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ABSTRACT

OBJECTIVE

To review and critically appraise published and
preprint reports of prediction models for diagnosing
coronavirus disease 2019 (covid-19) in patients with
suspected infection, for prognosis of patients with
covid-19, and for detecting people in the general
population at increased risk of becoming infected
with covid-19 or being admitted to hospital with the
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disease.
Originally accepted:
31 March 2020 DESIGN
Living systematic review and critical appraisal.
Update 1 accepted:
4 May 2020 DATA SOURCES

PubMed and Embase through Ovid, Arxiv, medRxiv,
and bioRxiv up to 7 April 2020.

STUDY SELECTION

Studies that developed or validated a multivariable
covid-19 related prediction model.

DATA EXTRACTION

At least two authors independently extracted data
using the CHARMS (critical appraisal and data

WHAT IS ALREADY KNOWN ON THIS TOPIC

The sharp recent increase in coronavirus disease 2019 (covid-19) incidence has
put a strain on healthcare systems worldwide; an urgent need exists for efficient
early detection of covid-19 in the general population, for diagnosis of covid-19 in
patients with suspected disease, and for prognosis of covid-19 in patients with
confirmed disease

Viral nucleic acid testing and chest computed tomography imaging are standard
methods for diagnosing covid-19, but are time consuming

Earlier reports suggest that elderly patients, patients with comorbidities (chronic
obstructive pulmonary disease, cardiovascular disease, hypertension), and
patients presenting with dyspnoea are vulnerable to more severe morbidity and
mortality after infection

WHAT THIS STUDY ADDS

Three models were identified that predict hospital admission from pneumonia
and other events (as proxy outcomes for covid-19 pneumonia) in the general
population

Forty seven diagnostic models were identified for detecting covid-19 (34 were
based on medical images); and 16 prognostic models for predicting mortality
risk, progression to severe disease, or length of hospital stay

Proposed models are poorly reported and at high risk of bias, raising concern
that their predictions could be unreliable when applied in daily practice
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extraction for systematic reviews of prediction
modelling studies) checklist; risk of bias was
assessed using PROBAST (prediction model risk of
bias assessment tool).

RESULTS

49009 titles were screened, and 51 studies describing
66 prediction models were included. The review
identified three models for predicting hospital
admission from pneumonia and other events (as proxy
outcomes for covid-19 pneumonia) in the general
population; 47 diagnostic models for detecting
covid-19 (34 were based on medical imaging); and

16 prognostic models for predicting mortality risk,
progression to severe disease, or length of hospital
stay. The most frequently reported predictors of
presence of covid-19 included age, body temperature,
signs and symptoms, sex, blood pressure, and
creatinine. The most frequently reported predictors of
severe prognosis in patients with covid-19 included
age and features derived from computed tomography
scans. Cindex estimates ranged from 0.73 to 0.81

in prediction models for the general population,

from 0.65 to more than 0.99 in diagnostic models,
and from 0.85 to 0.99 in prognostic models. All
models were rated at high or unclear risk of bias,
mostly because of non-representative selection

of control patients, exclusion of patients who had

not experienced the event of interest by the end

of the study, high risk of model overfitting, and

vague reporting. Most reports did not include any
description of the study population or intended use of
the models, and calibration of the model predictions
was rarely assessed.

CONCLUSION

Prediction models for covid-19 are quickly entering
the academic literature to support medical decision
making at a time when they are urgently needed. This
review indicates that proposed models are poorly
reported, at high risk of bias, and their reported
performance is probably optimistic. Hence, we do
not recommend any of these reported prediction
models to be used in current practice. Immediate
sharing of well documented individual participant
data from covid-19 studies and collaboration are
urgently needed to develop more rigorous prediction
models, and validate promising ones. The predictors
identified in included models should be considered as
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candidate predictors for new models. Methodological
guidance should be followed because unreliable
predictions could cause more harm than benefit in
guiding clinical decisions. Finally, studies should
adhere to the TRIPOD (transparent reporting of

a multivariable prediction model for individual
prognosis or diagnosis) reporting guideline.
SYSTEMATIC REVIEW REGISTRATION

Protocol https://osf.io/ehc47/, registration https://
osf.io/wy245.

READERS’ NOTE

This article is a living systematic review that will

be updated to reflect emerging evidence. Updates
may occur for up to two years from the date of
original publication. This version is update 1 of

the original article published on 7 April 2020 (BM/
2020;369:m1328), and previous updates can be
found as data supplements (https://www.bmj.com/
content/369/bmj.m1328/related#datasupp).

Introduction

Thenovel coronavirus disease 2019 (covid-19) presents
an important and urgent threat to global health. Since
the outbreak in early December 2019 in the Hubei
province of the People’s Republic of China, the number
of patients confirmed to have the disease has exceeded
3231 701 in more than 180 countries, and the number
of people infected is probably much higher. More
than 220000 people have died from covid-19 (up
to 30 April 2020).! Despite public health responses
aimed at containing the disease and delaying the
spread, several countries have been confronted with a
critical care crisis, and more countries could follow.?™
Outbreaks lead to important increases in the demand
for hospital beds and shortage of medical equipment,
while medical staff themselves could also get infected.

To mitigate the burden on the healthcare system,
while also providing the best possible care for patients,
efficient diagnosis and information on the prognosis of
the disease is needed. Prediction models that combine
several variables or features to estimate the risk of
people being infected or experiencing a poor outcome
from the infection could assist medical staff in triaging
patients when allocating limited healthcare resources.
Models ranging from rule based scoring systems to
advanced machine learning models (deep learning)
have been proposed and published in response to a call
to share relevant covid-19 research findings rapidly
and openly to inform the public health response and
help save lives.” Many of these prediction models are
published in open access repositories, ahead of peer
review.

We aimed to systematically review and critically
appraise all currently available prediction models for
covid-19, in particular models to predict the risk of
developing covid-19 or being admitted to hospital with
covid-19, models to predict the presence of covid-19 in
patients with suspected infection, and models to predict
the prognosis or course of infection in patients with
covid-19. We include model development and external
validation studies. This living systematic review, with
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periodic updates, is being conducted in collaboration
with the Cochrane Prognosis Methods Group.

Methods

We searched PubMed and Embase through Ovid,
bioRxiv, medRxiv, and arXiv for research on covid-19
published after 3 January 2020. We used the publicly
available publication list of the covid-19 living
systematic review.® This list contains studies on
covid-19 published on PubMed and Embase through
Ovid, bioRxiv, and medRxiv, and is continuously
updated. We validated the list to examine whether it
is fit for purpose by comparing it to relevant hits from
bioRxiv and medRxiv when combining covid-19 search
terms (covid-19, sars-cov-2, novel corona, 2019-
ncov) with methodological search terms (diagnostic,
prognostic, prediction model, machine learning,
artificial intelligence, algorithm, score, deep learning,
regression). All relevant hits were found on the living
systematic review list.® We supplemented this list with
hits from PubMed by searching for “covid-19” because
when we performed our initial search this term was
not included in the reported living systematic review®
search terms for PubMed. We further supplemented
the list with studies on covid-19 retrieved from arXiv.
The online supplementary material presents the
search strings. Additionally, we contacted authors for
studies that were not publicly available at the time of
the search,’” ® and included studies that were publicly
available but not on the living systematic review® list at
the time of our search.”*?

We searched databases on 13 March 2020 and
24 March 2020 (for the first version of the review),
and 7 April 2020 (for the first update of the review).
All studies were considered, regardless of language
or publication status (preprint or peer reviewed
articles; updates of preprints will only be included
and reassessed in future updates after publication in
a peer reviewed journal). We included studies if they
developed or validated a multivariable model or scoring
system, based on individual participant level data, to
predict any covid-19 related outcome. These models
included three types of prediction models: diagnostic
models for predicting the presence of covid-19 in
patients with suspected infection; prognostic models
for predicting the course of infection in patients with
covid-19; and prediction models to identify people at
increased risk of developing covid-19 in the general
population. No restrictions were made on the setting
(eg, inpatients, outpatients, or general population),
prediction horizon (how far ahead the model predicts),
included predictors, or outcomes. Epidemiological
studies that aimed to model disease transmission or
fatality rates, diagnostic test accuracy, and predictor
finding studies were excluded. Titles, abstracts, and
full texts were screened in duplicate for eligibility by
independent reviewers (two from LW, BVC, and MvS),
and discrepancies were resolved through discussion.

Data extraction of included articles was done by
two independent reviewers (from LW, BVC, GSC,
TPAD, MCH, GH, KGMM, RDR, ES, LJMS, EWS, KIES,
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CW, AL, JM, TT, JAAD, KL, JBR, LH, CS, MS, MCH, NS,
NK, SMJvK, JCS, PD, CLAN, and MvS). Reviewers used
a standardised data extraction form based on the
CHARMS (critical appraisal and data extraction for
systematic reviews of prediction modelling studies)
checklist’®> and PROBAST (prediction model risk
of bias assessment tool) for assessing the reported
prediction models.'* We sought to extract each
model’s predictive performance by using whatever
measures were presented. These measures included
any summaries of discrimination (the extent to which
predicted risks discriminate between participants with
and without the outcome), and calibration (the extent
to which predicted risks correspond to observed risks)
as recommended in the TRIPOD (transparent reporting
of a multivariable prediction model for individual
prognosis or diagnosis) statement.'® Discrimination is
often quantified by the C index (C index=1 if the model
discriminates perfectly; C index=0.5 if discrimination
is no better than chance). Calibration is often
quantified by the calibration intercept (which is zero
when the risks are not systematically overestimated
or underestimated) and calibration slope (which is
one if the predicted risks are not too extreme or too
moderate).'® We focused on performance statistics
as estimated from the strongest available form of
validation (in order of strength: external (evaluation
in an independent database), internal (bootstrap
validation, cross validation, random training test
splits, temporal splits), apparent (evaluation by using
exactly the same data used for development)). Any
discrepancies in data extraction discussed between
reviewers, followed by conflict resolution by LW and
MvS if needed. The online supplementary material
provides details on data extraction. We considered
aspects of PRISMA (preferred reporting items for
systematic reviews and meta-analyses)'” and TRIPOD"*
in reporting our article.

Patient and public involvement

It was neither appropriate nor possible to involve
patients or the public in the design, conduct, or
reporting of our research. The study protocol and
preliminary results are publicly available on https://
osf.io/ehc47/ and medRxiv.

Results

We retrieved 4903 titles through our systematic search
(fig 1; 1916 on 13 March 2020 and 774 on 24 March
2020, included in the first version of the review; and
2213 on 7 April 2020, included in the first update). Two
additional unpublished studies were made available
on request (after a call on social media). We included a
further four studies that were publicly available but were
not detected by our search. Of 4909 titles, 199 studies
were retained for abstract and full text screening (85 in
the first version of the review; 114 were added in the
first update). Fifty one studies describing 66 prediction
models met the inclusion criteria (31 models in 27
papers included in the first version of the review; 35
models in 24 papers added in the first update).” 12 1862
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These studies were selected for data extraction and
critical appraisal (table 1 and table 2).

Primary datasets

Thirty two studies used data on patients with covid-19
from China, two studies used data on patients from
Italy,’* 3 and one study used data on patients from
Singapore*® (supplementary table 1). Ten studies used
international data (supplementary table 1) and two
studies used simulated data.*® *' One study used US
Medicare claims data from 2015 to 2016 to estimate
vulnerability to covid-19.8 Three studies were not clear
on the origin of covid-19 data (supplementary table 1).

Based on 26 of the 51 studies that reported study
dates, data were collected between 8 December 2019
and 15 March 2020. The duration of follow-up was
unclear in most studies. Two studies reported median
follow-up time (8.4 and 15 days)," >’ while another
study reported a follow-up of at least five days.** Some
centres provided data to multiple studies and several
studies used open Github®® or Kaggle®* datarepositories
(version or date of access often unclear), and so it was
unclear how much these datasets overlapped across
our 51 identified studies (supplementary table 1).
One study?** developed prediction models for use in
paediatric patients. The median age in studies on adults
varied (from 34 to 65 years; see supplementary table
1), as did the proportion of men (from 41% to 67%),
although this information was often not reported at all.

Among the six studies that developed prognostic
models to predict mortality risk in people with
confirmed or suspected infection, the percentage of
deaths varied between 8% and 59% (table 1). This
wide variation is partly because of severe sampling
bias caused by studies excluding participants who
still had the disease at the end of the study period
(that is, they had neither recovered nor died).” 2° 21 2244
Additionally, length of follow-up could have varied
between studies (but was rarely reported), and there
might be local and temporal variation in how people
were diagnosed as having covid-19 or were admitted
to the hospital (and therefore recruited for the studies).
Among the diagnostic model studies, only five reported
on prevalence of covid-19 and used a cross sectional or
cohort design; the prevalence varied between 17% and
79% (see table 1). Because 31 diagnostic studies used
either case-control sampling or an unclear method
of data collection, the prevalence in these diagnostic
studies might not have been representative of their
target population.

Table 1 gives an overview of the 66 prediction models
reported in the 51 identified studies. Supplementary
table 2 provides modelling details and box 1 discusses
the availability of models in a format for use in clinical
practice.

Models to predict risk of developing covid-19

or of hospital admission for covid-19 in general
population

We identified three models that predicted risk of
hospital admission for covid-19 pneumonia in the
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Records identified through database searching
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(R 6)

Additional records identified through other sources

J

Y

Records screened

-

Records excluded

Articles assessed for eligibility

(D

Articles excluded

76 Not a prediction model development

or validation study
> 27 Epidemiological model to estimate

disease transmission or case fatality rate

17 Commentary, editorial, or letter

19 Methods paper

9 Duplicate article

A

4

(h51)

Studies included in review

( ) )

Models to identify subjects
atrisk in general population

Diagnostic models
(34 imaging studies)

Prognostic models
(8 for mortality, 5 for
progression to severe/critical
state, 3 for length of stay)

Fig 1 | PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart of study inclusions and

exclusions. CT=computed tomography

general population, but used admission for non-
tuberculosis pneumonia, influenza, acute bronchitis,
or upper respiratory tract infections as outcomes in a
dataset without any patients with covid-19 (table 1).
Among the predictors were age, sex, previous hospital
admissions, comorbidity data, and social determinants
of health. The study estimated C indices of 0.73, 0.81,
and 0.81 for the three models.

Diagnostic models to detect covid-19 in patients
with suspected infection

Nine studies developed 13 multivariable models to
diagnose covid-19. Most models target patients with
suspected covid-19. Reported C index values ranged
between 0.85 and 0.99, except for one model with a
C index of 0.65. Two studies aimed to diagnose severe
disease in patients with confirmed covid-19: one in
adults with confirmed covid-19 with a reported C
index value of 0.88,* and one in paediatric patients
with reported perfect performance.”* Several
diagnostic predictors were used in more than one
model: age (five models); body temperature or
fever (three models); signs and symptoms (such as
shortness of breath, headache, shiver, sore throat,
and fatigue; three models); sex (three models); blood
pressure (three models); creatinine (three models);

epidemiological contact history, pneumonia signs on
computed tomography scan, basophils, neutrophils,
lymphocytes, alanine transaminase, albumin,
platelets, eosinophils, calcium, and bilirubin (each in
two models; table 1).

Thirty four prediction models were proposed
to support the diagnosis of covid-19 or covid-19
pneumonia (and monitor progression) based onimages.
Most studies used computed tomography images. Other
image sources were chest radiographs®® “7#?>>°658 and
spectrograms of cough sounds.”> The predictive
performance varied widely, with estimated C index
values ranging from 0.81 to 0.998.

Prognostic models for patients with diagnosis of
covid-19

We identified 16 prognostic models (table 1) for patients
with a diagnosis of covid-19. Of these models, eight
estimated mortality risk in patients with suspected or
confirmed covid-19 (table 1). The intended use of these
models (that is, when to use them, in whom to use them,
and the prediction horizon, eg, mortality by what time)
was not clearly described. Five models aimed to predict
progression to a severe or critical state, and three aimed
to predict length of hospital stay (table 1). Predictors
(for any outcome) included age (seven models),
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features derived from computed tomography scoring

= .%D'_ 2 (seven models), lactate dehydrogenase (four models),
% 52 g : sex (three models), C reactive protein (three models),
Ccam o L 1 . . . .
g59 £ |5 < = comorbidity  (including hypertension, diabetes,
Siela) T 25 |== = § cardiovascular disease, respiratory disease; three
2 models), and lymphocyte count (three models; table 1).
i S5 g Four studies that predicted mortality reported
LR 5 ;
§ g;% = E a C index between 0.90 and 0.98. One study also
= - 9 < . . . .
o % Sg £ 2 evaluated calibration.” When applied to new patients,
K E 5 ~ - | - 3 their model yielded probabilities of mortality that were
§2s8%2 £ |2 i g too high for low risk patients and too low for high
EZRXEC 2 2 I = & . . . . .
SHE S5 O o |2 @ = risk patients (calibration slope >1), despite excellent
te&2=h 2 = 2 2 I
22Ec8s S 8 |5 > & discrimination.” One study developed two models
— W = 2 to predict a hospital stay of more than 10 days and
© 2 = . . .
5|z = Z estimated C indices of 0.92 and 0.96.?° The other study
g8 :3 = %é ri: %é %é é predicting length of hospital stay did not report a C
HEEE 2 T = 2 |2 2 & index. Neither study predicting length of hospital stay
§ “iF 2 287 s = s s reported calibration. The five studies that developed
£ 528838 ¢ 2 |2 = ° models to predict progression to a severe or critical
E - i state reported C indices between 0.85 and 0.99. One
o = [%)] [} T . . . .
s s ST |5= |z of these studies also reported perfect calibration, but it
g @ Rl =L =L 3 3 32
© 3‘5 g g 8% |85 |= was unclear how this was evaluated.
= 2= =] ) = ===
2 s= 8¢ = |8535|g5g| 8 Risk of bias
a =S 22 2 |[5E5|5E5|§ . . . .
= All models were at high risk of bias according to
— " = 2 . .
£ £ B £ s assessment with PROBAST (table 1), which suggests
o= o
g = E £ § that their predictive performance when used in practice
ntgE2 C P —~ ! is probably lower than that reported. Therefore, we
288 8x —~ S 2|0 o C
25 g sz S = % % have cause for concern that the predictions of these
= (=] =) . .
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2 gives details on common causes for risk of bias for
each type of model.

Twenty four of the 51 studies had a high risk of bias
for the participants domain (table 2), which indicates
that the participants enrolled in the studies might not
be representative of the models’ targeted populations.
Unclear reporting on the inclusion of participants
prohibited a risk of bias assessment in 13 studies.
Six of the 51 studies had a high risk of bias for the
predictor domain, which indicates that predictors
were not available at the models’ intended time of
use, not clearly defined, or influenced by the outcome
measurement. The diagnostic model studies that used
medical images as predictors in artificial intelligence
were all scored as unclear on the predictor domain.
One diagnostic imaging study used a simple scoring
rule and was scored at low predictor risk of bias. The
publications often lacked clear information on the
preprocessing steps (eg, cropping of images). Moreover,
complex machine learning algorithms transform
images into predictors in a complex way, which makes
it challenging to fully apply the PROBAST predictors
section for such imaging studies. Most studies used
outcomes that are easy to assess (eg, death, presence
of covid-19 by laboratory confirmation). Nonetheless,
there was reason to be concerned about bias induced
by the outcome measurement in 18 studies, among
others, because of the use of subjective or proxy
outcomes (non covid-19 severe respiratory infections).

All but one study were at high risk of bias for the
analysis domain (table 2). Many studies had small

C reactive protein; CT:

coronavirus disease 2019; CRP:

oxygen saturation.

Age, days from symptom onset to hospitalisation, from

Predictors in final model
Age and CT features
CT features and laboratory markers

CT features

chronic obstructive pulmonary disease; covid-19

(Australia, Asia, Europe, North America), inpatients Wuhan, sex, visit to Wuhan
coronary heart disease; COPD

with covid-19 symptoms; death v recovery (period

unspecified)
confirmed covid-19; severe disease progression

(period unspecified)

CHD
value; PROBAST=prediction model risk of bias assessment tool; SPO,

confirmed covid-19; severe disease progression

Wang et al*?; data from China, inpatients with
(period unspecified)

confirmed covid-19; length of hospital stay

Sarkar et al*; data from several continents
Zeng et al®%; data from China, inpatients with
Zeng et al®%; data from China, inpatients with

§The development set contains scans from Chinese patients, the testing set contains scans from Chinese cases and controls, and US controls.

fData contain mixed cases and controls. Chinese data and controls from US and Switzerland.

Study; setting; and outcome

Table 1 | Continued

*Performance is given for the strongest form of validation reported. This is indicated in the column “type of validation.” When a training test split was used, performance on the test set is reported. Apparent performance is the performance observed in the

development data.
+#Wavelet-HLH_gldm_SmallDependencelowGraylLevelEmphasis, wavelet-LHH_glcm_Correlation, wavelet-LHL_glszm_GrayLevelVariance, wavelet-LLH_glszm_SizeZoneNonUniformityNormalized, wavelet-LLH_glszm_SmallAreaEmphasis, wavelet-LLH

tProxy events used: pneumonia (except from tuberculosis), influenza, acute bronchitis, or other specified upper respiratory tract infections (no patients with covid-19 pneumonia in data).
glecm_Correlation. §§Pearson correlation between the predicted and ground truth scores for patients with lung abnormalities.

$Calibration plot presented, but unclear which data were used.
**Describes similarity between segmentation of the CT scan by a medical doctor and automated segmentation.

ttOutcome and predictor data were simulated.
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Table 2 | Risk of bias assessment (using PROBAST) based on four domains across 51
studies that created prediction models for coronavirus disease 2019
Risk of bias

Authors Participants Predictors Outcome Analysis

Hospital admission in general population

DeCaprio et al® High Low High High

Diagnosis

Original review
Feng et al'® Low Unclear High High
Lopez-Rincon et al* Unclear Low Low High
Meng et al*? High Low High High
Song et al*° High Unclear Low High
Yu et al’* Unclear Unclear Unclear High

Update 1
Martin et al*! High High High High
Sun et al*° Low Low Unclear High
Wang et al*? Low Unclear Unclear High
Wu et al* High Unclear Low High
Zhou et al*® Unclear Low High High

Diagnostic imaging

Original review
Barstugan et al®* Unclear Unclear Unclear High
Chen et al®® High Unclear Low High*
Gozes et al?® Unclear Unclear High High
Jinetal' High Unclear Unclear Hight
Jin et al® High Unclear High High*
Li etal** Low Unclear Low High
Shan et al*® Unclear Unclear High Hight
Shi et al®*® High Unclear Low High
Wang et al?’ High Unclear Low High
Xu et al*’ High Unclear High High
Song et al”’? Unclear Unclear Low High
Zheng et al*® Unclear Unclear High High

Update 1
Abbas et al*’ High Unclear Unclear High
Apostolopoulos et al*® High Unclear High High
Bukhari et al*’ Unclear Unclear Unclear High
Chaganti et al*° High Unclear Low Unclear
Chowdhury et al*® High Unclear Unclear High
Fu etal®! High Unclear Unclear High
Gozes et al*? High Unclear Unclear High
Imran et al*’ High Unclear Unclear High*
Li etal® Low Low Unclear High
Lietal® High Unclear High High*
Hassanien et al*® Unclear Unclear Unclear High*
Tang et al”’ Unclear Unclear High High
Wang et al*’ Low Unclear Unclear High
Zhang et al® High Unclear High High
Zhou et al*’ High Unclear High High*

Prognosis

Original review
Bai et al’ Low Unclear Unclear High
Caramelo et al*® High High High High
Gong et al*? Low Unclear Unclear High
Luetal®’ Low Low Low High
Qi et al?®® Unclear Low Low High
Shi et al’’ High High High High
Xie et al” Low Low Low High
Yan et al?! Low High Low High
Yuan et al* Low High Low High

Update 1
Huang et al®® Unclear Unclear Unclear High
Pourhomayoun et al®! Low Low Unclear High
Sarkar et al** High High High High
Wang et al*’ Low Low Low High
Zeng et al®? Low Low Low High

PROBAST=prediction model risk of bias assessment tool.
*Risk of bias high owing to calibration not being evaluated. If this criterion is not taken into account, analysis risk

of bias would have been unclear.

tRisk of bias high owing to calibration not being evaluated. If this criterion is not taken into account, analysis risk

of bias would have been low.
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sample sizes (table 1), which led to an increased
risk of overfitting, particularly if complex modelling
strategies were used. Three studies did not report the
predictive performance of the developed model, and
three studies reported only the apparent performance
(the performance with exactly the same data used to
develop the model, without adjustment for optimism
owing to potential overfitting). Only five studies
assessed calibration,’ 12323 °% but the method to check
calibration was probably suboptimal in two studies.'?>?

Nine models were developed and externally
validated in the same study (in an independent
dataset, excluding random training test splits and
temporal splits).” 12 2> 32 42 43 51 5259 However, in six
of these models, the datasets used for the external
validation were not representative of the target
population.” 2 2* 42 5% (Consequently, predictive
performance could differ if the models are applied in
the targeted population. In one study, commonly used
performance statistics for prognosis (discrimination,
calibration) were not reported.** Gozes and colleagues’?
and Fu and colleagues® had satisfactory predictive
performance on an external validation set, but it is
unclear how the data for the external validation were
collected, and whether they are representative. Gong
and colleagues®? and Wang and colleagues™ obtained
satisfactory discrimination on probably unbiased but
small external validation datasets.

One study presented a small external validation
(27 participants) that reported satisfactory predictive
performance of a model originally developed for
avian influenza H7N9 pneumonia. However, patients
who had not recovered at the end of the study period
were excluded, which again led to a selection bias.??
Another study was a small scale external validation
study (78 participants) of an existing severity score for
lung computed tomography images with satisfactory
reported discrimination.””

Discussion

In this systematic review of all prediction models related
to the covid-19 pandemic, we identified and critically
appraised 51 studies that described 66 models. These
prediction models can be divided into three categories:
models for the general population to predict the risk of
developing covid-19 or being admitted to hospital for
covid-19; models to support the diagnosis of covid-19
in patients with suspected infection; and models to
support the prognostication of patients with covid-19.
All models reported good to excellent predictive
performance, but all were appraised to have high risk
of bias owing to a combination of poor reporting and
poor methodological conduct for participant selection,
predictor description, and statistical methods used. As
expected, in these early covid-19 related prediction
model studies, clinical data from patients with
covid-19 are still scarce and limited to data from China,
Italy, and international registries. With few exceptions,
the available sample sizes and number of events for
the outcomes of interest were limited. This is a well
known problem when building prediction models and
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Box 1: Availability of models in format for use in clinical practice

Sixteen studies presented their models in a format for use in clinical practice.
However, because all models were at high risk of bias, we do not recommend their
routine use before they are properly externally validated.

Models to predict risk of developing coronavirus disease 2019 (covid-19) or of hospital
admission for covid-19 in general population

The “COVID-19 Vulnerability Index” to detect hospital admission for covid-19
pneumonia from other respiratory infections (eg, pneumonia, influenza) is available
asan onlinetool 2%

Diagnostic models

The “COVID-19 diagnosis aid APP” is available on iOS and android devices to
diagnose covid-19 in asymptomatic patients and those with suspected disease.'?
The “suspected COVID-19 pneumonia Diagnosis Aid System” is available as an
online tool.’*®® The “COVID-19 early warning score” to detect covid-19 in adults is
available as a score chartin an article.> Anomogram (a graphical aid to calculate
risk) is available to diagnose covid-19 pneumonia based on imaging features,
epidemiological history, and white blood cell count.*> A decision tree to detect
severe disease for paediatric patients with confirmed covid-19 is also available in an
article.?* Additionally an online tool is available for diagnosis based on routine blood
examination data.*®

Diagnostic models based on images

Three artificial intelligence models to assist with diagnosis based on medicalimages
are available through web applications.??2¢ % One model is deployed in 16
hospitals, but the authors do not provide any usable tools in their study.>> One paper
includes a “total severity score” to classify patients based on images.>*

Prognostic models

To assist in the prognosis of mortality, a nomogram,” a decision tree,”* and a
computed tomography based scoring rule are available in the articles.?? Additionally
anomogram exists to predict progression to severe covid-19.> Amodel equation to
predict disease progression was made available in one paper.®
Overall, seven studies made their source code available on GitHu
Thirty one studies did notinclude any usable equation, format, or reference for use or
validation of their prediction model.

b 8113435384755

increases the risk of overfitting the model.”® A high risk
of bias implies that the performance of these models
in new samples will probably be worse than that
reported by the researchers. Therefore, the estimated
C indices, often close to 1 and indicating near perfect
discrimination, are probably optimistic. Eleven studies
carried out an external validation,’ 12 222> 32424351525459
and calibration was rarely assessed.

We reviewed 33 studies that used advanced
machine learning methodology on medical images to
diagnose covid-19, covid-19 related pneumonia, or to
assist in segmentation of lung images. The predictive
performance measures showed a high to almost perfect
ability to identify covid-19, although these models and
their evaluations also had a high risk of bias, notably
because of poor reporting and an artificial mix of
patients with and without covid-19. Therefore, we do
not recommend any of the 66 identified prediction
models to be used in practice.

Challenges and opportunities

The main aim of prediction models is to support medical
decision making. Therefore it is vital to identify a target
population in which predictions serve a clinical need,
and a representative dataset (preferably comprising

thebmj | BMJ2020;369:m1328 | doi: 10.1136/bmj.m1328

consecutive patients) on which the prediction
model can be developed and validated. This target
population must also be carefully described so that
the performance of the developed or validated model
can be appraised in context, and users know which
people the model applies to when making predictions.
Unfortunately, the included studies in our systematic
review often lacked an adequate description of the
study population, which leaves users of these models
in doubt about the models’ applicability. Although we
recognise that all studies were done under severe time
constraints caused by urgency, we recommend that
any studies currently in preprint and all future studies
should adhere to the TRIPOD reporting guideline®® to
improve the description of their study population and
their modelling choices. TRIPOD translations (eg, in
Chinese and Japanese) are also available at https://
www.tripod-statement.org.

A better description of the study population could
also help us understand the observed variability in the
reported outcomes across studies, such as covid-19
related mortality. The variability in the relative
frequencies of the predicted outcomes presents an
important challenge to the prediction modeller. A
prediction model applied in a setting with a different
relative frequency of the outcome might produce
predictions that are miscalibrated’! and might need
to be updated before it can safely be applied in that
new setting.'® Such an update might often be required
when prediction models are transported to different
healthcare systems, which requires data from patients
with covid-19 to be available from that system.

Covid-19 prediction problems will often not present
as a simple binary classification task. Complexities
in the data should be handled appropriately. For
example, a prediction horizon should be specified for
prognostic outcomes (eg, 30 day mortality). If study
participants have neither recovered nor died within
that time period, their data should not be excluded
from analysis, which most reviewed studies have done.
Instead, an appropriate time to event analysis should
be considered to allow for administrative censoring.'®
Censoring for other reasons, for instance because of
quick recovery and loss to follow-up of patients who
are no longer at risk of death from covid-19, could
necessitate analysis in a competing risk framework.”?

Instead of developing and updating predictions in
their local setting, individual participant data from
multiple countries and healthcare systems might
allow better understanding of the generalisability and
implementation of prediction models across different
settings and populations. This approach could greatly
improve the applicability and robustness of prediction
models in routine care.”>”’

The evidence base for the development and
validation of prediction models related to covid-19 will
quickly increase over the coming months. Together
with the increasing evidence from predictor finding
studies’®*®* and open peer review initiatives for
covid-19 related publications,® data registries® ® 858
are being set up. To maximise the new opportunities
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Box 2: Common causes of risk of bias in the reported prediction models

Models to predict risk of developing coronavirus disease 2019 (covid-19) or of hospital
admission for covid-19 in general population

These models were based on Medicare claims data, and used proxy outcomes to
predict hospital admission for covid-19 pneumonia, in the absence of patients with

covid-19®

Diagnostic models

Controls are probably not representative of the target population for a diagnostic
model (eg, controls for a screening model had viral pneumonia).'?*! ** The test used to

determine the outcome varied between participants,

1241 or one of the predictors (eg,

fever) was part of the outcome definition.*°

Diagnostic models based on medicalimaging

Generally, studies did not clearly report which patients had imaging during clinical
routine, and it was unclear whetherthe selection of controls was made from the target
population (that s, patients with suspected covid-19). Often studies did not clearly
report how regions of interest were annotated. Images were sometimes annotated

by only one scorerwithout quality control.? 2”47 >2® Careful description of model
specification and subsequent estimation were lacking, challenging the transparency
and reproducibility of the models. Every study used a different deep learning
architecture, some were established and others specifically designed, without
benchmarking the used architecture against others.

Prognostic models

Study participants were often excluded because they did not develop the outcome
atthe end of the study period but were still in follow-up (that is, they were in hospital

but had not recovered or died), yielding a highly selected study sample.
Additionally, only three studies accounted for censoring by using Cox regression

720212244
1942

or competing risk models.®? One study used the last available predictor measurement
from electronic health records (rather than measuring the predictorvalue at the time
when the model was intended for use).?

12

and to facilitate individual participant data meta-
analyses, the World Health Organization has recently
released a new data platform to encourage sharing
of anonymised covid-19 clinical data.®® To leverage
the full potential of these evolutions, international
and interdisciplinary collaboration in terms of data
acquisition and model building is crucial.

Study limitations

With new publications on covid-19 related prediction
models rapidly entering the medical literature, this
systematic review cannot be viewed as an up-to-
date list of all currently available covid-19 related
prediction models. Also, 45 of the studies we reviewed
were only available as preprints. These studies might
improve after peer review, when they enter the official
medical literature; we will reassess these peer reviewed
publications in future updates. We also found other
prediction models that are currently being used in
clinical practice but without scientific publications,”
and web risk calculators launched for use while the
scientific manuscript is still under review.’’ These
unpublished models naturally fall outside the scope of
this review of the literature.

Implications for practice

All 66 reviewed prediction models were found to have
a high risk of bias, and evidence from independent
external validation of the newly developed models is

currently lacking. However, the urgency of diagnostic
and prognostic models to assist in quick and efficient
triage of patients in the covid-19 pandemic might
encourage clinicians to implement prediction models
without sufficient documentation and validation.
Although we cannot let perfect be the enemy of good,
earlier studies have shown that models were of limited
use in the context of a pandemic,®” and they could even
cause more harm than good.”® Therefore, we cannot
recommend any model for use in practice at this point.

We anticipate that more covid-19 data at the
individual participant level will soon become
available. These data could be used to validate and
update currently available prediction models.'® For
example, one model predicted progression to severe
covid-19 within 15 days of admission to hospital with
promising discrimination when validated externally
on two small but unselected cohorts.?? A second model
to diagnose covid-19 pneumonia showed promising
discrimination at external validation.**> A third model
that used computed tomography based total severity
scores showed good discrimination between patients
with mild, common, and severe-critical disease.’*
Because reporting in these studies was insufficiently
detailed and the validation was in small Chinese
datasets, validation in larger, international datasets
is needed. Owing to differences between healthcare
systems (eg, Chinese and European) on when patients
are admitted to and discharged from hospital, and
testing criteria for patients with covid-19, we anticipate
most existing models will need to be updated (that is,
adjusted to the local setting).

When creating a new prediction model, we
recommend building on previous literature and
expert opinion to select predictors, rather than
selecting predictors in a purely data driven way'®;
this is especially important for datasets with limited
sample size.”* Based on the predictors included
in multiple models identified by our review, we
encourage researchers to consider incorporating
several candidate predictors: for diagnostic models,
these include age, body temperature or fever, signs
and symptoms (such as shortness of breath, headache,
shiver, sore throat, and fatigue), sex, blood pressure,
creatinine, basophils, neutrophils, lymphocytes,
alanine transaminase, albumin, platelets, eosinophils,
calcium, bilirubin, creatinine, epidemiological contact
history, and potentially features derived from lung
imaging. For prognostic models, these predictors
include age, features derived from computed
tomography scoring, lactate dehydrogenase, sex, C
reactive protein, comorbidity (including hypertension,
diabetes, cardiovascular disease, respiratory disease),
and lymphocyte count. By pointing to the most
important methodological challenges and issues in
design and reporting of the currently available models,
we hope to have provided a useful starting point for
further studies aiming to develop new models, or to
validate and update existing ones.

This living systematic review and first update has been
conducted in collaboration with the Cochrane Prognosis
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Methods Group. We will update this review and appraisal
continuously to provide up-to-date information for
healthcare decision makers and professionals as more
international research emerges over time.

Conclusion

Several diagnostic and prognostic models for covid-19
are currently available and they all report good to
excellent discriminative performance. However, these
models are all at high risk of bias, mainly because
of non-representative selection of control patients,
exclusion of patients who had not experienced the
event of interest by the end of the study, and model
overfitting. Therefore, their performance estimates
are probably optimistic and misleading. We do not
recommend any of the current prediction models to be
used in practice. Future studies aimed at developing
and validating diagnostic or prognostic models for
covid-19 should explicitly address the concerns
raised. Sharing data and expertise for development,
validation, and updating of covid-19 related prediction
models is urgently needed.
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