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Abstract
This paper is intended to introduce a filtration analysis of sampled maps based on
persistent homology, providing a newmethod for reconstructing the underlying maps.
The key idea is to extend the definition of homology inducedmaps of correspondences
using the framework of quiver representations. Our definition of homology induced
maps is given by most persistent direct summands of representations. The direct sum-
mands uniquely determine a persistent homology.Weprovide stability theorems of this
process and show that the output persistent homology of the sampled map is the same
as that of the underlying map if the sample is sufficiently dense. Compared to exist-
ing methods using eigenspace functors, our filtration analysis represents an important
advantage that no prior information related to the eigenvalues of the underlying map
is required. Some numerical examples are given to demonstrate the effectiveness of
our method.
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Fig. 1 Graph Gr( f ) of f and the
graph of the sampled map

X

Y Gr(f )

{ (s, f (s)) | s ∈ S }

Fig. 2 Both spaces are divided
into grids and elicit a
correspondence F , which
approximates the graph Gr( f )

X

Y

1 Introduction

One can consider the following problem.

Problem 1.1 Let X and Y be topological spaces, and let f : X → Y be a continuous
map. If we know only X , Y , and sampling data f �S , which is a restriction of f on a
finite subset S ⊂ X , then can we retrieve any information about the homology induced
map f∗ : HX → HY ?

The map f �S is called a sampled map of f . This paper is motivated by Harker
et al. (2016), who suggested the following analysis for sampled maps (Fig. 1). A
grid X of X is a finite collection of subsets of X with disjoint interiors such that⋃X := ⋃

X ′∈X X ′ = X . First, we divide the topological spaces X and Y into grids
X and Y and let F be the union of regions with elements of the sample Gr( f �S) :=
{(s, f (s)) | s ∈ S}. That is,

F := {(x, y) ∈ X × Y | x ∈ ∃X ′ ∈ X , y ∈ ∃Y ′ ∈ Y, (X ′ × Y ′) ∩ Gr( f �S) 	= ∅},

the purple regions in Fig. 2. The set F is an approximation of the graph Gr( f ) from
the sampled map by this subspace, which is called a correspondence.

Definition 1.2 A correspondence F from X to Y is a subspace of X × Y .

Definition 1.3 For a correspondence F , let p : F → X and q : F → Y be canonical
projections, and let p∗ : HF → HX and q∗ : HF → HY be their homology induced
maps. If p∗ and q∗ satisfy two properties
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The persistent homology of a sampled map: from a viewpoint… 181

• Im p∗ = HX (homologically complete)
• q∗(Ker p∗) = 0 (homologically consistent),

then the induced map of F defined as F∗ := q∗ ◦ p−1∗ : HX → HY is well-defined.

The graph Gr( f ) of f is a correspondence. Because f is continuous, p : Gr( f ) →
X is a homeomorphism. As a consequence, p∗ and q∗ for Gr( f ) satisfy homolog-
ical completeness and homological consistency. Therefore Gr( f )∗ is well-defined.
We remark that this induced map Gr( f )∗ coincides with f∗. The following theorem
guarantees that F∗ restores f∗ when the grid is fine and the sample is sufficiently dense.

Theorem 1.4 (Harker et al. 2016, Theorem 3.10) If a correspondence F satisfies
Gr( f ) ⊂ F and is homologically consistent, then F∗ is well-defined and f∗ = F∗.

In Sect. 3, we give a new definition of induced maps of correspondences within the
quiver representations framework. It might be readily apparent that the indecompos-
able decompositions of quiver representations give us an assignment among the bases
of HX , HF , and HY , which defines the induced map from HX to HY .

Edelsbrunner et al. (2015) reported a means of analyzing the eigenspaces of the
homology induced map of a self-map (discrete dynamical system). For this analysis,
the authors construct a filtration of simplicial maps from the sampled map and build its
persistent homology by application of the homology functor and eigenspace functors.
This construction of the filtration and the new definition of homology induced maps
provide a further technique that enables another persistence analysis of sampled maps,
shown in Sect. 4. Specifically, the bases’ assignment can compress the three persis-
tent homologies generated by the finite sets S, f �S , and f (S), yielding a persistent
homology that describes the persistence of the topological mapping from the domain
to the image of the induced map f∗. Moreover, in Sect. 4.2, we apply this persistence
analysis to the above gridded setting.

The main theorems of this paper are stability theorems for these processes, Theo-
rems 5.6 and 5.8 in Sect. 5, which state that these mappings from the input (sampled
maps) to output (persistent homology or persistence diagrams) are non-expanding
maps. The key idea for the proof is functoriality of our analysis and is applied to 2-D
persistence modules in Sect. 6.

Finally, we present some numerical results in Sect. 7 and examples of failed recon-
structions in Sect. 8.

2 Preliminaries

In this section, we introduce quiver representations andmatrix notation for morphisms
between An type representations. For more details, we refer the reader respectively to
Assem et al. (2006) and Asashiba et al. (2019).

2.1 Quivers and their representations

Throughout this paper, scalars of vector spaces and coefficient rings of homology
groups are a fixed field K . A quiver Q = (Q0, Q1, s, t) (or simply (Q0, Q1)) is a
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182 H. Takeuchi

directed graphwith a set of vertices Q0, a set of arrows Q1, andmorphisms s, t : Q1 →
Q0 identifying the source and the target vertex of an arrow.An arrowα ∈ Q1 is denoted
byα : s(α) → t(α). A representation of a quiver Q, denotedM = (Ma, ϕα)a∈Q0,α∈Q1

(or simply (Ma, ϕα) or (M, ϕ)), is a collection of a (finite-dimensional) vector space
Ma for each vertex a ∈ Q0 and a linear map ϕα : Ma → Mb for each arrow α : a →
b ∈ Q1.

A morphism from M = (Ma, ϕα) to M ′ = (M ′
a, ϕ

′
α) is defined as

f := { fa : Ma → M ′
a | a ∈ Q0} : M → M ′

with commutativity

∀α : a → b ∈ Q1,

Ma Mb

M ′
a M ′

b

ϕα

fa fb
ϕ′

α

.

The composition of morphisms f = { fa} : M → M ′ and g = {ga} : M ′ → M ′′ is
g f = {ga fa} : M → M ′′.

These definitions determine an additive category of representations rep(Q). Specif-
ically, rep(Q) has a zero representation, isomorphisms of representations, and direct
sums of representations. One can see the concrete construction of these in Assem et al.
(2006).

A representation M is indecomposable if M ∼= N ⊕ N ′ implies N = 0 or N ′ = 0.
From the Krull–Remak–Schmidt theorem, every representation M can be uniquely
decomposed into a direct sum of indecomposables M ∼= N1 ⊕ · · · ⊕ Ns , unique up to
isomorphism and permutations.

A quiver Q is of finite type if the number of distinct isomorphism classes of inde-
composables is finite. It is of infinite type otherwise.

An(τn) type quivers (or simply An type quivers) are a class of quivers with the
following shape:

An(τn) : 1◦ 2◦ · · · n◦
where ←→ denotes a forward arrow −→ or backward arrow ←−, and where τn is a
sequence of n−1 symbols f and b determining the arrow orientation. From Gabriel’s
theorem (Gabriel 1972), every An type representation

M : M1 M2 · · · Mn

can be decomposed uniquely into a direct sum of indecomposable interval represen-
tations as

M ∼=
⊕

1≤b≤d≤n

I[b, d]mb,d (mb,d ∈ Z≥0: multiplicity),
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The persistent homology of a sampled map: from a viewpoint… 183

I[b, d] : 0 ←→ · · · ←→ 0 ←→ b-th
K

idK←→ K
idK←→ · · · idK←→ d-th

K ←→ 0 ←→ · · · ←→ 0.

In topological data analysis, persistent homology plays a central role. The homology
of a filtration of simplicial complexes

HX : HX1 → HX2 → · · · → HXn

can be regarded as a representation of an An( f f · · · f ) type quiver in the framework of
quiver representations. Each interval representation I[b, d] corresponds to a generator
of a homology group that is born at HXb and which dies at HXd+1. Therefore, the
length d − b is called its lifetime or persistence. The persistence diagram is a multiset

DM = {(b, d) | 1 ≤ b ≤ d ≤ n, (b, d) has multiplicity mb,d},

determined by the decomposition. We illustrate it by plotting it on a plane. This
description provides an overview of the generators of all homology groups. Therefore,
this approach is used frequently for applications of persistent homology.

The framework of quiver representations has extended persistent homology to gen-
eral representations of quivers. We designate representations of quivers as persistence
modules. Zigzag persistence modules (Carlsson and de Silva 2010) are examples of
the extension, enabling persistence analysis of time series data.

Consider deformations of topological spaces (X1, . . . , XT ), a sequence of topo-
logical spaces. The zigzag persistence of the sequence is the representation of an
A2T−1( f b f b · · · f b) type quiver of

H(X1) → H(X1 ∪ X2) ← H(X2) → · · · → H(XT−1 ∪ XT ) ← HXT

composed by the unions of neighboring spaces and their canonical inclusions. Decom-
position of the zigzag persistence module as a representation yields a persistence
diagram again, where each interval captures the persistence of a homology generator
in the deformations of spaces.

2.2 Matrix notation for morphisms in rep(An)

Asashiba et al. (2019) established a new matrix notation for morphisms in rep(An)

in the following way. This notation will provide a clear perspective when arguing the
well-definedness of persistence analysis in Sect. 4.

Definition 2.1 (Asashiba et al. 2019, Definition 3) The arrow category arr(rep(Q)) of
the category rep(Q) is a category with objects that are all morphisms in rep(Q),
where morphisms are defined as explained below. For two objects f : M → N
and f ′ : M ′ → N ′ in this category, a morphism from f to g is a pair (FM , FN )

of morphisms FM : M → M ′ and FN : N → N ′ satisfying FN f = f ′FM . The com-
position of morphisms (FM , FN ) : f → f ′ and (GM ,GN ) : f ′ → f ′′ is defined as
(GMFM ,GN FN ) : f → f ′′.
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184 H. Takeuchi

We remark that every morphism ϕ : V → W between representations of rep(An)

is isomorphic to a morphism between direct sums of interval representations as

Φ := ηWϕη−1
V :

⊕

1≤b≤d≤n

I[b, d]mb,d →
⊕

1≤b≤d≤n

I[b, d]m′
b,d

in arr(rep(An)), where

ηV : V ∼=
⊕

1≤b≤d≤n

I[b, d]mb,d and ηW : W ∼=
⊕

1≤b≤d≤n

I[b, d]m′
b,d

are indecomposable decompositions. By the following lemma, the morphism Φ can
be expressed in a matrix form.

Definition 2.2 (Asashiba et al. 2019, Definition 4) The relation � is defined on the set
of interval representations of An(τn), {I[b, d] | 1 ≤ b ≤ d ≤ n}, by setting I[a, b] �
I[c, d] if and only if Hom(I[a, b], I[c, d]) is nonzero. We write I[a, b] � I[c, d] if
I[a, b] � I[c, d] and I[a, b] 	= I[c, d].
Lemma 2.3 (Asashiba et al. 2019, Lemma 1) Let I[a, b] and I[c, d] be interval repre-
sentations of An(τn).

1. The dimension of Hom(I[a, b], I[c, d]) as a K -vector space is either 0 or 1.
2. A K -vector space basis { f c:da:b } can be chosen for each Hom(I[a, b], I[c, d]) such

that if I[a, b] � I[c, d], I[c, d] � I[e, f ] and I[a, b] � I[e, f ], then

f e: fa:b = f e: fc:d f c:da:b .

The notation [a, b] := {a, a + 1, . . . , b} is used to denote the interval of integers i
with a ≤ i ≤ b. A candidate for the basis is

( f c:da:b )i =
{
idK (i ∈ [a, b] ∩ [c, d])
0 (otherwise),

for the case I[a, b] � I[c, d]. For convenience, we define f c:da:b = 0 for the case
I[a, b] 	� I[c, d]. We fix this basis throughout this paper.

The morphism Φ can be written in block matrix form as

Φ =
[
Φc:d

a:b
]
,

where each block matrix entry Φc:d
a:b : I[a, b]ma,b → I[c, d]m′

c,d is the composition of
the canonical inclusion ι with the canonical projection π as

I[a, b]ma,b
⊕

1≤a≤b≤n
I[a, b]ma,b

⊕

1≤c≤d≤n
I[c, d]m′

c,d I[c, d]m′
c,d .

ι Φ π
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Similarly, each block Φc:d
a:b can be written in matrix form with the entries in

Hom(I[a, b], I[c, d]) as

Φc:d
a:b =

[
φi
j

]
(φi

j ∈ Hom(I[a, b], I[c, d]), 1 ≤ j ≤ ma,b, 1 ≤ i ≤ m′
c,d).

For each relation I[a, b] � I[c, d], according to Lemma 2.3 and factoring out f c:da:b
from each φi

j , one can obtain φi
j = μi

j f
c:d
a:b for some μi

j ∈ K . Similarly, factoring out

f c:da:b from each Φc:d
a:b , one obtains

Φc:d
a:b = Mc:d

a:b f c:da:b ,

where each Mc:d
a:b is a mc,d × ma,b matrix with the entries in K .

Definition 2.4 Letting ϕ be a morphism in rep(An), the block matrix form Φ(ϕ) of ϕ

is
Φ(ϕ) =

[
Φc:d

a:b
]

=
[
Mc:d

a:b f c:da:b
]
.

Asashiba et al. (2019) shows that isomorphisms in the arrow category arr(rep(An))

correspond to row and column operations in block matrix form. These operations
are performed by matrix multiplication with the same restriction, i.e., the block of
I[a, b] 	� I[c, d] must always be zero. The column and row operations are almost
identical to those of K -matrices. However, because of the restriction, addition from a
block to certain blocks is not permissible.

We can discuss column operations next. We define a morphism Φ ′ such that the
following diagram commutes:

⊕
1≤b≤d≤n I[b, d]mb,d

⊕
1≤b≤d≤n I[b, d]m′

b,d

⊕
1≤b≤d≤n I[b, d]mb,d

Φ

Θ ∼= Φ ′ .

Therein, Θ is an isomorphism: Φ and Φ ′ are isomorphic in the arrow category.
Observing that the domain and codomain of Θ are direct summations, then Θ can
also be written in a block matrix form

[
Cc:d
a:b f

c:d
a:b
]
by an argument similar to that made

for Φ. The multiplication ΦΘ denotes column operations on Φ. Its block at column
a : b and row c : d is

[ΦΘ]c:da:b =
∑

I[a,b]�I[e, f ]�I[c,d]

(
Mc:d

e: f f
c:d
e: f
) (

Ce: f
a:b f e: fa:b

)

=
⎛

⎝
∑

I[a,b]�I[e, f ]�I[c,d]
Mc:d

e: f C
e: f
a:b

⎞

⎠ f c:da:b .

The difference from the usual column operations on K -matrices is the part not only
of the morphism f c:da:b but also of the summation

∑
I[a,b]�I[e, f ]�I[c,d]. The existence
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186 H. Takeuchi

of the morphism f c:da:b merely means that the block with I[a, b] 	� I[c, d] must always
be zero even when added from the other part. The summation

∑
I[a,b]�I[e, f ]�I[c,d]

might be somewhat more complicated. It means that not all the column operations are
permissible: only the following cases.

– Elementary column operations (switching, multiplication, and addition) within the
same interval are always permissible.

– Column addition to I[a, b] from another interval I[e, f ] with relation I[a, b] �
I[e, f ] is permissible.

Similar properties of permissibility hold for row operations.

– Elementary row operations (switching, multiplication, and addition) within the
same interval are always permissible.

– Row addition to I[a, b] from another interval I[e, f ]with relation I[e, f ] � I[a, b]
is permissible.

The following is an example of permissibility in the case of arr(rep(A3(b f ))).

Example 2.5 The following matrix is the block matrix form of arr(rep(A3(b f ))), for
which we use the symbols a:b to denote the rows and columns corresponding to
the direct summands I[a, b]ma,b . Each block Mc:d

a:b f c:da:b is abbreviated to ∗ if f c:da:b 	=
0 and ∅ otherwise. The prohibited additions for columns and rows, written as red
arrows, correspond to the positions of the zero blocks ∅. Because the column addition
from lower to upper blocks and row addition from left to right blocks are always
prohibited, we write down only the prohibited column additions from upper to lower,
and prohibited row addition from right to left. A notable fact is that either f 1:3a:b or f a:b

1:3
is 0 for arbitrary (a, b) 	= (1, 3). In other words, I[1, 3] � I[a, b] � I[1, 3] if and
only if (a, b) = (1, 3). We refer to this fact in the proof of Lemma 4.4.

∗ ∅ ∅ ∅ ∅ ∅
∅ ∗ ∅ ∅ ∅ ∅
∗ ∗ ∗ ∅ ∅ ∅
∗ ∅ ∗ ∗ ∅ ∅
∅ ∗ ∗ ∅ ∗ ∅
∅ ∅ ∗ ∗ ∗ ∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3:3
1:1
1:3
2:3
1:2
2:2

3:3 1:1 1:3 2:3 1:2 2:2

3 Inducedmaps via quiver representations

For discussion presented in this section, we redefine the induced map of a corre-
spondence using quiver representations. Let H = H(−; K ) be the homology functor
with coefficients in K . As a representation of an A3(b f ) type quiver, the diagram
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The persistent homology of a sampled map: from a viewpoint… 187

Fig. 3 Overview of our
definition of the induced map F∗
of a correspondence. The
isomorphism from the first row
to the second row is an
indecomposable decomposition.
The inclusion map on the
right-hand side is the canonical
injection of the vector space

F∗

HX HF HY

K dimHX K dimHF K dimHY

Km1,3 Km1,3 Km1,3

p∗

∼=hX

q∗

∼= ∼=hY

πX

qK

πF ιY

HX
p∗← HF

q∗→ HY induced by a correspondence F ⊂ X × Y can be decomposed
into a direct sum of interval representations as

h : (HX
p∗← HF

q∗→ HY )
∼=→

⊕

1≤b≤d≤3

I[b, d]mb,d .

This indecomposable decomposition can be written as the following diagram:

HX HF HY

⊕

1≤b≤d≤3
I[b, d]mb,d = K dim HX K dim HF K dim HY .

hX ∼=

p∗ q∗

∼= hY ∼=
qK

The choice of bases gives us a relation between bases of HX and HY , which can be
regarded as a map from HX to HY . For example, an interval representation I[1, 2]
assigns an element of the standard basis of K dim HX to 0 in K dim HY . Therefore, non-

trivial assignment occurs onlywith the interval representations I[1, 3] = (K
idK← K

idK→
K ). By regarding the other interval representations as 0 maps from HX to HY , one
can define a map ιY ◦ πX : K dim HX → K dim HY factoring the interval I[1, 3] as

⊕

1≤b≤d≤3
I[b, d]mb,d = K dim HX K dim HF K dim HY

I[1, 3]m1,3 = Km1,3 Km1,3 Km1,3,

πX

qK

πF ιY

where the arrows� are the canonical projections of the vector spaces. The morphism
ιY is the canonical injection of the vector space. Composing the path of morphisms,
one can define the induced map of F through h as

F∗ := h−1
Y ◦ ιY ◦ πX ◦ hX : HX → HY .

This definition requires no two assumptions described in Definition 1.3. Although
our definition depends on the choice of isomorphism of indecomposable decomposi-
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188 H. Takeuchi

tion, when the two assumptions are satisfied, our definition coincides with the original
definition q∗ ◦ p−1∗ by the following theorem.

Theorem 3.1 Define F∗ := h−1
Y ◦ ιY ◦ πX ◦ hX . If F is homologically complete and

homologically consistent, then F∗ = q∗ ◦ p−1∗ .

Proof The claim to prove is

q∗ ◦ p−1∗ = h−1
Y ◦ ιY ◦ πX ◦ hX .

Since the morphism p∗ is surjective, this is equivalent to

q∗ ◦ p−1∗ ◦ p∗ = h−1
Y ◦ ιY ◦ πX ◦ hX ◦ p∗.

In addition, q∗ = q∗◦ p−1∗ ◦ p∗ because of the homological consistency q∗(Ker(p∗)) =
0. Therefore, what must be proven is

q∗ = h−1
Y ◦ ιY ◦ πX ◦ hX ◦ p∗.

By chasing the diagram of Fig. 3, this equation results in

qK = ιY ◦ πF .

The standard basis of K dim HF corresponds to the standard bases of the four intervals
I[2, 3], I[2, 2], I[1, 2], and I[1, 3]. Here we remark that the homological consistency
q∗(Ker(p∗)) = 0 is equivalent tom2,3 = 0. That is to say that I[2, 3] does not exist as
a direct summand. Moreover, the basis corresponding to I[2, 2] and I[1, 2] is mapped
to 0 by both qK and ιY ◦πF . The definition clarifies that qK (a) = ιY ◦πF (a) holds for
each element a of the standard basis of K dim HF corresponding to the standard bases
of I[1, 3]. ��

4 Persistence analysis for sampledmaps

The ability to decompose and emphasize specifically the interval representation I[1, 3]
provides persistence analysis for sampled maps. One can consider the following prob-
lem, which is similar to Problem 1.1 but which requires additional assumptions of
embeddings.

Problem 4.1 Let f : X → Y be a continuous map for X ,Y ⊂ R
n . If X , Y , and

f are unknown, then we know only a sampled map f �S : S → f (S), which is a
restriction of f on a finite subset S ⊂ X , then can we retrieve any information about
the homology-induced map f∗ : HX → HY ?

It is noteworthy that sampling S is a point cloud capturing some topological features
of X when S is sufficiently dense. Originally, after Edelsbrunner et al. (2015) set
this problem with the additional assumption that X = Y , they constructed a persistent
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The persistent homology of a sampled map: from a viewpoint… 189

homology of eigenspaces of the sampledmap to analyze the eigenspaces of the discrete
dynamical system f .

In this section, we explain how to construct another persistent homology of a sam-
pled map, which captures the generator of HX and H f (X) connected by f . We can
use filtrations of two types in Sects. 4.1 and 4.2. The former filtration is generated
using simplicial complexes. Then we can prove a stability theorem (Theorem 5.6)
of this construction in Sect. 5. The latter filtration, which is generated using grids as
in Sect. 3, also derives stability (Theorem 5.8). The stability theorem for the latter,
however, requires more assumptions than for the former. For that reason, we explain
it in this order.

4.1 Construction using simplicial complexes

First, we generate a filtration of abstract simplicial complexes of S as

C1 ⊂ C2 ⊂ · · · ⊂ C�,

each simplex of which has elements of S as its vertices, so that the filtration can
capture the topology of the underlying space X . For example, Čech complexes or
Vietoris–Rips complexes (Edelsbrunner and Harer 2010) are available.

Definition 4.2 Let P be a point cloud in R
n . The Čech complex Γr for P with a radius

r is the abstract simplicial complex defined as

Γr = {σ ⊂ P |
⋂

p∈σ

B(p; r) 	= ∅},

where B(p; r) is the closed ball of center p and radius r . Letting dRn be the Euclidean
metric on R

n , then the Vietoris–Rips complex Vr for P with a radius r is the abstract
simplicial complex defined as

Vr = {σ ⊂ P | ∀p1, p2 ∈ σ, dRn (p1, p2) ≤ 2r}.

Similarly, we generate a filtration of abstract simplicial complexes

D1 ⊂ D2 ⊂ · · · ⊂ D�

for f (S).
Using these filtrations, we attempt to build a filtration of maps from f �S to ana-

lyze the persistence of the original map f , in analogy with the classical technique
of persistent homology. Although we expect the sampled map to derive a simpli-
cial map Ci → Di on each i-th filter, in general, they can derive only a simplicial
partial map1 fi : Ci � Di . For a simplex {s1, . . . , sd} ∈ Ci , it is not assumed that

1 A correspondence F from X to Y is a partial map if F(x) is a singleton or empty set for all x ∈ X , where
F(x) := {y ∈ Y | (x, y) ∈ F}.
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190 H. Takeuchi

{ f (s1), . . . , f (sd)} ∈ Di . Therefore, the conventional technique computing topolog-
ical persistence for simplicial maps (Dey et al. 2014) is not available in this setup.

We remark that the graph Gr( f �S) = {(s, f (s)) ∈ R
n×R

n | s ∈ S} of the sampled
map is a point cloud in R

n ×R
n . Let us define the i-th abstract simplicial complex Gi

of Gr( f �S) as

Gi := {{(s1, f (s1)), . . . , (sd , f (sd))} ⊂ Gr( f �S) | {s1, . . . , sd} ∈ Ci ,

{ f (s1), . . . , f (sd)} ∈ Di
}
. (1)

One can show that {Gi } forms a filtration. The sequence of the partial maps can be

regarded as a sequence {Ci
pi← Gi

qi→ Di } of pairs of canonical projections (pi , qi ).
This sequence of pairs constitutes a filtration induced by the inclusion maps of the
filtration

...
...

...

fi+1 : Ci+1 Gi+1 Di+1

fi : Ci Gi Di

...
...

...

pi+1 qi+1

pi qi

.

By applying the homology functor to the sequence, one can obtain a sequence of
representations of the A3(b f ) type quiver as

...
...

...

fi+1∗ : HCi+1 HGi+1 HDi+1

fi ∗ : HCi HGi HDi

...
...

...

pi+1∗ qi+1∗

pi ∗ qi ∗
. (2)

Remark 4.3 Earlier research (Edelsbrunner et al. 2015) used domains of partial maps
to construct a similar filtration. For a partial map fi : Ci � Di

2, the domain dom fi
is defined as

dom fi := {{s1, . . . , sd} ∈ Ci | { f (s1), . . . , f (sd)} ∈ Di }.
2 To be accurate, the earlier research considers only the case in which Ci = Di to analyze self-maps.
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Using the inclusion ιi : dom fi ↪→ Ci and the simplicial map f ′
i : dom fi → Di

induced by the map f on dom fi , the domains induce the representation

...
...

...

fi+1∗ : HCi+1 H dom fi+1 HDi+1

fi ∗ : HCi H dom fi H Di

...
...

...

ιi+1∗ f ′
i+1∗

ιi ∗ f ′
i ∗

(3)

similarly. By the definitions of Gi and dom fi , it is readily apparent that the induced
representation (3) is isomorphic to our representation (2). For consistency from the
viewpoint of graphs and correspondences, we adopt the simplicial complexes {Gi }.

Here, decomposing each filter HCi ← HGi → HDi as a representation to the

intervals
⊕

1≤b≤d≤3 I[b, d]mi
b,d , the representation (2) is isomorphic to

Λ :
⊕

1≤b≤d≤3

I[b, d]m1
b,d →

⊕

1≤b≤d≤3

I[b, d]m2
b,d → · · · →

⊕

1≤b≤d≤3

I[b, d]m�
b,d .

Projecting to I[1, 3] again yields a sequence of subrepresentations as

Λ[1, 3] : I[1, 3]m1
1,3 → I[1, 3]m2

1,3 → · · · → I[1, 3]m�
1,3 .

Onemust carefully constructΛ[1, 3].Wewrite canonical projections and injections
defined by direct sum respectively as

πi :
⊕

1≤b≤d≤3

I[b, d]mi
b,d → I[1, 3]mi

1,3

ιi : I[1, 3]mi
1,3 →

⊕

1≤b≤d≤3

I[b, d]mi
b,d ,

and the morphisms in Λ as

Φi :
⊕

1≤b≤d≤3

I[b, d]mi
b,d →

⊕

1≤b≤d≤3

I[b, d]mi+1
b,d .

Then, the morphisms in Λ[1, 3]

Φi
1:3
1:3 : I[1, 3]mi

1,3 → I[1, 3]mi+1
1,3
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are defined as
Φi

1:3
1:3 := πi+1 ◦ Φi ◦ ιi ,

which is the submatrix at (1:3, 1:3) in a block matrix form of Φi .
At a glance, this construction seems natural, but “π : Λ → Λ[1, 3]” is not a mor-

phism in the representation category. In other words,

⊕
1≤b≤d≤3 I[b, d]mi

b,d
⊕

1≤b≤d≤3 I[b, d]mi+1
b,d

I[1, 3]mi
1,3 I[1, 3]mi+1

1,3

Φi

πi πi+1

Φi
1:3
1:3

does not always commute. Consequently, the choice of isomorphism of indecompos-
able decomposition on each filter HCi ← HGi → HDi might make a difference in
the output persistence diagram. To make sense of this analysis, the output persistence
diagram should be determined uniquely and independently of the choice of isomor-
phism. Theorem 4.6 guarantees uniqueness and independence. Before the theorem
can be stated, two lemmas must be introduced.

The restriction to the block (1:3, 1:3) has the following functoriality.

Lemma 4.4 Let

Θ :
⊕

1≤b≤d≤3

I[b, d]m1
b,d →

⊕

1≤b≤d≤3

I[b, d]m2
b,d

and
Ψ :

⊕

1≤b≤d≤3

I[b, d]m2
b,d →

⊕

1≤b≤d≤3

I[b, d]m3
b,d

be block matrix forms, then
[Ψ Θ]1:31:3 = Ψ 1:3

1:3 Θ1:3
1:3 .

Proof Let the corresponding scalar matrix symbols ofΘ andΨ respectively be M and
N . The block matrix of Ψ Θ at (1:3, 1:3) is

[Ψ Θ]1:31:3 =
∑

I[1,3]�I[a,b]�I[1,3]
(N 1:3

a:b f 1:3a:b )(Ma:b
1:3 f a:b

1:3 )

=
⎛

⎝
∑

I[1,3]�I[a,b]�I[1,3]
N 1:3
a:bMa:b

1:3

⎞

⎠ f 1:31:3 ,

but only I[1, 3] can be a candidate for the interval I[a, b] as described in Example 2.5.
Therefore,

[Ψ Θ]1:31:3 = N 1:3
1:3M1:3

1:3 f 1:31:3
= (N 1:3

1:3 f 1:31:3 )(M1:3
1:3 f 1:31:3 )

= Ψ 1:3
1:3 Θ1:3

1:3 .

��
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Lemma 4.5 Let Θ : ⊕1≤b≤d≤3 I[b, d]m1
b,d → ⊕

1≤b≤d≤3 I[b, d]m2
b,d be the block

matrix form of an isomorphism. Then Θ1:3
1:3 is an isomorphism.

Proof Let Ψ be the inverse of Θ . By Lemma 4.4,

[Ψ Θ]1:31:3 = Ψ 1:3
1:3 Θ1:3

1:3 .

The left-hand side is the block (1:3, 1:3) of the identity map, which is the identity

map on I[1, 3]m1
1,3 . Similarly, Θ1:3

1:3Ψ 1:3
1:3 is the identity map on I[1, 3]m2

1,3 . Therefore,
it follows that Θ1:3

1:3 is isomorphic. ��
Theorem 4.6 The isomorphism class of

Φi
1:3
1:3 : I[1, 3]mi

1,3 → I[1, 3]mi+1
1,3

is determined uniquely and independently of the choice of the bases of

Φi :
⊕

1≤b≤d≤3

I[b, d]mi
b,d →

⊕

1≤b≤d≤3

I[b, d]mi+1
b,d .

Proof Let Ψi be a morphism isomorphic to Φi , which is written as a commutative
diagram of

⊕
1≤b≤d≤n I[b, d]mb,d

⊕
1≤b≤d≤n I[b, d]m′

b,d

⊕
1≤b≤d≤n I[b, d]mb,d

⊕
1≤b≤d≤n I[b, d]m′

b,d

Φi

C ∼=
Ψi

R ∼=

for some isomorphisms C and R. That is, Φi = RΨiC ; by Lemma 4.4, applying the
restriction yields

Φi
1:3
1:3 = [RΨiC]1:31:3

= R1:3
1:3Ψi

1:3
1:3C1:3

1:3 .

By Lemma 4.5, R1:3
1:3 and C1:3

1:3 are isomorphisms. Therefore, Φi
1:3
1:3 is isomorphic to

Ψi
1:3
1:3. ��

Because consideration of I[1, 3] = (K
idK← K

idK→ K ) as K omits no information,
the sequence Λ[1, 3] can be regarded as a sequence of vector spaces

Km1
1,3 → Km2

1,3 → · · · → Km�
1,3, (4)

which is an A� type representation.
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Definition 4.7 For a sampled map f �S , persistent homology of the sampled map f �S
is the representation (4).

Decomposing the persistent homology into intervals, one can draw a persistence dia-
gram that shows us the length of the generators of homology in both filtrations, which
are assigned by f . Simultaneously, we have constructed the filtration of complexes
approximating unknown spaces X and f (X).

Comparisonwith earlier research This persistence diagram provides no information
about eigenvectors, unlike that provided by Edelsbrunner et al. (2015). Nevertheless,
it is widely applicable. First, because our method uses no eigenspace functor, we
need not require both sides’ spaces to be the same. Therefore, even in the case of
sampled dynamical systems X = Y , similarly to earlier research, we can weaken the
assumption f �S : S → S to f �S : S → f (S) and take another filtration on f (S).
(If f (S) is insufficiently dense for sampling X , then we can take S ∪ f (S) instead.)
Moreover, because the previous method must set an eigenvalue before analysis, they
must predict some behavior of f in advance. By contrast, our method requires no prior
information. The numerical experiments in Sect. 7 emphasize this difference.

4.2 Construction using a grid

The construction of the persistent homology discussed in Sect. 4.1 is applicable
to the filtrations generated by expanding a graph. This perspective provides a per-
sistent approach to correspondences of sampled maps constructed by dividing the
spaces (Harker et al. 2016). Presuming that spaces X and Y are embedded into
Euclidean space R

n , and that both R
n are divided by n-dimensional ε-cubes, then

{[a1ε, (a1 + 1)ε] × · · · × [anε, (an + 1)ε] | a1, . . . , an ∈ Z}.

To distinguish the two divisions, we express this set as Xε for the X -side Euclidean
space and Yε for Y -side. Letting f �S be a sampled map of a continuous map f : X →
Y , and letting p and q be the respective canonical projections ofR

n ×R
n to the X -side

and Y -side Euclidean spaces, then we generate a correspondence

F
f �S

ε := {
(x, y) ∈ R

n × R
n | x ∈ ∃X ′ ∈ Xε,

y ∈ ∃Y ′ ∈ Yε, (X
′ × Y ′) ∩ Gr( f �S) 	= ∅},

where Gr( f �S) := {(s, f (s)) | s ∈ S} (see Fig. 2).
We use the L∞ metric defined as explained below.

Definition 4.8 The L∞ metric d∞ on R
n (or R

n × R
n) is defined as

d∞(x, y) := max
i

(|xi − yi |),

for all x = (xi ), y = (yi ) ∈ R
n (or R

n × R
n , respectively).
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It is noteworthy that we abuse the same symbol d∞ for both spaces R
n and R

n ×
R
n . To construct a filtration along with the grids, one can define the filtration of a

correspondence as

Fiε := (F
f �S

ε )iε = {r ∈ R
n × R

n | d∞(r , F
f �S

ε ) ≤ iε} (i ∈ Z≥1),

and morphisms piε := p�Fiε and qiε := q�Fiε . Here we restrict i = 1, . . . , � for
sufficiently large �. Consequently, we have a similar diagram to that presented before,
as

...
...

...

p(F(i+1)ε) F(i+1)ε q(F(i+1)ε)

p(Fiε) Fiε q(Fiε)

...
...

...

p(i+1)ε q(i+1)ε

piε qiε
,

thereby allowing us to obtain the filtrations {p(Fiε)} and {q(Fiε)}, capturing the
persistent topological features of X and f (X). Again, the homology functor derives the
sequence of morphisms in rep(A3(b f )). Therefore, we can execute the same analysis
as before, transforming it into block matrix form, restricting it to the blocks (1:3, 1:3),
identifying it with a representation of the A� type quiver, and consequently producing
a persistence diagram.

5 Stability

For a tool in topological data analysis to be regarded as practical, the output persistence
diagrams should behave continuously as a function of input data. Such a property,
known as stability (Cohen-Steiner et al. 2007; Chazal et al. 2009), has been proved
for persistence modules on R.

Let vect be the category of finite-dimensional vector spaces,R be the poset category
of real numbers3. An object of the functor category vectR is also called a persistence
module in some papers. To distinguish it from our definition, we call this an R-
persistence module.

Specifically, for anR-persistence module M , we assign a vector space Mt for t ∈ R

and a linear map ϕM (s, t) : Ms → Mt for s ≤ t ∈ R, where

ϕM (t, t) = idMt and ϕM (s, t) ◦ ϕM (r , s) = ϕM (r , t),

3 For x, y ∈ R, a morphism x → y uniquely exists if and only if x ≤ y.
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for all r ≤ s ≤ t ∈ R. We designate the linear maps ϕM (s, t) as transition maps.
A morphism f : M → N of R-persistence modules is a natural transformation: a
collection of morphisms { ft : Mt → Nt | t ∈ R} assuming the diagrams

Ms Mt

Ns Nt

fs

ϕM (s,t)

ft
ϕN (s,t)

commute for all s ≤ t ∈ R.
It is noteworthy that every persistencemodule can be regarded similarly as a functor

from a finite poset category to vect.
The fundamental objects of R-persistence modules are interval modules KI for

intervals I ⊂ R, given as (KI )t = K for t ∈ I and (KI )t = 0 otherwise, and with
the morphism corresponding to s ≤ t ∈ I is an identity map. As is the case with
persistent homology, every R-persistence module can be decomposed into a direct
sum of interval modules (Crawley-Boevey 2015).

A distance between R-persistence modules can be defined as the interleaving dis-
tance.

Definition 5.1 For δ ≥ 0, define the functor (·)(δ) : vectR → vectR, called the shift
functor, as explained below. For an R-persistence module M , M(δ)t := Mt+δ and
ϕM(δ)(s, t) := ϕM (s + δ, t + δ). For a morphism f in vectR, f (δ) := ft+δ .

Definition 5.2 For an R-persistence module M and δ ≥ 0, the δ-transition morphism
ϕM (δ) : M → M(δ) is defined as ϕM (δ)t := ϕM (t, t + δ).

Definition 5.3 R-persistence modules M and N are said to be δ-interleaved if there
exist morphisms f : M → N (δ) and g : N → M(δ) such that

g(δ) ◦ f = ϕM (2δ) and f (δ) ◦ g = ϕN (2δ).

The interleaving distance dI : vectR × vectR → [0,∞] is defined as

dI (M, N ) := inf
δ

{M and N are δ-interleaved}.

An often used distance between persistence diagrams is the bottleneck distance
defined by bijections between them. The interleaving distance of R-persistence
modules is well-known to be equal to the bottleneck distance of their persistence
diagrams (Lesnick 2015; Bauer and Lesnick 2014). Consequently, by showing that
a distance between input data is greater than the interleaving distance of their R-
persistencemodule, one canprove the stability of the persistence diagrams as a function
of the input data.

In analogy with Edelsbrunner et al. (2015), stability theorems for some filtrations
also hold on our analysis. The discrete setting discussed in Sect. 4 is sufficient for
implementation, but we extend it to a continuous analysis to prove its stability.
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The following filtrations can be used for S and f (S). Let dRn×Rn be a distance on
R
n × R

n defined as

dRn×Rn ((x1, y1), (x2, y2)) := max{dRn (x1, x2), dRn (y1, y2)},

where dRn is the Euclidean metric on R
n . For a subset U of R

n , we define a function
dU : R

n → R≥0 to be the infimum distance to a point in U . Similarly, we abuse the
same symbol dU : R

n × R
n → R≥0 for a subsetU of another space R

n × R
n . We use

the notation Ur := d−1
U [0, r ] to denote the sublevel sets.

Let Top(bf) be the functor category from the A3(b f ) type quiver (· ← · → ·) as
a poset category to the category of topological spaces. The sublevel sets Sr , f (S)r ,
and Gr( f �S)r constitute the filtration {Sr ← Gr( f �S)r → f (S)r } in Top(bf) with
morphisms induced by inclusions such that the diagram

Sr Gr( f �S)r f (S)r

Ss Gr( f �S)s f (S)s

(5)

commutes for every s ≤ r ∈ R≥0.
In the sameway as that for the discrete analysis, applying homology functor H to the

filtration produces {HSr ← H Gr( f �S)r → H f (S)r }, which is a family of objects in
the representation category rep(A3(b f )) with induced morphisms from Diagram (5).

Remark 5.4 Wehave constructed different representations from earlier representations
using complexes in Sect. 4.1, but these are isomorphic if we adopt Čech complexes. By
theNerveLemma (Borsuk1948), it is known that ifU is a finite subset in ametric space,
then the sublevel setUr is homotopy equivalent to the Čech complex ofU with radius r .
Therefore, lettingCr ,Gr , and Dr be Čech complexes with radius r of the finite subsets
S, Gr( f �S), and f (S), respectively, the induced family {HCr ← HGr → HDr } is
isomorphic to the family {HSr ← H Gr( f �S)r → H f (S)r }.

Because decomposing every representation into intervals is isomorphic in the
functor category rep(A3(b f ))R, the family {HSr ← H Gr( f �S)r → H f (S)r } is iso-
morphic to {⊕1≤b≤d≤3 I[b, d]mr

b,d }. The induced morphisms can be written in block
matrix form again.

Lemmas 4.4 and 4.6 uniquely determine the family {I[1, 3]mr
1,3} and the induced

morphisms up to isomorphism. The family and the morphisms give us three copies
of the R-persistence module {Kmr

1,3 = Kmr
1,3 = Kmr

1,3}. Therefore, we obtain an
R-persistence module {Kmr

1,3}. We denote this R-persistence module of the sampled
map f �S as M f �S and call it the R-persistence module of the sampled map.

Remark 5.5 The construction of an R-persistence module using graphs requires no
assumption that S is a finite set. Therefore, if we assume that dim HXr , dim H Gr( f )r ,
and dim H f (X)r are finite for every r , then we can execute the same analysis of the
filtration {Xr ← Gr( f )r → f (X)r }, deriving an R-persistence module M f in the
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same way. We designate this as the R-persistence module of the map f . The output
persistence diagramportrays the robustness of the generators of the homology-induced
map f∗.

After this setup, we can show the following stability theorem.

Theorem 5.6 Let dH be a Hausdorff distance induced by dRn×Rn . For two sampled
maps h : S → R

n and h′ : S′ → R
n, let Mh, Mh′

be the R-persistence modules of the
sampled maps. Then,

dI (M
h, Mh′

) ≤ dH (Gr(h),Gr(h′)).

Proof Let ε := dH (Gr(h),Gr(h′)). Also, let r be an arbitrary non-negative real num-
ber.

By the definition of Hausdorff distance, Gr(h)r ⊂ Gr(h′)r+ε and Gr(h′)r ⊂
Gr(h)r+ε. Moreover, ε = dH (Gr(h),Gr(h′)) implies that dH (S, S′) ≤ ε and
dH (h(S), h′(S′)) ≤ ε. Hence Sr ⊂ S′

r+ε, S
′
r ⊂ Sr+ε, h(S)r ⊂ h′(S′)r+ε, and

h′(S′)r ⊂ h(S)r+ε as well. These inclusions engender the following commutative
diagrams:

S′
r+ε Gr(h′)r+ε h′(S′)r+ε

Sr Gr(h)r h(S)r

and
Sr+ε Gr(h)r+ε h(S)r+ε

S′
r Gr(h′)r h′(S′)r

.

By that functoriality, it is straightforward that these inclusions induce ε-interleaving
morphisms between Mh and Mh′

. Then we have dI (Mh, Mh′
) ≤ ε. ��

Accordingly, the obtained persistence modules and persistence diagrams can only
have as much noise as S or its evaluation by f .

The proof uses no the assumption that S is a finite set. Therefore, a similar inequality
holds for R-persistence modules of maps.

Corollary 5.7 Let U and U ′ be subsets in R
n. If R-persistence modules Mh and Mh′

of maps h : U → R
n and h′ : U ′ → R

n are defined, then

dI (M
h, Mh′

) ≤ dH (Gr(h),Gr(h′)).

By Corollary 5.7, the error (bottleneck distance) between the persistence diagram of
a sampled map f �S and that of the original map f is bounded above by the error
dH (Gr( f ),Gr( f �S)) of the sampled map. If the sampled map is sufficiently dense,
then we can infer the persistent generators of f∗ from the persistence module of the
sampled map.
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Finally, let us provide the stability of the persistence analysis using grids.We regard
the persistent homology constructed using a grid as an R-persistence module by the
embedding induced by

Fr :=
{

∅ (r < ε)

Fiε (iε ≤ r < (i + 1)ε for i ∈ Z≥1)
.

Theorem 5.8 Let dH be a Hausdorff distance induced by d∞. For two sampled
maps h : S → R

n and h′ : S′ → R
n, we write the filtrations of correspondences

as {Fr } and {F ′
r } and let Mh and Mh′

be their output R-persistence modules. If
dH (Gr(h),Gr(h′)) ≤ ε, then dI (Mh, Mh′

) ≤ ε.

Proof The assumption dH (Gr(h),Gr(h′)) ≤ ε derives the inequality dH (Fh
ε , Fh′

ε ) ≤
ε. Therefore, there exist the following inclusions of

p(F ′
(i+1)ε) F ′

(i+1)ε q(F ′
(i+1)ε)

p(Fiε) Fiε q(Fiε)

and
p(F(i+1)ε) F(i+1)ε q(F(i+1)ε)

p(F ′
iε) F ′

iε q(F ′
iε)

.

It might be readily apparent that these inclusions induce the ε-interleaving morphisms
between Mh and Mh′

. ��

6 Application of functoriality to 2-D persistencemodules

The functoriality lemma, Lemma 4.4, can be generalized for the restriction to every
“diagonal” block. Precisely because the candidate of intervals I[c, d] satisfying rela-
tions I[a, b] � I[c, d] � I[a, b] is only I[c, d] = I[a, b],

[Ψ Θ]a:b
a:b = Ψ a:b

a:b Θa:b
a:b

holds for all I[a, b]. This result can be checked, not only on the orientation b f but also
on every orientation of any length, as described below.

Presuming that I[c, d] 	= I[a, b], which can happen when a 	= c or when b 	= d.
In the case in which a 	= c, one might assume a < c without loss of generality. When
(c − 1)-th orientation is f , consider g = {gi }ni=1 ∈ Hom(I[a, b], I[c, d]). Then, the
commutative diagram of the morphism g from (c − 1) to c is
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0 K

K K

idK

idK

gc−1 gc .

It is readily apparent that gc−1 = 0. The commutativity derives gc = 0. Because the
commutativity of the diagram on g derives gi = 0 for the other vertices i , g = 0.
Consequently, Hom(I[a, b], I[c, d]) = 0. Therefore, I[a, b] 	� I[c, d]. We can show
I[c, d] 	� I[a, b] when (c − 1)-th orientation is b in a similar discussion, using the
commutative diagram as

K K

0 K

idK

idK

gc−1 gc .

Similar arguments also hold in the case in which b 	= d, concluding I[a, b] 	� I[c, d]
or I[c, d] 	� I[a, b].

Consequently, we can extend the statement on the orientation b f to general τn as
shown below.

Proposition 6.1 Let

Θ :
⊕

1≤a≤b≤n

I[a, b]m1
a,b →

⊕

1≤a≤b≤n

I[a, b]m2
a,b

and
Ψ :

⊕

1≤a≤b≤n

I[a, b]m2
a,b →

⊕

1≤a≤b≤n

I[a, b]m3
a,b

be block matrix forms of objects in the arrow category arr(rep(An(τn))). Then

[Ψ Θ]a:b
a:b = Ψ a:b

a:b Θa:b
a:b

for all 1 ≤ a ≤ b ≤ n.

We can use this property for 2-D persistence modules, which are representations
with the shape of

Mn1,1 Mn1,2 · · · Mn1,n2

...
...

...

M2,1 M2,2 · · · M2,n2

M1,1 M1,2 · · · M1,n2

, (6)
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where every rowhas the same orientation τn2 . The 2-Dpersistencemodules sometimes
appear and create difficulties in the context of persistence analysis for time series data.
Carlsson and Zomorodian (2009) provide details and higher dimensional persistence.

In our context, the 2-D persistence module naturally appears when we consider
iterations of a sampled map or compositions of sampled maps. Presuming that we
have a time series of some point clouds {S1, S2, . . . , ST } in the same Euclidean space,
with their transition as maps { fi : Si → Si+1}, then we generate a filtration of abstract
simplicial complexes Ct

1 ⊂ · · · ⊂ Ct
n for each St . As shown in Sect. 4, the maps

between points induce a filtration of partial maps f ti : Ct
i � Ct+1

i , which induces a
commutative diagram as

...
...

...
...

C1
i+1 G1

i+1 C2
i+1 · · · CT

i+1

C1
i G1

i C2
i · · · CT

i

...
...

...
...

, (7)

by taking the i-th simplicial complex Gt
i of Gr( f

t
i ) defined as Equation (1). As a

consequence, the homology functor induces the 2-D persistence module from the
diagram above. In this case, we can observe the 2-D persistence module from the
viewpoint that the horizontal (vertical) direction on the diagram describes persistence
in time (space, respectively).

Diagram (6) can be reviewed. In the same way as in the specific case τn2 = b f ,
Diagram (6) can be regarded as a sequence ofmorphisms in the category rep(An2(τn2)).
By decomposing representations of An2(τn2) in each row, the morphisms can be dealt
with as matrices in block matrix form. Restricting each matrix to the diagonal block
(a:b, a:b) derives a sequence of matrices for which the domains and codomains are
direct sums of I[a, b]. Because this sequence comprises b − a copies of nonzero
representations of An1 and n2 − (b − a) copies of zero representations, one of the
nonzero representations can be selected. Finally, we obtain the persistence diagram
by decomposition. Proposition 6.1 ensures the uniqueness of the output persistence
diagram.

For 2-D persistence modules derived from Diagram (7), when we take the block
(a:b, a:b) as (1:n2, 1:n2), each generator of the output persistence module survives
under all transitions. Its lifetime in the persistence diagram shows how robust it is in
the Euclidean space. Although this process ignores much information stored in the
other blocks, it is an approach to 2-D persistence analysis that is able to capture the
rough topological structures.
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7 Numerical experiments

The author has implemented the persistence analysis introduced into Sect. 4.1. The
implementation is available at theGitHub repositoryhttps://github.com/hiroshitakeuchi/
pdsm. Before presenting some numerical results, we outline the implementation strat-
egy. Here we fix the field for the coefficient of matrices and the homology functor as
Z/1009Z.

Remark 7.1 To implement the persistence analysis of computers, we must use finite
fields as the coefficient. Here, everymap is written as amatrix. If we choose fieldZ/2Z

as the coefficient, then every entry with the prime factor 2 in the matrix is regarded as
0. For example, a homology generator a mapped as f∗(a) = 2a, such as the example
discussed later and in Fig. 4, is ignored. Therefore, it is better to choose a larger prime
number p as the coefficient for Z/pZ to retrieve more generators.

The implementation uses Vietoris–Rips complexes for simplicity, whereas Čech com-
plexes are theoretically more satisfying (see Edelsbrunner and Harer (2010, Section
III.2) for details). Except for construction of the persistence module from the sequence
of the pairs of the maps {(pi ∗, qi ∗)}, it fundamentally follows the algorithm in Edels-
brunner et al. (2015) (recall Remark 4.3).

First, we generate the boundarymatrix induced by the filtration of the Vietoris–Rips
complexes for each point cloud S and f (S); then the boundary matrix of the filtration
{Gi }. We can use the original persistence algorithm (Edelsbrunner and Harer 2010)
to compute the reduced boundary matrices and the bases of the persistent homology
of the filtration.

Second, because we can obtain the homology bases for each filtration, we generate
the maps pi ∗ and qi ∗ as matrices between the homology basis for each filter. Similarly,
we compute the induced maps of the inclusions j∗ : HGi → HGi+1 as matrices. To
obtain the basis of I[1, 3] for each matrix pi ∗ and qi ∗, we execute the following
elementary row and column operations.

1. Transform pi ∗ to Smith normal form as

P1 pi ∗Q1 =
[
Ir1 0
0 0

]

,

where P1 and Q1 are regular matrices corresponding to elementary operations,
and where r1 is the rank of pi ∗.

2. Because pi ∗ and qi ∗ share the same basis for the columns, the elementary column
operations Q1 are performed simultaneously on qi ∗

qi ∗Q1 = [
X1 X2

]
,

where X1 is the submatrix based on columns corresponding to the above Ir1 , and
X2 is the submatrix corresponding to the 0 columns in P1 pi ∗Q1.
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3. Transform X2 to Smith normal form with elementary row operations P2 and ele-
mentary column operations Q2 as

[

P2X1
Ir2 0
0 0

]

=
[
X3 Ir2 0
X4 0 0

]

where P2X1 is divided into submatrices of appropriate sizes on the right-hand side.
We remark that these column operations have no side effect on the pi ∗ side matrix
because every column corresponding to the basis is zero.

4. Zero out X3 by Ir2 using column operations with no side effect as

[
0 Ir2 0
X4 0 0

]

.

5. Transform X4 to Smith normal form with elementary row operations P4 and ele-
mentary column operations Q4 as

⎡

⎣
0 Ir2 0

Ir3 0
0 0

0 0

⎤

⎦ .

Here the column operations have side effect on Ir1 transforming it to a matrix
Q4, but Q4 is regular. Therefore, we can transform it to Ir1 again using only row
operations.

6. Finally, we obtain the matrix transformations as

pi ∗ �→
[
Ir3 0 0 0
0 Ir3−r1 0 0

]

and qi ∗ �→
⎡

⎣
0 0 Ir2 0
Ir3 0 0 0
0 0 0 0

⎤

⎦ ,

which are decomposed into intervals. The rows and columns corresponding to two
Ir3 are pairs of identity maps, which are I[1, 3]. Therefore the basis in the columns
of Ir3 is what we want.

By applying the change of basis of HGi during the above column operations and
restricting to the basis corresponding to Ir3 , one can finally obtain the persistent homol-
ogy of the sampled map. Finally, after decomposing the persistent homology into
intervals using the decomposition algorithm in Edelsbrunner et al. (2015, Subsection
3.4), a persistence diagram can be plotted.

By tracking the inverse of the matrix transformations executed above, one can
write down the cycles corresponding to the generators in the persistence diagram. As
remarked in Sect. 3, the cycles depend on the choice of the bases of I[1, 3]. Never-
theless, for the following numerical experiments, we succeed in reconstructing the
underlying maps. To emphasize a contrast, we present examples of failed reconstruc-
tions in Sect. 8.
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Fig. 4 Computational result for f (z) = z2. The number of points is 100. The Gaussian noise is at σ = 0.18.
The black points are sampled points for the domain. The blue crosses are its image by f . As presented in
Fig. 5, the generator is unique. The corresponding generator in the domain side is described by the black
edges approximating the unit circle. The generator in the image side is the blue dashed edges. One can
observe that it turns around the origin twice

7.1 Twicemapping on a circle

As an example of input data, one can consider the twicemap on the unit circle f : S1 →
S1 defined as f (z) := z2. It is noteworthy that, in this case, the spaces in Problem 4.1
are given as X = Y = S1 embedded in R

2. Then we regard R
2 as C. The sampled

points of the unit circle are 100 points z j := cos(2π j
100 ) + √−1 sin(2π j

100 ) for
0 ≤ j < 100, with added Gaussian noise with σ ∈ [0.00, 0.30].

A computational result is presented in Fig. 4, which portrays the sampled map at
σ = 0.18 and its unique generator of the persistence diagram. The generator is the
corresponding cycle in HGb at the birth radius b. It is indeed approximating the unit
circle. Then it is apparent that its image is turning around the origin twice. The results
for other noises are presented in Fig. 6.

Figure 5 presents the persistence diagrams under changing σ from 0 to 0.3. As
expected, the lifetime of the unique generator decreases as the noise increases.

7.2 Inverse mapping on a circle

To emphasize the difference from the existing method using eigenspace functors, one
can consider the inverse map on the unit circle g : S1 → S1 defined as f (z) := z−1.
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Fig. 5 Persistence diagrams for f (z) = z2 with 100 points at σ = 0.00, 0.09, 0.18, and 0.30. We can
observe that each persistence diagram has the unique point. It approaches the diagonal line as the noise
increases

The sampled points {z j } and the range of the parameter σ of Gaussian noises are the
same as before. The computational results are presented in Figs. 7 and 8.

The analysis using eigenspace functors can detect such a generator using the
eigenspace functor with eigenvalue −1. In other words, prior knowledge about the
eigenvalue is fundamentally important. By contrast, our method can use the same
construction both for the inverse mapping and twice mapping.

7.3 Mapping on a torus

Moreover, our method is applicable to maps on the torus T := R
2/Z

2. We adopt the
metric on T induced by the Euclidean metric on R

2.
One can consider the self-map on T defined as

A =
(
2 1
1 1

)

: T → T .

We set 64 sampling points S := {( i8 , j
8 ) | 0 ≤ i ≤ 7, 0 ≤ j ≤ 7} and generate

a sampled map of A on S. Such a sampled map of A is a challenging example for
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Fig. 6 Computational results obtained for f (z) = z2 with 100 points at σ = 0.00, 0.09, 0.18, and 0.30.
Every plotting range is restricted to [−1.5, 1.5]× [−1.5, 1.5] to observe the generators. The corresponding
persistence diagrams are in Fig. 5

analysis using eigenspace with no prior knowledge because the eigenvalues of A are
3+√

5
2 and 3−√

5
2 .

The computational results are presented in Figs. 9, 10, 11, 12, 13, 14 and 15. We

remark that the unique point in Fig. 9 hasmultiplicity 2. Let

(
1
0

)

and

(
0
1

)

be a standard

homology basis on the torus. The generators corresponding to the unique birth–death
point are given as α and 505α + β (=1

2α + β with the coefficients in Z/1009Z) in our
numerical experiment, where α and β respectively denote cycles in HGb at the birth
radius b illustrated in Figs. 10, 11, 12, 13, 14 and 15. These cycles correspond to the
mappings

(−1

0

)

�→
(−2

−1

)

and

(
0

1

)

�→
(
1
1

)

, (8)

respectively. The mappings (8) are nothing but the map A =
(
2 1
1 1

)

, concluding the

success in reconstructing A.
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Fig. 7 Persistence diagrams for f (z) = z−1 with 100 points at σ = 0.00, 0.09, 0.18, and 0.30

8 Examples of failed reconstructions

In the preceding section, we performed reconstruction of each map at the filter where
the generator was born. However, such reconstruction is not always possible. This
section presents two examples of failed reconstructions.

8.1 Non-optimal example

The first example appears even in ordinary homology groups. The example is known
as optimal cycles of homology groups, as described by Escolar and Hiraoka (2014).

We consider the simplicial complex C1 presented in Fig. 16 and the identity map
idC1 on C1 by taking three copies of C1 as

C1 C1 C1.
= = (9)

We remark that the simplicial complex of the graph Gr(idC1) of the identity map on
C1 is isomorphic to C1 by definition introduced as (1). We therefore regard (9) as a
filtration consisting of only one filter.

Taking the 1-dimensional homology H = H1(−; K ), we have the representation

HC1 HC1 HC1
= = (10)
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Fig. 8 Computational results for f (z) = z−1 with 100 points at σ = 0.00, 0.09, 0.18, and 0.30. The
generators correspond to the most persistent birth–death pair in each persistence diagram in Fig. 7

Fig. 9 Persistence diagram of a

sampled map of A =
(
2 1
1 1

)

.

The unique point has
multiplicity 2

isomorphic to

K 2 K 2 K 2= = (11)

that is two copies of the interval I[1, 3]. To obtain the representation (11), some
isomorphism must be taken from (10) to (11). The problem for reconstruction is how
to choose cycles as the basis of the homology groups. One option is to choose cycles
α and γ . However, this is surplus because choosing α and β is more straightforward
for the number of simplices used. It is natural for the reconstruction to use α and β.
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Fig. 10 Homology generator α

on the torus corresponding to the
point in Fig. 9. The black line is
the cycle in domain and mapped
to the blue dashed line. Using
the standard basis, this mapping

is written as

(−1
0

)

�→
(−2

−1

)

Fig. 11 Generator on the
domain side embedded in R

3.
The loop turns around the torus
once in a longitudinal direction

Fig. 12 Generator on the image
side embedded in R

3. The loop
turns around the torus twice in a
longitudinal direction and once
in a meridian direction

Fig. 13 Another generator β

showing

(
0
1

)

�→
(
1
1

)

. In our

numerical experiment, the other
generator corresponding to the
point in Fig. 9 is given as
505α + β (= 1

2α + β with the
coefficients in Z/1009Z)
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Fig. 14 Generator on the
domain side embedded in R

3.
The loop turns around the torus
once in a meridional direction

Fig. 15 Generator on the image
side embedded in R

3. The loop
turns around the torus once in a
longitudinal and once in a
meridional direction

Fig. 16 Simplicial complex C1
with the 1-cycles α, β, and γ .
The outer 1-cycle γ is
homologous to α + β

Another example of non-optimal cycles is shown in Fig. 8. The cycle at σ =
0.30 consists of a larger cycle and a smaller one. It is sufficient and better for the
reconstruction of the unit circle to take only the larger cycle.

For the case in which we have one complex, one can solve such an optimization
problem using optimal cycles (Escolar and Hiraoka 2014). Furthermore, for the case
in which one has a filtration of simplicial complexes, one can solve the optimization
problem using the persistent homology version of optimal cycles (Obayashi 2018).
Nevertheless, no general optimization method is applicable to A3(b f ) type represen-
tations.

8.2 Inconclusive example

We now consider the simplicial complexes depicted in Fig. 17.
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Fig. 17 Left and middle: a simplicial complex C2 consisting of the two points 1 and 2 connected with an
edge, and its subcomplex C̃2 without edge. Right: a simplicial complex D2 consisting of the two points 1′
and 2′ without edge

Defining the sampled map as 1 �→ 1′ and 2 �→ 2′, the simplicial complex of the
graph of the sampled map is isomorphic to C̃2. Similarly to Sect. 8.1, we regard

C2 C̃2 D2

as a filtration consisting of only one filter, where the left arrow is the inclusion map
and the right is induced by the sampled map.

Taking the 0-dimensional homology H = H0(−; K ), we obtain the representation
of

HC2 HC̃2 HD2 (12)

isomorphic to

K K 2 K 2= (13)

that is the direct sum of I[1, 3] and I[2, 3]. To obtain the representation (13), some
isomorphism must be taken from (12) to (13). The problem again is how to choose
cycles as the basis of the homology groups. In this case, we have the two simplest
options. One is to choose 1 for C2 and C̃2 and 1′ for D2. The other is to choose 2
for C2 and C̃2 and 2′ for D2. We remark that 1 is homologous to 2 in C2. Then they
form the unique connected component. The image of the component depends on the
choice of 1 or 2 in C̃2 for the corresponding basis. However, we have no information
to decide which side is better to choose. Consequently, all that can be said here is that
the unique connected component in C2 is still non-trivial in D2 after the mapping in
this filter.

In summary, each point of the persistence diagram of a sampled map implies
non-trivial homology generators of the domain and codomain at the filter where the
corresponding generator is born. The homology of the simplicial complex of the graph
connects the generators, which are as robust as the lifetime in the persistent homology.
In other words, the filter possesses non-trivial and robust topological information of
the sampled map. Therefore, as presented in the examples of the preceding section
and in this one, exploring the filter HCb ← HGb → HDb at birth b will help elu-
cidate the topological transition under the sampled map, even for the case of failed
reconstructions.
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9 Concluding remarks

As described herein, we defined the persistence diagram of a sampled map and proved
that the persistence diagram is determined uniquely and independently of the choice of
bases in interval decompositions. However, reconstruction of the homology-induced
map depends on the choice of the bases of interval decomposition. Our aim is recon-
struction of the underlying maps. Therefore, we must solve the problem of which
bases are the best for reconstruction. This problem is anticipated as a subject of our
future work. It is expected to be related to the problem of which cycle is optimal for
representing the generator of persistent homology (Obayashi 2018).
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