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ABSTRACT In the area of subspace clustering, methods combining self-representation and spectral
clustering are predominant in recent years. For dealing with tensor data, most existing methods vectorize
them into vectors and lose most of the spatial information. For removing noise of the data, most existing
methods focus on the input space and lack consideration of the projection space. Aiming at preserving the
spatial information of tensor data, we incorporate tensor mode-d product with low-rank matrices for self-
representation. At the same time, we remove noise of the data in both the input space and the projection
space, and obtain a robust affinity matrix for spectral clustering. Extensive experiments on several popular
subspace clustering datasets show that the proposed method outperforms both traditional subspace clustering
methods and recent state-of-the-art deep learning methods.

INDEX TERMS Tensor, low-rank, subspace clustering.

I. INTRODUCTION
Subspace clustering is an important clustering learning prob-
lem and attracts increasing interests in recent years. It seg-
ments data by fitting each group of points to the subspace
they are drawn from. Spectral-based subspace clustering
is the most popular subspace clustering method in recent
years. Encouraged by the promising performance of two
seminal works, sparse subspace clustering (SSC) [2] and
low-rank representation (LRR) [3], methods combining self-
representation and spectral clustering have become very pop-
ular. A lot of variants of SSC and LRR have been proposed,
e.g., least square regression (LSR) [4], non-negative low-rank
and sparse (NNLRS) graph [5], structured sparse subspace
clustering (S3C) [6], and low-rank coding-based balanced
(LRCB) graph [7]. Under some data structure and noise
assumptions, they use the data matrix itself as the dictionary
for representing data and the representation coefficients can
be used to construct affinity matrix for spectral clustering.
Although being very successful, the issues of data structure
and noise need further consideration.

Subspace clustering has lots of applications on
2-dimensional (2D) data in computer vision. Traditionally,
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a common approach for dealing with 2D data is to vec-
torize them [2], [3]. Obviously, it is not a good strat-
egy since it destroys the spatial structure of the 2D data.
Peng et al. [8] took hand-designed image features (e.g., SIFT
[9] and HOG [10]) as input of deep fully connected auto-
encoder for sparse self-representation. Deep convolutional
auto-encoder networks with sparse self-representation lay-
ers have been developed for subspace clustering and have
achieved unprecedented results [11]–[14]. However, training
deep neural networks is time-consuming. In order to retain
the spatial information of 2D data, variance regularized ridge
regression (VR3) [15] seeks two projection matrices of each
direction of 2D data to obtain new representation of the origi-
nal data. Nevertheless, VR3 vectorizes the projected data into
vectors for the final representation and still harms the spatial
structure of the original data. Since tensors are usually used
to exploit spatial structure of the data, several tensor low-rank
representation methods [19]–[21] have been proposed. How-
ever, they handle data vectors with spatial [19], [20] or multi-
view [21] relationship rather than 2D data. Besides, they all
use nuclear norm for modeling low-rankness, which needs
large amounts of computation for optimization.

Most existing methods remove noise from the input space
by formulating error regularization term in their objective
functions. Thus, they can only handle specific noise induced
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FIGURE 1. Comparison of the insights of TRR, VR3, and LR-TTRR.

by the error regularization term, e.g., Frobenius norm for
Gaussian noise [4], combination of Frobenius and `1 norm
for mixture of Gaussian noise and sparse error [2], and
`2,1 norm for sample-wise corruptions [3]. To alleviate the
effect of noise, some recent works introduce more robust loss
functions, e.g., correntropy induced metric [22], Cauchy loss
function [23], mixture of Gaussian regression [24], which
reduce the dependence on the distribution of the noise. From
another insight, thresholding ridge regression (TRR) [25],
[26] eliminates the noise from the projection space and show
that it does not require specific noise assumptions for several
common linear projection space. Even though an error regu-
larization term does not exactly fit the real noise distribution,
it can always remove the noise to some extent. Thus, we com-
bine removing noise in input space and projection space.

TRR has shown that simple ridge regression can lead
to good subspace clustering performance with proper post-
processing. To exploit spatial structure of the data, we gener-
alize TRR to low-rank tensor thresholding ridge regression
(LR-TTRR) by incorporating tensor mode-d product with
low-rank matrices. A dataset of images is represented by a
third-order tensor, of which each frontal slice is an image.
Mode-d product with low-rank matrices is applied to each
mode of the tensor for tensor self-representation. Here we
constrain the mode-d product factor matrix to be low-rank
since it captures global structure of the data [3]. Figure 1
gives a comparison of traditional TRR, VR3, and LR-TTRR
to show this idea more clearly. The blue cubes and rectangles
denote data or feature in tensor and matrix form, respec-
tively, and the yellow rectangles denote the representation
coefficients. The green ones are projection matrices, and the
operators� and⊗ are defined as in [15] and can be found in
Section II. Compared with the others, the proposed method
takes the tensor data as an entire entity and learns richer
spatial information than the others. We factorize the low-
rank matrices into product of small matrices to accelerate
optimization. The noise in the input space is modeled by the
mixture of Gaussian noise and sparse error. In the projection

space, we remove the noise with hard thresholding following
TRR and further utilize power strategy to enlarge the differ-
ence between connection and disconnection in the affinity
matrix.

The main contributions of LR-TTRR lies in the following:
1) Since tensor mode-d product is introduced for tensor self-
representation, the spatial information of the original data is
retained. 2) Low-rankness is employed to catch the global
structure of the data and to accelerate the optimization pro-
cedure. 3) Noise removing is taken in both the input space
and the projection space, and a modified hard thresholding
post-processing strategy is proposed, which leads to a cleaner
affinity for spectral clustering.

II. RELATED WORK
In this paper, we review the relevant prior work of this paper.
From the aspect of exploiting data structure, we divide the
related subspace clustering methods into vector space meth-
ods, multilinearmethods, and deep learningmethods.We also
review noise removal in subspace clustering and acceleration
of low-rank methods.

A. VECTOR SPACE METHODS
In traditional spectral-based subspace clustering meth-
ods, each sample is reshape into a long vector for self-
representation, i.e., using all the data as dictionary to encode
each sample. The encoded coefficient matrix can be used to
construct the affinity matrix since each entry reflects the sim-
ilarity of two samples. A lot of methods add different types
of regularization terms or structure constraints to approach
the assumption that each sample is only represented by data
in the same subspace. SSC [2] utilize `1 norm to find sparse
coefficients. LRR [3] adopt nuclear norm, which focus more
on global structure of the data. To convert the coefficients to
weights directly, non-negativity is introduced in NNLRS [5].
Nonnegative sparse Laplacian regularized low-rank repre-
sentation (NSLLRR) [27] incorporates Laplacian regulariza-
tion to encode the manifold structure of the data. In [30],
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Sui et al. leveraged cascade low-rank and spare representa-
tion to achieve a more robust description of the clustering
structure. For dealing with non-linear structure, Kernel trick
[22], [31], [32] is also employed for sparse and low-rank
self-representation to explore the intrinsic high-dimensional
structure.

B. MULTINEAR METHODS
In traditional spectral-based subspace clustering methods,
spatial structure of 2D data is destroyed because of vector-
ization. To retain spatial information, VR3 [15] defines two
projection operator for a third-order tensor X ∈ RL1×L2×L3

as below.

X � P := [vec(X1P), · · · , vec(XL3P)]

X ⊗ Q := [vec(XT1 Q), · · · , vec(X
T
L3Q)],

where vec(·) denotes vectorization operator. Ridge regression
of the concatenation of X � P and X ⊗ Q with orthogonal
constraints on P andQ is adopt to seek the self-representation
coefficients. Though it enhances the capability of retaining
spatial information, the vectorization operation still damages
the spatial structure. Tensor low-rank representation (TLRR)
[19] its combination with sparse coding (TLRRSC) [20]
represent the data as tensors to keep spatial structure for
hyperspectral image clustering. The data samples to be clus-
tered in hyperspectral image are still vectors, i.e., the pixels
with multiple channels. The spatial structure in TLRR and
TLRRSC refers to spatial relationship among vector samples,
which is totally different from the proposed method. In LR-
TTRR, each sample is a 2D tensor and the spatial relationship
is among the elements within one data sample. Low-rank
tensor constrained multi-view subspace clustering (LT-MSC)
[21] incorporate spatial information by using hand-designed
image features as data samples. LT-MSC applies matrix self
representation on each view of the data and forms all the
representation coefficients as a low-rank tensor. In contrast,
the data for clustering in our method are in tensor form and
the representation coefficients are represented by low-rank
matrices corresponding to the modes of the tensor.

C. DEEP LEARNING METHODS
Deep subspace clustering with sparsity prior [8] utilize repre-
sentation coefficients of SSC to guide the self-representation
training of the middle layer of fully connected auto-encoder.
Deep subspace clustering networks (DSC-Net) [11] design a
new self-representation layer to convolutional auto-encoder
to directly learn the affinities. Deep cognitive subspace clus-
tering (DeepCogSC) [12] proposes a more robust deep sub-
space clustering framework by combining self-pace learning
with DSC-Net to learn the samples from easy to hard. Dis-
tribution Preserving Subspace Clustering (DPSC) [13] intro-
duces a distribution consistency loss to guide the learning
of latent representation in DSC-Net. Self-Supervised Con-
volutional Subspace Clustering Network (S2ConvSCN) [14]
introduces a dual self-supervision that achieves simultaneous

feature learning and subspace clustering. The above deep
learning methods achieve state-of-the-art subspace cluster-
ing performance, but training deep networks is very time-
consuming. Compared to deep learning methods, LR-TTRR
is quite that represents the data in tensor formwithout exploit-
ing complex features, but we outperform the deep learning
methods.

D. REMOVING NOISE
Adding regularization term in self-representation model is
a common approach for removing noise [3], [4], [22]–[24].
However, they only work when the noise distribution sat-
isfies the corresponding assumption. To alleviate the effect
of noise, [35] and [36] turn to pre-processing. They first
remove noise via low-rank approximation methods [36], [37]
and then apply self-representation models [3], [38] on the
data matrix after de-noising. Some methods [3], [25], [39]
removes noise in the projection subspace, i.e., post-pressing
on the representation coefficients. LRR [3] first weights the
left singular vector of representation coefficients matrix by
multiplying the square root of singular values, and then
normalizes each row of the weighted singular vector, and
finally applies element-wise powering. However, the weight-
ing and normalization operations do not have clear theoret-
ical explanation. TRR [25] proves that the coefficients over
intra-subspace data points are larger than those over inter-
subspace data points under several linear projections, and thus
keeps the given number of top values of each column in the
coefficient matrix and zeros out the others to remove noise
in the projection space. However, hard-thresholding may still
keep inter-subspace connection. Finding good neighbors in
the subspace clustering (FGNSC) [39] finds key connec-
tions among samples within a subspace and eliminates other
entries to avoid inappropriate connection. However, such
post-processing is more complex than TRR. LR-TTRR mod-
ifies the hard-thresholding procedure in TRR by introducing
element-wise powering, leads to simple but effective post-
precessing strategy.

E. ACCELERATION OF LOW-RANK METHODS
Low-rankness is usually modeled by minimizing nuclear
norm [3], [37]. However, optimizing nuclear norm is time
consuming since it typically requires singular value decom-
position (SVD) at each iteration. In order to avoid opti-
mizing nuclear norm, Go Decomposition (GoDec) [40]
and its variant [36] model low-rankness by factoriz-
ing the low-rank matrix into product of small matri-
ces. In order to accelerate LRR, fixed-rank representation
(FRR) [42] introduces an auxiliary self-representation coef-
ficient matrix and forces it to be as close as possible
to a low-rank matrix induced by matrix factorization.
Since auxiliary variable may introduce extra computa-
tion, we factorize the self-representation coefficient matri-
ces directly of the proposed tensor method following
GoDec [40].
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III. TENSOR THRESHOLDING RIDGE REGRESSION
In this section, we first give some notations and preliminaries,
and then introduce LR-TTRR, its optimization and conver-
gence analysis. Finally, we show how to apply LR-TTRR in
subspace clustering.

A. NOTATIONS AND PRELIMINARIES
In this section, we introduce some notations and basic defini-
tions relevant to this paper [43], [44].

A tensor is a multi-dimensional array of numbers denoted
by a calligraphy letter, e.g., X . We use upper case letters for
matrices, e.g., X ; bold lower case letters for vectors, e.g., x;
lower case letters for scalars, e.g., x; and letters with sub-
scripts for the corresponding entries, e.g., Xl1l2···lN for entries
in tensors and Xl1l2 for entries in matrices. We denote the
variables in a sequence by bracketed superscripts, e.g., X (k).
The vectorization function vec(X ) refers to transforming a
tensor into a vector by concatenating all its elements in the
natural order.
Definition 1 (Mode-d Matrix Unfolding [44]): The mode-

d matrix unfolding of a Nth-order tensor X ∈ RL1×L2×···×LN

is the set of vectors in RLd obtained by keeping the index id
fixed while varying the other indices. Therefore, the mode-
d matrix unfolding of a Nth-order tensor is a matrix X(d) ∈
RLd×L̄d , where L̄d =

∏
i 6=d Li.

Definition 2 (Mode-d Product [43], [44]): The mode-d
product of a tensor X ∈ RL1×L2×···×LN with a matrix Z ∈
RL ′d×Ld is an L1 × L2 × · · · × Ld−1 × L ′d × Ld+1 × · · · × LN
tensor defined by

(X ×d Z )l1l2···ld−1l′d ld+1···lN =
∑
ld

(X )l1l2···ld−1ld ld+1···lN Zl′d ld ,

for all indexed values. It can be expressed as matrix multipli-
cation in terms of unfolded tensors:Y = X ×d Z ⇔ Y(d) =
ZX(d).

Based on the definition, mode-d product is commutative
and we denote

X ×1 Z1 ×2 Z2 · · · ×N ZN , X
N∏
k=1

×kZk ,

and

X ×1 Z1 ×2 Z2 × · · · ×i−1 Zi−1 ×i+1 Zi+1 × · · · ×N ZN

= X
N∏

k=1;k 6=i

×kZk , X ×̄iZi.

Definition 3 (Frobenius Norm [44]): The Frobenius norm
of a tensor X ∈ RL1×L2×···×LN is given by ‖X‖F =√∑L1

l1=1
· · ·

∑LN
lN=1

X 2
l1···lN

.

B. THE PROPOSED MODEL
Given a data matrix X , most existing self-representation
methods including can be formulated as

min
Z ,S

1
2
‖X − XZ − S‖p + λ�1(S)+ β�2(Z ), (1)

where ‖ · ‖p is some kind of similarity measurement, �1(S)
is an error regularization term, Z is the self-representation,
and �2(Z ) denotes a prior structured regularization on Z .
Here each column of X denotes a sample. When the sample
is represented by tensor, e.g., 2D tensor for image, these
methods have to reshape the tensor into a vector and thus the
spatial information of the original data is lost.

In order to reserve the spatial information, we propose
a tensor form self-representation method. Note that tensor
mode-d product can be computed by matrix multiplication
after unfolding the tensor. We use tensor mode-d product for
tensor self-representation to replace matrix product in matrix-
based self-representation. Since LRR shows that low-rank
representation coefficients are useful for capturing global
structure of the data, we also constrain the representation
coefficients to be low-rank. Motivated by GoDec, we adopt
fixed-rank constraint instead nuclear norm. For dealing with
noise in the input space, we model the noise as ‘‘Gaussian
noise + sparse error’’ following GoDec. Since it is difficult
for GoDec to tune the cardinality of the sparse component
for optimal result, `1 norm is employed for regularizing of
the sparse error as in semi-soft GoDec (SSGoDec) [45]. The
proposed LR-TTRR is given as follows

min
Zi,S

1
2
‖X − X

N∏
i=1

×iZi − S‖2F + λ‖S‖1 +
1
2

N∑
i

βi‖Zi‖2F ,

s.t. rank(Zi) ≤ ri, i = 1, 2, , · · · ,N , (2)

where ‖S‖1 is the sum of absolute values of all entries in
S, Zi’s are the low-rank representation coefficients for each
mode of the tensor, and λ and βi are trade-off parameters. The
third term in the objective function adopts Frobenius norm
regularization for stable solution. It is a quite simple strategy
but TRR has shown that it is very effective for subspace clus-
tering when combined with coefficient thresholding strategy.

To tackle the rank function, we follow GoDec and FRR
and factorize Zi as Zi = UiVi, where Ui ∈ RLi×ri and Vi ∈
Rri×

∏
k 6=i Lk . The low-rank constraint is implicit satisfied since

rank(UiVi) ≤ min(rank(Ui), rank(Vi)) ≤ r . The proposed
model changes into

min
Ui,Vi,S

1
2
‖X − X

N∏
i=1

×iUiVi − S‖2F + λ‖S‖1

+
1
2

N∑
i

βi‖UiVi‖2F . (3)

The Ui’s and Vi’s in Eq. (3) can be solved by QR decomposi-
tion, which we will clarify in Subsection III-C.

C. OPTIMIZATION
Since the proposed model is non-convex, it is difficult to opti-
mize all the variables simultaneously. We solve the problem
by alternately optimizing S, Ui’s and Vi’s.
When Ui’s and Vi’s are given, S can be optimized via soft-

thresholding (shrinkage) [48]. The soft-thresholding operator
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is defined as Sλ(x) = sgn(x) max(|x| − λ, 0), where sgn(·) is
the sign function. This operator can be extended to tensors by
applying it element-wise. Then, the solution S is given by

S = Sλ(X − X
N∏
i=1

×iUiVi) (4)

GivenS, we unfold the tensors in ithmode for optimizingUi’s
and Vi’s. Then, we have the sub-problem of Ui and Vi.

min
Ui,Vi,S

1
2
‖X(i) − UiVi(X ×̄i(UiVi))(i) − S(i)‖2F

+
1
2

N∑
i

βi‖UiVi‖2F . (5)

For notation simplification, we define Ai = X(i) − S(i) and
Bi = (X ×̄i(UiVi))(i). Correspondingly, the sub-problem (5)
changes into the following form:

min
Ui,Vi
‖Ai − UiViBi‖2F + βi‖UiVi‖

2
F . (6)

Alternately optimizing Ui and Vi in (6) yields the following
updating rules for the t th iteration:{

Ui = AiBTi V
(t−1)T
i [V (t−1)

i (BiBTi + βiI )V
(t−1)T
i ]−1,

Vi = (UT
i Ui)

†UT
i AiB

T
i (BiB

T
i + βiI )

−1,
(7)

where I is an identity matrix, and (·)† stands for the Moore-
Penrose pseudo-inverse. Note that we ignore the bracketed
superscripts for the t th iteration in order to simplify the nota-
tions. It follows that

UiVi = Ui(UT
i Ui)

†UT
i AiB

T
i (BiB

T
i + βiI )

−1

= PUi (AiB
T
i (BiB

T
i + βiI )

−1), (8)

where PUi is the orthogonal projection onto the column space
of Ui. Since the objective value in (6) is determined by the
matrix product UiVi rather than individual Ui or Vi, it is
a considerable strategy to find a pair of (Ui,Vi) that has
the same product UiVi but with less computation. From (7),
we know that the column space of Ui is the same as the
column space ofAiBTi V

(t−1)T
i .We can compute its orthogonal

basis via QR decomposition, i.e., AiBTi V
(t−1)T
i = QiRi. Then,

the product UiVi can be equivalently computed as UiVi =
PQi (AiB

T
i (BiB

T
i +βiI )

−1) = QiQTi AiB
T
i (BiB

T
i +βiI )

−1.Thus,
a faster updating procedure is given as{

AiBTi (V
(t−1)
i )T = QiRi, Ui = Qi

Vi = QTi AiB
T
i (BiB

T
i + βiI )

−1.
(9)

Although this strategy accelerates the computation, com-
puting the matrix inversion in (9) may still take time. Moti-
vated by LRR [3], the computational cost can be further
reduced. We then have the following theorem.
Theorem 1: For any optimal solution (U∗i ,V

∗
i ) to problem

(6), we have (V ∗i )
T
∈ span(Bi).

Proof: According to Eq. (7), we have

(V ∗i )
T
= (BiBTi + βiI )

−1BiATi ((U
∗
i )
TU∗i )

†. (10)

Thus, (V ∗i )
T
∈ span((BiBTi + βiI )

−1Bi). Suppose the skinny
SVD of Bi is UB6BV T

B and UB⊥ is the orthogonal comple-
ment of UB; then we have

(BiBTi + βiI )
−1Bi

= [UB,UB⊥]bd((62
B + βiI )

−1, β−1i I )[UB,UB⊥]TUB6BV T
B

= [UB,UB⊥]bd((62
B + βiI )

−1, β−1i I )[I , 0]T6BV T
B

= UB(62
B + βiI )

−16BV T
B ,

where bd(·) produces the block diagonal concatenation
matrix of its input arguments, and 0 is a zero matrix. Since
span(UB) = span(Bi), we have (V ∗i )

T
∈ span(Bi). �

According to Theorem 1, Vi can be factorized into Vi =
ṼiQTBi , where QBi is computed from the QR decomposition
Bi = QBiRBi . Define B̃i = QTBiBi, after which problem (6)
can be transformed into the following simpler problem:

min
Ui,Ṽi
‖Ai − UiṼiB̃i‖2F + βi‖UiṼi‖

2
F . (11)

This problem is equivalent to problem (6) because
‖UiṼiQTBi‖F = ‖UiṼi‖F whenQBi is column orthogonal. The
final algorithm for solving (2) is summarized in Algorithm 1.
Since Bi is usually low-rank in practice, this strategy can
accelerate the computation.

Algorithm 1 LR-TTRR
Input: X , ri, λ, βi
Output: S,Zi
1: Initialize S(0)

= 0,Z (0)
i = I , t := 1.

2: Generate standardGaussianmatricesV (0)
i ∈ Rri×Li ,∀i =

1, 2, · · · ,N ;
3: while not converged do
4: A(t)

= X − S(t−1);
5: for i = 1 to N do
6: A(t)i = A(t)

(i) ,B
(t)
i = (X ×̄iZ (t−1)

i )(i);

7: Compute the QR decomposition B(t)i = Q(t)
Bi R

(t)
Bi ;

8: Ṽ (t−1)
i = V (t−1)

i Q(t)
Bi , B̃i = Q(t)T

Bi B(t)i ;
9: Compute the QR decomposition

A(t)i B̃
(t)T
i (Ṽ (t−1)

i )T = Q(t)
i R

(t)
i ;

10: U (t)
i = Q(t)

i ;
Ṽ (t)
i = Q(t)T

i A(t)i B̃
(t)T
i (̃B(t)i B̃

(t)T
i + βiI )−1;

11: V (t)
i = Ṽ (t)

i Q(t)T
Bi , Z (t)

i = U (t)
i V (t)

i ;
12: end for
13: S(t)

= Sλ(X − X
∏N

i=1×iZ
(t)
i );

14: t := t + 1;
15: end while

The computational complexity of Algorithm 1 mainly
comes from tensor mode-d product, QR decomposition,
matrix multiplication, and matrix inversion in steps 6 to 13.
The complexity of computing the tensor mode-d product
X ×d Zd isO(

∏N
i=1 Lird ) by replacing Zd with small matrices

UdVd . The computational complexity of QR decomposition
of a m × n matrix with rank r is O(mnr). The complexity
of matrix multiplication of matrices with size m × n and
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n × k is O(mnk), and the complexity of matrix inversion
of a n × n matrix is O(n3). Summing up the complexity of
all the operations in the inner iteration, the computational
complexity of steps 6 to 11 for iteration i is O(

∏N
j=1 LjrBi +

r3Bi), where rBi is the rank of matrix Bi. Denote the maximum
of all rBi as r , by summing up all the operation complexity
from steps 6 to 13, we have the computational complexity of
Algorithm 1 O(

∏N
j=1 Lj(

∑N
i ri + r) + r3). Note that rBi is

at most min(Li,
∏

j 6=i Lj). The value r is some Li or
∏

j 6=i Lj.
Suppose the N-th way of the tensor corresponds to the num-
ber of samples and the sample number LN is large enough,
i.e., LN ≥

∏N−1
i=1 Li, then r is LN and the computational

complexity of Algorithm 1 is O(
∏N

j=1 LjLN + L
3
N ), which is

at the same order as LRR [3].

D. CONVERGENCE ANALYSIS
Based on some existing theorems from [49] and [50],
we show that Algorithm 1 converges and give an estimation
of the convergence rate. We have the following theorems.
Theorem 2: Alternately optimizing (3) via (4) and (7)

yields a sequence {U (t)
i ,V

(t)
i ,S(t)

|i = 1, 2, · · · ,N } that
converges to a local minimizer {U∗i ,V

∗
i ,S∗|i = 1, 2, · · · ,N }

of (3). Denote u = [vec(U (t)
1 ); · · · ; vec(U (t)

N ); vec(V (t)
1 ); · · · ;

vec(V (t)
N ); vec(S(t))], then we have ‖u(t) − ū‖ ≤

Ct−(1−θ )/(2θ−1) for all t > t0, for cetrain t0 > 0, C > 0,
and θ is given by

θ = 1− (d(3d − 3)n−1)−1. (12)

We give a sketch of the proof here and the details can be
found in the Appendix.

Step 1, we estimate the Lojasiewicz exponent in the
Kurdyka-Lojasiewicz (KL) inequality of the objective func-
tion in (3). For a function ψ(x), the corresponding KL
inequality is

φ′(|ψ(x)− ψ(x̄)|)dist(0, ∂ψ(x)) ≤ 1, (13)

where φ′(·) is the derivative of function φ(s) = cs1−θ , and
dist(0, ∂ψ(x)) is the distance of the subgradient∂ψ(x) to the
original. Formal definition of KL inequality and KL property
can be found in [50]. The parameter θ is called Lojasiewicz
exponent. KL inequality is for vector function, but we can
modify the objective function in (3) by vectorizing the vari-
ables. Theorem 4.2 in [49] provides an explicit estimation
of θ for polynominal functions. The objective function in
(3) is sum of polynominal function and absolute value func-
tions. By studying the subgradient of absolute value function,
we prove that the conclusion for polynominal functions still
holds for the objective function in (3).

Step 2, we prove that the alternative optimization proce-
dure converges to a critical point based on KL inequality
by means of Theorem 2.8 in [50]and estimate the conver-
gence rate based on the Lojasiewicz exponent by means of
Theorem 2.9 in [50]. What we need to do is to verify that
the objective function in (3) satisfies the assumptions of
Theorem 2.8 and 2.9 in [50].

Theorem 3: Algorithm 1 generates a sequence {Z (t)
i ,S(t)

|

i = 1, 2, · · · ,N } that converges to {Z∗i ,S∗|i = 1, 2, · · · ,N },
where Z∗i = U∗i V

∗
i and {U∗i ,V

∗
i ,S∗|i = 1, 2, . . . ,N }

is a local minimizer of (3). The convergence rate of
(vec(Z (t)

i ); · · · ; vec(Z (t)
N ); vec(S(t))) is given by Eq. (12).

Proof: We first show that updating Ui and Vi by
(7) and (9) generates the same product UiVi at each iter-
ation. For clarity, we denote Ui and Vi updated by (9)
as Ūi and V̄i. For notation simplification, we ignore the
superscript for the t th iteration temporally. Define Ki =
AiBTi (BiB

T
i + βI )−1. Since Qi is the basis of the column

space of Ui, we have Ui = QiDi, where Di is an r ×
r full rank matrix. Therefore, Vi = (UT

i Ui)
†UT

i Ki =
(DTi Di)

†DTi QiKi. According to (8), we have U (t+1)
i V (t+1)

i =

PU (t+1)
i

(A(t+1)i B(t+1)Ti (B(t+1)i B(t+1)Ti +βI )−1). The column

space of U (t+1)
i is the same as the column space of

A(t+1)i B(t+1)Ti V T
i . From the solution of Vi, we have

A(t+1)i B(t+1)Ti V T
i = A(t+1)i B(t+1)Ti KT

i Q
T
i Di(D

T
i Di)

†T . Thus,
the column space of U (t+1)

i is the same as the column space
of A(t+1)i B(t+1)Ti KT

i Q
T
i . When the variables are updated by

(9), we have Ū (t+1)
i V̄ (t+1)

i = PŪ (t+1)
i

(A(t+1)i B(t+1)Ti (B(t+1)i

B(t+1)Ti + βI )−1). The column space of Ū (t+1)
i is the

same as the column space of A(t+1)i B(t+1)Ti V̄ T
i =

A(t+1)i B(t+1)Ti KT
i Q

T
i . Thus, Ū

(t+1)
i V̄ (t+1)

i = U (t+1)
i V (t+1)

i .
By Theorem 2, Ui and Vi converges, and thus their prod-
uct UiVi converges to U∗i V

∗
i . Therefore, Ū (t+1)

i V̄ (t+1)
i

also converges to U∗i V
∗
i . By Theorem 1, the sequence

{Zi,S|i = 1, 2, · · · ,N } generated by Algorithm 1 converges
to {U∗i V

∗
i ,S∗|i = 1, 2, . . . ,N }. Since

‖UiVi − U∗i V
∗
i ‖

= ‖UiVi − UiV ∗i + UiV
∗
i − U

∗
i V
∗
i ‖

= ‖Ui(Vi − V ∗i )+ (Ui − U∗i )V
∗
i ‖

≤ ‖Ui‖‖Vi − V ∗i ‖ + ‖Ui − U
∗
i ‖‖V

∗
i ‖

≤ (‖Ui − U∗i ‖ + ‖U
∗
i ‖)‖Vi − V

∗
i ‖ + ‖Ui − U

∗
i ‖‖V

∗
i ‖,

there exists some constant C > 0 such that

‖UiVi − U∗i V
∗
i ‖ ≤ C(‖V

−

i V
∗
i ‖ + ‖Ui − U

∗
i ‖).

Thus, the conclusion for the convergence rate is proved. �

IV. AFFINITY MATRIX CONSTRUCTION
Recently, self-representation is popularly used for construct-
ing an affinity matrix in spectral clustering-based subspace
clustering [2], [3], [27]. LRR computes a weighted shape iter-
ation matrix as the affinity matrix. Suppose the representation
coefficients are denoted by matrix Z whose skinny SVD is
Z = Û6̂V̂ . The affinity matrix A constructed by LRR is
defined as [G]ij = [ŨŨT ]φij , where Ũ is formed by Û (6̂)

1
2

with normalized rows and φ is an even integer parameter
that controls the sharpness of the affinity matrix. TRR proves
that small values of the representation coefficients always
corresponds to the projections over noise and applies hard
threshoding on the coefficients to construct an affinity matrix.
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The construction method in LRR is based on the property
that the column space of Z is the recovery of the row space
of the clean data. This property holds for LRR but may be
not true for other methods. In contrast, hard thresholding
strategy in TRR does not require extra properties of Z and
thus is a more reasonable choice. However, TRR simply
choses the k largest entries of each column of the coeffi-
cient matrix and zeros the others, which may remove useful
information or may keep coefficients corresponding to noise.
Note that the power strategy in LRR enlarges the relative rate
between large values and small values of the coefficients,
which can be considered as a soft denoising method. Thus,
we can use large k in hard threshoding and combine it with
power strategy. Based on these analyses, we propose to con-
struct the affinity matrix from the representation coefficients
Z with the following steps:

1) Obtain Z̄ by normalizing the columns of Z with `∞
norm;

2) Compute Ḡ = |Z̄ | + |Z̄ |T ;
3) Keep the k largest entries of each column of Ḡ and zero

the others;
4) Obtain Ĝ by normalizing the columns of Ĝ with `∞

norm;
5) Compute G̃ = |Ĝ| + |Ĝ|T ;
6) Construct the affinity matrix G as [G]ij = [G̃ij]2.
For LR-TTRR, suppose the tensor X is formed by con-

catenating all the samples and the N -th way of the ten-
sor corresponds to the number of samples. After obtaining
Zi’s, the low-n-rank tensor is unfolded in the N th mode
and we have (X

∏N
i=1×iZi)(N ) = ZN (X

∏N
i=1 ×̄iZi)(N ).

After transposing, ZTN can be considered as the encoding
coefficients of the data matrix X(N ) with the dictionary,
[(X

∏N
i=1 ×̄iZi)(N )]T , which can be used as the coefficients

for constructing affinity matrix, i.e., we set Z = ZT(N ). Com-
pared to existing self-representation methods which use the
data matrix itself as the dictionary, LR-TTRR constructs a
dictionary that encodes the spatial information of the original
data.

V. EXPERIMENTS
In this section, we conduct experiments on 2D image datasets
for subspace clustering to demonstrate the superiority of the
proposed LR-TTRR.

A. METHODS FOR COMPARISON
We demonstrate the effectiveness of LR-TTRR for subspace
clustering by comparing with several typical or recent devel-
oped methods including SSC [2], S3C [6], SSC by orthogonal
matching pursuit (SSC-OMP) [51], kernel sparse subspace
clustering (KSSC) [52], LSR [4], LRR [3], kernel low-rank
representation [32], low-rank subspace clustering (LRSC)
[53], FRR [42], NNLRS [54], nonnegative sparse Laplacian
regularized low-rank representation (NSLLRR) [27], LRCB
[7], GoDec+ [36], TRR [25], VR3 [15], nonlinear VR3
(NVR3) [15], DSC-Net [11], DeepCogSC [12], DPSC [13],
S2ConvSCN [14], structured autoencoders (StructAE) [55],

nonlinear subspace clustering via adaptive graph regularized
autoencoder (NSC-AGA) [56], FGNSC [39], and iterative
reconstrained LRR with weighted nonconvex regularization
(IRWNR) [57].

B. PARAMETER SETTINGS
The parameters of the compared methods are set as sug-
gested in the original papers or tuned for optimal results.
For LR-TTRR, we tune the parameters for optimal results in
the following experiments. At first glance, LR-TTRR has too
many parameters (βi, ri’s, λ, and k) that need to be tuned,
but we will show that most of the parameters can be jointly
tunes. For solving Zi, if we set S as zero tensor 0 and Zj with
j 6= i as identity matrices, and ignore the low-rank constraints
temporarily, problem (2) becomes a ridge regression problem
minZi ‖X(i)−X(i)Zi‖

2
F+βi‖Zi‖

2
F with analytical solution given

by Zi = (X(i)XT(i) + βiI )
−1X(i). It is well known that the effect

of βi is to add the singular values ofX(i)XT(i) to make thematrix
inversion operation stable. This motivates us to set the value
of βi according to the singular values of X(i)XT(i). In this paper,
we set as βi = γ1‖X(i)XT(i)‖2, where ‖·‖2 is the matrix 2-norm,
i.e., the largest singular value of the matrix, and γ1 is a hyper
parameter. Thus, we only need to tune one parameter γ1 for
the parameters βi’s. For the rank ri, it has closed relationship
to the dimension Li of the corresponding mode. We set ri as
ri = γ2Li for the modes that account for spatial relationship,
where γ2 is a hyper parameter. For the mode corresponding to
sample numbers in subspace clustering, we set the rank as kC ,
where k is the thresholding parameter and C is the number of
clusters.

C. FACE CLUSTERING
The extended Yale B [58] and ORL [59] face datasets are
adopted for evaluating the subspace clustering performance.

The extended Yale B dataset [58] contains face images
under nine poses and 64 illumination conditions for 38 indi-
viduals. We use the cropped data containing only the frontal
face. Following the experimental setup of [36], we resize
the images to 48 × 42 pixels. The first 10, 20, 30, and
38 subjects are chosen for the experiments. The parameters
(γ1, γ2, β, k) for LR-TTRR are set as (2e−4, 0.7, 9e−3, 8).
Table 1 shows the clustering errors of the compared meth-
ods on extended Yale B with different number of subjects.
LR-TTRR achieves the best performance in all the cases
except that it is a little worse than NVR3 and S2ConvSCN
with 10 and 38 subjects, respectively. Though VR3 and
NVR3 utilize spatial information to some extent, they only
show their superiority over other methods with small num-
ber of subjects. The optimization of VR3 and NVR3 need
to compute pairwise matrix multiplication of all the data
samples and thus they become very time-consuming as the
sample number increase. With all the 38 subjects, they will
take more than 3 days. In contrast, LR-TTRR only takes
around 700 seconds for all the 38 subjects. FGNSC focuses
on post-preprocessing on self-representation coefficients and
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TABLE 1. Clustering error (%) on extended Yale B.

TABLE 2. Computation time (seconds) on the first ten classes of
extended Yale B for subspace clustering.

shows great improvement. LR-TTRR utilizes a simpler post-
processing strategy but still outperforms FGNSC. Recent
state-of-the-art subspace clustering results are all achieved by
deep learning methods, which outperform traditional meth-
ods significantly. LR-TTRR achieves amazing result that
outperforms all deep learning methods except S2ConvSCN.
Note that LR-TTRR does not need expensive training and it
outperforms S2ConvSCN on other datasets in the following
experiments. To show the efficiency of LR-TTRR, we also
give a computational time comparison in Table 2 for the
first ten classes. LR-TTRR is relatively fast among all the
compared methods. Though the performance of NVR3 is the
best for the first ten classes, it is the slowest method.

The ORL face dataset [59] contains face images of 40 sub-
jects with 10 samples per subject. Following [11], each image
is down-sampled from 112 × 92 to 32 × 32. It is more

FIGURE 2. Clustering error (%) on ORL with 40 subjects.

challenging than extended Yale B since the images were
taken under varying lighting conditions with different facial
expressions and details. LR-TTRR’s parameters (γ1, γ2, β, k)
are set to (1e − 5, 0.8, 1e − 4, 5). Figure 2 illustrates the
clustering errors of the comparedmethods. LR-TTRR outper-
forms all traditional methods and deep learning methods, and
gains 0.75% performance improvement over the second best
method. This again verifies that spatial information is very
useful for image subspace clustering and the noise removing
strategy is very robust.

D. OBJECT CLUSTERING
The COIL20 and COIL100 datasets [60] are both object
image datasets. They contain 1440 images from 20 classes
and 7200 images from 100 classes, respectively. Each
object was taken with varying pose degree of 5, result-
ing in 72 images per object. In contrast to well aligned
face images, these datasets are more challenging due to
view changing. We downsample the images to 32 × 32.
We set the parameters (γ1, γ2, β, k) to (9e-3, 0.3, 0.02, 5) and
(5e-3, 0.3, 0.05, 5) for COIL20 and COIL100, respectively.
The results are given in Table 3. TR-LLRR significantly
outperforms all traditional methods and is also better than all
deep learning methods on COIL20. TR–LLRR is the second
best on COIL100. It is only a little worse (0.14%) than the
best method DPSC on COIL100, but outperforms DPSC by
1% on COIL20. The performance improvement against TRR
is significant, which verifies that tensor space handles view
change well.

E. HANDWRITTEN DIGIT CLUSTERING
The Alphadigits dataset1 is also employed for evaluating the
subspace clustering performance of LR-TTRR. The dataset
consists of 36 clusters (binary digits ‘0-9’ and capital letters
‘A-Z’) with 39 images per cluster. Each image is in the size
of 20 × 16 pixels. We divide the dataset into four groups,
consisting of ‘0-9’, ‘A-J’, ‘K-T’, and ‘U-Z’, respectively.
All possible combinations of subsets with cluster number
K ∈ {2, 5, 8, 10} are collected within each group. We set the
parameters (γ1, γ2, β, k) of LR-TTRR to (0.04, 0.7, 0.9, 8).
The average and median clustering errors are reported

1http://www.cs.nyu.edu/˜roweis/data.html
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TABLE 3. Clustering error (%) on COIL20 and COIL100.

TABLE 4. Clustering error (%) on Alphadigits.

in Table 4. It can be seen that LR-TTRR works well for
different clustering numbers and is the best among the com-
pared methods. NVR3 and VR3 are the second and third
best methods, which also confirms the importance of spatial
information for subspace clustering of tensor data.

VI. CONCLUSION
In this paper, we propose LR-TTRR for subspace clustering
of tensor data. By incorporating tensor mode-d product for
tensor self-representation and removing noise from both the
input space and the projected space, LR-TTRR is very robust
and efficient in subspace clustering. Comprehensive experi-
ments on several benchmark image datasets show significant
improvement of LR-TTRR over existing methods.

APPENDIX
PROOF OF THEOREM 2
A. PRELIMINARIES
To analyze the convergence property, we first give some
relevant definitions, assumptions and lemmas from [49]
and [50].
Definition 4: A function ψ(x) satisfies the Kurdyka-

Lojasiewicz (KL) property at point x̄ ∈ dom(∂ψ) if there
exists θ ∈ [0, 1) such that |ψ(x)−ψ(x̄))|

θ

dist(0,∂ψ(x)) is bounded around
x̄ under the following notations: 00 = 1,∞/∞ = 0/0 = 0.
In other words, in a certain neighborhood U of x̄, there exists
φ(s) = cs1−θ for some c > 0 and θ ∈ [0, 1) such that the KL
inequality holds:

φ′(|ψ(x)− ψ(x̄)|)dist(0, ∂ψ(x)) ≥ 1 (14)

for any x ∈ U ∩ dom(∂ψ) and ψ(x) 6= ψ(x̄), where
dom(∂(ψ)) , {x : ∂ψ(x) 6= ∅} and dist(0, ∂ψ(x) ,
min{‖y‖ : y ∈ ∂ψ(x)}.
Definition 5: We call a set X block multiconvex if its

projection to each block of variable is convex, namely, for
each i and fixed (s−1) blocks x1, · · · , xi−1, xi, xi+1, · · · , xs,
the set Xi(x1, · · · , xi−1, xi+1, · · · , xs) , {xi ∈ Rni :

(x1, · · · , xi−1, xi, xi+1, · · · , xs) ∈ X } is convex.
The optimization problem to be considered is given by

min
x∈X

F(x1, · · · , xs) = f (x1, · · · , xs)+
s∑
i=1

ri(xi), (15)

where variable x is decomposed into s blocks x1, · · · , xs,
the set X of feasible points is assumed to be a closed and
block multiconvex subset of Rn, f is assumed to be a differ-
entiable and block multiconvex function, and ri, i = 1, · · · , s
are extended-value convex functions. The definition of Nash
point is given as follows.
Definition 6: If F(x̄1, · · · , x̄i−1, x̄i, x̄i+1, · · · , x̄s) ≤

F(x̄1, · · · , x̄i−1, xi, x̄i+1, · · · , x̄s) ∀xi ∈ X̄i, i = 1, · · · , s,
where X̄i = Xi(x̄1, · · · , x̄i−1, x̄i+1, · · · , x̄s), we call x̄ a Nash
point or block coordinate-wise minimizer.

The following assumptions are introduced for analyzing
the convergence property of optimizing problem (15).
Assumption 1: F is continuous in dom(F) and

infx∈dom(F)F(x) > −∞. Problem (15) has a Nash point.
Assumption 2: Each block function fi is strongly convex,

namely, fi(u)− fi(v) ≥ 〈∇fi(v),u− v〉 + L
2 ‖u− v‖2.

We summarize Theorems 2.8 and 2.9 in [50] as Lemma 1 in
the following.
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Lemma 1: If the sequence {x(t)} generated by alternatively
optimizing each block of problem (15) has a finite limit point
x̄ and F satisfies the KL inequality (14) with φ(s) = cs1−θ

for c > 0 and θ ∈ [0, 1), the sequence {x(t)} converges
to x̄, which is a critical point of (15). The convergence rate
satisfies: 1) If θ = 0, then x(t) converges to x̄ in finitely many
iterations. 2) If θ ∈ (0, 12 ], ‖x

(t)
− x̄‖ ≤ Cτ t for all t > t0,

for certain t0 > 0,C > 0, τ ∈ [0, 1). 3) If θ ∈ ( 12 , 1),
‖x(t)− x̄‖ ≤ Ct−(1−θ )/(2θ−1) for all t > t0, for certain t0 > 0,
C > 0.
Lemma 1 provides an estimation of convergence based

on Lojasiewicz exponent θ . The following lemma (Theo-
rem 4.2 in [49]) gives explicit bounds of Lojasiewicz expo-
nent for polynomial function.
Lemma 2: For any polynomial f : Rn

→ R of degree d the
Lojasiewicz exponent at 0 is less than or equal to 1− (d(3d−
3)n−1)−1. More precisely, if f (0) = 0 and ∇f (0) = 0, then
for any r0 > 0 there exist ε > 0 and C > 0 such that

|∇f (x)| ≥ C|f (x)|θ (16)

for any x ∈ Bn(r0) with |f (x)| < ε, where θ is given by

θ = 1− (d(3d − 3)n−1)−1. (17)

Note that for function f such that f (0) 6= 0 and ∇f (0) = 0,
Eq. (16) changes into

|∇f (x)| ≥ C|f (x)− f (x̄)|θ , (18)

where x̄ is a critical point of f and x is in the neighbourhood
of x̄.

B. MAIN PROOF
Define vectorized functions

f (vec(U1), vec(V1), . . . , vec(UN ), vec(VN ), vec(S))

=
1
2
‖X − X

N∏
i=1

×iUiVi − S‖2F +
1
2

N∑
i

βi‖UiVi‖2F

and

r(vec(S)) = λ‖S‖1.

The objective function of T-GoDec (Eq. (3) in the main
manuscript)

1
2
‖X − X

N∏
i=1

×iUiVi − S‖2F + λ‖S‖1 +
1
2

N∑
i

βi‖UiVi‖2F

can be rewritten as

F(vec(U1), vec(V1), . . . , vec(UN ), vec(VN ), vec(S))
= f (vec(U1), vec(V1), . . . , vec(UN ), vec(VN ), vec(S))
+ r(vec(S)).

For notation simplification, we denote the concatenation of
the vector variables as x and the corresponding minimizer
as x̄. Note that f (x) is a polynominal function. If values
correspond to absolute functions are not zeros, F(x) is a

polynominal function. By Lemma 2, the following inequality
holds

|∇F(x)| ≥ C|F(x)− F(x̄)|θ , (19)

where x̄ is the critical point of F(x). When some values
correspond to absolute functions are zeros, denote such vector
variable as x′. By letting the set � denote the indicator of the
zero values, we have P�(x′) = 0, where P�(·) is to project
the vector to the set �. By assuming that P�̄(x

′) = P�̄(x),
we have

|F(x)− F(x̄)| > |F(x′)− F(x̄)| (20)

From the definition of subgradient, we have

∇f (x) ∈ ∂f (x′). (21)

Thus, |∂F(x′)| ≥ C|F(x′)−F(x̄)|θ . By Lemma 2, the explicit
estimation of the Lojasiewicz exponent of F(x) is given by
Eq. (17). It is also the exponent in KL inequality.

Since the alternative optimization procedure yields a
sequence of decreasing values, the limit point of x is a Nash
point. When fixing the others, for blocks Ui and Vi, the func-
tion f is strongly convex. Since d is 2 and n is usually a large
number, we have θ ∈ ( 12 , 1). By Lemma 1, the conclusion for
Theorem 2 is proved.
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