. The other 1530 states are
generated by 17 X-axis positions for the agent’s car, 3 available speed values, 3 lanes and
10 Y-axis positions in which car B may reside. During the simulation, the agent controls
the steering direction of the car, moving left or right, i.e., two actions. The feature vec-
tor �(s) is composed of 3 features: (1) speed, (2) “collision”, which is set to 0 in case of a
collision and 0.5 otherwise, and (3) “off-road”, which is 0.5 if the car is on the road and 0
otherwise.

In these experiments, we define our mappings in a way that induces different behaviors
for different contexts, making generalization a more challenging task. We evaluate all algo-
rithms on the same sequences of contexts, and average the results over 5 such sequences.
The test data in this domain contains 80 unobserved contexts.

Ellipsoid setting

This section describe the technical details about the experiments in Sect. 4.3.1. Here, the
real mapping between the context to the reward is linear. We define

W∗
=

(−1 0.75 0.75

0.5 − 1 1

0.75 1 − 0.75

)
 , before normalization. The contexts are sampled uniformly in

the 2-dimensional simplex.
Hyper-parameter selection and adjustments: The algorithms maintained a 3 × 3

matrix to estimate W∗.
Ellipsoid: By definition, the ellipsoid algorithm is hyper-parameter free and does not

require tuning.
PSGD: The algorithm was executed with with the parameters: �0 = 0.3, �t = 0.9t�t−1 ,

and iterated for 40 epochs. An outer decay on the step size was added for faster conver-
gence, the initial �0 becomes 0.94 ⋅ �0 every time a demonstration is presented. The gradi-
ent, gt is normalized to be gt = gt

gt

||gt||∞ and the calculated step is taken if:
cWt

(
𝜇(�̂�

t
c
) − 𝜇(𝜋

∗

c
)

)
> cWt+1

(
𝜇(�̂�

t+1
c

) − 𝜇(𝜋
∗

c
)

)
 , where �̂�t

c
 denotes the optimal policy for a

context c according to Wt.
ES: The algorithm was executed with the parameters: � = 10−3,m = 250, � = 0.1 with

decay rate of 0.95, for 50 iterations which didn’t iterate randomly over one the contexts,
but rather used the entire training set (all of the observed contexts and expert demonstra-
tions up to the current time-step) for each step. The matrix was normalized according to
|| ⋅ ||2 , and so was the step calculated by the ES algorithm, before it was multiplied by �
and applied.

Machine Learning

1 3

Online setting

This section describes the experiments of the online setting (Sect. 4.3.2). All of the com-
pared methods minimize the same objective, where the subgradients for the descent direc-
tion are computed using either the feature expectations (feature expectations setup) or
expert trajectories of length 40 (trajectories setup). In this framework at every iteration we
sample one context and its corresponding feature expectations (or trajectory, sampled from
the expert policy), and take one descent step according to it. The mapping from context to
reward W is linear, and projected to the EW algorithm requirement to be in the dk − 1 sim-

plex. In the autonomous driving simulation: W∗
=

(0.043 0 0.043

0 0.434 0

0.043 0.434 0

)
.

Hyper-parameter selection and adjustments: The PSGD and EW algorithms are con-
figured as the theory specifies, where each descent step is calculated from the one sample.
The ES algorithm is applied with the parameters � = 10−3,m = 500, � = 0.1 with decay
rate 0.95, for every iteration. The ES implementation include a special enhancement; a
descent step is taken if the objective function value decreases (after the descent step).

Sepsis treatment

For the sepsis treatment we construct two environments, one for simulation purposes - sim-
ulator, and another for evaluation on real-life data. The experiments with the simulator pre-
sented in Sect. 4.4, the evaluation on real-life data presented in Sect. 4.5.

Sepsis treatment simulator

As described in Sect. 4.4 we use the processed data from Jeter et al. (2019). It consists of
5366 trajectories, each representing the sequential treatment provided by a clinician to a
patient. At each time-step, the available information for each patient consists of 8 static
measurements and 41 dynamic measurements. In addition, each trajectory contains the
reported actions performed by the clinician (the number of fluids and vasopressors given to
a patient at each time-step and binned to 25 different values), and there is a mortality signal
which indicates whether the patient was alive 90 days after his hospital admission.

In order to create a tabular CMDP from the processed data, we separate the static meas-
urements of each patient and keep them as the context. We cluster the dynamic measure-
ments using K-means (MacQueen et al. 1967). Each cluster is considered a state and the
coordinates of the cluster centroids are taken as its features �(s) . We construct the transition
kernel between the clusters using the empirical transitions in the data given the state and
the performed actions. Two states are added to the MDP and the feature vector is extended
by 1 element, corresponding to whether or not the patient died within the 90 days follow-
ing hospital release. This added feature receives a value of 0 on all non-terminal states, a
value of −0.5 for the state representing the patient’s death and 0.5 for the one representing
survival. In addition, as the number of trajectories is limited, not all state-action pairs are
represented in the data. In order to ensure the agent does not attempt to perform an action
for which the outcome is unknown, we add an additional terminal state. At this state, all
features are set to −1 to make it clearly distinguishable from all other states in the CMDP.

 Machine Learning

1 3

In our simulator, we used the same structure as the raw data, i.e., we used the same
contexts found in the data and the same initial state distribution. Each context is projected
onto the simplex and the expert’s feature expectations for each context are attained by solv-
ing the CMDP. While we focus on a simulator, as it allows us to analyze the performance
of the algorithms, our goal is to have a reward structure which is influenced by the data.
Hence, we produce W∗ by running the ellipsoid algorithm on trajectories obtained from the
data. As done in the autonomous driving simulation, we average our results over 5 different
seeds. The test data size in this domain is 300.

Online setting

Similarly to the autonomous driving simulation, there are two setups. For the trajectories
setup we use expert trajectories of length 40. Again, the mapping from context to reward W
is linear, and projected to the EW algorithm requirement to be in the dk − 1 simplex (the true
mapping can be found in the supplementary code at http:// www. github. com/ coirl/ coirl_ code).

Hyper-parameter selection and adjustments: The PSGD method is configured as
specified by the theory, where each descent step is calculated from one sample.

Offline setting

The offline setting evaluates the methods’ performance on a limited train data set. In this frame-
work, at every iteration we sample a mini-batch of contexts (from a finite set) and their corre-
sponding trajectories (sampled from the expert policy) then taking one descent step according
to them. We conduct two experiments that evaluate the performance on a fixed-size data set.
First, we consider a linear mapping, followed by an analysis of the convergence when a DNN
estimator of the reward is used, when the mapping is non-linear. Of the various COIRL meth-
ods, for these experiments, we focus on PSGD, as it is less restrictive on W . In all experiments
the train data consists of pairs of context and feature expectations of a trajectory of length 40.

We evaluate the PSGD method and the GPI method (using the mapping calculated by
PSGD) along with BC. The evaluation is done after convergence on a changing train data
size, measured as ’contexts’, which refer to the number of expert trajectories given (one
per context). In the non-linear setting The non-linear model of PSGD implemented by a
DNN with the context as its input, three layers with a leakyReLU activation and batch-
normalization, each one of size 336. BC in both environments implemented by a DNN that
has three layers of sizes 250,125,25 respectively, a leakyReLU activation between the first
and second layers and a Softmax activation on the output to ensure a probability vector.

Hyper-parameter selection and adjustments: In the linear setting the PSGD algo-
rithm is configured with step-size �t = 0.25 ⋅ 0.95t , the mini-batch size is 10, similarly to
the autonomous driving simulation. In this domain the stopping criteria is 60 iterations.

The non-linear setting computes the descent direction by backpropagation of the sub-
gradient. Each descent step is calculated over a mini-batch of size 32, where the step-size is
�t = 0.3 ⋅ 0.96t . We measure the results for 200 iterations. The train data consists 4000 con-
texts. The true mapping is defined by f ∗(c) = r1 ifage > 0.1, andr2 otherwise , where age
refers to the normalized age of the patient, an element of the context vector.

Acknowledgements This research was partially supported by the ISF under contract 2199/20.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

http://www.github.com/coirl/coirl_code

Machine Learning

1 3

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abbeel, P., & Ng, A.Y.(2004). Apprenticeship learning via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine learning (pp. 1). ACM.

Abbeel, P., & Ng, A.Y. (2005). Exploration and apprenticeship learning in reinforcement learning. In Pro-
ceedings of the 22nd International Conference on Machine Learning, ICML ’05 (pp. 1-8). New York,
NY, USA: Association for Computing Machinery. ISBN 1595931805. https:// doi. org/ 10. 1145/ 11023
51. 11023 52.

Amin, K., Jiang, N., & Singh, S. (2017). Repeated inverse reinforcement learning. Advances in Neural
Information Processing Systems, 1815–1824.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., & Silver, D. (2017). Succes-
sor features for transfer in reinforcement learning. Advances in neural information processing systems,
4055–4065.

Beck, A., & Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31, 167–175.

Berngard, S. C., Beitler, J. R., & Malhotra, A. (2016). Personalizing mechanical ventilation for acute res-
piratory distress syndrome. Journal of thoracic disease, 8(3), E172.

Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research Society, 48(3),
334–334.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M.,
Muller, U., & Zhang, J., et al. (2016). End to end learning for self-driving cars. arXiv preprintarXiv:
1604. 07316 .

Boyd, S. P., & Barratt, C. H. (1991). Linear controller design: Limits of performance. Hoboken: Prentice
Hall Englewood Cliffs.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine
Learning, 8(3–4), 231–357.

Chakraborty, B., & Murphy, S. A. (2014). Dynamic treatment regimes. Annual Review of Statistics and its
Application, 1, 447–464.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep net-
works. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp.
1126–1135). JMLR. org.

Garber, D., & Hazan, E. (2016). A linearly convergent variant of the conditional gradient algorithm under
strong convexity, with applications to online and stochastic optimization. SIAM Journal on Optimiza-
tion, 26(3), 1493–1528.

Ghasemipour, S. K. S., Gu, S. S., & Zemel, R. (2019). Smile: Scalable meta inverse reinforcement learning
through context-conditional policies. Advances in Neural Information Processing Systems, 7879–7889.

Hallak, A., Di Castro, D., & Mannor, S. (2015). Contextual markov decision processes. arXiv preprintarXiv:
1502. 02259.

Hazan, E. (2016). Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3–4), 157–325.

Ho, J. & Ermon, S (2016). Generative adversarial imitation learning. In Advances in Neural Information
Processing Systems, pp. 4565–4573.

Itenov, T., Murray, D., & Jensen, J. (2018). Sepsis: Personalized medicine utilizing ‘omic’technologies–a
paradigm shift? In Healthcare (pp. 111). Multidisciplinary Digital Publishing Institute.

Jaggi, M. (2013). Revisiting frank-wolfe: Projection-free sparse convex optimization.
Jeter, R., Josef, C., Shashikumar, S., & Nemati, S. (2019). Does the “artificial intelligence clinician” learn

optimal treatment strategies for sepsis in intensive care?. URL https:// github. com/ point 85AI/ Policy-
Itera tion- AI- Clini cian. git.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-W.H., Feng, M., Ghassemi, M., et al. (2016). Mimic-
iii, a freely accessible critical care database. Scientific Data, 3, 160035. https:// doi. org/ 10. 1038/ sdata.
2016. 35.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1102351.1102352
https://doi.org/10.1145/1102351.1102352
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1502.02259
http://arxiv.org/abs/1502.02259
https://github.com/point85AI/Policy-Iteration-AI-Clinician.git
https://github.com/point85AI/Policy-Iteration-AI-Clinician.git
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35

 Machine Learning

1 3

Juskalian, R., Regalado, A., Orcutt, M., Piore, A., Rotman, D., Patel, N. V., Lichfield, G., Hao, K., Chen, A.,
& Temple, J. (2020). Mit technology review. URL https:// www. techn ology review. com/ lists/ techn ologi
es/ 2020/.

Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement learning. Interna-
tional conference on Machine learning, 267–274.

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49(2–3), 209–232.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The artificial intelligence
clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11),
1716.

Laskey, M., Lee, J., Hsieh, W., Liaw, R., Mahler, J., Fox, R., & Goldberg, K. (2017). Iterative noise injection
for scalable imitation learning. arXiv preprintarXiv: 1703. 09327 .

Lee, D., Srinivasan, S., & Doshi-Velez, F. (2019). Truly batch apprenticeship learning with deep successor
features. arXiv preprintarXiv: 1903. 10077 .

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–
297). Oakland, CA, USA.

Modi, A. & Tewari, A. (2019). Contextual markov decision processes using generalized linear models.
arXiv preprintarXiv: 1903. 06187 .

Modi, A., Jiang, N., Singh, S., & Tewari, A. (2018). Markov decision processes with continuous side infor-
mation. Algorithmic Learning Theory, 597–618.

Nemirovsky, A. S., & Yudin, D. B. (1983). In Problem complexity and method efficiency in optimization.
New York: Wiley.

Nesterov, Y., & Spokoiny, V. (2017). Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17(2), 527–566.

Ng, A. Y., & Russell, S. J. (2000). Algorithms for inverse reinforcement learning. ICML, 1, 2.
Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. Advances in Neural

Information Processing Systems, pp. 305–313.
Prasad, N., Cheng, L.-F., Chivers, C., Draugelis, M., & Engelhardt, B. E. (2017). A reinforcement learning

approach to weaning of mechanical ventilation in intensive care units. UAI.
Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. London:

John Wiley & Sons.
Ratliff, N., Bagnell, J. A., & Srinivasa, S. S. (2007). Imitation learning for locomotion and manipulation. In

2007 7th IEEE-RAS International Conference on Humanoid Robots (pp. 392–397). IEEE.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of Mathematical Statis-

tics, 22, 400–407.
Ross, S., & Bagnell, D. (2010). Efficient reductions for imitation learning. Proceedings of the thirteenth

international conference on artificial intelligence and statistics (pp. 661–668).
Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and structured prediction to

no-regret online learning. In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics (pp. 627–635).

Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies as a scalable alternative
to reinforcement learning. arXiv preprintarXiv: 1703. 03864 .

Syed, U., & Schapire, R. E. (2008). A game-theoretic approach to apprenticeship learning. Advances in Neu-
ral Information Processing Systems, 1449–1456.

Wesselink, E., Kappen, T., Torn, H., Slooter, A., & van Klei, W. (2018). Intraoperative hypotension and
the risk of postoperative adverse outcomes: a systematic review. British Journal of Anaesthesia, 121,
706–721.

Xu, K., Ratner, E., Dragan, A., Levine, S., & Finn, C. (2018). Learning a prior over intent via meta-inverse
reinforcement learning. arXiv preprintarXiv: 1805. 12573 .

Zahavy, T., Cohen, A., Kaplan, H., Mansour, Y. (2020). Apprenticeship learning via frank-wolfe.
Zahavy, T., Cohen, A., Kaplan, H., & Mansour, Y. (2020). Average reward reinforcement learning with

unknown mixing times. In Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial.
(Intelligence).

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th International Conference on Machine Learning (ICML-03) (pp. 928–936).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://www.technologyreview.com/lists/technologies/2020/
https://www.technologyreview.com/lists/technologies/2020/
http://arxiv.org/abs/1703.09327
http://arxiv.org/abs/1903.10077
http://arxiv.org/abs/1903.06187
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1805.12573

	Inverse reinforcement learning in contextual MDPs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Contextual MDPs
	2.2 Apprenticeship learning and inverse reinforcement learning
	2.3 Learned dynamics

	3 Methods
	3.1 Mirrored descent for COIRL
	3.1.1 Problem formulation
	3.1.2 Algorithms

	3.2 Ellipsoid algorithms for COIRL
	3.2.1 Practical ellipsoid algorithm

	3.3 Existing approaches
	3.3.1 Application of IRL to COIRL problems
	3.3.2 Contextual policies

	3.4 Transfer across contexts in test-time

	4 Experiments
	4.1 Grid world
	4.2 Conclusion
	4.3 Autonomous driving simulation
	4.3.1 Ellipsoid setting
	4.3.2 Online setting
	4.3.3 Conclusion

	4.4 Sepsis treatment simulator
	4.4.1 Online setting
	4.4.2 Offline setting

	4.5 Sepsis treatment in real-life
	4.5.1 Data processing
	4.5.2 Model fitting
	4.5.3 Methods

	5 Discussion
	Acknowledgements
	References

