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Abstract
Substantial research is available on detecting influencers on social media platforms. In con-
trast, comparatively few studies exists on the role of online activists, defined informally
as users who actively participate in socially-minded online campaigns. Automatically dis-
covering activists who can potentially be approached by organisations that promote social
campaigns is important, but not easy, as they are typically active only locally, and, unlike
influencers, they are not central to large social media networks. We make the hypothesis
that such interesting users can be found on Twitter within temporally and spatially localised
contexts. We define these as small but topical fragments of the network, containing interac-
tions about social events or campaigns with a significant online footprint. To explore this
hypothesis, we have designed an iterative discovery pipeline consisting of two alternating
phases of user discovery and context discovery. Multiple iterations of the pipeline result
in a growing dataset of user profiles for activists, as well as growing set of online social
contexts. This mode of exploration differs significantly from prior techniques that focus
on influencers, and presents unique challenges because of the weak online signal available
to detect activists. The paper describes the design and implementation of the pipeline as
a customisable software framework, where user-defined operational definitions of online
activism can be explored. We present an empirical evaluation on two extensive case stud-
ies, one concerning healthcare-related campaigns in the UK during 2018, the other related
to online activism in Italy during the COVID-19 pandemic.
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1 Introduction

Online activists are individuals or organisations, that demonstrate an inclination to become
engaged in social issues by participating in online social campaigns, often across a range of
topics. These form an important class of online users, who may be particularly sensitive to
requests for help on specific issues from, for instance, third sector organisations or govern-
ment agencies. Reliably detecting activists is therefore an interesting goal. For example, in
our prior work we described efforts to support health officers in tropical countries, specif-
ically in Brazil, in their fight against virus epidemics like Dengue and Zika. Help from
community activists is badly needed to supplement the scarce public resources deployed on
the ground, and efforts have been recorded to document how technology can be brought to
bear for this [3, 29]. Our own work in this setting has so far focused on identifying relevant
content on Twitter that may point health authorities directly to mosquito breeding sites [31],
as well as to users who have shown interest in those topics, i.e., by posting relevant content
on Twitter [20]. In this work we generalise such efforts, with an aim to develop techniques
for the semi-automatic detection of online activists on Twitter.

We start from the definition of activist according to the Cambridge Dictionary, namely
“A person who believes strongly in political or social change and takes part in activities
such as public protests to try to make this happen”. While activism is well-documented,
e.g. in the social movement literature [7], and online activism is a well-known phenomenon
[19], research has been limited to the study of its broad societal impact. In contrast, we
are interested in the fine-grained discovery of activists at the level of the single individual.
The presence of activists in social media is widely acknowledged, and it is also clear that
social media facilitates activists communication and organisation [24, 33]. Specific traits
that characterise activists include awareness of causes and social topic and the organisation
of social gatherings and activities, including in emergency situations, by helping organise
support efforts and diffusion of useful information.

The two case studies used for validation in this work also serve as motivating examples.
The first concerns UK online Health campaigns, where our goal is to identify Twitter users
who are not necessarily known influencers, that is, they are not known for propagating
information about the campaign, but instead are actively engaged with online conversations
about the issues. Amongst the top-10 ranked users accounts discovered using our pipeline
(see Table 4), 50% to 90% (depending on the ranking metric chosen) are for individuals
who are not institutionally associated with the campaigns. In contrast, influencers in this
example would be organisations such as the UK’s National Health Service or the Ministry
of Health. The second case study is also in the Health domain and includes grassroots as
well as institutional initiatives related to COVID-19 in early 2020. Again, the top-10 users
(Table 9 are individuals who stand out because of their engagement with the campaigns,
rather than by virtue of spreading information about them.

While in these examples activists are fairly well-defined, in general the notion is not as
well formalised in the literature as that of, for example, influencers. Thus, our approach is
to develop a configurable content processing pipeline which can be customised to identify
a variety of classes of users. The pipeline repeatedly searches for and ranks Twitter user
profiles by collecting quantitative network- and content-based user metrics. Once targeted
to a specific topic, it provides a tool for exploring operational definitions of user roles,
including online activism, i.e., by combining the metrics into higher level, engineered user
features to be used for ranking. Furthermore, top-ranking users are automatically followed
in the hope that they keep showing engagement with other socially relevant online topics.
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These are then analysed semi-automatically to discover new social contexts, where new
users can in turn be found.

To be clear, this work is not about providing a robust definition of online activism, or
to demonstrate that online activism translates into actual engagement in the “real world”.
Instead, it allows researchers, including social scientists, to experiment with multiple spe-
cific definitions of activism through the automation of most of the data harvesting and user
discovery process.

1.1 Challenges

The potentially more subdue nature of activists, relative to that of influencers, makes it diffi-
cult to distinguish the online footprint of activists from the background noise resulting from
generic conversations. Also, we observe that activists are by their nature associated with
specific topics and, manifesting it through their engagement in local contexts, as opposed to
influencers who are naturally interested in spreading information at a global level. Finally,
identifying activists requires temporal continuity of demonstrated engagement. The com-
bination of these elements translate into a number of technical challenges as models and
algorithms developed for influencers [16, 17], such as those surveyed in Section 2 are not
immediate applicable, because those tend to operate on global networks.

Specifically, a number of topic-sensitive metrics and models have been proposed to mea-
sure social influence, for example, alpha centrality [8, 22] and the Information Diffusion
model [23]. Algorithms based on topic models have also been proposed to account for
topic specificity [35]. However, these approaches are still aimed at measuring influence,
not activism. They also assume a one-shot discovery process, as opposed to the continuous,
incremental approach proposed in this work.

In contrast, in our approach we start from the assumption that social contexts can be
represented as collection of hashtags. Thus, discovering new contexts entails finding sets of
hashtags that are used consistently together by a sufficient number of users. This is difficult
because of widespread noise and inconsistencies in hashtag usage, as well as other known
problems such as synonym hashtags. Furthermore, contexts are by their nature temporally
localised, however establishing proper temporal boundaries is difficult when events have
“lead up” and “climb down” phases. Finally, we have chosen not to rely on external semantic
knowledge around hashtags, and instead apply clustering algorithms to discover similarities
amongst groups of hashtags.

1.2 Approach and contributions

Our main contribution is the design, implementation, and empirical evaluation of an iter-
ative user and context discovery pipeline. When executed over time and across multiple
iterations, the pipeline produces an ever-growing database of user profile features, which
can then be used for mining purposes.

The approach consists of two phases, as follows. Let us assume that an initial set of
contexts is given. These are topic-specific and limited both in time and, optionally, also
in space, i.e., regional initiatives, events, or campaigns. In the first phase, we search for
users only within these contexts, following the intuition that low-key users who produce
weak online signal have a better chance to be discovered when the search is localised and
then repeated across multiple such contexts. We then collect a number of network-based
and content-based user profile features, mostly known from the literature, and make them
available to user-defined user ranking functions.
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In the second phase, we follow the (public) online history of top-ranked users and con-
duct a hashtag analysis aimed at discovering new contexts. We automatically generate user
communities from user interactions as well as from hashtag co-occurrence in posts, and
select hashtags that are relevant within those communities, whenever possible. We also
perform peak analysis on hashtag usage to identify temporal boundaries. The resulting
candidate contexts are then manually inspected and selected for semantic relevance.

We provide an empirical evaluation consisting of two case studies to evaluate the fea-
sibility of our approach. In the first case study, we collected about 3 500 users across 25
contexts in the domain of healthcare awareness campaigns in the UK during 2018, and
demonstrated the application of three choices of ranking functions, showing that it is pos-
sible to identify individuals as opposed to well-known organisations, and to discover new
follow-up contexts, which in this case are relevant previously unknown social events with a
definite Twitter footprint.

In the second case study, we explored contexts around the 2020 COVID crisis with spe-
cific focus on the Italian Twitter population. We found that, given 24 seed contexts, we
successfully discovered over 3 000 users who qualify as activists according to our defini-
tion. The top-100 ranked users consist almost entirely (96/100) of individuals, as opposed
to well-known organisations, confirming that our strategy is useful to discover new an unex-
pected knowledge in the network. Of these, 45 are on topic, i.e., they are effectively focused
on the social campaigns we used as initial contexts. Furthermore, we also identified 192
new contexts, of which 24 are relevant and previously unknown social campaigns.

This paper substantially extends [25], specifically adding: (i) semi-automated context
discovery, and (ii) its empirical evaluation through a new case study on activism as it relates
to the recent (as of 2020) COVID-19 crisis.

2 Related work

The closest body of research to this work is concerned with techniques for the discovery
of online influencers. According to [15], influencers are prominent individuals with special
characteristics that enable them to affect a disproportionately large number of their peers
with their actions. A large number of metrics and techniques have been proposed to oper-
ationalize this generic definition [27]. These metrics and techniques tend to favour high
visibility users across global networks, regardless of their actual impact [11]. In contrast,
activists are typically low-key, less prominent users who only emerge from the crowd by
signaling high levels of engagement with one or more specific topics, as opposed to being
thought-leaders.

2.1 Identifying influencers and prominent users

Despite this conceptual difference, research efforts addressing online influencers deserves
special attention. Although we may describe the behaviour of online influencers by using
well-tested metrics [27], different approaches and techniques have been proposed for prop-
erly identifying and ranking online influencers in different contexts. A method for creating
Twitter users’ ontologies based on the content type of their tweets is proposed in [26]. This
approach could be used to gain insights over a user, but due in part to Twitter API limitations,
it is limited to recent posts. Consequently, it fails to provide a comprehensive description of
a user’s activity.
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The algorithm proposed in [9] aims at identifying influencers based on relevant social
media conversations from a single topic context. The authors use a set of metrics, including
the number of “likes”, the number of viewers per month, frequency of posts, the number of
comments per post, and the ratio between positive and negative posts. This approach is not
easy to automate, as some of these metrics are qualitatively gathered and difficult to acquire.
Another approach to ranking topic-specific influencers in the context of specific events
appears in [15]. The authors propose accounting network dynamics in real-time. However,
the effect of these works was to discover users who receive much attention, which does not
necessarily result in an effective impact on users from a particular topic. Unlike the majority
of the influencer ranking algorithms, Schenk et al. [30] propose a topic-specific influencer
ranking. First, it harvests sequentially timed snapshots of the network of users addressing
the topic. Then, it ranks the users based on the number of followers gained and lost in the
considered snapshots.

Machine learning techniques have been also used for identifying and ranking influencers.
In [4], machine learning is used to analyse posted content and recognise when users can
influence others during a conversation. However, this approach requires composing a sub-
stantial ground truth a priori, making it unfeasible for our purposes. Besides, the need to
create a classifier for each topic limits the scalability of the system. Similarly, a supervised
regression approach is used in [21] to rank the influence of Twitter users. This approach uses
features not based on content, but the authors concluded that the method performs poorly as
it requires a huge training set to work effectively.

Alternatively to the concept of influencers, [6] presents a model for identifying “promi-
nent users” regarding a specific topic event on Twitter. For the authors, prominent users
are those who focus their attention and communication on the aforementioned topic event.
This model describes users through a feature vector computed in real-time, which allows
a separation between on-topic and off-topic users’ activity over Twitter. However, similar
to [4], problems of scalability and adaptability arise once two supervised learning methods
are used: one to distinguishing prominent users from the rest and the other to rank them.

2.2 Identifying groups of users

In some cases, such as for supporting marketing campaigns, optimising the influence of the
campaign over particular geographical regions is a need. In this way, Li et al. [17] formally
define the problem of maximum geographic spanning regions (MGSR) over location-aware
social networks, proposing a greedy algorithm to solve the problem. By this approach, users
may identify the best top-k sets of seeds, which maximally influences the users’ preferred
regions. However, Cai et al. [10] argue that the influence maximisation should also take
into account the opportunity of users influencing each other through physical interactions.
For this purpose, the authors formulate the HIM (holistic influence maximisation) query
problem. The HIM problem is based on a holistic influence spread model combining social
connection, spatial connection, and preference-based similarity connection. Another great
concern of certain campaigns would be influencing as many communities as possible from
the same seeds. For such cases, Li et al. [16] propose a metric to measure the community-
diversified influence, aiming to reach its maximisation. In this way, the authors propose
heuristics for selecting local seeds and for performing iterative local searches of seed nodes.

There are also cases in which geo-social groups should be identified in a social network
for performing impromptu activities. In such cases, it is common to expect that these groups
should attend to multiple constraints, including users‘ skills and minimum group size. For
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this purpose, Chen et al. [12] propose a two-stage search framework for supporting the
optimized discovery of geo-social groups satisfying multiple constraits.

With regards to geo-localisation, the approach taken in our work is different, because of
the different characterisation of activists vs influencers. Namely, we work on the assumption
that the identification of activists within specific contexts also works as a natural depictor
of geospatial settings, as defined by the scope of the campaign. The contexts found in the
empirical evaluations reported in this paper, for example, present clear examples of this
association between activism and geolocation.

2.3 Identifying contexts

Regarding the search for new contexts, the closest body of research to this work is concerned
with techniques for retrospective event detection (RED) on Twitter [32], which focus on the
discovery of previously unrecognised events from historical data instead of discovering new
events in real-time. Several RED event detection algorithms for Twitter have been proposed
[2]. An interesting approach consists in “feature-pivot” techniques which model an event
over tweet streams as a bursty activity. Some features are characterised by an heightened
frequency in correspondence of an event. The hypothesis made is that related words usage
would increase as an event unfolds, this makes use feature distribution analysis and the
grouping of features with similar frequency trends.

The algorithm proposed in [18] tackles effectively the problem of learning embedding of
hashtags and tweets. It semantically cluster hashtags and tweets by exploiting a hierarchical
embedding framework. It considers as features the co-occurrences of hashtags and words
included in the tweets, but it does not recognise the role of the author of the tweets.

3 Definitions

In this section, we provide a formal grounding for our work. It consists of a definition
of contexts within which activists are to be found, and of a collection of Twitter-specific
metrics to establish user relevance within a context. Clear examples to demonstrate the
usefulness of these metrics for our purposes are given in Section 6, where they are applied
to two separate case studies.

3.1 Contexts and context networks

The central notion of a context is grounded in the familiar notion of a simple Twitter query,
consisting of a set of search terms, extended to include spatio-temporal boundaries. For-
mally, a context C consists of a set K of hashtags and/or keyword terms, a time interval
[t1, t2], and a geographical constraint s, such as a bounding box:

C = (K, [t1, t2], s) (1)

Let P(C) denote the query result, i.e., a set of tweets made by users. We only consider
two Twitter user activities: an original tweet, or a retweet, together with the contained user
mentions from both. Let u(p) be the user who originated a tweet p ∈ P(C). We say that
both p and u(p) are within context C. We also define the complement P̃ (C) of P(C) as
the set of posts found using the same spatio-temporal constraints, but which do not contain
any of the terms in K . More precisely, given a context C′ = (s, [t1, t2], ∅) with no terms
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constraints, we define P̃ (C) = P(C′) \ P(C). We refer to these posts, and their respective
users, as “out of context C”.

P(C) induces a user-user social network graph GC = (V ,E) where V is the set of
all users who have authored any p ∈ P(C): V = {u(p)|p ∈ P(C)}, and a weighted
directed edge e = 〈u1, u2, w〉 is added to E for each pair of posts p1, p2 such that u(p1) =
u1, u(p2) = u2 and either (i) p2 is a retweet of p1, or (ii) p1 contains a mention of u2. For
any such edge, w is a count of such pairs of posts occurring in P(C) for the same pair of
users.

3.2 User relevancemetrics

As we seek to characterise activism as a specific user role within contexts, we borrow some
of the well-established metrics that are available from recent research on social user roles
in Twitter [27], for quantifying the relevance of a user within that context. These include
topical focus, topical strength, topical attachment, follower rank and in-degree centrality.

These metrics are underpinned by a common set of basic features, which can be directly
extracted from Twitter posts. Given a context C containing user u, these are defined as
follows.

R1(u) : Number of retweets by u, of tweets from other users in C;

R2(u) : Number of unique users in C, who have been retweeted by u;
R3(u) : Number of retweets of u′s tweets;
R4(u) : Number of unique users in C who retweeted u′s tweets;
P1(u) : Number of original posts by u within C;
P2(u) : Number of web links found in original posts by u within C;
F1(u) : Number of followers of u;
F2(u) : Number of followees of u

Note that, given C, we can evaluate some of the features above with respect to either P(C)

or P̃ (C) independently from each other, that is, we can consider an “on-context” and an
“off-context” version of each feature, with the exception of F1 and F2 which are context-
independent. For example, we are going to write R1on(u) to denote the number of context
retweets and R1off (u) the number of out-of-context retweets by u, i.e., these are retweets
that occur within C’s spatio-temporal boundaries, but do not contain any of the hashtags or
keywords that define C. We similarly qualify all other features.

Using these core features, we can derive all five metrics mentioned above. Specifically,
Topical Focus, Topical Strength, and Topical Attachment are content-based metrics that
rely solely on content and require no knowledge of the user-user network. When considered
relative to a topic of interest, i.e., a context, they are defined as follows (citations refer to
literature where these metrics are defined).

Topical Focus [21] : T F(u) = P1on(u)

P1off (u) + 1
(2)

Topical Strength [5] : T S(u) = P2on(u) · log(P2on(u)+R3on+1)

P2off (u) · log(P2off (u)+R3off +1)+1
(3)

Topical Attachment [7, 25] : T A(u) = P1on(u) + P2on(u)

P1off (u) + P2off (u) + 1
(4)
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Each of these functions express the interest of a user towards a context by exploiting its
tweets content. Given a user u who published tweets within the context’s spatio-temporal
boundaries, these functions count the number of on-topic social interactions over the off-
topic ones. In particular, (2) only considers the original posts published as a context’s
interest measures, while (3) also takes into account the number of retweets and, together
with (3), the published external links.

In contrast, Follower Rank and In-degree Centrality are topological metrics that encode
context-independent long-lived relationships amongst users, i.e., follower/followee, and
user relationships that occur specifically within a context, respectively:

FollowerRank : FR(u) = F1(u)

F1(u) + F2(u)
(5)

In−degree Centrality : IC(u) = indegree(u)

N − 1
(6)

where N is the number of nodes in the network induced by C. Note that the metrics we have
selected are a superset of those indicated in recent studies on online activism, namely [19]
and [24], and thus support our empirical evaluation, described in Section 6.

4 Activists discovery strategy

Our main contribution is the design and implementation of a configurable Twitter feed
processing pipeline, shown in Figure 1, aimed at semi-automatically discovering online
activists as defined above. We first describe the pipeline at a high level, and in the rest of
the section we provide a technical account of its components.

The pipeline takes an initial set of contexts, defined as in Section 3.1 as spatio-temporal
Twitter search queries and shown at the top of Figure 1, and through a series of iterations it
incrementally produces a growing users profiles database of relevant online activists (profile
DB in the figure).

Specifically, the pipeline implements an iterative strategy consisting of two interleaved
phases: (1) discovery of new activists and (2) discovery of new contexts. The intuition
behind this strategy is that some of the activist users who will have been involved in relevant
contexts for a certain time duration, may continue to engage with similar issues. Thus, in
this interleaving, illustrated in Figure 2, we analyse the content produced by the top activists
after the events associated with the initial contexts, and use them to discover new contexts
(2) that those same users may have been involved in.

In turn, new activists can then be found using the new contexts. These will typically be
within the same topic area, providing logical continuity to the discovery process, however
the search may also “drift” to new areas of interest if enough of the users from the previous
iteration have interests that “cross over” to other domains.

5 Technical approach

We now provide technical insight into each phase of the pipeline.
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Figure 1 Schematic diagram of the user and context discovery phases. Note that an initial list C of contexts
(events) is provided to initialise the whole pipeline (1). The profiles DB stores the ever growing list of users
harvested at each iteration of the whole pipeline (with the exception of the very first run which starts with a
bootstrap context list)

5.1 Harvesting new activists

Initially, a seed context is hand-generated (step 1 in Figure 1) such as the 2018 UK health
campaigns used as part of our evaluation. The contexts produced at the end of one iteration
of phase 2 are used to feed the next phase 1, as shown in Figure 2.

During the Context Harvest (step 2), all Twitter posts P(C) that satisfy C are retrieved,
using the Twitter Search APIs. Note that this step hits the API service limitations imposed by
Twitter. For this reason, in our evaluation we have limited our retrieval to 200 tweets/context.
This is sufficient, considering that repeated users appear consistently in our evaluation
(Section 6). Twitter API limitations can be overcome by either extending the harvesting time,
or by choosing more recent contexts, as the Twitter API is more tolerant with recent tweets.
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0, started from a bootstrap context list

In step 3, a context network GC is then generated, as specified in Section 3.1. The size
of each network is largely determined by the nature of the context, and ranges between 140
and 400 users (avg 254, see Table 1).

The size of each network is largely determined by the nature of the context. In the con-
texts used in our case studies, we measured a number of users ranging between 140 and
400 (avg 254, see Table 1). This is entirely determined by the Twitter conversation volume
around that context in terms of number of published tweets and retweets.

Next (step 4), GC is partitioned into communities of users. The goal of this partition-
ing is to further narrow the scope when computing the network’s in-degree centrality (6),
to enable weak-signal users to emerge relative to other more globally dominant users. We
have experimented with two of the many algorithms for discovering virtual communities
in social networks, namely DEMON [13] and Infomap [28]. Both are available in our
implementation, but based on our experimental comparison (Section 6) we recommend the
latter.

Comparing briefly the two approaches, DEMON is based on ego networks [1], and uses a
label propagation algorithm to assign nodes to communities. Users may be assigned to mul-
tiple communities, an attractive feature when users are active in more than one community
within the same context, i.e., a social event or a campaign. Label propagation is also a local
method, translating into an efficient algorithm. In practice, however, in our experiments
we found that for almost half of our context networks, DEMON actually fails to discover
any communities. In contrast, Infomap forces each user into at most one community, but it
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generates non-empty communities in all cases. As some of those are very small, our imple-
mentation discards communities with fewer than 4 users (see Section 6). Once communities
are identified, we calculate the in-degree centrality (6) for each node. If the node belongs to
one of the communities, their centrality is calculated relative to the community, or relative
to the entire network, otherwise.

5.2 Computing user features and ranking

Next, the user metrics are computed from the network and the user features, as defined in
Section 3.2 along with the Follower Rank (step 6). This is achieved through bulk retrieval of
user profile information (step 5), namely the number of tweets, retweets, number of follow-
ers F1(u) and followees, F2(u), along with user name, web link, and bio. Computing the
other metrics: Topical Focus (2), Topical Strength (3), Topical Attachment (4) also requires
the entire user post history to be retrieved for the entire time interval defined by the context.
These posts are then separated into on-context and off-context, denoted P(C) and P̃ (C)

respectively, depending on whether they contain at least a hashtag related to the context or
not. Similarly, a post that contains a link is a link on-topic if it contains both a link and a
hashtag related to the context, and a link off-topic otherwise. We also calculate the number
of retweets for every post, i.e., R1(u) and R3(u), which are required to compute Topical
Strength.

All of these features are persisted to the users profiles database, which is made available
for ranking purposes. The database enables user-defined ranking functions, which result
in user ranking lists (step 6). Examples of these are given later in Section 6. This frame-
work approach is consistent with the experimental nature of our search for activists, which
requires exploring a variety of ranking functions.

5.3 New contexts discovery

As mentioned at the start of the section, Phase 2 aims to discover new contexts, so that a new
iteration can start again i.e., from step 2. The alternating phases are illustrated in Figure 2.
We ensure that iterations do no overlap in time, as otherwise we risk re-discovering the same
users and artificially ranking them higher than others (because ranking rewards continuity
of engagement). The time windows used to define contexts may vary with the duration of
the events, and in our evaluation we experiment with empirical settings.

Given a set Ci of bootstrap contexts (step 1) with time intervals [tim, tiM ], the initial
window is defined implicitly as W = [tm, tM ] = [mini tim,maxi tiM ]. At the beginning of
phase 2, the Twitter timelines for the top k users obtained at step (7) in the previous iteration
are harvested for tweets published during W , resulting in a set of tweets UTW (step 8). In
step 9, these tweets are used to generate a weighted, non-directed, multiplex network graph.
This is a two-layer network where the layers are interconnected as shown in Figure 3:

User-User network a weighted, non-directed network Gu = (Vu,Euu) where Vu is the
set of all users appearing as either authors or mentioned in tweets from UTW . Edges Euu

connect users that co-occur in tweets as either author-mentioned or mentioned-mentioned
relations, where the weights are the number of such relations for every node pair;

Hashtag-Hashtag network a weighted, non-directed network Gh = (Vh, Ehh) where Vh

is the set of all hashtags appearing in tweets from UTW . Ehh edges connect hashtags
which co-occur in tweets, for which the weights are the number of such relations for
every node pair.
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h1h3

h1h2

h1u1

h1

h2

h3

u1u3u1

u2

u2u3

h2u3

u3

Hashtags network

User network hashtag-user edges: co-occurrence of users (either
tweet author or mentioned) and an hashtag

hashtag-hashtag edges: co-occurrence of
hashtags in the same tweet

user-user edges: co-occurrence of users  and another user 
(either tweet author or mentioned)

User-Hashtag multiplex network

Figure 3 Schematic diagram of the hashtag-user multiplex weighted network. Note how the two different
networks, composed by hashtag and user nodes, are connected with edges

The two layers are connected by an additional set of weighted edges Ehu which connect
co-occurring users (either author or mentioned) and hashtags from UTW , where the weights
are the number of such relations for every node pair. This construction results in a multiplex
network Gm = (Vm,Em) where Vm = Vu ∪ Vh and Em = Ehh ∪ Euu ∪ Ehu.

In step 10, Gm is then partitioned into mixed communities of hashtags and users. The
goal of this partitioning is to group related hashtags into topics, exploiting the relations
between pairs of hashtags, and the network of users who publish them. The rationale behind
this modelisation is the following: hashtags that co-occur the most must be somehow related
to similar topics, while users which co-occur the most are likely to share some interests
and/or social relationship. Also, we assume that hashtags published by very similar users
(with respect to shared interests) but which do not co-occur might still be related. The
weights on Em edges help to identify the more meaningful relations. Combining these
relation types together also helps in strengthening a signal that might not emerge due to
the restricted scope of the harvested network, relative to the entire Twitter network. The
hashtag-user co-occurrence relation will be further exploited in step 13 for ranking purposes.

Based on the previous successful community detection for the network GC and the
explicit support for multiplex networks, Infomap [28] has been used in this step. Only mean-
ingful communities with at least 30 nodes (an empirically determined threshold) and at least
one hashtag (as we are interested in groups of related hashtags) are retained. Definition of
each community topic takes place after the hashtag analysis in step 11, as some hashtags
will be discarded at that stage as described below.

Hashtag analysis is performed in step 11, with the goal of filtering hashtags related to
events and group those related to the same event. This step is performed one community at a
time to prevent spurious correlations due to hashtag co-presence. The frequencies of hashtag
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usages among all the tweets in UTW are re-sampled to the granularity of one day, then
z-Score normalised. This provides zero-mean frequency distributions, from which negative-
frequency values are set to zero to better consolidate the dataset.

The goal of peak analysis is to determine whether it reflects a temporally isolated event
in the time window. For each hashtag h, all the peak day days which have a frequency peak
value above the 90% percentile are identified1. This identifies left and right peak boundaries
for h, denoted lpb(h) and rpb(h), respectively, as the largest contiguous interval of days in
which the frequency is greater than 0 (with two days of tolerance). This interval defines the
peak range pr(h) = [lpb(h), rpb(h)], starting from peak day itself. Each hashtag may
have more than one associated peak. For each hashtag only the highest peaks is taken, if
more than one have same height, then the peak with a larger interval is used. (hashtags with
no peaks are discarded). An example is shown in Figure 4.

The highest degree hashtag, that is the hashtag with the highest number of edges
connected to each Vh inside its community, is selected as the topic for the whole community.

Within each community, the Hashtag Temporal Correlation HT C(h1, h2) between pairs
of hashtags h1, h2 within that community quantifies the amount of their temporal overlap,
relative to their respective peak ranges pr(h1), pr(h2), and is defined as follows:

HT C(h1, h2) = overlap(pr(h1), pr(h2))

min(count (pr(h1)), count (pr(h2)))
. (7)

where overlap(pr(h1), pr(h2)) counts the number of overlapping days between the two
peak ranges, and count (pr(h)) is the number of days within h’s peak range.

Recall from Section 3.1 that a context C = (K, [t1, t2], s) is defined as in (1) by a set K
of hashtags, plus a time interval [t1, t2] (and possibly a geographical bounding box s). Here
we use each group of two or more hashtags hi, hj with HT C(hi, hj ) > 0.5 to form the set
K for a new candidate context CC.

Some resulting K may have a large number of hashtags, but this is undesirable since it
brings noise and possible unwanted candidate context de-duplication.

For this reason, we have to decide what hashtag h ∈ K to keep for each candidate context,
and we do so by ranking and keeping only the most important ones. First, we define

w(u) = 1

R2(u)

to be the weight of u: in ranking the tags, the contribution of a user is inversely proportional
to the user’s ranking (recall that the highest ranked hashtag has rank 1).

Now consider C ∈ C with tag set K . For each h ∈ K , let U(h) be the set of users who
used h in W , and let mh = |U(h)|.

For each candidate context C ∈ C we sort the hashtags h ∈ K with respect to
h importance(h) = ∑

u∈U(h) w(u) (descending). Only the top 5 hashtags are kept and the
others are removed. The resulting candidate contexts are then merged together if they have
the same K .

The time interval for the candidate context is set to include all peak ranges for those
hashtags:

[t1, t2] = [min{lpb(hi)}hi∈K,max{rpb(hi)}hi∈K ]
This procedure generates a set C of candidate contexts.
The last step 13 in the context discovery process involves ranking these context for

relevance, as follows.

1This is done using: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find peaks.html
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Figure 4 The “#braininjury” hashtag normalised usage frequency timeline sampled daily between the given
dates. Each peak day (red dot) has a corresponding peak range (pink background). Only the highest peak and
its range, are preserved, the rest is discarded

Recall that the tags used to define each C ∈ C are found in a set UT W pertaining to
window W . Consider a tag h and the set of users who used h within W . Those users will
have been ranked in previous steps, as described in Section 3.2. We are going to use one of
those rankings here, namely R2(u), to rank the tags found in UT W .

Using the number of users and their weights, we define multiple alternative ranking
functions for K , and thus for CC, as follows.

Ranking 1: RC1(K) =
∑

h∈K

∑
u∈U(h) w(u)

mh

|K| (8)

This ranking is obtained by summing up all user weights for each tag in K , normalised by
the number of users for that tag, and further normalised by the size of K .

Ranking 2: RC2(K) =
∑

h∈K mh

|K| (9)

Ranking 2 ignores the weights altogether, and only considers the total number of users that
used each tag in K .

Ranking 3: RC3(K) =
∑

h∈K maxu∈U(h) w(u)

|K| (10)

Ranking 3 is similar to Ranking 1, but takes the sum of the largest weights for each tag.

Ranking 4: RC4(K) = maxh∈K maxu∈U(h) w(u)

|K| (11)

Ranking 4 is similar to Ranking 3, but considers the overall max of the weights.

Ranking 5: RC5(K) =
∑

h∈K mh maxu∈U(h) w(u)

|K| (12)

Finally, Ranking 5 multiplies the max weight for each tag by the number of users for that
tag, and adds all the results.

The set C of all candidate contexts can be ranked according to any of these functions (and
possibly more, user-defined, which can be easily added). Our system is only semi-automa-
ted, and these rankings are meant to provide support to expert users who will decide which
of the contexts in C should be retained and be used in the next iteration of the entire pipeline.

1249World Wide Web (2021) 24:1235–1271



6 Evaluation

Greater sized contexts with more harvested tweets may increase the number of harvested
users as well as better define them in terms of metrics. As an example, in [5], where the
goal is to identify prominent information-sharing users during natural disasters, two datasets
are used. The first one contains 152 402 tweets shared by 21 364, while the other consists
of 44 330 tweets shared by 3 338 users. The first dataset is much greater than the second
as it is used for training a supervised model, while the other is used as a validation set.
In our approach, such big sized datasets are not required as our approach is based on the
unsupervised method, thus not requiring a training phase. Also, the continuous harvesting
nature of the framework, overcomes possible problems of poor user characterisations by
repeatedly improving their definition with subsequent framework iterations.

Our evaluation aims at empirically measuring the relevance of the users and contexts
discovered by the pipeline. Typical approaches for performing this type of evaluation rely on
expert-generated ground truth. Such approaches, however, are vulnerable to the subjectivity
of the experts, with the risk that the evaluation would be measuring the fit of the model to
the specific experts’ own assessment of user instances’ relevance. In contrast, we follow an
unsupervised approach with no a priori knowledge of user relevance. The goal of our study
is to demonstrate the perceived value of our pipeline in creating a set of active database
composed of online users that are ready to be mined, along with examples of candidate user
ranking functions and of new contexts, discovered as described in the previous sections. In
this approach, the value is evaluated based on human expertise, which comes into play in
two specific phases. Firstly, to assess and validate the top-k user lists produced by these
functions, and secondly, to assess which of the new contexts are in-scope and/or in-focus,
as explained in detail below.

The pipeline is fully implemented in Python using Pandas and the NetworkX public
libraries and is available on github2.

We evaluated the pipeline in action through two case studies, concerning (i) health aware-
ness campaigns in the UK and (ii) events and initiatives around the COVID-19 crisis in
Italy (spring 2020). We opted for topics that address health awareness, where activism of
specialists and non-specialists can be frequently found [31]. For each case, the input to the
framework is a list of manually selected on topic contexts, in order to discover top ranked
activists and use them to discover new contexts, whose relevance is manually validated as
explained earlier. Both case studies were performed on a single Azure node with standard
commodity configuration. Note that we do not focus on system performance as all compo-
nents operate in near-real time. One exception is Twitter content harvesting, which is limited
by the Twitter API and requires approximately 2 hours per context.

The experiment design is the same for both case studies, and is therefore only presented
in detail for the first one, here below.

6.1 Case study 1: UK health campaigns

6.1.1 Contexts and networks

We have manually selected 25 contexts within the scope of health prevention campaigns in
the UK, all occurring in 2018 and well-characterised using predefined hashtags. By cam-
paigns, we address not only official ones (from governments) disseminated in the social

2 https://github.com/flaprimo/twitter-network-analysis
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networks, but also those ones started by citizens or other organisations in the context of
social networks.

Due to limitations imposed by Twitter on the number of posts that can be retrieved within
a time interval, only 200 tweets were retrieved from each context.

The framework, in terms of scalability, can handle sizeable network graphs derived from
tweets harvesting as the involved metrics are of trivial complexity, and also distributed ver-
sions of Infomap algorithm exist [34]. The Twitter APIs, because of the severe usage quota
limitations, may represent a problem in the case of greater implementations of the frame-
work. This limit can be overcome by using multiple Twitter developer accounts as done in
[5], where 5 hosts and 30 developers accounts where used. Table 1 lists the events along
with key metrics for their corresponding user-user networks. To recall, assortativity mea-
sures how frequently nodes with a high degree are likely to connect with other nodes with
a high degree (> 0) or with a low degree (< 0). Negative figures (mean: -0.22, std. dev.:
0.17) are in line with what is observed on the broader Twitter network [14]. The very small
figures for density, defined as #edges

#nodes·(#nodes−1) (mean: 0.004, std. dev.: 0.002), suggest very
few connections exist amongst users within a context. This makes it difficult to detect mean-
ingful communities, as described below, thus for some contexts the topological metrics are
measured on the entire network as opposed to within each community. This view is also
supported by the small average node degree (mean: 2.04, std. dev.: 0.46) and the ratio of
strongly connected components to the number of nodes (mean: 0.98, std. dev. 0.02).

6.1.2 Community discovery

DEMON and Infomap produce significantly different communities in each network.
DEMON identifies communities in only 48% of the networks, with an average of only 1.92
communities per network and a slightly negative (-0.28) average assortativity per commu-
nity, in line with the average for their parent networks. Only the users who belong to one of
those communities, about 6%, are added to the database. For the remaining 52% networks
in which any community is detected, users’ in-degrees are calculated using the entire net-
work, and all users are added to the database, for a total of 3 570 users being added to the
database in our experiments using DEMON.

In contrast, Infomap provides meaningful communities for all networks. Those with less
than three users are discarded, leaving 18.88 communities per network on average, with
8.5 users per community on average. When using Infomap, 3 567 users were added to the
database (on average 253 users per network). The average assortativity across all commu-
nities is again slightly negative (-0.43). Table 2 compares the two approaches on the key
metrics just discussed. On the basis of this comparison, we recommend using Infomap,
which we have used for our evaluation.

Table 2 Comparing DEMON to Infomap for community detection

Metric DEMON Infomap

Fraction of networks with no communities 0.52 0.0

Number of communities per context (avg) 1.92 18.88

Fraction of network users added to the DB (avg) 0.06 0.59

Fraction of repeat users added to the DB across networks 0.28 0.37
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6.1.3 Users discovery

Repeat users who appear in multiple contexts are particularly interesting as they provide
a stronger signal of commitment to relevant contexts. Out of the total 3 567 users, 160
(4.5%) of them appear at least in two of the 25 contexts. After community detection, only
61 of these users are still seen as repeat users, while the remaining 99 are either removed
altogether, or they only appear once. Of the 61, 57 appear twice, 2 appear three times, and
2 appear four times. Thus, only 1.6% of users appear more than once when communities
with more than 3 users are considered, compared to the overall 4.5% of overall repeat users.
Table 3 reports the top-10 repeated users along with their Follower Rank, and Figure 5
shows the number of repeat users per context. As the table is sorted first by number of the
occurrences and then by Follower Rank, an indication of popularity, it is not surprising to
find that top users include well-known names such as Mr. Hunt, who at the time of the events
was Secretary of State for Health and Social Care in the UK, with FR = 1, and a number
of associations and foundations active in the public healthcare space. More interesting are
perhaps non-repeat users who emerge when ad-hoc ranking is applied to the database, as we
illustrate next.

6.1.4 Users ranking

To demonstrate the potential value of the database, albeit on a small scale, we have tested
three user ranking functions. As mentioned, this exercise aims to provide an objective
grounding for engaging with experts on finding suitable operational definitions for specific
user profiles. We consider good functions those that privilege individuals over organisations
or businesses.

Ranking1 : R1(u) = 1∑
u∈C IC(u)+1 · ∑

u∈C T F(u) (13)

Ranking2 : R2(u) = |FR(u) − 1| · (∑
u∈C T A(u) + ∑

u∈C IC(u)
)

(14)

Ranking3 : R3(u) = |FR(u) − 1| ·
(∑

u∈C T A(u) + 1∑
u∈C IC(u)+1

)
(15)

All the three functions (13), (14) and (15) consider every community C where the given
user u have appeared (u ∈ C) across all the contexts. Function (13) is designed to promote
users who are at the “fringe” of their community, while giving credit to generic on-topic

Table 3 Top-10 repeat users, amongst those who belong to a community

Username Name Follower rank Participations

alzheimerssoc Alzheimer’s Society 0.99 4

dementiauk Dementia UK 0.98 4

mentalhealth Mental Health Fdn 0.97 3

colesmillerllp Coles Miller LLP 0.65 3

jeremy hunt Jeremy Hunt 1.0 2

nhsengland NHS England 0.99 2

carersuk Carers UK 0.95 2

rdash nhs RDaSH NHS FT 0.88 2

alzsocseengland Alzheimer’s Society - South ... 0.64 2

mndassoc MND Association 0.64 2
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Figure 5 Number of repeat users for each context

activities during the contexts. To achieve this, Topical Focus T F is used as a positive contri-
bution, while a large in-degree IC reduces the score. In contrast, function (14) penalises user
popularity, i.e., by using the complement of Follower Rank FR, while rewarding promi-
nence inside communities (in-degree IC) and information spreading by also considering
shared links (Topical Attachment T A). Function (15) combines ideas from both (14) and
(13).

The top-10 users for each ranking are reported in Table 4. To appreciate the effects of
these functions, we have manually labelled the top-100 user profiles for each of the rank-
ings, using a broad type classification as individuals as opposed to institutional players
(associations, public bodies), or professionals. The fractions of on-topic users are 86%,
83%, and 38% for (13), (14), and (15) respectively. Importantly, (15) identifies more
individuals than institutions and professionals (96%) than (14) and (13), both at 33%p.
Also, repeat users are given a higher score in both rankings. Users with FR(u) = 0 and
min max(|T weets(u)|) < 0.005 are considered not active and have been assigned lowest
score. Figure 6 shows the distribution of user types within the top-100 users for each of the
three rankings, broken down into 10 users bins. We can see that individuals dominate in
(15), and are fewer but emerge earlier in the ranks when (14) is used.

6.1.5 Context harvesting

We now evaluate the strategy presented in Section 5.3 for discovering new contexts, which
implements the second phase of the pipeline (refer to Figure 1). Although this phase “closes
the loop” to enable a new iteration of users discovery, here we only demonstrate one instance
of the complete loop, by showing how new contexts can be found from the set of users we
discovered in the previous part of the evaluation.
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(a)

(c)

(b)

Figure 6 Distribution of user types for top-100 users and for each ranking function

We looked for new contexts within an 8-months window (2019-01-01 and 2019-08-29)
after the initial user discovery. This interval follows and does not overlap with the time
interval where our initial 25 contexts were seeded (Section 6), and which ranged from 2018-
01-01 (“Dry january”, Table 1) to 2018-12-12 (“Elf day”, Table 1).

For the purpose of this experiment, we selected the top 1 000 out of a total of 3 567 ranked
users (Section 6.1.3), and we harvested up to 3 200 of their tweets from their timelines (due
to Twitter limitation API) in the aforementioned time interval.

This resulted in a total of 520 861 tweets (Figure 7), considering that 59 users had become
inactive. The user posting behaviour is characterised by an a high variance in the tweet post
count, ranging from a minimum of 1 to a maximum of 3 200 tweets, hitting the Twitter API
limit.

Multiplex network generation Amultiplex network as described in Section 5.3 was gener-
ated using all users, either author or mentioned, and all hashtags from each harvested tweet.
The network consists of 52 601 nodes and 211 235 edges. Of these, main Hashtag-Hashtag
network has 51 676 nodes and 104 595 edges (98.24% of the nodes and the 49.52% of the
edges), while the much smaller User-User network has 925 nodes and 2 161 edges. The two
networks are connected by 104 479 edges, or 49,52% of the total.
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Figure 7 Cumulative sum of tweet count by the top ranked users from 2019-01-01 to 2019-08-29

In the next phase, the Infomap algorithm detected 367 communities of nodes and hash-
tags. This process groups nodes, either hashtags or users, which are related to the same topic,
and also reduces the network size by only keeping communities with at least 30 nodes and
at least an hashtag node (an example of such discovered communities is shown in Figure 8).

These communities exhibit low assortativity (mean: -0.59, std. dev.: 0.28) and high den-
sity (mean: 0.64, std. dev.: 0.39), meaning that the networks are characterised by highly
connected nodes and central node hubs. The majority of the communities have a small num-
ber of nodes (mean: 4.11, std. dev.: 4.82) and edges (mean: 9.55 std. dev.: 27.47), while
fewer (71 communities) have more nodes than the average.

After pruning the communities with fewer than 30 nodes, we are left with a smaller
overall network of 1 903 nodes and 39 597 edges, a reduction in size of 96.38% and 81.25%
of nodes and edges, respectively. At this point in the process, the User-User network now

Figure 8 Example of the network of a community found after applying Infomap, from the UK healthcare
case. A community in our process represents a topic, which contains some candidate contexts. Nodes, rep-
resented by circles, are proportional in size to the degree. It can be Twitter users (green) or hashtags (red).
Edges, represented by lines, are proportional in size to the weight, and can either be user-user (green),
hashtag-hashtag (red) or user-hashtag (blue) relations
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has 417 nodes and 1 184 edges, and the Hashtag-Hashtag network has 1 486 nodes and 17
057 edges (78.09% and 43.08% of the nodes and edges, respectively). The two networks
are still connected by the majority of the edges (21 356, or 53.93% of the total).

Peak analysis Peak analysis consists of two steps. In the first step just described, we deter-
mine whether a tag belongs to an isolated event, or if it is a common topic not related to any
particular event, by looking at the temporal distribution of every hashtag. The second step
focuses on the relationship between any two hashtags, by observing their temporal correla-
tion (7), to determine when two or more hashtags are related to the same event. Note that
there is a possibility of finding spurious temporal correlation between two hashtags, i.e.,
two hashtags which have the highest peak at the same moment, but are related to completely
different topics. This, however, is mitigated by the community detection process, which
groups users and hashtags with respect to a common topic, indeed this step is performed
only between hashtags belonging to the same community.

Peak analysis is important once it helps to understand whether a hashtag belongs to
an event or not and whether it correlates with any other hashtag. It is performed for each
hashtag within each community. For instance, Figure 4 presents the results of our analysis,
composed of 2 385 peaks with 301 communities (out of 367) containing at least one peak.

The average number of hashtag usages (z-score normalised) for a single peak is 2.04 (std.
dev. 4.96), with the average peak duration of 3.13 days (std. dev. 6.07). In both cases, a high
variance characterises these quantities. A total of 1 184 hashtags have at least one peak,
whereas the peak distribution is uneven (mean: 2.01, std. dev.: 2.10), having a maximum of
23 peaks per hashtag. The peaks distribution among communities is also uneven, with an
average of 6.42 peaks with a standard deviation of 9.15.

As it turns out, the majority of the hashtags is unrelated to all others (mean of related
hashtags = 1.16, std. dev. 0.61). Fewer hashtags will have a relationship with others,
however. To illustrate, Table 5 presents the longest groups of hashtags found in this step).

Context ranking and labelling. Each of the hashtags groups forms a candidate context. As
anticipated, the final selection of new contexts from this candidate sets is left to experts, and
involves labelling each candidate as either on or off-topic, and on-context vs off-context
(visually temporally distributed in Figure 9). To support this final phase and help the experts
focus on a few contexts, a ranking is applied which favours candidate contexts which are
likely to be both on-topic with UK awareness campaigns (Section 6.1.1) and that respond
to our operational definition of contexts (1). Out of the five ranking functions introduced
in Section 5.3, here we demonstrate Ranking 5, (Eq. 12), which shows experimentally a
prominence of good candidate contexts towards the top (Figure 10). These final top context
are shown in Table 6.

6.2 Case study 2: Italian COVID-19 related initiatives

The experiments for this second case study follow closely the structure just outlined in the
previous section. For this case, we have manually selected 24 contexts within the scope of
COVID-19 awareness campaigns in Italy, all occurring at the end of February and March
2020. Key metrics for the user-user networks are presented in Table 7. Like in our previous
case, low density (mean: 0.035, std. dev.: 0.1), compounded by the small average node
degree (mean: 2.32, std. dev.: 0.70) and the ratio of strongly connected components to the
number of nodes (mean: 0.96, std. dev. 0.01), suggest very few connections amongst users
within a context.
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Figure 9 Monthly distribution of significant candidate contexts by type. Note that the last 4 months contain
less candidate contexts, this is due to hitting the 3200 most recent tweets limit from the user timeline Twitter
API

We have used Infomap for community discovery, which produced 10.74 communities per
network and 12.36 users per community on average, resulting in 2 387 users being added to
the database (on average 136 users per network).

Figure 10 Distribution of the candidate context by type sorted by Rank 5 12. Note how on-topic candidate
contexts, which are actual contexts, are ranked higher (blue). Of those, 87 are actual contexts, 93 are in topic
and, out of those, 56 are both (“is ontopic and context”)
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Table 7 List of contexts used in the experiments along with network metrics (Note: “Ero in corsia” assor-
tativity computation results in a division by 0, as the only 2 present nodes have the same degree (they are
connected to each other)

Context name Period (2020) Nodes Edges Density Avg degree Assortativity

Musei chiusi musei aperti 02-25 / 03-31 192 341 0.009 3.6 −0.1

Non farti influenzare 02-27 / 03-31 24 41 0.074 3.4 0.9

Confcommercio ce 02-27 / 03-31 80 132 0.021 3.3 −0.3

Italia non si ferma 02-28 / 03-31 177 169 0.005 1.9 −0.4

Regioni non si fermano 02-28 / 03-08 199 163 0.004 1.6 −0.2

Solidarieta digitale 02-28 / 03-31 209 285 0.007 2.7 −0.4

Cultura non si ferma 03-01 / 03-31 180 195 0.006 2.2 −0.2

Musica non si ferma 03-01 / 03-31 161 180 0.007 2.2 −0.4

Io resto a casa 03-07 / 03-31 294 205 0.002 1.4 −0.1

Allenati a casa 03-08 / 03-31 105 105 0.01 2.0 −0.4

Suono da casa 03-08 / 03-31 159 148 0.006 1.9 −0.3

Campagna non si ferma 03-09 / 03-31 85 114 0.016 2.7 −0.2

Spesa a domicilio 03-10 / 03-31 77 100 0.017 2.6 0.1

Leggo da casa 03-10 / 03-31 217 220 0.005 2.0 −0.2

Ripartiamo insieme 03-10 / 03-31 98 135 0.014 2.8 0.2

Avis campaign 03-11 / 03-31 174 176 0.006 2.0 −0.5

Voi restate a casa 03-12 / 03-31 208 210 0.005 2.0 −0.5

Insieme per il paese 03-13 / 03-31 100 195 0.02 3.9 −0.5

Dl curaitalia 03-16 / 03-31 217 199 0.004 1.8 −0.4

Csv italia 03-17 / 03-31 23 21 0.041 1.8 −0.6

La cultura in casa 03-18 / 03-31 149 184 0.008 2.5 −0.2

Poesie in quarantena 03-19 / 03-31 105 105 0.01 2.0 −0.7

Aiutiamo gli eroi 03-26 / 03-31 29 35 0.043 2.4 −0.7

Ero in corsia 03-27 / 03-31 2 1 0.5 1.0 NaN

Table 8 Top-10 repeat users, amongst those who belong to a community

Username Name Follower rank Participations

youtube YouTube at 1.0 6

marino29b marino29b 0.66 5

repubblica Repubblica 1.0 4

comunemi Comune di Milano 1.0 4

mibact MiBACT 0.97 4

mise gov MISE 1.0 3

giuseppeconteit Giuseppe Conte 1.0 3

sanremoanchenoi Sanremo anche noi 0.98 3

artdielle Arturo D.L. 0.83 3

casalettori Casa Lettori 0.69 3

adelestancati adele stancati 0.64 3
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Figure 11 Number of repeat users for each context

We found nearly twice as many repeat users (9.09%) as in the previous case, of which
133 are left following community detection, that is 5.57% of users appear more than once
when communities with more than 3 users are considered. Of these, 116 appear twice, 12
appear three times, and 3 appear four times, 1 appears five times, and 1 appears six times.

The top-10 repeat users along with their Follower Rank are shown in Table 8, and the
numbers of repeat users per context are in Figure 11. In this study, we found notable per-
sonalities amongst the top users, such as Giuseppe Conte, the Prime Minister of Italy at the
time of the events, with FR = 1. Among the top users, we also found accounts of several
institutional and cultural associations.

Using the same ranking functions as in the first case study, we found the top-10 users for
each ranking as listed in Table 9. Following manual labelling of the top-100 profiles, 48%
of users are on-topic. Figure 12 shows the full breakdown.

Table 9 Top-10 ranked users for ranking function (15), with indication of whether the user is on-topic/off-
topic and individual vs association/professional

Ranking 3

# User On-topic Individual

1 ileniacostanza2 X

2 gabbianorp X

3 mattecurvasudm1 X

4 laura40805025 X X

5 aleseminati X X

6 lapazzariel X X

7 robbi00698088 X

8 losateresa X X

9 andreal79733639 X X

10 elisanucera X
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Figure 12 Distribution of user types for top-100 users and for each ranking function. Rank 3: 97 are
individuals, 5 are professionals, 1 are associations

6.2.1 Users ranking

Finally, we tested the context harvesting capability of the pipeline, within a one-month
window (2020-04-01 and 2020-04-30, as the crisis is still ongoing at the time of writing)
after the initial user discovery. Again, this interval follows and does not overlap with the
time interval where our initial 24 contexts were seeded (Section 6), and which ranged from
2020-02-25 (“Musei chiusi musei aperti”, Table 7) to 2020-03-31 (“Ero in corsia”, Table 7).

Figure 13 Cumulative sum of tweet count by the top ranked users from 2020-04-01 to 2020-04-30
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Figure 14 Example of the
network of a community found
after applying Infomap, from the
COVID-19 Italy case

emilianogalati

inps_it

#inps
#decretocuraitalia

#inpscomunica

#bonus

#emergenzacovid19

#inpsdown

#decreto
#600euro

#indennità

#tridico #partiteiva

tax_analysis #bonus600euro

#curaitalia

We harvested 3 200 tweets for each of 2 387 users, resulting in a total of 209 888 tweets
(Figure 13) with high variance, ranging between 1 to 3 190 tweets.

Multiplex network generation. In this case, the multiplex network consists of 23 281
nodes and 125 326 edges, of which 22 366 nodes and 59 629 edges (96.07% of the nodes and
the 47.58% of the edges) are part of the Hashtag-Hashtag network, and the rest (915 nodes
and 4 166 edges) is the User-User network. The two networks are connected by 61 531
edges, or 49,09% of the total, which incidentally is almost exactly identical to the first case.
223 communities of nodes and hashtags are generated by the Infomap algorithm, resulting
in a reduced network of 1 241 nodes and 31 629 edges, a reduction in size of 94.67% and
74.75% of nodes and edges, respectively (an example of such discovered communities is
shown in Figure 14).

Peak analysis. For this case, our algorithm detected 767 peaks, with 135 communities (out
of 223) containing at least one peak (Figure 15).

Compared with the 2.62 hashtags / peak (duration 3.13 days) for the first case study,
here we have 1.62 hashtags / peak with average peak duration of 6.77 days. A total of 634
hashtags have at least one peak, with a maximum of 4 peaks per hashtag. There are also
more related tags (2.45 on average) than in the first case, with the longest groups of hashtags
presented in Table 10.

Figure 15 The “#iorestolibero” hashtag normalised usage frequency timeline sampled daily between the
given dates. Each peak day (red dot) has a corresponding peak range (pink background)
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Figure 16 Distribution of the candidate context by type sorted by Rank 5 12: 41 are actual contexts, 40 are
in topic and, out of those, 24 are both (“is ontopic and context”)

Context ranking and labelling. Finally, Figure 16 and Table 11 show the top candidate
contexts likely to be both on-topic with COVID-19 campaigns in Italy, and the final top
contexts after manual labelling, respectively. Cadidate contexts are visually temporally
distributed in Figure 17).

Figure 17 Monthly distribution of significant candidate contexts by type. Note that the last weeks contain
fewer candidate contexts. It happens due to the fact that in such a short temporal horizon most contexts started
at the beginning of the month or were already happening before
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7 Conclusions and lessons learnt

Motivated by the need to find an operational definition of “online activists” grounded in
well-established network and user-activity metrics, we have designed a Twitter content pro-
cessing pipeline for progressively harvesting Twitter users based on their engagement with
online socially-minded events, or campaigns, which we have called contexts.

The pipeline yields a growing database of user profiles along with their associated met-
rics, which can then be analysed to experiment with user-defined user ranking criteria. The
pipeline is designed to select promising candidate profiles, but the approach is unsuper-
vised, i.e., no manual classification of example users is provided. We have validated the
pipeline on two real and recent life case studies, UKHealth campaigns and social campaigns
associated with the fight against COVID-19 in Italy.

Although both topics address health prevention campaigns in particular countries, it is
important to note that the first topic is more generic, covering any campaign for health
prevention. On the other hand, the second topic is more specific, addressing the prevention
of a specific disease (COVID-19) in the context of an ongoing pandemics. We found similar
behaviours among the activists of both topics. These findings strengthen our perception
that online activism is a continuous and recurrent practice in social networks, despite the
urgency and complexity of the topic. This suggests that, using our approach, we may be
able to harvest on-line activists in the context of other topics addressing public interest.

The design of the pipeline shows that useful harvesting of interesting users can be accom-
plished within the limitations imposed by Twitter on its APIs. The next challenge is to
completely automate the discovery of new contexts so that the pipeline may continuously
add new and update users in the database.
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