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Abstract
This paper (1) summarizes the history of the RERS challenge for the analysis and verification of reactive systems, its profile
and intentions, its relation to other competitions, and, in particular, its evolution due to the feedback of participants, and (2)
presents the most recent development concerning the synthesis of hard benchmark problems. In particular, the second part
proposes a way to tailor benchmarks according to the depths to which programs have to be investigated in order to find all
errors. This gives benchmark designers a method to challenge contributors that try to perform well by excessive guessing.

Keywords Benchmark generation · Verification competitions · Error witnesses · Temporal logic · LTL synthesis · Büchi
automata · Modal contracts · Parallel decomposition · Model checking · Bisimulation checking

1 Introduction

Competitions and challenges have provided a valuable con-
tribution to the development of verification and analysis
tools, and numerous events of this kind have evolved over
the last decades [4,6,8,29,32,36,43]. The approaches fol-
lowed by these in many cases recurring events vary from
off-site to on-site, with or without concrete resource con-
straints, from solution orientation to tool orientation, from
known benchmark problems to problems with unknown true
properties to controlled, generated benchmarks, and from
qualitative/human evaluation to automated evaluation pro-
cesses etc. (cf. Sect. 2 and [5]).

The RERS challenge is characterized by its property-
oriented benchmark generation: benchmarks are automat-
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ically generated in a “requirements-driven” fashion. More
precisely, the starting point of the benchmark generation
process is a set of desired structural properties, here formu-
lated in LTL, which are successively transformed via Büchi
automata that characterize all satisfying executions toModal
Transitions Systems and, with a fewmore steps, transformed
to code of various implementation languages (cf. Sect. 2.4).
This construction principle aims at benchmarks that closely
resemble realistic code, but can be flexibly tailored in their
degree of difficulty. Originally, we considered size, amount
of arithmetic operations, and the data structures used as a
measure for intricacy. Over the years, the importance of con-
trolling the length of shortest counterexamples as a means
for scaling the difficulty of the verification task (in contrast
to the complexity of the benchmark problem) became more
and more apparent.

This paper consists of two parts: The first part (Sect. 2)
summarizes the history of RERS, its profile and intentions,
its relation to other competitions, and, in particular, its evolu-
tion due to the feedback of participants. This also comprises
a discussion of experienced ‘oddities’, both at RERS and
in relation to other competitions, as well as ways to over-
come them. The second part (Sect. 3) presents our most
recent development concerning the control of counterexam-
ple lengths. The proposed tailoring of benchmarks focusing
on the depths to which programs have to be investigated in
order to find all errors gives benchmark designer a way to
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challenge contributors who are claiming satisfaction without
sufficient evidence.

2 The RERS challenge

The Rigorous Examination of Reactive Systems challenge
(RERS) is a verification challenge that focuses on temporal
and reachability properties of reactive systems. RERS was
founded in 2010 and has annual instances since 2012. The
challenge was designed to explore, evaluate, and compare
the capabilities of state-of-the-art software verification tools
and techniques. Areas of interest include but are not limited
to static analysis [52], model checking [9,14,25], symbolic
execution [38], and (learning-based) testing [62].

The key idea of RERS is to use generated, realistic prob-
lems of scalable complexity on which participants have to
check sets of properties.

Automatic generation of benchmarks with known prop-
erties provides new problems each year that are (a)
previously unknown to participants, and (b) for which
the correct verdicts for properties are not known to
the participants during the challenge—preventing “per-
formance tuning” of participating verification tools
towards a high score on the basis of known expected
results or known characteristics of benchmarks.

Realism of benchmarks (in contrast to typical randomly
generated benchmarks) is achieved in a requirements-
driven fashion: programs are generated according to
characteristic temporal patterns resembling the struc-
ture of real code.

Scalability of difficulty is the basis for detailed perfor-
mance profiling of participating tools.

In this section, we provide a brief motivation for RERS, an
overview of the history of RERS, sketch some of the scien-
tific contributions on the automatic generation of benchmarks
that were facilitated through RERS, and briefly describe how
different ranking methods in RERS enable detailed profiling
of tools.

Remark Parts of this section have been published before in
papers or on the RERS website. We provide pointers to more
detailed accounts where it is appropriate and possible. The
focus of this section is on providing a general overview.

2.1 Rigorous examination of reactive systems

The motivation of RERS is to enable profiling of princi-
pal capabilities and limitations of tools and approaches. The
RERSchallenge is therefore “free-style”, i.e., without neither
time nor resource limitations, and encourages the combina-
tion of methods and tools. Strict time or resource limitations

in combination with previously known solutions encourage
tools to be tweaked for certain training sets, which could give
a false impression of their capabilities. It also leads to aban-
doning time consuming problems in the interest of time. Our
focus onprincipal capabilities insteadof defined and identical
resources is reflected by making RERS a challenge instead
of a competition. We only provide the tasks and collect the
results from participants. Solutions are computed by them in
any way they want. The main goals of RERS are:

1. encourage the combination of methods from different
(and usually disconnected) research fields for better soft-
ware verification results,

2. provide a complete framework for an automated chal-
lenge organization that covers the process from generat-
ing differently tailored tasks that reveal the strengths and
weaknesses of specific approaches to an automated result
comparison (excluding the computation of results itself),

3. initiate a discussion about better benchmark generation,
reaching out across the usual community barriers to pro-
vide benchmarks useful for testing and comparing a wide
variety of tools, and

4. collect (additional) interesting syntactical features that
should be supported by benchmark generators.

There exists no other software verification challenge with a
profile that is similar to that of RERS: while (1) is a quite
generic goal that is pursued by a number of verification com-
petitions, goals (2)–(4) are unique to RERS. Nevertheless,
RERS shares some intentions and characteristics with SV-
COMP, MCC, and VerifyThis.

The software verification competition [8] (SV-COMP) is
also concernedwith reachability properties and features a few
verification tasks concerning termination andmemory safety.
In direct comparison, SV-COMP does not allow the manual
combination of tools and directly addresses tool developers.
In contrast to RERS, it has time and resource limitations,
does not feature certificate-like achievements (cf. Sect. 2.5),
but has developed a detailed ranking system for the com-
parison of tools and tries to prevent guessing by imposing
high penalties on mistakes. An important difference to SV-
COMP is that RERS features benchmarks that are generated
automatically for each challenge iteration, ensuring that all
results to the verification tasks are unknown to participants.
Over time, the RERS benchmark generator contributed prob-
lems to the SV-COMP benchmark repository.

Another competition concerned with the verification of
parallel systems in combination with LTL properties is the
Model Checking Contest [43] (MCC). Participants have to
analyze Petri nets as abstract models and check LTL and
CTL formulas, the size of the state space, reachability, and
various upper bounds. The benchmark consists of a large set
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of known models and a small set of unknown models that
were collected among the participants.

In contrast to RERS, MCC participants submit tools that
have to adhere to resource restrictions, rather than problem
answers. Moreover, the correct answers to the used verifica-
tion tasks are not always known, and a majority vote-based
approach to correctness is used.1 This maywell penalize out-
standing approaches that are e.g. unique in identifying the
correct result. This problem is overcome for RERS due to its
property-oriented benchmark generation. We were happy to
hear thatMCC started using some verification tasks of RERS
to partially overcome this problem.

Finally, VerifyThis [29] features program verification
challenges. Participants get a fixed amount of time towork on
a number of challenges, to prove the functional correctness of
a number of non-trivial algorithms. That competition focuses
on the use of interactive or semi-interactive tools. Similar to
RERS, VerifyThis encourages the use of a mixture of tools,
however submissions are judged by a jury. In direct compar-
ison, RERS participants submit results that can be checked
and ranked automatically; only the “best approach award”
involves a jury judgment.

2.2 Genesis (from ZULU to RERS)

The idea for RERS arose in 2010 after participating in the
ZULU automata learning competition [28]. The ZULU com-
petition had some very exciting and some rather frustrating
aspects. The competition was based on randomly gener-
ated automata, the participating learning tools competed in
a black-box scenario, and questionnaires (sets of words for
which participants had to decide languagemembership)were
the basis for ranking tools.

One the one hand, ZULU had an incredibly engaging
training and competition mode: contestants could generate
new training problems in a push-button approach and rank-
ing of tools on all benchmark instances was instantly visible.
Improvements to algorithms did translate to almost instant
gratification, fueling a month-long race for the win.

The mode of ranking performance by counting correct
answers in questionnaires, on the other hand, did not serve
well for differentiating tools and in some cases even favored
learning algorithms that were already known to perform
badly on real problems. Less precise models produced better
predictions for certain distributions of words in question-
naires.Moreover, algorithms could (andwere) tuned towards
the structural properties of a randomly generated benchmark.
It turned out that this tuning was often counterproductive for
inferring models of real systems.

1 This approach is indeed quite common e.g., in the SAT-solving com-
munity.

The RERS initiative aimed at developing an engaging
challenge, or a set of challenges (cf. Sect. 2.3), in the
area of formal methods that would overcome the perceived
weaknesses of ZULU. As a consequence, RERS is based
on generated benchmarks (cf. Sect. 2.4), and one of the
long-term goals of RERS is making the generation of new
benchmarks accessible to participants. At the same time, the
approach to benchmark generation in RERS aims at gen-
erating benchmarks that have realistic properties—resulting
in relevant performance profiles of tools. This aim is also
supported by RERS providing multiple modes of ranking
and rating, tailored to profile contributions according to their
capabilities and limitations (cf. Sect. 2.5).

2.3 Tracks and history

After an initial workshop in 2010, RERS had yearly chal-
lenges since 2012with a constantly evolving set of tracks and
verification challenges. Since 2012, a total of 49 people from
16 different research groups participated in RERS.2 Table 1
provides a comprehensive overview that will be detailed by
the remainder of this section.

Sequential Programs RERS started in 2012 with sequential
benchmark programs in two tracks (LTL and Reachability)
that correspond to the property type that has to be analyzed.
Sequential benchmark programs are made available as Java
andCprograms. Since 2014, there are three categories in each
track that represent the syntactical features included in the
benchmark programs that belong to the respective category.

Plain. The program only contains assignments, with the
exception of some scattered summation, subtraction,
and remainder operations in the reachability problems.

Arithmetic. The programs frequently contain summation,
subtraction, multiplication, division, and remainder
operations.

Data structures. Arrays and operations on arrays are added
(Other data structures are planned for the future).

In each category, small, medium-sized, and large programs
are generated for a challenge benchmark.

Starting in 2020, LTL properties will be controlled for
minimal depth of counterexamples (presented in this paper),
enabling an additional dimension in which complexity can
be scaled.
Parallel Programs Since 2016, RERS features benchmarks
that contain parallel systems which are made available as
labeled transition systems (LTSs), Promela [24] code, and
Petri nets [20,53]. The parallel track started with LTL prop-
erties andwas tentatively extended toCTLproperties in 2018.

2 See http://www.rers-challenge.org/<challenge-year>/index.php?pag
e=results for comprehensive lists of participants and results.
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Table 1 RERS Challenges 2010-2020

Year Colocation Basic tracks Special feature Teams Ref.

Sequential Parallel

Reach LTL LTL CTL

2010 ISoLA 2010 Initial workshop on founding RERS n/a [28]

2012 ISoLA 2012 � � – 5 [26,27]

2013 ASE 2013 � � Black-box/grey-box/white-box 3 [27]

2014 ISoLA 2014 � � Extended lang. features (arithmetic, data structures) 5 –a

2015 RV 2015 � � Monitoring challenge 2 [21]

2016 ISoLA 2016 � � � – 6 [22]

2017 SPIN/ISSTA 2017 � � � – 7 [31]

2018 ISoLA 2018 � � � � – 6 [33]

2019 TOOLympics at TACAS 2019 � � � � Industrial problems by ASML 4 [32]

2020 ISoLA 2020 � � � � Scalable depth of LTL counterexamples Open –

a Emphasized features brought or are expected to bring a permanent change to how benchmarks are generated for basic tracks

As a new addition in 2019, CTL properties were fully sup-
ported as a full track for the category of parallel programs
(e.g. Petri nets) and were therefore on par with our support
for LTL model checking tasks.
Experimental Tracks In several years, RERS had experimen-
tal tracks that did not (yet) result in permanent additions to
the challenge.

– In 2013, RERS featured grey-box and black-box prob-
lems in addition to the (default) white-box problems.
The additional problems were intended to encourage
participation of black-box approaches and facilitated
integration of white-box and black-box techniques.

– In 2015, RERSwas co-locatedwith the international con-
ference on runtime verification (RV) [6] and featured
monitoring problems for which traces were provided.

– In 2019, for the first time in the history of RERS, the
challenge featured benchmark programs that are based
on real-world models [32]. The corresponding challenge
tracks were based on a cooperation with ASML, a large
Dutch semiconductor company who provided the under-
lying models. Properties that participants could analyze
for these systems ranged from reachability queries over
LTL formulas to CTL properties (omitted in Table 1).

Adetailed history anddescriptionof all past tracks and all sets
of challenge problems can be found on the RERS website3

along with properties and expected verdicts.

3 http://rers-challenge.org.

2.4 Synthesis of benchmarks with known properties

RERS relies on generated benchmark problems of scalable
complexity and with known properties. The motivation for
this, as stated above, is to enable detailed profiling of tools.
TheRERS benchmark generation technology combines scal-
able complexitywith knownproperties, two goals that appear
conflicting at first glance: it is impossible to automatically
decide properties on problems that are too complex for cur-
rent tools to analyze. Other competitions (e.g. MCC) solve
this by determining verdicts that ought to be accepted as
correct by majority vote. This, of course, has the drawback
that a high performance of few tools, resulting in uncommon
but correct verdicts on some problems, leads to a competi-
tion ranking that is inversely correlated to performance. We
observed this firsthand in the ZULU competition.

Motivated by this experience,we have developed a generic
method and tool-boxes for generating benchmark problems
of scalable complexity with known properties. A frequent
argument against the use of generated benchmarks is the
potential threat to the validity of profiling results that arises
from their artificial nature.We address this threat in RERS by
using sets of LTL properties for inducing structure or actual
industrial system models at the core of our benchmark syn-
thesis.

In this section, we provide a brief overview of the generic
method, using the generation of sequential benchmark prob-
lems as a concrete example. Detailed accounts of concrete
tool-boxes for different classes of benchmark problems can
be found in the papers listed in Table 2.
General ApproachOur general approach to the generation of
benchmarks that we use in RERS is sketched in Fig. 1 and
exists in two variants, property-based benchmark generation
and model-based benchmark generation. Both variants fol-
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Table 2 Generation of
benchmarks in RERS

Year Title Ref

2013 Property-driven benchmark generation [63]

2014 Tailored generation of concurrent benchmarks [61]

2014 Property-driven benchmark generation: synthesizing programs of realistic structure [64]

2017 Property-preserving generation of tailored benchmark petri nets [67]

2018 Synthesizing subtle bugs with known witnesses [35]

low the same high-level pattern. The process is divided into
two phases. In the first phase (upper half of both sub-figures),
benchmark properties are established on a smallmodel. In the
second phase, models are expanded by semantics-preserving
transformations that increase complexity at the model-level
and then generated into code. Code generation can add
another dimension of complexity by encoding the behavior
specified in the model through different language features
(e.g., using arithmetic expressions or data structures).
Property-based Benchmark Generation In this variant (left
of Fig. 1), we start the generation process by randomly
choosing and then instantiating LTL property specification
patterns [19] that we partition into a small defining set used
in the subsequent synthesis step, and a larger set of additional
properties whose validity is later checked on the synthesized
model via model checking. Typically, we generate around
100 properties, about ten of which can be defining, in order
to still allow for automated synthesis.

Our current implementation uses LTL2Buchi [23] and the
Spot library [18] for translating the LTL specification into a
Büchi automaton. The resulting intermediate Büchi automa-
ton is then transformed into a concrete reactive systemmodel
(a Mealy machine) that represents all words/paths satisfy-
ing the defining properties. The construction of this Mealy
machine is randomized and can be customized in various
dimensions, e.g., the size of the model, the size of the input
and output alphabets, the density of the transition graph etc.,
while guaranteeing that all defining properties remain valid.
Model-based Benchmark Generation In this variant, we start
from a reactive system model. Such models were provided
by ASML in 2019 [32]. Properties and verdicts can then be
computed in two different ways from these models (right of
Fig. 1). Generated properties can be model-checked as in
the property-driven approach. This was, e.g., done for LTL
properties in the industrial track of RERS 2019. Alterna-
tively, properties can be computed from the models directly.
This was done for CTL properties in the industrial track of
RERS 2019.
Model-Expansion and Code Generation In the second
phase of generating sequential benchmark problems, Mealy
Machines are enlarged via randomized property-oriented
expansion (POE) [60] and by introducing unreachable states.
Both transformations are incremental and can be stopped

at any moment, e.g., when a certain threshold of states is
reached. The transformation from Mealy Machines to pro-
grams interprets Mealy machines as simple loops of guarded
commands,whose guards precisely check for the correct state
identification, and replaces the simple guard structure with a
complex, semantically equivalent decision structure.

As a final step, we employ data-flow analysis, trans-
formation and code motion techniques [12,39–42,49,58,68]
to randomly elaborate the program model structure along
both the logical and the control structure, delocalizing infor-
mation and obtaining quite general while-program-like
structures [2].
Generation of Parallel Benchmarks We have also applied
our property-preserving generation process to obtain parallel
systems in various formats like (Nested-Unit) Petri nets [20,
53], Promela [24] code, or simply as graphs in DOT4. This
also happens in two conceptual steps: first, we synthesize
an interesting core model from an LTL specification in the
sameway as for the sequential case, and then decompose this
coremodel into parallel components in a property-preserving
fashion. Key for this decomposition was a new notion of
modal contracts [65] which allows us to generate parallel
systems with arbitrarily many components.

Basing property preservation on modal refinement [46]
instead of language inclusion guarantees that not only linear-
time properties are preserved, but branching-time properties
as well. This allows us to use the generated parallel models
not only for the reachability and the LTL model checking
track, but also for the CTL model checking and bisimula-
tion checking track [66], the later being planned as a future
addition.

2.5 Ranking

RERS has a three-dimensional reward structure that con-
sists of a competition-based ranking on the total number
of points, achievements for solving problems without sub-
mitting wrong answers, and an evaluation-based award for
the most original idea or a good combination of methods.
Computation of scores and modes of ranking (per track, per
category) have evolved slightly over the years. Adaptations

4 http://www.graphviz.org/content/dot-language.

123

http://www.graphviz.org/content/dot-language


F. Howar et al.
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Fig. 1 Benchmark Synthesis in RERS. Property-driven generation
(left) starts with a set of properties from which a model is synthe-
sized. Model-driven generation (right) starts from a model. Mining
and model checking or property extraction are used for generating

challenge properties and expected verdicts. The model is expanded
through semantics-preserving transformations. Code is generated from
the model. The desired benchmark profile determines the extent of
expansion and the language features used in the code

were made to arrive at more detailed, relevant, and valid pro-
filing of participating approaches.
Competition-based Ranking The competition-based rank-
ing was established to facilitate competition and as a direct
comparative evaluation of the capabilities of tools. Partic-
ipants are free to opt out of this ranking and to only aim
at obtaining achievements. For the ranking, a score for the
performance of every participating tool is computed. Based
on these scores, tools are ranked. Positive points are awarded
for correct verdicts. Incorrect verdicts lead to penaltieswhose
heights was a major point of discussion over the years, lead-
ing to frequent changes.

The negative impact of incorrect verdicts on a tool’s score
in the competition-based ranking was originally quite small.
In 2012 it was just −1 point, and it was −2 points in 2013
to 2015. In 2016 there was a drastic change in the penalty
which became exponential in the number of errors (−2n).
This change has turned out to be too drastic and we are there-
fore using quadratic penalties (−n2) since 2018.

For RERS 2019, also the points for correct answers were
refined (from previously one point per correct answer) to two
points for verifiable LTL properties or unreachable errors and
one point for refutable LTL properties or reachable errors,
accounting for the fact that showing the existence of coun-
terexamples and errors is usually easier than proving their
absence.
Achievements To honor the accomplishments of verifica-
tion tools and methods without the pressure of loosing in a
competition despite good results and only in relation to the
complexity of the set of benchmark problems, RERS intro-
duced achievements for different nuances of difficulty.

For every category there are three achievements: bronze,
silver and gold. An achievement is only awarded if no wrong

answers are given in the respective category. For tracks on
CTL properties, a participant needs to answer 12 out of 20
properties correctly in order to “solve” an individual problem.
If there are n problems within such a track, then a participant
needs to answer 1

3 · n · 12 properties correctly for a bronze
award, 2

3 · n · 12 for silver and n · 12 for gold.
For the remaining tracks of RERS, proving the absence of

a property violation is typically much harder than showing
such a violation. Taking this into account, achievements are
awarded for reaching a threshold of points that is equal to
the number of counterexamples that can be witnessed for the
corresponding group of benchmark instances, as long as no
wrong answer is given. Counterexamples are paths reaching
an error function for the Reachability track and paths vio-
lating LTL properties for the LTL tracks. Only the highest
achievement for every category is actually awarded and the
thresholds for every category are calculated as follows:

bronze = #falsifiable properties of small problem

silver = #bronze + falsifiable prop. of med. problem

gold = #silver + falsifiable prop. of large problem

Theparticipant’s achievement scorewithin a category is com-
puted from all submitted results (verified or falsified). Let
at (C) = n be the achievement score of tool t for category
C , where n is the number of correct (i.e., reported) verdicts
for category C . Now let, e.g.,

bronze(C) ≤ at (C) and at (C) < silver(C).

Then participant t is awarded the Bronze Achievement in
category C . It is possible to receive six achievements in the
sequential tracks: one for each category (Plain, Arithmetic,
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Data Structures) in the Reachability and LTL track, respec-
tively. In the parallel tracks, an overall of six achievements
can be obtained by participating tools for small, medium, and
large problems in the LTL and CTL tracks.

Since achievements are awardedon aper-participant basis,
theremay bemultiple gold-medalists in some category in any
particular year of RERS.
Evaluation-based Award To honor creativity and cross-
fertilization between different research areas, RERS features
jury-based awards. For these awards, category winners are
chosen based on the employed (combination of) methods
which must not necessarily have scored highest. Submitted
descriptions of approaches and solutions are reviewed and
ranked by the challenge organizers. Due to the possible vari-
ety of methods there may be several winners in this category.

2.6 Impact

In the ten years since its inception, RERS has had an impact
in different dimensions.
Scientific Contributions. First of all, RERS has facilitated
a number of scientific advances by challenge participants.
Some examples are presented in [1,7,10,11,15–17,30,34,37,
44,45,47,48,50,51,56,57,59,69–71].
Benchmark Generation. Organizing RERS required the
generation of benchmarks. Over the past decade, we have
developed multiple approaches for generating scalable and
realistic benchmarks with known properties. Benchmark
generation required integration of a diverse set of formal
methods and RERS benchmarks have been integrated by
other verification competitions (e.g., SV-COMP) into their
sets of benchmark programs.
Combination of Methods. Over the years, RERS has
facilitated a number of promising combinations of meth-
ods, e.g. [44]. In the latest instance, participants of RERS
2019 notably used diverse combinations of tools to pro-
duce their answers to the given verification tasks. As an
example for this diversity, one of the participating teams com-
bined verification based on grey-box fuzzing and traditional
compiler-based interval analysis. Another team employed
three different available verification tools to generate their
submission and thereby profiled and utilized the individual
strengths and weaknesses of these tools.

In summary, one can argue that instead of submitting an
executable tool that computes a single verdict automatically
as commonly required in verification competitions such as
SV-COMP or MCC, participants of RERS make use of the
freedom from resource constraints by employing an entire
toolkit to solve the given verification tasks. RERS allows
manual comparison of the output of tools and gives room
for final judgment made by humans on the verdicts of a
bouquet of verifiers and approaches, whereas other com-
petitions enforce completely automated decisions by tools.

This plethora of approaches provides evidence that RERS
achieves one of its main goals, namely to motivate the
comparison of different approaches and technologies (see
Sect. 2.1).

3 Guaranteeing hardness of benchmarks

In this section, we sketch our most recent approach to tailor
benchmark problems according to hardness: the generation
of benchmark problemswhich are known to have no evidence
for a counterexample that is shorter than a given threshold,
but which are also guaranteed to have such evidence for an
additionally provided upper bound. This allows the produc-
tion of benchmarks with a designed distribution of depths
to which the programs have to be investigated in order to
find all errors. In particular, this gives benchmark designers
a methodology for challenging contributors that are claiming
satisfaction without having a proper proof.

3.1 Preliminaries

Fundamental to our approach are the notions related to words
and languages:

Definition 1 (Words) Given a finite alphabet Σ , a word over
Σ is a (possibly empty or infinite) sequence of symbols from
Σ . Given an integer n ∈ N and a finitewordw = σ1σ2 . . . σn ,
|w| denotes the length n of w. Any infinite word w has the
length |w| = ∞. Given any word w = σ1σ2 . . . and any
integer i ∈ N such that i ≤ |w|, w≤i denotes the prefix of w

of length i .

Definition 2 (Languages) Given a finite alphabet Σ , a lan-
guage (over Σ) is a set of words over Σ . For a given n ∈ N,
the language Σn consists of all words w = σ1σ2, . . . σn of
length |w| = n such that σi ∈ Σ for all i ∈ 1 .. n.

For any n ∈ N, we define Σ≤n := ⋃n
i=1 Σ i , and addi-

tionally Σ∗ := ⋃
i∈N Σ i . A language L is finite iff |L| ∈ N

and infinite otherwise. Σω denotes the infinite language that
contains all infinite words overΣ . Moreover, L is a language
of finite words iff L ⊆ Σ∗, and a language of infinite words
iff L ⊆ Σω. The concatenation of symbols extends naturally
to languages: Given a language L ⊆ Σ∗ and any language
L ′, we have

LL ′ := {ww′ | w ∈ L ∧ w′ ∈ L ′}

Our approach to benchmark generation (cf. Sect. 3.3) is
based on the automatic generation of Büchi automata [13].

Definition 3 (Büchi Automaton) Let B = (S,Σ , Δ, s0, F)

be a finite automaton with a set S of states and an alphabet
Σ . State s0 ∈ S represents the initial state and F ⊆ S a set of
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accepting states. The relation Δ ⊆ (S × Σ × S) represents
transitions between states in S. We also write p

σ→ q to
denote (p, σ, q) ∈ Δ.

A path p in B is a sequence of transitions ui
σi→ ui+1 with

i ranging from 1 to either a fixed integer n or infinity. Path p
spells the word w = σ1σ2 . . . .

Given these definitions, B is called aBüchi automaton if it
adheres to Büchi acceptance, meaning that it accepts infinite
words w ∈ Σω based on the following criteria:

1. There exists a path p in B that starts in s0 and spells w

2. This path p visits a state in F infinitely often

The set L(B) := {w ∈ Σω | B accepts w} defines the
language of B.

The following definitions specify (propositional) linear
temporal logic (LTL) [54] which we use to specify properties
and as a basis for synthesizing Büchi automata. In essence,
LTL is an extension of propositional logic that includes addi-
tional temporal operators. Its syntax is defined as follows [3]:

Definition 4 (Syntax of Linear Temporal Logic) Let AP be
a set of atomic propositions and a ∈ AP. The syntax of
propositional linear temporal logic (LTL) is defined by the
following grammar in Backus-Naur form:

ϕ:: = 
 | a | ϕ ∧ ϕ | ¬ϕ | X ϕ | (ϕ U ϕ)

The operator X (or “next”) describes behavior that has to
hold at the next time step. A formula (ϕ1 U ϕ2) describes
that ϕ2 has to occur eventually and that ϕ1 has to hold until
ϕ2 occurs in a sequence. The formal semantics of LTL is
based on a satisfaction relation between infinite words and
LTL formulas [3]:

Definition 5 (Semantics of LTL) Let AP be an alphabet
of atomic propositions and let (2AP)ω denote infinite
sequences over sets A ⊆ AP. For any sequence
w = (A1,A2, . . .) ∈ (2AP )ω and any i ∈ N, let wi = Ai

be the i-th element of w and w≥i = (Ai , Ai+1, . . .) be the
suffix of w starting at index i .

Then the satisfaction relation |� ⊆ ((2AP)ω × LTL) is
defined as the relation that adheres to the following rules:

w |� 

w |� a iff a ∈ w1

w |� (ϕ ∧ ψ) iff w |� ϕ and w |� ψ

w |� ¬ϕ iff w |� ϕ

w |� X ϕ iff w≥2 |� ϕ

w |� (ϕ U ψ) iff ∃k ∈ N : w≥k |� ψ and
∀i ∈ N<k : w≥i |� ϕ

where w ∈ (2AP)ω and ϕ,ψ ∈ LTL.

Given a language L ⊆ Σω, we define

L |� ϕ iff ∀w ∈ L. w |� ϕ,

and given a Büchi automaton B, we further define

B |� ϕ iff L(B) |� ϕ.

For any ϕ ∈ LTL, the semantics �ϕ� of ϕ is given by

�ϕ� := {w ∈ (2AP)ω | w |� ϕ}.

Büchi automata are strictly more expressive than LTL [72].
One can synthesize a Büchi automaton B from an LTL prop-
erty ϕ such that L(B) = �ϕ� holds [55].

Using the basic set of operators in Definition 4, abbrevia-
tions for commonly described constraints can be introduced.
Popular ones include F(ϕ) := (
 U ϕ) which expresses
that ϕ will eventually become true and its dual operator
G(ϕ) := ¬F(¬ϕ) which claims that ϕ is always true.
A later example also utilizes the weak-until operator
(ϕ W ψ) := (ϕ U ψ) ∨ G(ϕ).

In the following, we introduce our approach to specify
languages such that a given verification property ϕ ∈ LTL
is violated, however in a way such that all counterexamples
that witness this violation have a guaranteed minimal length.

3.2 Guaranteeing deep LTL counterexamples

In this section we show how to construct (m, n]-hard veri-
fication tasks. Here, hardness is based on an integer interval
(m, n] of prefix lengths that means the following: looking at
prefixes of wordsw ∈ L of length at mostm does not suffice
to explain the property violation, however there exists such
a violating prefix of length at most n. In other words, every
prefix of length smaller or equal to m can be extended to a
word that satisfies ϕ, but this is not the case for all prefixes
of length up to n. We aim for verification tasks (L, ϕ) such
that

1. L ⊆ Σω and
2. ϕ is an LTL formula satisfying that
3. (L, ϕ) is (m, n]-hard.

In the following, we only synthesize reactive programs and
LTL properties for reasoning about non-terminating paths.
Our construction then works by constructing a maximal sub-
language L ′ ⊆ L that is (m, n]-hard w.r.t. ϕ (see. Sec. 3.3 for
our realization based on Büchi automata). In general, L ′ may
well be empty, a phenomenon that we deal with in a heuristic
fashion.

The following notion of violating prefix is important:
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Definition 6 (Violating Prefix) Letw ∈ Σ∗. Thenw violates
ϕ iff the following holds:

∀w′ ∈ Σω. ww′ |� ϕ

An infinite word w ∈ Σω k-violates ϕ iff its prefix w≤k

violates ϕ. A language L ′ ⊆ Σω k-violates ϕ iff there exists
a word w ∈ L ′ such that w k-violates ϕ.

Intuitively speaking, a finite word violates ϕ if it cannot
be extended to a word that satisfies ϕ. The following lemma
follows straightforwardly:

Lemma 1 (Monotonicity) If a word w ∈ Σω k-violates ϕ,
then for all k′ ∈ N with k′ ≥ k, w also k′-violates ϕ.

This monotonicity property allows us to specify (m, n]-hard-
ness simply based on the boundaries of this integer interval.

Definition 7 (Hardness) A language L ′ ⊆ Σω is called
(m, n]-hard w.r.t. ϕ iff the following hold:

1. L ′ does not m-violate ϕ

2. L ′ n-violates ϕ

Based on this hardness definition, we can deduce a construc-
tive approach to generate the maximal sub-language of L
that is (m, n]-hard w.r.t. ϕ. We simply construct the maximal
sub-language Lm

ϕ of L that does not m-violate ϕ and then
check whether or not Lm

ϕ n-violates ϕ. If it does, (Lm
ϕ , ϕ)

is an (m, n]-hard verification task. Otherwise, we know that
no (m, n]-hard verification task exists for L and ϕ, and we
continue by heuristically modifying the parameters.

The remainder of this section is therefore dedicated to
the construction of Lm

ϕ and the subsequent check whether it
n-violates ϕ.

Definition 8 (Violating Prefixes) Let L ′ ⊆ Σω and k ∈ N.
We denote the set of prefixes of L ′ with length at most k by

L ′≤k := {w≤i | w ∈ L ′ ∧ i ≤ k}.

Given a ϕ ∈ LTL, we call

VP(L, ϕ, k) := L≤k\�ϕ�≤k

the violating prefixes of ϕ in L with length at most k.

The following lemma is straightforward to prove:

Lemma 2 Let k ∈ N. Then VP(L, ϕ, k) consists of all words
w ∈ L≤k that violate ϕ.

The following theorems follow straightforwardly from Lem-
mas 1 and 2:

Theorem 1 Lm
ϕ = L\(VP(L, ϕ,m)Σω)

and

Theorem 2

L ⊆ Σω n-violates ϕ iff VP(L, ϕ, n) = ∅

Complementation of Büchi automata is a very expensive
operation. The following theorem guarantees that this opera-
tion can be avoided and instead replaced by one that executes
in quadratic time:

Theorem 3

Lm
ϕ = L ∩ (�ϕ�≤mΣω)

Proof We show the two inclusions between Lm
ϕ and

L ′ := L ∩ (�ϕ�≤mΣω).
Every wordw ∈ L ′ lies in �ϕ�≤mΣω which excludes that

it m-violates ϕ. Thus we have as desired L ∩ (�ϕ�≤mΣω) ⊆ Lm
ϕ .

For the converse inclusion let w ∈ Lm
ϕ . According to

Def. 6, this means that there exists a wordw′ ∈ Σω such that
w≤mw′ satisfies ϕ which yields w≤m ∈ �ϕ�≤m and therefore
in particular w ∈ �ϕ�≤mΣω. On the other hand, Lm

ϕ ⊆ L .
Together this guarantees that w ∈ L ′. ��
The next section presents theBüchi automaton-based realiza-
tion of Lm

ϕ in theway that it is used for ourRERSbenchmarks.

3.3 Realization based on Büchi automata

RERS’ benchmark generation follows the idea of require-
ment-driven system generation. More precisely, starting
point for RERS benchmarks is a set of structural LTL prop-
erties Φ which are meant to impose realistic benchmarks
structures. Thus, the initial languages L we consider in the
rest of this paper are of the form L = �Φ�, and the goal is to
construct Lm

ϕ = �Φ�mϕ . According to Theorem 3 this means
that we have to compute

L ′ = �Φ� ∩ (�ϕ�≤mΣω).

This can be done by means of well-known technology for
Büchi automata as follows:

1. Compute L = �Φ� and �ϕ�. We use the Spot library [18]
for this purpose. Please note that we need to constrain
the construction of L = �Φ� such that all transitions
within the resulting Büchi automaton are labeled with a
single atomic proposition. This can be accomplished by
enforcing an according invariant Ω in LTL (cf. [35]).

2. Concatenate the prefix tree of depth m for �ϕ� with Σω

to obtain a Büchi automaton for �ϕ�≤mΣω. Essentially,
this means to add an accepting Σω-loop at the end of
each leaf of this prefix tree.
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3. Compute the intersection of the two Büchi automata con-
structed in steps 1 and 2. This is again accomplished using
the Spot library.

4. Heuristically minimize the Büchi automaton that results
fromstep 3, again based on theSpot library. This is impor-
tant for the scalability of later transformation steps in our
overall approach, and it helps to obfuscate the tree expan-
sion in step 2.

In order to be sure that (L ′, ϕ) is indeed an (m, n]-hard ver-
ification task, it remains to be shown that L ′ n-violates ϕ

(cf. Def. 7). This can be done simply by means of an empti-
ness check for

L ′\(�ϕ�≤nΣ
ω)

If it fails, we are guaranteed to have a violating prefix that is
longer than m but shorter than or equal to n. Otherwise, we
know that no (m, n]-hard verification task exists for �Φ� and
ϕ, and we continue by heuristically modifying the parame-
ters.

3.3.1 Example

The following example illustrates each step of realizing

L ′ = �Φ� ∩ (�ϕ�≤mΣω)

for m = 2,

Φ = {¬(c ∨ e)Wd, ¬eUc, Ω}

and

ϕ = ¬bWa

where Ω is the above-mentioned invariant that ensures that
every Büchi automaton transition is labeled with exactly one
atomic proposition (cf. [35]). In order to ease readability
when this invariant is enforced, we abbreviate n transitions
labeled b1, . . . , bn that share their sources and targets by a
single transition labeled “b1| . . . |bn”.

Figures 2 and 3 display the Büchi automata for �Φ� and
�ϕ�, respectively, whereas Fig. 4 shows the Büchi automaton
for the language that guarantees that there are no violating
prefixes of length smaller or equal tom (cf. step 2 above). As
�ϕ� and �ϕ�≤mΣω do not feature a singleton invariant, they
are an exception to our simplified representation. Spot [18],
the library that we use for Büchi synthesis, uses a BDD rep-
resentation for Büchi automaton transitions. Therefore, all
labels within Figs. 3 and 4 have to be interpreted as BDDs
and not in our simplified manner presented above. Note that
because B ′ (Fig. 4) is afterwards intersected with B (Fig. 2),

Fig. 2 Büchi automaton B for �Φ�

Fig. 3 Büchi automaton for �ϕ�

Fig. 4 Büchi automaton B ′ for �ϕ�≤mΣω for m = 2

Fig. 5 Büchi automaton Bres = B ∩ B ′

the self loop at state 3 of the former does not need to spec-
ify the exact alphabet Σ . The Büchi automaton Bres shown
in Fig. 5 specifies already the desired language (cf. step 3
above), but it needs to be minimized to obfuscate the tree
expansion step and to achieve scalability of subsequent trans-
formations (cf. Fig. 6).

Fig. 6 Bres after minimization

123



The RERS challenge: towards controllable and scalable benchmark synthesis

3.3.2 Experiments

To provide an impression of the scalability of our approach,
we analyzed its execution time and the occurring numbers of
states withΦ and ϕ given as in the previous section, but with
increasing lower hardness bounds. This means in particular
that B (cf. Fig. 2) and Bϕ (cf. Fig. 3) are maintained during
our experiments.

The first column of Table 3 shows the hardness bound
m which was set to 2 during the discussion of the previous
section, while columns two and three summarize the num-
ber of states of the resulting automata before minimization
(corresponding to Fig. 5) and after heuristic minimization
(corresponding to Fig. 6). The fourth column provides the
wall-clock execution time for computing the final heuristi-
cally minimized Büchi automata as well as the proportion of
execution time which is needed for that minimization.

As one can see, the numbers are strictly increasing. This
seems to indicate that the corresponding languages are con-
tinuously changing, or more precisely, continuously strictly
decreasing. This is, however, not guaranteed, because the
four-step construction via Spot may well provide two dif-
ferent Büchi automata for the same language. There is no
canonicity. Thus, to be sure that one has a a valid (m, n]-hard
verification task one still has to check whether the languages
for n andm are indeed different. In the considered cases, this
could always be verified.

Our C++ implementation utilizes the Spot library [18]
for synthesizing,modifying, and optimizingBüchi automata.
The execution times in Table 3 are based on our implemen-
tation that was executed on a machine running Arch Linux
5.5.13-arch2-1 and featuring an AMDRyzen 3950X proces-
sor with 32GiB of RAM.

4 Conclusion and perspective

We have summarized the history of the RERS challenge for
the analysis and verification of reactive systems and its objec-
tives in two parts. In the first part, its profile and intentions,
its relation to other competitions, and, in particular, its evo-
lution due to the feedback of participants were discussed.
This comprised, in particular, the discussion of ‘oddities’
like over-tuning: some participants tweak their tools to the
sometimes concretely known solutions of the competitions’
benchmarks, which leads to scores that have little to do with
the tools’ performance in realistic scenarios. This way, even
winning a competition does not necessarily need to be a rec-
ommendation for potential users.

The second part presents our latest development with
regard to the over-tuning problem: the automatic synthesis
of benchmark problems with tailored difficulty in a require-
ment-driven’ fashion. More precisely, since the beginning,

Table 3 State numbers and execution time (rounded up to two signif-
icant digits) of Bres and minimized Bres for the above example and
different values of m

m Bres = Minimized Exec. time in ms

B ∩ B ′
ϕ Bres Minimization Total

2 6 5 0.04 1.20

3 11 7 0.06 1.30

4 20 9 0.11 1.30

5 31 11 0.16 1.40

6 44 13 0.22 1.50

7 59 15 0.31 1.60

8 76 17 0.40 1.80

9 95 19 0.52 1.90

10 116 21 0.65 2.10

20 436 41 4.60 6.70

30 956 61 18.00 22.00

40 1676 81 46.00 50.00

50 2596 101 99.00 110.00

60 3716 121 190.00 200.00

70 5036 141 330.00 340.00

80 6556 161 540.00 550.00

90 8276 181 830.00 850.00

100 10,196 201 1200.00 1300.00

the starting point of the RERS benchmark generation are
desired structural properties, here formulated in LTL, which
are successively transformed via Büchi automata that charac-
terize all satisfying executions toModal Transitions Systems
and,with a fewmore steps, to code of various implementation
languages (cf. Sec. 2). This way, RERS aims at benchmarks
that closely resemble realistic code, but can be flexibly tai-
lored in their degree of difficulty.

The contribution of the second part is a way to tailor
benchmarks according to the depths to which programs have
to be investigated in order to find all errors. This approach
gives benchmark designers a method to challenge contrib-
utors that try to perform well by excessive guessing, e.g.,
based on ‘inappropriate’ side knowledge. Combined with
our traditional way of benchmark tailoring concerning the
code/model size, the amount of arithmetic, and the used data
structures as measure for intricacy, RERS provides bench-
mark designers with a very powerful engine that we plan to
make available open source.

It should be noted that the ideas presented in this paper
are not only applicable to the generation of benchmarks that
feature sequential programs. Rather, they can also be applied
during the generation of parallel benchmark problems. This
means that we can provide not only SV-COMP and simi-
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lar competitions with tailored benchmark problems, but also
competitions like MCC.
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