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Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human 

primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP 

MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis pro- 

tocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition 

protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. 

Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing 

and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are 

well established for analyzing human data. We also encourage the use of validated, automated pre-processing 

tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for 

small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the 

convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and 

translational brain science. 
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. Introduction 

Non-human primate (NHP) magnetic resonance imaging (MRI) has

ome a long way in the last two decades from being a nascent field

 Disbrow et al., 2000 ; Logothetis et al., 1999 ; Stefanacci et al., 1998 ;

anduffel et al., 2001 ) to a growing and maturing research field in

any institutes across the globe ( Milham et al., 2020 ). While meth-

ds have been shared and improved, most research groups rely on
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ustom-designed experimental set-ups and protocols. Such customiza-

ion is not surprising in a newly emerging research domain, but it ham-

ers comparison of results across studies, which can lead to suboptimal

aradigms and a waste of resources. Concurrently, imaging of human

ubjects increased dramatically, in part through the harmonization of

cquisition and data standards. In particular, initiatives like the WU-

inn Human Connectome Project (HCP) ( Van Essen et al., 2013 ), UK

ioBank ( Miller et al., 2016 ) and the Adolescent Brain Cognitive De-

elopment (ABCD) study ( Casey et al., 2018 ; Hagler et al., 2019 ) have

elped to implement large-scale collaborative projects that focus on col-

ecting standardized data sets across imaging sites. These initiatives es-
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ablished a set of minimal data standards and practices ( Glasser et al.,

016b ; Smith et al., 2013 ; U ğurbil et al., 2013 ; Van Essen et al., 2012 ),

hich has facilitated human imaging research around the world. We

elieve it is timely to translate the lessons from these human imaging

nitiatives to the monkey imaging community. This will boost the grow-

ng NHP imaging field by sharing standardized data across multiple sites

nd studies and allowing meta-analyzes on data that cannot be acquired

n any individual NHP laboratory. 

Despite remarkable advances in MRI over the last two decades,

here are still inherent technical, physiological, behavioral and analyt-

cal challenges in standardizing NHP neuroimaging ( Vanduffel et al.,

014 ). While there has been a convergence to just a few vendor hard-

are and software platforms for human studies over the past decade, in

art due to initiatives such as the HCP and ABCD studies, approaches

or NHP imaging are far less standardized, in part due to the use of

re-clinical hardware and software that requires customization. The ob-

ective of this manuscript is to promote the type of convergence that has

ccurred in human neuroimaging. 

The first step towards standardized data acquisition across primate

pecies is to recognize that the spatial resolution should be adjusted

ccording to the neuroanatomical size of the brain. Brain volume is ap-

roximately 1,300 cm 

3 in humans, 330 cm 

3 in chimpanzees, 170 cm 

3 

n baboons, 100 cm 

3 in macaques, 7.5 cm 

3 in common marmosets

nd 1.7 cm 

3 in the mouse lemur, the smallest experimentally-used pri-

ate. The number of neurons also ranges over more than two log units

cross these primates (i.e. human and mouse lemur have 86 and 0.2

illion neurons, respectively) ( Herculano-Houzel, 2009 ). The huge dif-

erence in brain volume across primates represents a major technical

hallenge for standardization of data acquisition protocols as it drives

 need for species-specific data acquisition hardware. The attractive-

ess of using monkeys for accelerated studies of development also im-

oses constraints on data-acquisition hardware as the brain and body

izes can change substantially over relatively short periods of time.

oreover, the MRI measurements are affected by different hardware

hoices (e.g., bore size, magnetic field strength, gradient field speci-

cations, design of radiofrequency (RF) transmit coil and number of

F receive channels), acquisition parameters (e.g., voxel size, repeti-

ion time, echo-time, multiband acceleration, in-plane acceleration and

-value) and vendor-specific image reconstruction algorithms (e.g., un-

liasing algorithms, phase and frequency corrections, coil combinations,

mage filters and receiver biasfield corrections). In addition, magnetic

eld (B 0 ) strength strongly influences tissue contrast generation mech-

nisms in structural (e.g. dipolar relaxation) ( Marques et al., 2017 ;

ang et al., 2020 ) and functional images which influences tissue seg-

entation ( Lüsebrink et al., 2013 ) and sensitivity to neural activity

 Yacoub et al., 2020 ), respectively. Finally, unlike human functional

RI (fMRI) experiments, NHPs are often scanned while anesthetized

ith a variety of agents, which strongly impacts brain activity (e.g.,

otor control, sensory processing, cognitive control), physiology, neu-

ovascular coupling, and functional connectivity (FC) ( Paasonen et al.,

018 ; Xu et al., 2018 ), emphasizing the importance of functional imag-

ng in awake behaving monkeys ( Belcher et al., 2013 ; Kagan et al.,

010 ; Landi and Freiwald, 2017 ; Logothetis et al., 1999 ; Miyamoto

t al., 2017 ; Park et al., 2017 ; Schaeffer et al., 2019 ; Silva et al., 2011 ;

anduffel et al., 2001 ; Wilke et al., 2012 ). 

Another major challenge to harmonizing NHP studies is the lack of

tandardized image pre-processing software. Currently, research groups

ommonly use a mixture of tools borrowed from SPM, FSL, AFNI, etc.

hus, custom image-processing pipelines and different statistical anal-

sis routines are often used in studies of NHPs, which can have sub-

tantial effects on results and reduce study reproducibility ( Botvinik-

ezer et al., 2020 ; Carp, 2012 ; Eklund et al., 2016 ). The need for

ustom-made pre-processing pipelines emerged, in part, from lack of

tandardized geometric models for brain tissues (i.e. cerebral and cere-
2 
ellar cortices and hippocampal complex) that are critical to account

or the 3D geometry of highly folded cortices ( Fischl and Sereno, 2018 ;

an Essen, 2002 ), to account for inter-subject variability ( Coalson et al.,

018 ; Robinson et al., 2018 ), and to make use of CIFTI grayordinates

hat represent cerebral cortex by surface vertices and subcortical gray

atter by voxels ( Glasser et al., 2013a ). Moreover, laboratory-specific

on-biological measurement biases need to be removed from the data

o improve detection of biologically important features across imaging

enters and species using retrospective harmonization strategies. So far,

nly limited attempts have been made to harmonize data acquisition and

nalysis across preclinical imaging centers ( Immonen et al., 2019 ) and

pecies ( Autio et al., 2020 ; Warrington et al., 2020 ) and the development

f translational informatics and information technology platforms for

HPs remains important to improve translational science ( Milham et al.,

018 ; Van Essen et al., 2019 ). 

Here, we specify NHP imaging recommendations based on the cur-

ent state of NHP MRI. Recent advances in preclinical scanners and im-

roved availability of multi-channel receive coils have made it possible

o capitalize on accelerated imaging in NHPs ( Ekstrom et al., 2008 ).

oreover, as the availability of NHP imaging data rapidly increases

ia open data-sharing platforms, including the PRIMatE Data Exchange

PRIME-DE) ( Milham et al., 2018 ), there is an increased necessity for

alidated, automated and robust multi-subject analyses. Robust trans-

ation of human oriented open-access analytical solutions to NHP brain

maging, however, requires significant adaptations of image acquisition

nd analytical standards. By providing minimal image acquisition guide-

ines the NHP neuroimaging community can refine their methodological

nd analytical strategies to improve robustness and reproducibility. Dur-

ng this process, we hope to accelerate the convergence between NHP

nd human neuroimaging communities and to progress towards an era

f improved comparative brain science, with important ramifications

or both fundamental and translational research. 

. Suggestions for minimum acquisition requirements 

The minimum specifications for NHP MRI ( Box 1 ) include scaling

esolution (anatomical and functional) to respect the thickness of cere-

ral cortex, transmit (B 1 + ) and receive (B 1 -) RF biasfield corrections

o ensure uniformity of contrast and intensity across the field of view,

cho-planar imaging (EPI) acquisition in both phase encoding (PE) di-

ections and acquisition of a B 0 field-map. Phased-array coils are a pre-

equisite for accelerated imaging and have been successfully applied in

tudies of NHPs ( Autio et al., 2020 ; Ekstrom et al., 2008 ; Freiwald and

sao, 2010 ; Gao et al., 2020 ; Gilbert et al., 2016 ; Janssens et al., 2013 ;

anssens et al., 2012 ; Yacoub et al., 2020 ; Zhang et al., 2020 ) ( Box 2 ).

uxiliary minimum specifications include physiological monitoring in

tudies of anesthetized NHPs and behavioral monitoring and control in

wake NHPs, which have important implications for MR data quality.

he rationale and specifics of each minimum criterion are articulated be-

ow. Importantly, since most of these minimum criteria are utilized and

ested by the majority of recent large-scale human MRI consortia (i.e.

CP, UK BioBank, ABCD, Brain/MINDS), application of these criteria

n NHPs should improve reproducibility and prospects for translational

cience. 

All animal experiments reviewed herein were conducted in accor-

ance with the institutional guidelines for animal experiments and an-

mals were maintained and handled in accordance with the Guide for

he Care and Use of Laboratory Animals of the Institute of Laboratory

nimal Resources (ILAR; Washington, DC, USA). Data from the KU Leu-

en group were acquired in agreement with institutional (KU Leuven

edical School: Ethische Commissie Dierproeven), national and Euro-

ean guidelines (Directive 2010/63/EU). We also used HCP data as a

eference for data quality. The use of HCP data was approved by the

nstitutional ethical committee (KOBE-IRB-16-24). 
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Box 1 

Minimum specifications for non-human primate MRI. 
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.1. Structural MRI 

Structural images provide a fundamental basis not only for anatom-

cal measures but also for functional and diffusion measures and multi-

ubject statistics, yet the minimal structural image acquisition criteria

re not well established. First, spatial resolution (isotropic) should be at

east half of the minimum cortical thickness to enable robust segmen-

ation, while higher resolutions further improve the discrimination of

hin regions of cerebral cortex or regions with thin gyral blades of white

atter ( Glasser et al., 2013a ). In macaque monkeys, for example, the

hinnest part of the cerebral cortex is approximately 1.0 mm, we there-

ore recommend a minimum structural (isotropic) image resolution of

.5 mm. Second, 3D whole-brain coverage is important to improve inter-

ubject registration and to boost SNR (relative to 2D acquisitions). Third,

cquiring both MPRAGE T1w and SPACE T2w images is recommended

o facilitate discrimination among tissue types because they provide bet-

er CNR in white matter and fluid-filled regions, respectively ( Fig. 1 a).

oreover, T2w is advantageous for distinguishing dura and blood ves-

els (Supp. Fig. 1), which have approximately equal signal intensity with

ortex in MPRAGE images ( Van der Kouwe et al., 2008 ). Alternatively,

2w FLAIR (TI 1.8 s, TR 5 s, TE 395 ms) provides CSF suppression while

aintaining good T2w contrast between white matter and grey matter

 Miller et al., 2016 ). Fourth, imaging parameters that influence the con-

rast among white matter, grey matter and cerebrospinal fluid (e.g. in-

ersion time, flip-angle, echo time) should be adjusted to yield sufficient

ontrast-to-noise ratio (CNR) (i.e. practically determined by robust au-

omatic segmentation). We recommend to optimize MPRAGE inversion
3 
ime (~900 ms in macaque at 3T; see Supp. Fig. 2) and SPACE echo-time

~500 ms in macaque at 3T) to improve segmentation and intracorti-

al myelin contrast. For both sequences, we recommend matching spa-

ial resolutions and using fat insensitive RF excitation to improve tissue

lassification in FreeSurfer ( Glasser et al., 2013a ). Depending on the B 0 

trength, head coil, and system performance, it is advised to acquire mul-

iple T1w (between 3–10) and T2w (between 1–4) images for increasing

NR, ideally during a dedicated anatomical session in which the animal

s anesthetized. We recommend that NHP researchers dedicate one, or

ore sessions, to specifically acquire a high-resolution set of anatomical

mages that can be used for both anatomical analyses (i.e. morphology,

urface creation, myelin mapping) and registration purposes. 

The B 1 + field homogeneity is an important factor to ensure consis-

ent contrast and signal intensity between grey matter, white matter,

nd CSF in T1w and T2w images, because these factors have an in-

uence upon tissue segmentation ( Donahue et al., 2018 ; Fischl, 2012 ;

lasser et al., 2013a ). Homogeneous B 1 + is also important for myelin

apping, calculated from T1w and T2w ratios, which is valuable for

istinguishing anatomical landmarks (e.g., area MT, auditory and pri-

ary somatosensory cortex) ( Glasser et al., 2016a ; Glasser and Van Es-

en, 2011 ), and even smaller sub-compartments such as inter-stripes

n area V2 ( Li et al., 2019 ). This is a major technical challenge for

linical ultra-high field (UHF) scanners (i.e. 7T), where multi-channel

F transmitter coils are used to enable RF shimming, and for preclin-

cal UHF magnets with narrower bore sizes which constrain the trans-

it RF coil size and hence homogeneity. Although a combination of a

arallel-transmit RF coil, RF shimming and multi-channel receive coil
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Box 2 

Cost performance in NHP functional imaging. 
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W  
t 7T can produce good structural image quality in macaque monkeys

 Gilbert et al., 2016 ), pial surface estimation errors can nonetheless oc-

ur in more inferior parts of the brain that are more distant from the sur-

ace coil transmit channels and consequently receive weaker B 1 + (Supp.

ig 3). To compensate for B 1 + bias, we recommend collecting a measure

f B 1 + (without interpolation) even when MP2RAGE is used because

xcitation flip-angle may deviate from its nominal value and adiabatic

ondition may be violated due to limitations and inhomogeneities in

 1 + power ( Haast et al., 2018 ). B 1 + variations due to dielectric effect

n NHPs are modest at 7T relative to humans, but still benefit from RF

himming ( Gilbert et al., 2016 ). The dielectric effect is even less for the

armoset brain at 9.4T, where B 1 + homogeneity is often dominated

y the small RF birdcage coil or surface coil transmitters. Additionally,

he center of the brain (i.e. thalamus) should be positioned close to the

socenter of the RF coil to minimize the B 1 + bias across the brain. For

nimals studied in a sphinx position with a body RF transmit coil, this

an be challenging, but for studies where a custom, concentric RF coil

s used (typically 7T and above) the head can be centered accordingly

n the RF transmit field, where optimal uniformity is achieved, based

n RF shimming solutions. It should, however, be noted that no amount

f B 1 + correction can compensate for the loss of contrast when the RF

ulses are not performing within their design parameters. 

The receive RF field (B 1 -) is intrinsically inhomogeneous when us-

ng multi-channel receive coils, as the sensitivity profiles decrease with

istance from the individual receiver elements. This results in MR im-

ge signal intensity inhomogeneities which can be reduced using vendor

rovided prescan normalization (e.g. prescan normalize, Siemens). We

ighly recommend the use of receive biasfield corrections on the scan-

er for all images, as the receiver field is fixed to the head coil while the

ead moves around within it. Post-acquisition image-based corrections

annot readily replicate this effect, and algorithmic corrections may in-
4 
ppropriately assign genuine tissue inhomogeneities as “bias ”. Motion

etween bias scan computation and an image can lead to inaccuracies

n bias correction that do not apply to pre-scan normalization. 

Prescan normalized images ( Fig. 1 a) may require additional inten-

ity correction due to uncorrected B 1 - and shared B 1 + bias ( Fig. 1 b) to

chieve robust tissue segmentation and generation of accurate cortical

urfaces ( Fig. 1 c,d), for example if vendor algorithms are not optimized

or smaller brains and head coils. Also, real tissue contrast (e.g. caused

y differential grey and white matter myelination), may also impair

egmentation algorithms that rely on within tissue homogeneity (e.g.

istogram-based). Ideally, the intensity bias correction should be based

n attempts to evaluate B 1 - and B 1 + fields (such as the sqrt(T1w 

∗ T2w)

pproach in the HCP-NHP pipeline) ( Autio et al., 2020 ; Donahue et al.,

018 ; Glasser et al., 2013a ; Zhang et al., 2001 ). Unfortunately, image

ypes required for biasfield correction are sometimes not acquired in

tudies of NHPs. For example, in the PRIME-DE database ( Milham et al.,

018 ), of the 16 imaging centers that provided structural MRI data, 10

enters provided both T1w and T2w images required for biasfield correc-

ion. Prescan normalization and a combination of T1w and T2w images

mprove the accuracy of automatic tissue segmentation and estimation

f cortical surfaces (Supp. Fig 1). Combining biasfield corrected and un-

orrected structural data may have an adverse effect on and the statis-

ical power. Alternatively, we recommend acquiring structural images

sing a single-loop receive-only coil or bird-cage coil to substantially re-

uce the B 1 - biasfield ( Li et al., 2019 ; Zhu and Vanduffel, 2019 ) (Supp.

ig. 4), albeit this requires more averaging and a separate imaging ses-

ion. 

To explore the variability of cortical thickness measures in macaque

onkeys, we estimated cortical thickness maps using the HCP-NHP

ipeline ( Autio et al., 2020 ; Donahue et al., 2018 ; Glasser et al., 2013a ).

e limited the data analysis to PRIME-DE centers that provided a high-
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Fig. 1. Structural image quality standards and B 1 - biasfield correction. (A) 

Prescan normalized T1w MPRAGE (left) and T2w SPACE (right) images acquired 

with 0.5 mm isotropic resolution. Note the signal intensity bias near the supe- 

rior surface of the brain despite prescan normalization and the decreased tissue 

contrast for myelin in the temporal lobes relative to the superior frontal lobes. 

(B) Intensity biasfield, due to uncorrected B 1 - and shared B 1 + , estimated us- 

ing within-brain smoothed and normalized sqrt(T1w 

∗ T2w) images ( Glasser and 

Van Essen, 2011 ). (C) Biasfield corrected (divided) T1w and T2w images. The 

pial and white matter surfaces are indicated by blue and green contours, respec- 

tively. (D) Cortical thickness displayed over inflated cortical midthickness sur- 

face. Macaque data was acquired using the Human Connectome Project (HCP)–

style data acquisition ( https://brainminds-beyond.riken.jp/hcp-nhp-protocol ), 

preprocessed using non-human primate version of the HCP pipelines ( https:// 

github.com/Washington-University/NHPPipelines ) and visualized using HCP’s 

Connectome Workbench ( Autio et al., 2020 ; Donahue et al., 2018 ; Glasser et al., 

2013a ). Data available at https://balsa.wustl.edu/study/show/kNj6K . 
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G  
esolution structural image and a B 0 field-map for distortion correction

see later reproducibility of resting-state FC). Across subjects ( N = 23),

orrelation coefficient (Pearson’s) of parcellated cortical thickness using

he M132 atlas ( Fig. 2 a) varied between 0.70 and 0.92 with an aver-

ge 0.81 ± 0.02 (std) ( Fig. 2 b,c). Intra-site, parcellated cortical thick-

ess correlations were RIKEN R = 0.88 ± 0.05 ( N = 5), UC-Davis 0.87 ±
.03 ( N = 5), MtS 0.86 ± 0.03 ( N = 5) and IoN 0.78 ± 0.06 ( N = 5)
5 
 Fig. 2 d). Across the NHP imaging sites, correlation was also relatively

trong ( R = 0.80 ± 0.06). IoN exhibited relatively lower correlation with

espect to other imaging centers (R-values between 0.71 and 0.78), prob-

bly due to a lack of T2w image (other sites provided both T1w and

2w images). Moreover, cortical thickness distribution acquired using a

ultichannel surface transmit coil at 7T (Supp. Fig. 3a-d) was quite dis-

inct from those acquired using volume transmit coils ( R -values range

etween 0.33 and 0.60, N = 2), suggesting a need for B 1 + field correc-

ion to improve detection of pial surface ( Haast et al., 2021 ; Haast et al.,

018 ). 

To corroborate the robustness of measurement of parcellated corti-

al thickness, we next analyzed test-retest data for five representative

ubjects (with subjects twice scanned within two months at RIKEN) and

ound an average R = 0.97 ± 0.01 ( N = 5, for an exemplar test-retest pial

nd white matter surfaces and dense cortical thickness maps, see Supp.

ig. 5a-d and 6a-d). Reliability was comparable with YA-HCP (Supp. Fig.

a-d). Taken together, the high reproducibility within subjects and vari-

tion of cortical thickness across subjects (at RIKEN dataset) suggests

here is meaningful biological variation in the macaque population. Im-

ortantly, robust surface representations provide a solid foundation to

ffectively compare multimodal data (e.g. MRI, PET, histology, location

f electrode / measurement / manipulation devices) across laboratories.

urface models also provide a substrate for registration between species

or addressing homology questions ( Denys et al., 2004a ; Denys et al.,

004b ; Mantini et al., 2012 ; Tsao et al., 2008 ; Van Essen et al., 2001 ). 

.2. Preserving spatial fidelity 

.2.1. B 0 field-map 

A B 0 field-map enables distortion correction of functional and dif-

usion (echo-planar) images so that they represent the physical space

f the imaged animal. Unfortunately, currently B 0 field-maps are some-

imes neglected in studies of NHPs. For example, in the open PRIME-

E database ( Milham et al., 2018 ), of the 19 imaging centers that pro-

ided resting-state fMRI (rfMRI) data, only seven provided B 0 field-maps

nd only five provided EPI echo-spacing (time between neighboring k-

pace lines). Since movement during data acquisition can also change

he pattern of B 0 inhomogeneities and image distortion, combining cor-

ections for B 0 distortion and its interaction with motion may further

ncrease spatial fidelity and statistical power ( Andersson et al., 2001 ;

ndersson et al., 2018 ; Andersson et al., 2003 ; Cusack et al., 2003 ;

raham et al., 2017 ; Hutton et al., 2013 ). 

Figure 3 demonstrates the geometric distortion of spin-echo (SE) EPI

cquired with left–right (L-R) ( Fig. 3 a) and right-left (R-L) ( Fig. 3 b)

hase encoding directions at 3T. Without distortion correction, the SE-

PI images remain poorly registered to (native) pial surfaces, but this

as substantially improved by distortion correction using these oppos-

ng phase-encoding SE-EPIs ( Fig. 3 c,d). A shiftmap ( Fig. 3 e), which is

stimated using a B 0 field-map and echo-spacing, demonstrates that

he physical displacement of the imaging voxels in the cerebral cor-

ex shifted up to 4 mm, with an absolute median of 1.1 mm. Because

he macaque mean and minimum cortical thickness are approximately

.1 mm and 1.0 mm, respectively, these spatial distortions require un-

arping to precisely assign the fMRI voxels into grey matter and appro-

riate banks of sulci ( Fig. 3 a-d, arrow). 

Field-maps can be estimated either from traditional multi-echo

radient-echo (GRE) images (using phase differences calculated from

wo, or more, TEs) or SE-EPI acquired in reversed phase encod-

ng directions (either L-R & R-L or A-P & P-A traversal of k -space)

 Andersson et al., 2003 ). However, SE-EPI B 0 field-map correction has

dditional benefits over GRE B 0 field-map corrections and non-linear

egistration-based methods ( Andersson et al., 2003 ; Cusack et al., 2003 ;

raham et al., 2017 ; Holland et al., 2010 ) because it provides better SNR

s a consequence of being less susceptible to signal-drop-out issues. In

ddition, SE-EPI can be acquired in a shorter time (i.e. one minute) than

RE field-map and is thus less susceptible to motion artefacts (impor-

https://brainminds-beyond.riken.jp/hcp-nhp-protocol
https://github.com/Washington-University/NHPPipelines
https://balsa.wustl.edu/study/show/kNj6K
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Fig. 2. Comparison of cortical thickness across exemplar subjects in the PRIME-DE. (A) Top row shows exemplar parcellated curvature corrected cortical 

thickness maps from six PRIME-DE sites. (B) Comparison between cortical thickness maps across sites and subjects (N = 23). (C) Variability of cortical thickness 

( N = 23). (D) Average correlation across and within imaging centers. Cortical thickness maps were automatically generated using HCP-NHP pipelines ( Autio et al., 

2020 ; Donahue et al., 2018 ), parcellated using M132 atlas containing 91 parcels per hemisphere ( Markov et al., 2014 ) and then Pearson’s correlation coefficient 

between parcellated cortical thickness maps was calculated. Image resolution was 0.5 mm isotropic in all centers expect in UC-Davis resolution was 0.6 mm which was 

then reconstructed (zero padded) to 0.3 mm isotropic. Abbreviations RIKEN Institute of Physical and Chemical Research, Japan, UC-Davis University of California, 

Davis; MtS-p Mount Sinai-Philips; IoN Institute of Neuroscience; PU Princeton University; UMN University of Minnesota. 
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ant in awake NHP imaging). Importantly, using phase reversed gradient

cho EPI is not recommended, as gradient echo images additionally have

ignal loss due to T2 ∗ dephasing that is mismatched between phase en-

oding directions and will be confused for geometric distortion by the

nternal registration algorithm used to estimate the B 0 field. 

For the smaller NHP brain, FSL’s TopUp B 0 field-map correction

eeds to be reconfigured from the default set-up, which is designed for

he size of the human brain. We recommend adjusting the sampling res-

lution according to the isometric ratio between the NHP and human

rains, as the scaling has a profound impact on the accuracy of distor-

ion correction ( Fig. 3 f). After the TopUp configuration ( Autio et al.,

020 ; Hayashi et al., 2021 ), the forward and reverse phase-encoded

cho-planar images become more similar to each other, as measured

y root-mean-square (RMS) deviation (mean RMS before and after con-

guration, 4596 and 1908 (a.u., data grand mean scaled to 10,000),

espectively; N = 30), implying more accurate distortion correction. 

Shimming can also reduce geometric distortion, and signal drop-

uts, in EPI by improving B 0 homogeneity. However, automatized B 0 

him algorithms in the majority of clinical scanners are configured to the

ize of the adult human brain, which is approximately 10-fold larger in

olume than the macaque, and 100-fold larger than the marmoset brain,

espectively. Consequently, these algorithms are not necessarily effec-

ive in reducing susceptibility-induced B 0 inhomogeneities in small NHP

rains ( Fig. 3 ). An alternative approach to improve B homogeneity is
0 

6 
o manually fine-tune the shim coils or to use FastestMap ( Gruetter and

káč, 2000 ), which enables adjustment of the length of line-scans to the

patial dimensions of the NHP brain. 

Another way to reduce geometric distortions in EPI is to reduce the

cho-spacing. Practically, this can be achieved by utilizing strong gra-

ients with fast slew rates or by choosing the phase encoding direction

n the orientation that allows the shortest total readout time, which is

etermined by the required field-of-view (FOV) and the allowable echo

pacing for a given direction. For example, using a L-R FOV allows for

 smaller phase FOV in comparison to the AP direction. In addition to

horter readout times this also enables a significant reduction in TE and

R. One caveat to this is that when using a commercial human system,

eripheral nerve stimulation limits dictate the allowable echo spacings

n any given gradient direction and tend to be more limiting in the L-

 direction. Higher performing head only gradient inserts on human

canners can circumvent these limitations, significantly improving EPI

mage quality and efficiency. 

Higher spatial resolutions in EPI are, however, particularly more

hallenging because of the longer required echo trains which result

n increased signal-dropouts and resolution loss, in addition to the in-

reased levels of geometric distortion. This is especially problematic

t high B 0 and in regions with strong differences in magnetic sus-

eptibility (or short T2 ∗ s), such as air-tissue interfaces. Such signal-

ropouts and blurring can be effectively reduced using in-plane accel-
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Fig. 3. Distortion correction is an impor- 

tant quality assurance standard to ensure 

spatial fidelity of functional and diffusion 

echo-planar images. Functional single-band 

echo-planar images acquired with phase encod- 

ing (PE) directions (A) from left to right (L-R) 

and (B) from right to left (R-L). Note distortion, 

in particular near the temporal and occipital 

lobes (white arrows). (C) B 0 field-map, created 

using spin-echo (SE) echo-planar images. (D) 

Distortion corrected SE echo-planar reference 

image using FSL’s TopUp ( Andersson et al., 

2003 ). Pial and white matter surfaces are indi- 

cated by the yellow and green contours, respec- 

tively. (E) Absolute shiftmap demonstrates the 

physical voxel dislocation (mm) due to mag- 

netic field inhomogeneities. Shiftmap was cal- 

culated using FSL’s utility FUGUE. (F) Root- 

mean-square (RMS) deviation of signal inten- 

sity between R-L and L-R PE echo-planar im- 

ages before (top panel, mean 4596 (a.u.)) and 

after (bottom panel, mean 1908 (a.u.)) TopUp 

configuration for the size of the NHP brain 

(N = 30). The remaining RMS after the TopUp 

correction includes noise, inaccuracy of distor- 

tion correction and their cross-subject variabil- 

ity (related to the variability in structural standardization). Data was registered to the Yerkes19_v1.2 space using linear and non-linear registrations ( Autio et al., 

2020 ; Hayashi et al., 2021 ; Jenkinson et al., 2002 ). For TopUp configuration see https://github.com/Washington-University/NHPPipelines/blob/master/global/ 

config/b02b0 _ macaque.cnf
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rations (i.e. Generalized autocalibrating partially parallel acquisitions

RAPPA). GRAPPA also enables to reduce echo-time (TE) further reduc-

ng artifacts, which is ideal for CBV measurements but less so for BOLD

maging as it reduces sensitivity. Yet another approach to shorten the ef-

ective TE is to use a segmented EPI acquisition with variable flip angles

o normalize the intensity of each k-space segment, though this length-

ns the TR. Therefore, segmented EPI yields excellent results when no

ead or body movements take place, such as in anesthetized but not in

lert primates. 

.2.2. Gradient nonlinearity 

Gradient nonlinearities may distort the physical dimensions of an

R image, and nonlinearities typically increase with distance from the

socenter of an MRI scanner ( Jovicich et al., 2006 ; Langlois et al., 1999 ).

n clinical whole-body scanners, small NHP brains that are positioned

lose to the B 0 isocenter, the distortion of an MR image can be neglected

 < 0.03 mm, Supp. Fig. 8a). For perspective, in humans voxel shifts due

o gradient nonlinearity may be up to 0.4 mm (Supp. Fig. 8b). Awake be-

aving NHPs placed in sphinx-position with head ~10 cm above the B 0 

socenter, the expected voxel displacement differences within the brain

emain small ( < 0.1 mm). However, gradient nonlinearities may be more

rominent in preclinical scanners equipped with smaller gradient coils.

oreover, high-speed gradient inserts often exchange gradient linear-

ty for improvements in slew rate ( Janke et al., 2004 ). Such image dis-

ortions can be corrected using the NHP-HCP pipelines (Supp. Fig. 8)

 Autio et al., 2020 ; Donahue et al., 2018 ; Glasser et al., 2013a ), how-

ver, this requires a vendor-provided gradient coefficient table. 

.3. Functional MRI 

.3.1. Parallel imaging 

The methodological development and application of parallel imag-

ng have been on-going for the past two decades and have markedly

mproved human functional MR image quality ( Griswold et al., 2002 ;

oeller et al., 2010 ; Pruessmann et al., 1999 ; Setsompop et al., 2012 ;

 ğurbil et al., 2013 ; Wiggins et al., 2006 ). However, the translation of

arallel imaging from humans to NHP has been nontrivial. The main

arrier to translating cutting-edge pulse sequence protocols for NHPs
7 
as been the limited availability of dedicated multi-channel receive

oils for NHP and the paucity of independent front-end channels in pre-

linical scanners. Notwithstanding the technical challenges, a growing

umber of NHP fMRI studies ( Ekstrom et al., 2008 ) are demonstrating

ompelling benefits of parallel imaging yielding remarkable SNR gains

sed to improve spatial and temporal resolutions and statistical power

 Box 2 ). 

Slice direction acceleration using the MB technique has substan-

ially improved the efficiency of functional 2D imaging in humans

 Moeller et al., 2010 ), in particular towards higher isotropic resolutions

ith progressively thinner slice profiles. The MB RF transmission con-

urrently excites multiple slices that are unaliased using distinct multi-

hannel receive coil channel sensitivity profiles. Concurrent slice exci-

ation enables a reduction in repetition time by the MB factor, however,

he practical range of MB factors that can be achieved without induc-

ng substantial cross-slice artefacts is constrained by the number of RF

eceive channels, their geometric arrangement and their corresponding

ensitivity profiles ( Cauley et al., 2014 ; Risk et al., 2018 ; Xu et al., 2013 ).

Recently, it has been demonstrated that a combination of macaque

4-channel coil and MB 5 provided the most efficient tSNR per unit time

nd reduced the TR to 0.7 s from 3.8 s (single band acquisition) with

hole-brain coverage ( Autio et al., 2020 ). The 5-fold increase in tempo-

al data points enabled also more advanced multivariate analysis of fMRI

imeseries in anesthetized macaques by providing an average 24 ± 11

 N = 30) neural ICA components that would not have been possible using

ingle-band BOLD fMRI at 3T. These findings are in line with more com-

rehensive observations made in humans using a 32-channel coil at 3T:

B 8, 0.7 s TR (compared to 5.7 s for a single band) provided most effi-

ient tSNR per unit time ( Smith et al., 2013 ). The available data suggest

he following crude guideline: each MB factor requires approximately

our or five independent RF receive channels (HCP: 32-channel / MB 8

4; macaque 24-channel / MB 5 ≈ 5). This of course depends on the ac-

ual levels of residual aliasing (and g-factor for GRAPPA), which should

e independently measured for each coil design at a given field. Further,

his also presumes that in-plane accelerations are not used (common

nly for 3T acquisitions), which would further limit the maximum MB

actor as it also relies on information from coil sensitivity profiles. As

uch, the maximum acceleration would be limited by the combination of

https://github.com/Washington-University/NHPPipelines/blob/master/global/config/b02b0_macaque.cnf
https://www.zotero.org/google-docs/?7Ax9cs
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n-plane and through-plane accelerations (e.g. MB8 or MB5 x GRAPPA2)

 Vu et al., 2017 ). This leads to a pressing need for high density coil sys-

ems for investigators interested in MB imaging in NHPs. High temporal

esolution (i.e. ~1 s or less TR) is critical for advanced data denois-

ng techniques such as spatial and temporal ICA ( Glasser et al., 2018 )

nd improved statistics ( Feinberg et al., 2010 ); however, we acknowl-

dge that this may require new hardware for many sites and multi-band

ulse sequences. 

Acceleration capacity can be further improved by capitalizing on im-

lanted phased-array coils that yield highly independent channel sen-

itivity profiles (see later, Increase sensitivity from implanted phased-

rray coils). Such coils (with 8 elements) enable further improve-

ents in accelerated fMRI at 3T (8-channel / MB2 × GRAPPA3 ≈ 1)

 Janssens et al., 2012 ; Li et al., 2019 ; Zhu and Vanduffel, 2019 ). 

While ultra-high B 0 provides further sensitivity gains for fMRI and

mproved parallel imaging performance it also necessitates in-plane ac-

elerations. Gilbert and colleagues used a combination of 24-channel

F receive coil, MB2 × GRAPPA2 at 7T ( Gilbert et al., 2016 ), Zhang

nd colleagues used a combination of 16-channel and GRAPPA3 at 7T

 Zhang et al., 2020 ) and Yacoub and colleagues used a combination

2-channel RF receiver coil, MB2 × GRAPPA3 at 10.5T ( Yacoub et al.,

020 ), which may yield improved sensitivity to neuronal activity. How-

ver, to maintain animal safety standards, care should be taken not to ex-

eed specific absorption rate (SAR) safety regulations (level 1) at ultra-

igh B 0 . 

In awake behaving NHPs, we recommend paying special attention

o the quality of the GRAPPA auto calibration scan, used for acceler-

ted image reconstruction, as it may be compromised by physiological

oise or motion during the acquisition of the reference and motion be-

ween the reference and the fMRI acquisitions. To compensate for the

ormer issue, we recommend to acquire ~30 sec GRAPPA auto calibra-

ion data using GRE FLASH, rather than single-shot or segmented EPI,

o average physiological noise and to improve temporal SNR (tSNR)

 Polimeni et al., 2016 ; Vu et al., 2017 ). For the second issue, on-line

upervision of the animal’s behavior during the reference scan is rec-

mmended to ensure that no substantial motion biases the quality of

he GRAPPA auto calibration data. NHPs which are well trained and ac-

limatized to the MRI environment are substantially less susceptible to

uch calibration artefacts that can have dramatic influences upon image

econstruction. Motion control is also important between the GRAPPA

eference acquisition and the fMRI time series, otherwise reconstruction

rrors can occur. An alternative strategy is to acquire multiple GRAPPA

eferences and then use the one that is closest in time to the particular

MRI run. 

However, single-piece external multi-array coils may hamper the

ccessibility of electrophysiological, microstimulation, optogenetic or

wo-photon devices, which are invaluable tools to explore the under-

innings of functional organization in NHPs. The external RF designs

an be specifically designed with specific openings that permit inser-

ion of electrodes ( Gilbert et al., 2018 ; Schaeffer et al., 2019 ), albeit

ith limited access to the different brain regions. An alternative pow-

rful (but technically demanding) option to mitigate this problem is to

mplant receive coils directly above the skull yielding improved signal

ue to reduced tissue-coil distances (see later Increase sensitivity from

mplanted phased-array coils) ( Janssens et al., 2012 ). 

.3.2. Spatial resolution 

To reduce partial volume effects (between grey matter and whiter

atter and CSF) and to distinguish between opposing banks of sulci,

e recommend adopting the HCP strategy of adjusting the (isotropic)

MRI voxel resolution according to the thickness of cerebral cortex (me-

ian thickness 2.1 mm in the macaque) ( Glasser et al., 2016b , 2013b;

acoub et al., 2003 ). Thus in macaque monkeys, Autio and colleagues

djusted the fMRI resolution (1.25 mm) below to the lower 5th quantile

f cortical thickness (1.4 mm) at 3T ( Fig. 4 a) ( Autio et al., 2020 ) whereas

ilbert and colleagues adjusted the fMRI resolution to the thinnest parts
8 
f the cerebral cortex (1.0 mm) at 7T ( Fig. 4 b) ( Gilbert et al., 2016 ). In

umans, higher resolution (1.6 mm) acquired at 7T provides substan-

ially improved functional CNR with less partial volume effects and re-

uced cross-sulcal artefacts ( Vu et al., 2017 ; Yacoub et al., 2003 ) and

imilarly UHF studies of NHPs may yield spatially more fine-scaled lo-

alization of brain functions ( Schaeffer et al., 2019 ; Yacoub et al., 2020 ).

e acknowledge that hitting both the spatial resolution and temporal

esolution targets will require multi-band sequences with multi-channel

ead coils that may not be currently available at all sites. 

In NHPs, however, implanted RF coils enable much higher spatial

esolution, even at 3T ( Fig. 4 c, d) ( Janssens et al., 2012 ; Li et al., 2019 ;

hu and Vanduffel, 2019 ). Such high resolution offers great potential

o investigate the mesoscale columnar and laminar organization of the

acaque cortex, even in cortical areas where accessibility is currently

ot possible with microscopic imaging tools. 

As for EPI k -space coverage, to maintain spatial fidelity of the im-

ges, we recommend acquiring as much as possible of k -space because

artial-Fourier encoding, which omits outer k -space lines that represent

igh spatial frequencies, reduces the spatial fidelity of functional and

iffusion MR images (i.e. it blurs). In practice, full k -space coverage

s feasible using preclinical scanners equipped with very strong gra-

ients (i.e. ~15 cm-diameter coil with a maximum gradient strength

f 400 mT/m ( Schaeffer et al., 2019 )), however, using clinical scan-

ers equipped with relatively weaker gradients (e.g. Siemens, Trio and

risma with a maximum gradient strength of 40 mT/m and 80 mT/m,

espectively) compromise, in the form of less k -space coverage (reducing

esolution) or interleaved acquisitions (reducing TR) may be required to

void substantial signal dropout during read-out, in exchange for more

omplete brain coverage. Finally, it should be noted that for most clini-

al scanners software limitations prohibit users from employing the full

trength of the gradient coils per unit time (dB/dt) for safety reasons

nd for protecting the equipment. Using the equipment at full strength,

owever, can be crucial for achieving high spatial or temporal resolution

maging. Research agreements with the vendors are typically required

o disable such built-in safety measures. 

.3.3. Length of imaging session and temporal resolution 

Length of the rfMRI data acquisition is another important consider-

tion for obtaining high quality FC ( Birn et al., 2013 ; Laumann et al.,

015 ; Xu et al., 2018 ). The relationship between FC (Z-transformed cor-

elation coefficient) and scan duration is evident using a seed point

nd the rest of the cerebral cortex in a representative anesthetized

isoflurane 0.6% and dexmedetomidine 4.5 μg/kg/hr) macaque monkey

 Fig. 5 a) and (awake) human ( Fig. 5 b) ( Smith et al., 2013 ). Clearly, Z-

cores (both positive and negative anti-correlations) span a wider range

or longer scan durations, demonstrating the statistical gain achieved

hrough the accumulation of temporal time-points ( Fig. 6 a,b) while

evealing neurobiologically meaningful FC patterns ( Fig. 5 ). Interest-

ngly, FC distributions become more skewed for longer scan durations

 Fig. 6 ), in line with the skewed distribution of cortico-cortical connec-

ion weights ( Markov et al., 2014 ). 

In the PRIME-DE database, rfMRI scan length varies between 8 min

nd 155 min per subject, while repetition times range between 0.7 s

nd 2.6 s ( Milham et al., 2018 ). These, and other factors (i.e. receiver

oil, imaging parameters, and anesthesia protocol see Table 1 ), result in

esting-state FC Z distributions that vary widely across sites ( Fig. 6 b, c).

The length of the imaging session and number of temporal data

oints also has implications for data-driven analyses of fMRI time-

eries. For example, ICA separates multivariate fMRI timeseries into

ubcomponents that are non-Gaussian and statistically independent

 Beckmann et al., 2005 ; Beckmann and Smith, 2004 ). However, to dis-

inguish between unstructured noise (Gaussian distribution) and struc-

ured components (non-Gaussian distribution) the fMRI timeseries vari-

nce needs to be appropriately sampled. Indeed, the number of spa-

ially independent components increases with respect to the length of

he imaging session (with a linear coefficient of 2.4 components / min,
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Fig. 4. Comparison of echo-planar image 

quality across different hardware config- 

urations. Single blood oxygen level depen- 

dent (BOLD) echo-planar images acquired on 

anesthetized macaque monkeys using a 24- 

channel coil (A) at 3T ( Autio et al., 2020 ) 

and (B) at 7T ( Gilbert et al., 2016 ). Echo- 

planar image quality may be further im- 

proved using implanted phased-array coils at 

3T with (C) BOLD or (D) cerebral blood vol- 

ume weighted (CBVw) fMRI ( Janssens et al., 

2012 ). Note that implanted RF coils enable 

an order of magnitude smaller voxel size in 

comparison to conventional multi-channel 

coil designs while maintaining a good signal- 

to-noise ratio at majority of the cortical 

surface. Although echo-planar image qual- 

ity is an important requirement, we empha- 

size that it is only one factor (among others 

such as anesthesia, physiology, training and 

contrast-to-noise ratio), involved in achiev- 

ing high sensitivity to neuronal activity. 

Fig. 5. Longer resting-state fMRI scan duration improves the quality of functional connectivity metrics. Functional connectivity (Z-transformed Pearson’s 

correlation coefficient) between a seed point (single grayordinate seed) in the default mode network area and the rest of the cortical mantle. In the macaque two 

sessions each 51 minutes are acquired whereas in the Young Adult Human Connectome Project (YA-HCP) four sessions were acquired with each 15 min length. Both 

macaque and human BOLD fMRI data were acquired with repetition time ≈0.7 sec ( Autio et al., 2020 ; Smith et al., 2013 ) and data was preprocessed using HCP and 

non-human primate (NHP)-HCP pipelines ( Autio et al., 2020 ; Donahue et al., 2018 ; Glasser et al., 2013b ), including FreeSurfer ( Fischl, 2012 ) and ICA-FIX processing 

( Griffanti et al., 2017 ; Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ). Data at https://balsa.wustl.edu/study/show/kNj6K . 

9 

https://balsa.wustl.edu/study/show/kNj6K
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Fig. 6. Distribution of seed-based resting-state functional connectivity (FC; Z-transformed correlation coefficient) in cerebral cortex. (A) The young-adult 

human connectome project (YA-HCP) ( Smith et al., 2013 ) (Subject ID: 100307). (B) HCP-style macaque imaging ( Autio et al., 2020 ). (C) Representative PRIME DE- 

sites ( Milham et al., 2018 ). Data was distortion corrected, detrended, motion corrected and FIX-cleaned using HCP-NHP pipelines ( Autio et al., 2020 ; Glasser et al., 

2013a ). Violin plots contain approximately 60 × 10 3 nodes and 1.8 × 10 9 edges in YA-HCP whereas they contain approximately 18 × 10 3 nodes and 160 × 10 6 edges 

in macaque monkeys. Local FC (2% geodesic distance) is not shown. Scan length and number of volumes acquired were 13 min and 500 at University of California, 

Davis (UC-Davis), 27 min and 1,600 at University of Minnesota (UMN), 42 min and 8,192 at Mount Sinai School of Medicine (Philips) (MtS-P) and 60 min and 1,824 

at Princeton University (PU), respectively. 

Table 1 

Anesthesia protocols across imaging centers. 

Site Induction Maintenance Ventilation References & protocol 

RIKEN Ketamine (6 mg/kg), 

dexmedetomidine (4.5 𝜇g/kg) 

Dexmedetomidine (4.5 

𝜇g/kg/hr), isoflurane (~0.6%) 

Yes, etCO2 

(37 ± 2 mmHg) 

( Autio et al., 2020 ) 

https://brainminds- 

beyond.riken.jp/hcp-nhp- 

protocol/ 

UC-Davis Ketamine, dexmedetomidine, 

buprenorphine 

Isoflurane (1 - 2%) Yes, etCO2 normocapnia 

https://fcon_1000.projects.nitrc. 

org/indi/PRIME/ucdavis.html 

MtS-P NA Isoflurane (1.2%) Yes, etCO2 normocapnia ( Froudist-Walsh et al., 2018 ) 

IoN Dexmedetomidine (18 - 30 

𝜇g/kg), midazolam (0.2 - 0.3 

mg/kg) 

Isoflurane (NA%) Yes ( Lv et al., 2016 ) 

PU Ketamine (10 mg/kg), 

xylazine (0.5 mg/kg) 

Ketamine, if required Yes, etCO2 normocapnia 

https://fcon_1000.projects.nitrc. 

org/indi/PRIME/princeton.html 

UMN NA Isoflurane (2.5%) NA 

https://fcon_1000.projects.nitrc. 

org/indi/PRIME/uminn.html 

Abbreviations: RIKEN Institute of Physical and Chemical Research, Japan, UC-Davis University of California, Davis; MtS-p Mount Sinai School of Medicine-Philips; 

IoN Institute of Neuroscience; PU Princeton University; UMN University of Minnesota. 
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ig. 7 b), as determined by FSL’s Multivariate Exploratory Linear Opti-

ized Decomposition into Independent Components (MELODIC) soft-

are. The majority of these sICAs, however, are time-varying imaging

rtefacts (i.e. motion, respiration and MR-artefacts) that need to be re-

oved from the fMRI timeseries to obtain neurobiologically meaningful

C profiles ( Fig. 7 ). 

One popular means to remove the structured time-varying arte-

acts from fMRI timeseries is to use model-free FMRIB’s ICA-based X-

oiseifier (FIX) ( Griffanti et al., 2017 , 2014; Salimi-Khorshidi et al.,

014 ; Smith et al., 2013 ). Such structured artefacts account for 50%

ore variance than neural BOLD in anesthetized macaque monkeys

t 3T ( Autio et al., 2020 ). Typically, the largest noise components

ccur at ventilation frequency ( Fig. 7 a), reflecting subtle respiration-

elated head movements, and/or modulation of B 0 by respiration or

ody motion, that cause spurious long-distance correlations ( Fig. 7 c,e)

 Fair et al., 2020 ; Power et al., 2012 ; Teichert et al., 2010 ). After re-

oval of such nuisance artefacts using ICA-FIX, artefacts are profoundly

educed ( Fig. 7 e,f) and seed-based FC exhibits mainly short distance

onnectivity ( Fig. 7 d). Techniques like sICA + FIX benefit greatly from

igh temporal resolution (~1 s or less TR) and long acquisition runs or

ombining across multiple runs ( Glasser et al., 2018 ). Pre-scan normal-

zation is also helpful in reducing motion artefacts that come from the

ead moving around within a static receive field. 

Taken together, the length of a functional imaging session and tem-

oral resolution have implications for removing unwanted nuisance sig-

als from the fMRI timeseries and increasing statistical significance.
10 
e advocate fMRI imaging session durations that are at least half an

our for anesthetized animals, whereas in awake imaging the scan du-

ation should be determined according to the well-being and perfor-

ance of an animal in each experimental setup, noting that time se-

ies can be concatenated from multiple sessions. Longer scan durations

nd multiple sessions can further improve FC reproducibility (Supp. Fig.

a,b) and multivariate analyses ( Fig. 7 b). In anesthetized animals, blood

ressure and heart rate should be continuously monitored because pro-

onged anesthesia sessions tend to reduce blood pressure which in turn

s compensated by an increase in heart rate. Future studies establish-

ng scan lengths that maximize within animal replicability are needed

 Laumann et al., 2015 ; Xu et al., 2018 ). 

.3.4. Reproducibility of resting-state functional connectivity 

Rs-fMRI provides a valuable way to study the brain’s functional or-

anization without imposing a specific task design or external stimuli,

hereby bypassing the need for animal training required to perform a

pecific task. Interestingly, some human rs-fMRI networks (e.g. sensori-

otor and visual) are very similar to task fMRI contrast (beta) maps,

uggesting a link between the brain’s default organization and behavior

 Glasser et al., 2018 ; Smith et al., 2015 ). In addition, some networks are

ot modulated by task whereas a number of networks are only found

n rest ( Glasser et al., 2018 )). Such resting-state FC may provide a valu-

ble substrate for understanding NHP brain organization and species dif-

erences. However, resting-state FC has relatively weak sensitivity and

pecificity and therefore reproducibility remains a challenging factor

https://brainminds-beyond.riken.jp/hcp-nhp-protocol/
https://fcon_1000.projects.nitrc.org/indi/PRIME/ucdavis.html
https://fcon_1000.projects.nitrc.org/indi/PRIME/princeton.html
https://fcon_1000.projects.nitrc.org/indi/PRIME/uminn.html


J.A. Autio, Q. Zhu, X. Li et al. NeuroImage 236 (2021) 118082 

Fig. 7. Quality assurance analysis of functional timeseries and functional connectivity. (A) Typical MRI artefact in an anesthetized macaque monkey identified 

using spatially independent component analysis (sICA) . Note that this artefact exhibits (A1) temporal oscillations (A2) at ventilation frequency. (B) The number 

of identified sICAs (including both noise and neural networks) increases with respect to the scan duration. (C, D) Comparison of functional connectivity between 

a seed point in area 2 (green arrow) and the rest of the cortical mantle (C) before and (D) after FIX-ICA clean-up. Note that before fMRI preprocessing there 

are large spatially specific signal fluctuations and FC do not appear neurobiologically meaningful whereas after the clean-up these fluctuations are reduced and 

strong functional connectivity is dominated by neurobiologically sensible connections. Grayplot of (E) uncleaned (but distortion corrected) and (F) FIX-ICA cleaned 

(including motion correction, detrending and FIX clean-up) ( Power, 2016 ; Power et al., 2014 ). The grayplots are scaled according to % parcel mean signal ( ± 2%) 

balanced according to parcel size ( Markov et al., 2014 ) and for visualization purposes are ordered by hierarchical clustering (Ward’s method) ( Glasser et al., 2018 ). 

Note the reduction of spatially specific fluctuations (horizontal bands) after FIX-cleanup. 
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n reaching a scientific consensus on the default organization of NHP

rains. 

The open PRIME-DE data repository offers a unique opportunity

o examine the reproducibility of NHP neuroimaging to advance to-

ards a scientific consensus on the functional organization of NHPs

 Milham et al., 2018 ; Zuo et al., 2014 ). Here, we explore reproducibility

f anesthetized macaque resting-state FC matrices at three levels: split-

un (fMRI runs were split into two halves), within imaging centers, and

cross centers. The data analysis was limited to PRIME-DE centers that

rovided a high-resolution structural image and a B 0 field-map for ge-

metric correction. Split-run reproducibility of M132 atlas parcellated

 Markov et al., 2014 ) FC matrices calculated using FIX-denoised fMRI

ata was high in all centers: RIKEN rho = 0.94 ± 0.04 ( N = 5), UC-Davis

.82 ± 0.11 ( N = 5), MtS-P 0.97 ± 0.02 ( N = 5), IoN 0.91 ± 0.03 ( N = 5),

U 0.87 ± 0.02 ( N = 2), and UMN 0.89 ( N = 1) (throughout the text FC is

eported in units of Spearman rank correlation rho). However, intra-site

eproducibility of parcellated FC matrices across subjects was variable:

IKEN rho = 0.61 ± 0.05, UC-Davis 0.39 ± 0.06, MtS 0.28 ± 0.10, IoN

.25 ± 0.15 and PU 0.50 ( Fig. 8 a, b). Across the NHP imaging sites, re-

roducibility of parcellated FC was strikingly low (0.23 ± 0.13; rho ±
td). Best, yet weak, reproducibility was found between RIKEN and PU

rho-values ranging between 0.33 and 0.41; mean 0.36 ± 0.03). 

Test-retest reliability of Z-scored parcellated FC matrices was promis-

ng in RIKEN ( Fig. 8 c). The reproducibility was relatively weaker in

egions with weaker tSNR and cortical areas that are smaller in size

 Fig. 8 d), as expected. Longer scan durations improved FC reproducibil-

ty, with largest improvements during the first 20 minutes followed by

 monotonic increase up to 100 minutes (Supp. Fig. 9) ( Laumann et al.,

015 ). 
b  

11 
.3.5. Task specifications 

A prerequisite for acquiring robust imaging data from NHP during

ask performance in the scanner relates to extensive training and be-

avior of the animal and the acclimatization to the scanning procedures

with recorded scanner noise and mock receive coils). For simple sen-

ory stimulation experiments, such as a passive viewing, auditory, or

actile experiment, it is recommended to train the animals so that they

an fixate for a high proportion of the scan session (e.g. > 90% of a

ypical scan duration), while reward delivery is also contingent upon

xed hand positions of the animal. The combined control of eye gaze

nd hand position dramatically reduces body motion and motion-related

rtifacts, thereby improving the quality of the EPIs. Physically restrain-

ng the body of the animals may have a counterproductive effect, as

hey (e.g. macaque) may resist and attempt to move more than with-

ut restraint. However, this varies across species, and some species (e.g.

armoset) respond well to body confinement Silva (2017) . 

For both block and event related designs, imaging protocols need to

e adapted for BOLD vs CBVw fMRI: the hemodynamic response func-

ion (HRF) in CBVw fMRI is opposite in polarity, has a slightly faster

nset time, and is more prolonged in comparison to BOLD ( Autio et al.,

014 ; Jin and Kim, 2008 ; Leite et al., 2002 ; Leung et al., 2000 ;

andeville et al., 1998 ; Vanduffel et al., 2001 ). 

.3.6. Contrast agents 

For the majority of NHP fMRI studies up to 9.4T we recom-

end the use of contrast agents to increase CNR and statistical power

 Vanduffel et al., 2001 ; Zhao et al., 2006 ). In particular, monocrystalline

ron oxide nanoparticles (MION) have been used to amplify cerebral

lood volume weighted (CBVw) variance in fMRI timeseries. In the fol-
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Fig. 8. Reproducibility of resting-state functional connectivity (FC) within and across PRIME-DE macaque imaging sites. (A) Exemplar FC correlation 

matrices from six PRIME-DE sites, ordered according to hierarchical clustering (Ward’s method). (B) Comparison between correlation matrices across sites (six) and 

subjects (total N = 23). fMRI timeseries were preprocessed using HCP-NHP pipelines, parcellated using M132 atlas containing 91 parcels per hemisphere ( Markov et al., 

2014 ), and then Spearman’s Rank correlation coefficient (rho) between parcellated timeseries was calculated. Comparison of FC was limited to PRIME-DE sites that 

fulfilled minimum acquisition criteria (high-resolution anatomical image and a B 0 field-map). (C) Test-retest (heat) scatter plot of Z-scored FC matrixes ( N = 1, n = 2, 

RIKEN data). (D) Reproducibility was high ( > 0.8; rho) in majority of the cortex ( > 78%), however, areas distant to RF receive channel coils and weaker SNR (i.e. 

hippocampal complex and ventral visual stream) exhibited lower reproducibility (RIKEN data was acquired using HCP-style protocols). Abbreviations: HCP the human 

connectome project; UC-Davis University of California, Davis; MtS Mount Sinai-Philips; IoN Institute of Neuroscience; PU Princeton University; UMN University of 

Minnesota, RH right hemisphere; LH left hemisphere. 
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A  
owing section we briefly review the benefits and potential risks of using

ontrast agents. 

Early studies in rodents demonstrated improved sensitivity of CBVw

ver BOLD fMRI ( Mandeville et al., 1998 ), and follow up studies in

acaques have shown that using a dose of 8–10 mg/kg of MION in-

reases CNR by a factor of ~5 at 1.5T and by ~3 at 3T ( Leite et al.,

002 ; Vanduffel et al., 2001 ). Additionally, CBVw fMRI shows no large

essel artifacts, in contrast to BOLD, because adjacent to large vessels the

trong susceptibility gradients induced by MION attenuate the majority

f the T2 ∗ -weighted MR signal. Importantly, the relative amplitude of

BVw response peaks in parenchymal brain tissue ( Zhao et al., 2006 ),

hereas the BOLD effect is biased towards large superficially located

raining veins ( Zhao et al., 2006 ) ( Fig. 9 ). Early work with MION con-

rast agents suggested that due to the longer recovery time of the MION

ignal ( Vanduffel et al., 2001 ) shorter stimulus periods might not benefit

s much from the use of iron-based contrast agents. However, Leite and

andeville (2006) showed that even for event related designs, CBVw

MRI provided a significant increase in CNR over BOLD fMRI, though the

ncrease was lower than for block designed paradigms. Moreover, recent

tudies have also shown that resting-state FC is more reliably measured

sing CBVw than BOLD fMRI ( Xu et al., 2018 ). Taken together, we rec-

mmend the use of MION to increase CNR and statistical strength, as is

vident in an exemplar task activation study acquired using BOLD and

BVw fMRI ( Fig. 9 ). 
12 
While overall the benefits of MION as a signal enhancing agent are

ubstantial, it should be noted that there are potential risks. Adverse

eactions may occur upon injection and excess iron can accumulate in

ff target tissue such as the liver, spleen, lymph nodes, lungs and fatty

issue, but such reactions are rare ( Ahmad et al., 2021 ). The animal’s

ealth and iron levels should be monitored regularly to avoid iron stor-

ge disorders. Including regular iron panels in the standard’ health pro-

ocol can help ensure safe use of MION or other iron-based contrast

gents for functional imaging with little to no adverse side-effects on

he animals. 

A separate concern with some forms of MION is that iron deposits can

orm which cause unintended signal dropout, particularly after repeat

osing, though possible after a single high dose. Although mechanisms

or iron uptake into neurons and astrocytes exist, studies in rodents sug-

est that these deposits primarily occur in the choroid plexus and not

he brain itself ( Gorman et al., 2018 ). While there have been no re-

orts to date of neurological side effects, such deposits can persist for

xtended time periods, thus potentially rendering animals unusable for

urther imaging experiments. The development of iron-based contrast

gents is ongoing, and build-ups of iron deposits may occur less with

ION particles of different sizes and with different coatings. Sponta-

eous clearance varies with tissue type but has been reported to take

1 months or more in hepatic tissue in humans ( Storey et al., 2012 ).

dditionally, existing deposits can be released to some extent by us-
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Fig. 9. Comparison of blood oxygen level dependent (BOLD; top row) and cerebral blood volume weighted (CBVw, MION; bottom row) fMRI activation maps of 

viewing scenes versus objects obtained from the same subject with an implanted phased-array coil on consecutive scan days. The same number of runs from a single 

imaging session with equal fixation performance ( > 90% within a 2 × 2° window) were used for the analysis. Note that CBVw exhibits much higher sensitivity 

than BOLD (t > 2). BOLD signals are typically highest at the pial surface (draining veins) whereas the CBVw activation maps reveal differential responses in upper 

versus lower layers (see yellow arrows in lower right enlarged panel). Data was acquired using standard gradient-echo EPI sequence at 3T Siemens Prisma scanner 

(0.162 mm 

3 voxels, TR 3 s, MB 2, GRAPPA 3 and volumes 220). 
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ng iron chelators ( Vanduffel et al., 2001 ). Apart from the commonly

sed Desferal, which can be conveniently administered by injection,

eferiprone is a particularly promising countermeasure. In contrast to

esferal, which mostly targets the liver and spleen and does not cross

he blood brain barrier ( Mounsey and Teismann, 2012 ), Deferiprone re-

uces brain iron accumulation without interfering with normal brain

ron signaling ( Boddaert et al., 2007 ; Mounsey and Teismann, 2012 )

nd appears to be safe in monkeys even when administered daily for up

o a year ( Connelly et al., 2004 ). Both compounds can also be used safely

n combination, but care should be taken not to over-chelate which can

esult in iron deficiency. Therefore, measuring ferritin, transferrin and

ron levels at regular intervals is recommended to achieve a safe chela-

ion protocol in individual monkeys. 

The potential health risks and build-up should be recognized and

onitored by researchers; however, we believe that with proper moni-

oring the risks are minimal and the benefits in CNR are significant. 

.4. Increased sensitivity from implanted phased-array coils 

Important insights about the brain’s neurovascular coupling and

unctional organization have been gained using task-based fMRI in

rained NHPs in conjunction with implanted electrodes. However, multi-

hannel RF receive coils, needed to boost SNR in small NHP brains,

ay hamper the access of invasive recording equipment. One solution

o overcome these limitations is the use of implanted RF phased-array

oils which also provide substantial increases in the sensitivity of fMRI,

ven at relatively low B 0 strengths ( Janssens et al., 2012 ; Li et al., 2019 ;

hu and Vanduffel, 2019 ). 

The phased-array coils can be embedded in the headset of monkeys,

ypically used to stabilize their skull during awake experiments, which

inimizes the distance relative to the brain and yields a fixed loading

f the coils across scanning sessions. However, each subject requires a

nique set of implanted coils. In particular, the loop array needs to be

onstructed to fit the unique shape of the skull of each individual subject

o improve SNR, a subject-specific set of external matching circuits needs

o be constructed according to the unique sizes of the loops, and invasive

urgery is needed to embed the elements in the headpost of the animals,

ust above the skull. Although implanted coil elements restrict access

orts to the brain (e.g. recording wells), the element locations and their
13 
izes can be planned in advance to allow access to the specific targeted

rain area(s). 

Implanted phased-array coils, with as few as eight elements, enabled

unctional imaging of the entire macaque brain using accelerated imag-

ng under awake conditions at 0.6 mm isotropic resolution at 3T (with

SNR between 40-60 in the cerebral cortex) ( Fig. 4 c, d). This approach

as used to reliably resolve fine-grained functional compartments such

s the V2 stripes ( Li et al., 2019 ). The resolution was over 2-fold higher

han the state-of-the-art isotropic resolution achieved in humans at 7T

0.8 mm isotropic), and relative to median cortical thickness is compa-

able across species (resolution / median cortical thickness: macaque

.6/2 = 0.29 and human 0.8/2.7 = 0.30). Resolution can be further im-

roved by increasing the number of channels and applying the same

echnology for NHP at 7T or higher B 0 strengths ( Box 2 ). 

.5. Diffusion MRI 

The minimal specifications for dMRI are less well established due

o uncertainty in required spatial resolution to resolve underlying

hite matter fiber architecture ( Donahue et al., 2016 ; Liu et al.,

020 ), or microstructural properties in grey matter ( Autio et al., 2020 ;

ukutomi et al., 2018 ). Subsequently, the spatial resolution should be

ushed as much as possible while sustaining adequate SNR throughout

he brain (i.e. SNR > 10). Nonetheless, further valuable lessons can be

ranslated from extensive YA-HCP trials which emphasized the impor-

ance of acquiring a large number of diffusion encoding directions (i.e.

70 directions or more) to mitigate the challenges in identifying cross-

ng fiber bundles ( Glasser et al., 2016b ; Sotiropoulos et al., 2013 ). For

xample, isotropic resolution of 0.9 mm and 1.2 mm in macaque and hu-

an, respectively, yields approximately 60% of voxels containing three

rossing fiber bundles (threshold at 0.05 of third crossing fiber’s volume

raction) ( Fig. 10 a) ( Autio et al., 2020 ; Sotiropoulos et al., 2013 ). Since

he detection of crossing fiber architecture critically depends on CNR,

e advocate a standard set of b-values (0, 1000, 2000 and 3000 s/mm 

2 )

sed by several recent large-scale human MRI consortia. Importantly,

hase-reversed SE echo-planar images should be acquired to correct for

eometric distortion ( Fig. 3 ). We recommend utilizing monopolar gra-

ients to minimize TE and maximize SNR. Moreover, multiband imag-

ng substantially improves the efficiency of diffusion acquisition up to
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Fig. 10. Comparison of dMRI quality measures between imaging centers. (A) Whole brain signal-to-noise ratio (SNR). (B) Third crossing fiber ratio in white 

matter (threshold at volume fraction 0.05). Primary imaging parameters were: RIKEN ( N = 20), MtS-P ( N = 4), UC-Davis ( N = 8) and YA-HCP ( N = 20): voxel size 0.7, 

1.0, 0.7 and 2 mm 

3 ; number of directions (512, 60, 121 and 256) and b-values (0, 1000, 2000 and 3000; 0 and 1000; 0 and 1600; 0, 1000, 2000 and 3000 

s/mm 

2 ), respectively. RIKEN data was obtained using HCP-style image acquisition protocols. Abbreviations: UC-Davis University of California, Davis; MtS-P Mount 

Sinai-Philips; YA-HCP the Young Adult Human Connectome Project. 
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o  
 point that incomplete T1-relaxation overrides the gains (i.e. TR ~

.0 s). Clearly, efficient isotropic high-resolution dMRI acquisition in

ivo requires high-density coils with good parallel imaging capabilities,

hereas ex vivo studies can alleviate this requirement by using gadolin-

um contrast agents to shorten T1-relaxation constants and using longer

ata acquisition sessions. Finally, we recommend using prescan normal-

zation to improve quality of image registration (dMRI to structural) and

o reduce the effects of head motion within a static receive field. 

To explore the NHP dMRI data quality, we also analyzed sev-

ral PRIME-DE datasets using the HCP-NHP pipeline and FSL’s ‘bed-

ostx_gpu’ ( Autio et al., 2020 ; Behrens et al., 2007 ; Hernandez-

ernandez et al., 2018 ). Whole brain SNR of b0 images are compared

n Figure 10 a. Notably, the PRIME-DE data (MtS-P and UC-Davis) re-

ulted in much lower third crossing fiber white matter volume frac-

ions in comparison to RIKEN data despite using comparable imaging

esolutions (RIKEN 0.7 mm 

3 , MtS-P 1.0 mm 

3 and UC-Davis 0.7 mm 

3 )

 Fig. 10 b). This discrepancy may reflect the differences in number of

iffusion-weighting gradient directions and number of b-values, which

re important at these modest resolutions with respect to the size of

hite matter bundles. 

Ex vivo studies provide the gold-standard for quantitative neu-

oanatomical connections and also the upper limit for tractography. A

ecent ex vivo marmoset study achieved a ~2000-fold smaller voxel size

80 𝜇m isotropic) in comparison to YA-HCP’s 7T dMRI (1 mm isotropic),

roviding details of primate neuroanatomy with unprecedented accu-

acy ( Liu et al., 2020 ). Such efforts in combination with quantitative

rack tracing and histology are expected to yield important insights to

stablish more robust dMRI specifications. 

. Discussion 

We have proposed a set of minimal specifications aimed at ad-

ancing NHP neuroimaging acquisition and analysis ( Box 1 ). We have

lso demonstrated compelling benefits of cutting-edge accelerated imag-

ng in NHP MRI, highlighting the advantages provided by NHP ded-

cated multi-channel RF coil technologies. Since most of the recom-

ended minimal acquisition specifications have been tested and used

y many recent large-scale human neuroimaging initiatives (i.e. HCP,

K BioBank, ABCD, Brain/MINDS), these guidelines should help im-

rove NHP study reproducibility and help bridge the gap between NHP

nd human neuroscience. The minimal specifications , however, are not

imed towards strict standardization and are not intended to limit sci-

ntific goals that may require different priorities regarding MRI data

cquisition or analysis (e.g. electrophysiological recordings). Although

ur primary focus was centered on issues surrounding NHP MRI, the

uidelines are also relevant to other species such as rodents. 
B  

14 
.1. Towards reproducible NHP neuroimaging 

NHPs are critical research models in basic and translational science

ue to their evolutionary proximity and similarity to humans in genet-

cs, brain connectivity and behavior Harding (2017) . However, system-

tic issues surrounding robustness, low statistical power due to a small

ample size and lack of standardization result in translational studies

n general having typically low study reproducibility ( < 25%) in pre-

linical biomedicine, pharmacology and neurosciences ( Baker, 2016 ;

egley and Ellis, 2012 ; Glenn and Ioannidis, 2015 ; Prinz et al., 2011 ).

onversely, particularly low study reproducibility in human neuroimag-

ng ( Poldrack et al., 2017 ) may, in turn, adversely influence preclinical

tudy designs. To establish a modern, more efficient, basic research and

ranslational platform, it is imperative to investigate reproducibility in

reclinical and human neuroimaging and to adapt best available prac-

ices ( Glasser et al., 2016b ; Nichols et al., 2017 ; Poldrack et al., 2017 ). 

To improve the prospects for NHP neuroimaging, we introduced min-

mal NHP MRI guidelines ( Box 1 ). Importantly, we demonstrated that

n macaque monkeys these guidelines can enable automated and ro-

ust estimation of cortical thickness that were equivalent or higher than

hose reported in human subjects ( Fig. 11 a, b, Supp. Fig. 5, 6, 7). On the

ther hand, despite three decades of fMRI studies, rfMRI reproducibil-

ty remains a formidable challenge for NHP studies ( Fig. 8 b, Fig. 11 d).

urprisingly, results show that pooling current rfMRI data across NHP

maging centers in PRIME-DE reduces rather than increases statistical

trength, arguing against the primary aims of data sharing and reinforc-

ng the challenges surrounding reproducibility in biomedical sciences.

he low reproducibility may be heavily impacted by differences in anes-

hesia and data acquisition protocols (e.g. scanner, coil and sequence)

sed in different research centers. Because isoflurane anesthesia is rel-

tively easy to maintain and has a rapid washout, it is often used in

epeated NHP experiments ( Table 1 ). However, a known disadvantage

f volatile anesthetics is that they act as potent vasodilators, which may

ncrease baseline cerebral blood flow (CBF) and uncouple it from cere-

ral energy metabolism ( Masamoto and Kanno, 2012 ; Van Aken and

an Hemelrijck, 1991 ). To reduce the effects of isoflurane, RIKEN rs-

MRI data was obtained using a combination of low isoflurane (0.6%)

nd low dexmedetomidine (4.5 𝜇g/kg/hr; infusion) anesthesia yielding

elatively good reproducibility ( Fig. 8 , Supp. Fig. 9). Other imaging cen-

ers used deeper isoflurane anesthesia ( Table 1 ), or additional ketamine

njections, yielding poor reproducibility in rs-FC. Taken together, this

uggests that isoflurane should be maintained below 1% in NHP fMRI,

lbeit inferences are limited by multiple differences in the study designs

see also ( Bortel et al., 2020 ; Paasonen et al., 2018 )). Notwithstand-

ng, as more NHP imaging centers refine their experimental methodol-

gy according to more standardized image acquisition approaches (i.e.

ox 1 ), in conjunction with improved anesthesia protocols and more
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Fig. 11. Comparison between heterogeneous non-human primate (NHP) protocols and human harmonized protocol (HARP) MRI similarity measures. 

Parcellated cortical thickness similarity measures were comparable across species (A) within-subject and within scanner (at RIKEN, N = 5) and (B) between-subject 

and between-scanners (macaque N = 23, 6-scanners; human N = 30, 13-scanners). (C) Parcellated functional connectivity (FC) exhibited comparable test-retest repro- 

ducibility between anesthetized NHPs in RIKEN and (awake) humans. However, (D) FC exhibited poor reproducibility across NHP imaging centers in comparison 

to humans. HARP is a travelling subject ( N = 30) study across 13-clinical MRI centers ( Koike et al., 2020 ). Macaque and human data were processed using HCP-NHP 

and HCP pipelines, respectively. NHP MRI data was parcellated using M132 91-areas per hemisphere atlas ( Markov et al., 2014 ) whereas human MRI data was 

parcellated using HCP’s 180-areas per hemisphere atlas ( Glasser et al., 2016a ). The Spearman’s rank correlation coefficients (rho) are shown in mean (std). 
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tringent quality control Vanduffel (2018) , we remain optimistic for

ooling multi-center NHP functional data in the future. 

Although we anticipate that most of the minimal NHP MRI guidelines

re uncontroversial ( Box 1 ), the main bottlenecks to adapt these specifi-

ations are related to hardware limitations (i.e. field strength, availabil-

ty of gradient inserts, RF multi-array receive-coil and parallel imaging

equences) and the lack of automated analysis pipelines optimized for

HPs. Some of the hardware limitations can be mitigated as multiple

maging centers already have developed NHP dedicated multi-channel

eceive coil arrays ( Autio et al., 2020 ; Ekstrom et al., 2008 ; Gao et al.,

020 ; Gilbert et al., 2016 ; Janssens et al., 2013 , 2012; Schaeffer et al.,

019 ; Yacoub et al., 2020 ) that provide very cost-effective means to im-

rove the NHP MRI data quality ( Box 2 , Fig. 4 ). Multichannel receive

oil arrays are becoming commercially and thus more widely avail-

ble for awake and anesthetized macaque (24-channel) ( Autio et al.,

020 ) and marmoset (16-channels) monkeys for Siemens 3T and

T scanners ( https://www.rogue-research.com/takashima-seisakusho-

oils/ ) and (implantable) arrays can also be made available through the

anduffel lab. Second, automatic pre-processing software, such as the

CP-NHP pipeline, is becoming available, but its implementation remains

hallenging. One way to overcome this is to establish an on-line system

or automated pre-processing, similar to ones emerging in the human

euroimaging community ( Esteban et al., 2020 ). As for statistical anal-

ses, we advocate toolboxes firmly established for human neuroimag-

ng data such as FSL’s PALM (Permutation Analysis of Linear Models)

 Winkler et al., 2014 ) which can operate over several modes of data

i.e. volume, CIFTI, GIFTI MRI data but also non-imaging data) and

re rigorously validated using simulated and real data for controlling

ultiple comparisons (for best statistical practices, see ( Eklund et al.,

016 ; Nichols et al., 2017 )). We also advocate data sharing (e.g. raw and

re-processed) in public repositories, such as PRIME-DE ( Milham et al.,

018 ), and published figures in the HCP’s Connectome Workbench

scene’ file format at Brain Analysis Library of Spatial maps and Atlases

BALSA) ( Van Essen et al., 2017 ) to improve comparison across studies,

nd new initiatives of the Human Brain Project. Altogether, technology

nd data sharing platforms are available for the NHP community to sub-

tantially improve robustness and reproducibility in NHP neuroimaging.

Ultimately, NHP MRI guidelines ( Box 1 ) should be validated and

mproved upon with respect to the anatomical and physiological ‘ground

ruth’. NHP research has the potential to provide important insights for

mproving human neuroimaging ( Orban et al., 2004 ; Vanduffel et al.,

014 ), as imaging data and preprocessing strategies can be compared in

he same subjects with electrophysiology ( Tsao et al., 2006 ) and post-

ortem data ( Hayashi et al., 2021 ). 
15 
.2. Challenges in multi-center NHP research 

Multi-center approaches would enable investigations of much larger

umbers of NHP subjects with a more multidisciplinary approach than

ossible in a single laboratory. However, substantial challenges re-

ain to remove laboratory-specific non-biological measurement biases

rom multi-center NHP MRI data using prospective data acquisition

nd retrospective data analysis harmonization methodologies. In hu-

ans, prospectively harmonized multi-center data acquisition protocols

nd ICA-FIX cleaned data result in FC matrices across subjects ( N = 30)

nd scanners ( n = 13) is 0.55 ± 0.07 (rho ± std) whereas within-subject

nd within-scanner test-retest reproducibility is 0.72 ± 0.08 ( Fig. 10 d)

 Koike et al., 2020 ). Thus, the average FC correspondence between NHP

maging centers (0.23 ± 0.13; rho ± std) is well below that observed

cross human MRI centers (which use much more convergent hardware

nd harmonized data acquisition protocols) ( Fig. 10 d), whereas moder-

te within-subject and within-scanner test-retest reproducibility corre-

pondence within RIKEN (0.75 ± 0.08; rho ± std) show promising di-

ections for systematically increasing reproducibility ( Fig. 8 , Fig. 10 c). 

Removal of undesirable non-biological sources of variation in multi-

enter studies is a rapidly emerging area of investigation and different

etrospective harmonization strategies have been introduced for corti-

al thickness ( Fortin et al., 2018 ), FC ( Feis et al., 2015 ; Yu et al., 2018 ))

nd diffusion tensor imaging ( Fortin et al., 2017 ). Nonetheless, a con-

ensus has not been achieved over optimal harmonization methods (i.e.

eneral Linear Model, ICA, empirical Bayes and convolutional neural

etwork) to selectively remove site-related effects while maintaining

iologically relevant covariates in the data. Statistical harmonization

n the NHP population, however, remains a daunting challenge given

hat the majority of the underlying biological co-factors (e.g. pheno-

yping data) remain unknown. For perspective, a recent study of UK

iobank study found significant associations between brain volumetric

henotypes and over 100 associated genes, but relied on a very large

opulation (~20,000 individuals) ( Zhao et al., 2019 ). Such populations

re unrealistic for NHP studies. 

. Conclusion 

Here, we provided minimal acquisition guidelines for NHP MRI with

n aim to standardize data acquisition and data analysis with respect

o the human neuroimaging community. Increased standardization will

ot only serve the needs of human neurosciences and clinical services

ut will also improve prospects of translating clinical findings to basic

nd pre-clinical NHP neuroimaging. However, much remains to be done

https://www.rogue-research.com/takashima-seisakusho-coils/
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n terms of multi-center NHP MRI research and the way forward is by

ncouraging greater dialogue and cooperation including sharing data ac-

uisition technologies, image processing software, and data access now

acilitated via emerging collaborative initiatives such as PRIME-DE. 

ata availability 

Data is partly available at BALSA https://balsa.wustl.edu/ and at

RIME-DE http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html . 

Analysis pipeline is available at https://github.com/Washington- 

niversity/NHPPipelines . 

Protocols are available at https://brainminds-beyond.riken.jp . 
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