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 2 

Abstract  23 

Background and Aims 24 

The atherosclerotic plaque microenvironment is highly complex, and selective agents that 25 

modulate plaque stability or other plaque phenotypes are not yet available. We sought to 26 

investigate the human atherosclerotic cellular environment using scRNA-seq to uncover 27 

potential therapeutic approaches. We aimed to make our workflow user-friendly, reproducible, 28 

and applicable to other disease-specific scRNA-seq datasets.  29 

Methods 30 

Here we incorporate automated cell labeling, pseudotemporal ordering, ligand-receptor 31 

evaluation, and drug-gene interaction analysis into an enhanced and reproducible scRNA-seq 32 

analysis workflow. Notably, we also developed an R Shiny based interactive web application to 33 

enable further exploration and analysis of the scRNA dataset. 34 

Results 35 

We applied this analysis workflow to a human coronary artery scRNA dataset and revealed 36 

distinct derivations of chondrocyte-like and fibroblast-like cells from smooth muscle cells 37 

(SMCs), and show the key changes in gene expression along their de-differentiation path. We 38 

highlighted several key ligand-receptor interactions within the atherosclerotic environment 39 

through functional expression profiling and revealed several attractive avenues for future 40 

pharmacological repurposing in precision medicine. Further, our interactive web application, 41 

PlaqView (www.plaqview.com), allows other researchers to easily explore this dataset and 42 

benchmark applicable scRNA-seq analysis tools without prior coding knowledge. 43 

Conclusions 44 

These results suggest novel effects of chemotherapeutics on the atherosclerotic cellular 45 

environment and provide future avenues of studies in precision medicine. This publicly available 46 

workflow will also allow for more systematic and user-friendly analysis of scRNA datasets in 47 
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other disease and developmental systems. PlaqView allows for rapid visualization and analysis 48 

of atherosclerosis scRNA-seq datasets without the need of prior coding experience. Future 49 

releases of PlaqView will feature additional larger scRNA-seq and scATAC-seq atherosclerosis-50 

related datasets, thus providing a critical resource for the field by promoting data harmonization 51 

and biological interpretation. 52 

 53 
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Abbreviations 57 

C7- complement component C7 58 

CAD- coronary artery disease 59 

CH- chondrocytes 60 

CMP- common myeloid progenitor cells 61 

DCN- decorin 62 

DGIdb- drug-gene interaction database 63 

EC- endothelial cells 64 

EGFR- epidermal growth factor receptor 65 

FB- fibroblasts 66 

FBLN1- fibulin 1 67 

GMP- granulocyte-monocyte progenitor cells.  68 

Mø- macrophages 69 

MYH11- myosin heavy chain 11 70 

SC- stem cells 71 

sc/snATAC-seq - single cell/single nucleus assay for transposase-accessible chromatin 72 

sequencing 73 

sc/snRNA-seq- single cell/single nucleus RNA sequencing 74 

TI- trajectory inference 75 

SMC- smooth muscle cells 76 

UMAP- uniform manifold approximation and projection 77 
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Background  79 

Atherosclerosis is a complex process involving chronic inflammation and hardening of the 80 

vessel wall and represents one of the major causes of coronary artery disease (CAD), 81 

peripheral artery disease, and stroke [1]. Rupture of an unstable atherosclerotic lesion can lead 82 

to the formation of a thrombus, causing complete or partial occlusion of a coronary artery [2]. 83 

The contribution of smooth muscle cells (SMCs) to both lesion stability and progression has 84 

recently been established by numerous groups. However, the exact mechanisms by which 85 

SMCs modulate the atherosclerotic microenvironment and whether pharmacological agents can 86 

be used to selectively counter SMC-related deleterious mechanisms are still under investigation 87 

[3–5] 88 

 89 

Recent advances in single-cell RNA-sequencing (scRNA-seq) have enabled ultra-fine gene 90 

expression profiling of many diseases at the cellular level, including atherosclerotic coronary 91 

artery disease [5]. As sequencing costs continue to decline, there has also been a consistent 92 

growth in scRNA datasets, data analysis tools and applications [6]. Currently, a major challenge 93 

with scRNA-seq analysis is the inherent bias introduced during manual cell labeling, in which 94 

cells are grouped by clusters and their identities called collectively based on their overall 95 

differential gene expression profiles [7]. Another draw-back inherent to commonly used scRNA-96 

seq protocols is their destructive nature to the cells, making time-series analyses of the same 97 

cells impossible. Instead, these studies must rely on time-points from separate libraries to 98 

monitor processes such as clonal expansion and cell differentiation [8,9].  99 

  100 

Recently, new approaches have been developed to compensate for both of these shortcomings, 101 

namely automatic cell labeling, pseudotemporal analysis, and trajectory inference. Tools such 102 
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as ‘SingleR’, ‘scCATCH’, and ‘Garnett’ have been used to assign unbiased identities to 103 

individual cells using reference-based and machine learning algorithms, respectively [7,10,11]. 104 

Moreover, tools such as ‘Monocle3’ and ‘scVelo’ align and project cells onto a pseudotemporal 105 

space where each cell becomes a snapshot within the single-cell time continuum [12,13]. In 106 

essence, the single scRNA-seq dataset is transformed into a time series [12–14]. Although the 107 

pseudotemporal scale does not reflect the actual time scale, it is a reliable approximation to 108 

characterize cell fate and differentiation events, e.g., during organogenesis, disease states, or in 109 

response to SARS-CoV-2 infections [13,15] 110 

 111 

In this study, we present the application of an enhanced, scalable, and user-friendly scRNA-seq 112 

analysis workflow on an existing human coronary artery scRNA-seq dataset. We performed 113 

unbiased automatic cell identification at the single-cell level, pseudotemporal analysis, ligand-114 

receptor expression profiling, and drug repurposing analysis. Our results demonstrate potential 115 

new mechanisms by which SMCs contribute to the atherosclerotic phenotype and signaling 116 

within the lesion microenvironment. More importantly, we revealed attractive candidate avenues 117 

for future pharmacological interventional studies. We also developed an interactive web 118 

application to allow other users to explore this dataset. This reproducible analysis pipeline and 119 

application can also be easily modified to incorporate different tissue data sources and single-120 

cell modalities such as scATAC-seq [16] or CITE-seq [17], and could serve as a template to 121 

analyze and visualize single-cell datasets in other disease models. 122 

 123 

Results and Discussion 124 

Unbiased automatic cell labeling reveals abundant cells with chondrocyte and fibroblast 125 

characteristics. Recently, automatic cell identification tools have been introduced to 126 
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compensate for the shortcomings of manual, cluster-based cell labeling [7]. For example, 127 

‘SingleR’ and ‘Garnett’ use reference-based and machine learning algorithms, respectively, to 128 

call individual cell identities [7,10,18]. Using ‘SingleR,’ which uses known purified cell 129 

expression data as references, we found that endothelial cells (ECs) make up the highest 130 

proportion of cells in this dataset (16.21%, Figure 1A-B), followed by smooth muscle cells 131 

(SMCs, 13.8%) and stem cells (SCs, 14.06%), where the latter could be so-called 132 

“atherosclerotic stem cells” or normal stromal stem cells but cannot be distinguished until 133 

specific expression profile references are developed in the future [8]. Consistent with recent 134 

scRNA-seq studies in atherosclerotic models, we identified abundant fibroblast (FB) and 135 

chondrocyte-like (CH) cells, as well as cells with an osteoblast-like (OS) expression profile 136 

(Figure 1B) [4]. In the UMAP clusters reflecting single-cell identities, there was a substantial 137 

presence of SMC and FB cells in the OS and SC cluster. Such heterogeneity in cell clusters 138 

would have been overlooked in manual cluster-based cell labeling. We also applied another 139 

reference-based cell calling tool ‘scCATCH,’ and found that it underperforms relative to 140 

‘SingleR’ and fails to provide consistent cell type assignment when provided with similar tissue 141 

priors (Supplementary Table 1).  142 

 143 

Pseudotemporal ordering identifies distinct chondrocyte and fibroblast-like cell 144 

differentiation states from smooth muscle cells. To evaluate putative cell fate decisions or 145 

differentiation events (e.g., SMC phenotypic transition states), we performed pseudotemporal 146 

analysis and ultra-fine clustering using ‘Monocle3’, a method previously applied to normal and 147 

diseased states, e.g., embryo organogenesis and response to coronavirus infection, 148 

respectively [13,15]. We compared over 60 other trajectory inference (TI) methods including 149 

Slingshot [19], PAGA [20], and SCORPIUS using the ‘Dynverse’ package [21]. However, we 150 
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found that most TI algorithms were unsuitable for complex tissue environments such as the 151 

atherosclerotic plaque due to their inability to distinguish disconnected topologies 152 

(Supplementary Table 2). In particular, we found evidence of SMCs giving rise to both 153 

chondrocyte (CH) and fibroblast (FB)-like cells (Figure 1C). This corroborates earlier findings 154 

showing that SMCs may transition or de-differentiate into ‘fibromyocytes’—SMCs that have 155 

undergone a phenotypic modulation to an extracellular matrix producing cell type within the 156 

atherosclerotic lesions [5,8]. Genes associated with healthy SMC phenotypes, such as MYH11 157 

(a canonical marker of SMC), IGFBP2 (associated with decreased visceral fat), and PPP1R14A 158 

(which enhances smooth muscle contraction), are decreased by approximately 50-75% along 159 

the SMC trajectory as these cells become more FB-like (Table 1, Figure 1D, p < 0.1E-297) 160 

[3,22]. Similar results were found by another group using mouse lineage-traced models where 161 

MYH11 expression was decreased in SMC-derived modulated “intermediate cell states” [4].  162 

 163 

More importantly, specific inflammatory markers and proteins associated with thrombotic events 164 

during CAD, including complement proteins C7 and C3, FBLN1, and CXCL12 are increased 165 

along the same trajectory (Figure 1D) [2,23]. Recent evidence suggests that CAD-associated 166 

CXCL12 secreted from endothelial cells may promote atherosclerosis[24]. Our results point to a 167 

potentially new source of CXCL12 that could be targeted to inhibit SMC-to-FB dedifferentiation. 168 

Together, and in corroboration of recent studies, our pseudotemporal analysis demonstrates 169 

that SMCs could be a source of both FB and CH-like cells, associated with intermediate and 170 

advanced atherosclerotic phenotypes, respectively [4,5]. This is further supported by a recent 171 

study, in which blocking of SMC-derived intermediate cells coincides with less severe 172 

atherosclerotic lesions [4]. Precisely how these cells might influence the overall stability of 173 
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atherosclerotic lesions and clinical outcomes requires additional longitudinal studies using 174 

genetic models and deep phenotyping of human tissues [3,4,8].  175 

 176 

Comprehensive ligand-receptor analysis shows complex intercellular communications in 177 

the human coronary micro-environment and reveals potential drug targets. To examine 178 

the potential cross-talk between different cell types using scRNA-seq data, we compared the 179 

ligand and receptor expression profiles of each cell type with experimentally-validated 180 

interactions using ‘scTalk’ [25]. We found that there is an intricate network of signaling 181 

pathways connecting different cell types; some cell types, such as OS, have stronger and more 182 

frequent outgoing signals, whereas other cell types such as Macrophages (Mø) have fewer and 183 

weaker incoming and outgoing signals (Figure 2A). SMCs, OSs, and neurons also exhibit a high 184 

degree of autocrine signaling profiles (Figure 2A). Specifically, SMCs are shown to have the 185 

highest number of outgoing signals and are among those with the least number of incoming 186 

signal weights (Figure 2B). This suggests that SMCs play an important role in regulating the 187 

coronary microenvironment by transducing signals to neighboring cells in the lesion.  188 

 189 

Specifically, ten signaling pathways were identified between SMC, FB, CH, and OS 190 

(Supplemental Figure 1). These pathways involve C3 complement, fibulin-1 (FBLN1), 191 

apolipoprotein D (APOD), decorin (DCN), and matrix metalloprotease 2 (MMP2, Figure 2C, 192 

Supplemental Figure 1). We searched for potentially druggable targets to interrupt SMC-FB 193 

communication by performing an integrative analysis of the identified ligand-receptor 194 

interactions and the druggable genome using several drug-gene interaction databases, 195 

including DGIdb 3.0 and Pharos [26]. We found that SMCs signals to FBs through the 196 

complement protein C3 and syndecan-2 (SDC2) via MMP2, and these two pathways can be 197 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.10.27.357715doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357715


 10 

disrupted by drugs such as compstatin and tanomastat, respectively (Figure 2C). Multiple 198 

studies have linked C3 and the complement system to atherosclerotic lesion maturation in 199 

mouse models, and a recent case study showed that the C3 targeted inhibitor, compstatin 200 

(AMY-101), may prevent cardiovascular complications in patients with severe COVID-19 201 

pneumonia [27–30]. Our results provide a potential mechanistic explanation by which SMCs can 202 

modulate the inflammatory environment and plaque formation. Further, a recent study 203 

demonstrated that microRNA-9 repression of SDC2 impedes atherosclerosis formation [31], 204 

while MMP2 alteration also contributes to atherosclerosis in mouse models [32]. Here, we show 205 

that SMCs signal to FBs within the atherosclerotic environment via SDC2-MMP2, and reveal 206 

additional upstream candidate drug therapies that may influence atherosclerosis progression.  207 

 208 

Interestingly, anti-EGFR (epidermal growth factor receptor)-based cancer treatments such as 209 

erlotinib, cetuximab, and gefitinib were identified as potential key mediators of signaling 210 

pathways between SMCs and FBs via decorin (DCN) and EGFR (Figure 2C). It has been shown 211 

that DCN overexpression increases SMC aggregation and SMC-induced calcification within 212 

atherosclerotic plaque [33]. Although the overlap between CAD and cancer etiology has been 213 

previously noted, the long-term efficacy and cardiovascular impact of chemotherapy drugs, such 214 

as erlotinib, requires further translational studies to investigate their potential use in cancer 215 

patients to treat CAD [34–36].  216 

 217 

Furthermore, integrative analysis of gene expression variation along the SMC-to-FB RNA 218 

trajectory revealed similar results; as shown earlier in Figure 1D, the expression of complement 219 

genes such as C3 and C7, and chemokine CXCL12 are increased as SMCs become more FB-220 

like. Although CXCL12 derived from endothelial cells have been recognized to promote CAD in 221 
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mouse models [24], here we provide a potentially new source of CXCL12 using human data and 222 

found several pharmacological agents such as tinzaparin, an FDA-approved anticoagulant, to 223 

investigate in future interventional studies. Together, this combination of independent analyses 224 

of a scRNA-seq dataset reaffirms the druggable potential of these target genes.  225 

  226 

PlaqView is a user-friendly web application to explore atherosclerosis-related datasets. 227 

To enable other researchers to explore the transcriptomic landscape of the atherosclerotic 228 

environment, we developed a web interface called PlaqView (www.plaqview.com, Figure 3A). 229 

This interactive, R Shiny-based tool allows for multiple gene queries and comparisons of gene 230 

expression, cell-labeling methods, RNA-trajectory tools, integrative drug-gene analysis, and 231 

outputs high quality graphs and detailed tables. To our knowledge, there are no publicly 232 

available tools to visualize atherosclerosis-related single-cell datasets without prior coding 233 

knowledge. Further, PlaqView is under active development and will be releasing new datasets 234 

coincidently with future atherosclerosis-related publications. As the database in PlaqView 235 

expands along with the growing number of single-cell datasets, we anticipate that it will become 236 

an essential tool for the atherosclerosis research field. 237 

 238 

Limitations  239 

Despite the advances presented in this workflow, we are still working to improve several 240 

limitations. For instance, the default reference in ‘SingleR’ cannot identify more recently 241 

discovered cellular phenotypes such as fibromyocytes [5,7,37], which may require a 242 

combination of manual and automated labeling methods for accurate identification. Factors such 243 

as the intrinsic heterogeneity of the tissue sample, disease stage, and tissue processing 244 

artifacts are difficult to isolate computationally and could influence automated labeling methods. 245 

Nonetheless, interactive viewers and tools such as PlaqView which incorporate multiple 246 
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methods and visualizations in one location, could help users separate out the technical and 247 

biological variation from various single-cell datasets. Additionally, the modular nature of 248 

PlaqView will also allow for future improvement of labeling methods as more precise reference 249 

datasets are made available. Lastly, the true efficacy of proposed drugs cannot be verified 250 

without extensive pre-clinical testing and clinical trials. Nonetheless, these findings may catalyze 251 

future investigative efforts to develop more targeted therapies. 252 

 253 

Conclusions 254 

Our findings show that an enhanced, reproducible pipeline for scRNA-seq analysis has the 255 

potential to improve upon current standard scRNA-seq bioinformatics protocols. For instance, 256 

we provide new insights into intricate vascular cell differentiation and communication pathways 257 

while providing actionable and testable targets for future experimental studies (Figure 3B). In 258 

our combined analysis, we found that SMCs give rise to substantial proportions of CH and FB, 259 

with the latter associated with worse prognostic markers [2,4,22,23]. SMCs signal to FBs via a 260 

series of pathways involving C3 complement and MMP2, whose expression coincidentally 261 

increases along the SMC-to-FB trajectory. We revealed possible therapeutic avenues that may 262 

disrupt these cell communication pathways and alter the atherosclerotic pathology. 263 

Furthermore, several FDA-approved drugs (e.g., erlotinib, cetuximab, and gefitinib) were shown 264 

as potential effectors of SMC signaling to FB, and may be used to treat CAD in cancer patients 265 

to simplify or augment drug regiments [34]. This is consistent with recent reports showing 266 

beneficial effects of the acute promyelocytic drug all-trans-retinoic acid (ATRA) in 267 

atherosclerosis mouse models [4]. Further investment in scRNA-seq may also help resolve the 268 

balance of anti-tumor efficacy and atheroprotection for immune checkpoint inhibitors as well as 269 

immunomodulators at the interface of cardio-immuno-oncology [38].  270 
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 271 

Although the utilization of this workflow can compensate for many of the shortcomings of current 272 

scRNA-seq analyses, we are still unable to perform cell-lineage tracing that reflects actual 273 

timescales without additional gene engineering experiments in vivo [39]. However, leveraging 274 

mitochondrial DNA variants in snATAC-seq data has enabled lineage tracing analysis in human 275 

cells [40,41]. Likewise, these analyses can ultimately be extended to integrate spatial omics and 276 

other multi-modal data [42]. In the future as spatial transcriptomics, scATAC-seq, and/or CITE-277 

seq data become more widely available, this workflow can be modified to discover signaling 278 

pathways or differentiation events at specific tissue locations and timepoints, allowing for more 279 

disease-relevant drug-gene interaction analyses (Figure 3B). Nonetheless, this pipeline can be 280 

applied immediately to datasets from other tissues/diseases to generate informative directions 281 

for follow-up studies, and is more user-friendly and reproducible compared to standard scRNA 282 

analyses. Lastly, building web applications that democratize the access and analysis of single-283 

cell data will promote collaboration and innovation across disciplines [43]. As PlaqView 284 

incorporates additional relevant single-cell datasets, we anticipate that this application will 285 

become an indispensable resource for the community.  286 

 287 

Methods 288 

Data retrieval and pre-processing  289 

Human coronary artery scRNA data read count matrix was retrieved from the Gene Expression 290 

Omnibus (GEO) using #GSE131780 and loaded into R 4.0, and was preprocessed using 291 

standard parameters of the R packages ‘Seurat’ v.3, and ‘Monocle3’ as required [5,44–46]. 292 

Uniform manifold approximation projections (UMAP) clusters from ‘Seurat’ were imported into 293 

‘Monocle3’ before pseudotemporal analysis. 294 
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 295 

Automatic cell Identification and pseudotemporal ordering 296 

scRNA read matrices were read into SingleR as previously described for cell labeling [7]. 297 

SingleR compares each cell’s gene expression profile with known human primary cell atlas data 298 

and gives the most likely cell identity independently. SingleR first corrects for batch effects, then 299 

calculates the expression correlation scores for each test cell to each cell type in the reference, 300 

and the cell identity is called based on reference cell type exhibiting the highest correlation. 301 

Then, pseudotemporal analyses were performed as previously described in the analysis of 302 

embryo organogenesis [13,45]. Briefly, the UMAP clusters were passed into Monocle3 and then 303 

the ‘learn_graph()’ and ‘order_cells()’ functions. The SMCs and related clusters were then 304 

subsetted for detailed subclustering and analysis. For each cluster, Moran’s I statistics were 305 

calculated, which identify genes that are differentially expressed along their trajectories. 306 

Additionally, we explored 60+ other trajectory inference methods using the ‘Dynverse’ package, 307 

where we simulated mock dataset of 5000 cells with known disconnected graph topologies [21]. 308 

Detailed codes to reproduce the figures in this publication can be found at the Miller Lab Github 309 

(see availability of data and materials).  310 

 311 

Ligand-receptor cell communication analysis 312 

We analyzed candidate ligand-receptor interactions to infer cell communication using the R 313 

package ‘scTalk’, as previously described in the analysis of glial cells [25]. This method is 314 

based on permutation testing of random networks, where ligand-receptor interactions are 315 

derived from experimentally derived interactions from the STRING database. We exported 316 

statistically significant differentially expressed genes from ‘Seurat’ using the ‘FindMarkers()’ 317 

function and imported the preprocessed data into ‘scTalk.’ Then, overall edges of the cellular 318 
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communication network were calculated using the ‘GenerateNetworkPaths()’ function, which 319 

reflects the overall ligand-receptor interaction strength between each cell type. Then, the cell 320 

types of interest were specified and treeplots were generated using the ‘NetworkTreePlot()’ 321 

function. 322 

 323 

Gene-drug interaction analysis  324 

The above identified ligand and receptor interaction pairs were fed into the Drug-Gene 325 

Interaction database (DGIdb 3.0) to reveal candidate drug-gene interactions [26]. Ligands and 326 

receptors that were deemed significant from ‘scTalk’ were evaluated using the ‘queryDGIdb()’ 327 

function of the ‘rDGIdb’ R package [26]. Additionally, we queried CTD2, OMIM, ClinVar, Pharos, 328 

GnomAD, and the ExAC databases using the docker-based tool ‘DrugThatGene’ [47]. We 329 

included all top FDA-approved drugs produced with verified inhibitory or antagonistic activities, 330 

as well as drugs that may influence or influenced by changes in the receptor. Figures 2C, 2D, 331 

and 3B were modified using BioRender for clarity. 332 

 333 

Development of PlaqView 334 

PlaqView is written in R and Shiny, and is hosted on the web at www.plaqview.com using 335 

dedicated shinyapps.io servers, and can be run locally through RStudio. The raw data was first 336 

processed as previously described, but packaged into .rds objects. These objects were then 337 

written into a Shiny script to allow for interactive display. This application is open-sourced and 338 

its code and data is available at github.com/MillerLab-CPHG/PlaqView. Further, PlaqView is 339 

actively recruiting available datasets on the github page.   340 
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Figure 1. Unbiased automatic cell labeling of human coronary scRNA data using 545 

‘SingleR’ reveals abundant cells with chondrocyte (CH) and fibroblast (FB) gene 546 

expression patterns, and pseudotemporal and ultra-fine clustering reveals derivation of 547 

CH and FB-like cells from SMCs.  (A) UMAP clustering of 9798 cells derived from human 548 

coronary artery explants with labels based on singleR annotation (Top) and cluster-based 549 

manual annotation based on Wirka et al., 2019 (Bottom). (B) population breakdown by 550 

percentage. SMC: smooth muscle cells, EC: endothelial cells, CH: chondrocytes, FB: 551 

fibroblasts, Mø: macrophages, SC: stem cells, CMP: common myeloid progenitor cells, GMP: 552 

granulocyte-monocyte progenitor cells. (C) Left, RNA trajectory (line) shows path two direct 553 

paths from the SMC starting nodes (grey circles). Middle, ultra-fine clustering shows the logical 554 

transition stages from SMC to CH and FB. Right, pseudotemporal analysis confirms that the 555 

cell and clusters existing along a logical single-cell continuum. (D) selected genes that were 556 

shown to vary over pseudotime by Moran’s I test were visualized.  557 

 558 

Figure 2. Comprehensive ligand-receptor analysis coupled to drug-gene interaction 559 

analysis reveals potential drug therapies to interrupt SMC to CH and FB communication 560 

and SMC trajectory (A) circle plot representation of the inferred intercellular communications 561 

within the coronary artery environment. (B) incoming and outgoing signal summed weights by 562 

cell type. (C) ‘scTalk’ shows that SMCs interacts with FB through three pairs of experimentally 563 

verified interactions. Of these three, complement and DCN-EGFR signaling is the most 564 

druggable as revealed by DGIdb 3.0. (D) druggable genome analysis revealed agents that can 565 

target genes such as complement signaling (C3), C-X-C Motif Chemokine Ligand 12 (CXCL12), 566 

and matrix metalloprotease (MMP2), which increases along the SMC-to-FB phenotype 567 

trajectory. 568 

 569 
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Figure 3. (A) screenshot of the PlaqView web application. (B) a roadmap of enhanced scRNA-570 

seq analysis process. Instead of cluster-based grouping, our pipeline uses automatic cell 571 

labeling, coupled with pseudotime trajectory, cellular network interaction and drug targeting, and 572 

provides a reproducible process for scRNA datasets. From this roadmap, it is easy to add 573 

additional analysis tools and modify workflow as more tools and datasets become available.  574 

 575 

Tables and Table Legends 576 

Table 1. 577 

 578 

Table 1.  Selected Moran’s I statistics for genes listed in Figure 1D. Moran’s I statistics was 579 

used to identify spatial correlations within the single-cell trajectory. +1 indicates that nearby cells 580 

are perfectly similar, 0 indicates no similarity or pattern, and -1 indicates total dissimilarity [13]. 581 

p_value morans_test_statistic morans_I
MYH11 <1E-297 169.0285919 0.66505236
IGFBP2 <1E-297 129.2299117 0.50844307

PPP1R14A <1E-297 169.4172149 0.66663148
CNN1 <1E-297 170.9288702 0.67251583

TNFRSF11B <1E-297 97.66515083 0.38400709
C7 <1E-297 156.2248703 0.61472417
C3 <1E-297 103.4495 0.7252684

SERPINF1 <1E-297 157.9946249 0.62168635
FBLN1 <1E-297 154.3399713 0.60730135
CXCL12 <1E-298 48.92096 0.3428102
MMP2 <1E-299 62.57231 0.4385507
FN1 <1E-297 125.4354275 0.49354242
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