
Software and Systems Modeling
https://doi.org/10.1007/s10270-020-00846-x

REGULAR PAPER

Optimization framework for DFG-based automated process discovery
approaches

Adriano Augusto1,2 ·Marlon Dumas2 ·Marcello La Rosa1 · Sander J. J. Leemans3 ·
Seppe K. L. M. vanden Broucke4,5

Received: 24 February 2020 / Revised: 27 September 2020 / Accepted: 18 November 2020
© The Author(s) 2021

Abstract
The problem of automatically discovering business process models from event logs has been intensely investigated in the past
two decades, leading to a wide range of approaches that strike various trade-offs between accuracy, model complexity, and
execution time. A few studies have suggested that the accuracy of automated process discovery approaches can be enhanced
by means of metaheuristic optimization techniques. However, these studies have remained at the level of proposals without
validation on real-life datasets or they have only considered onemetaheuristic in isolation. This article presents ametaheuristic
optimization framework for automated process discovery. The key idea of the framework is to construct a directly-follows
graph (DFG) from the event log, to perturb this DFG so as to generate new candidate solutions, and to apply a DFG-based
automated process discovery approach in order to derive a process model from each DFG. The framework can be instantiated
by linking it to an automated process discovery approach, an optimization metaheuristic, and the quality measure to be
optimized (e.g., fitness, precision, F-score). The article considers several instantiations of the framework corresponding to
four optimization metaheuristics, three automated process discovery approaches (Inductive Miner—directly-follows, Fodina,
and Split Miner), and one accuracy measure (Markovian F-score). These framework instances are compared using a set of 20
real-life event logs. The evaluation shows that metaheuristic optimization consistently yields visible improvements in F-score
for all the three automated process discovery approaches, at the cost of execution times in the order of minutes, versus seconds
for the baseline approaches.

Keywords Automated process discovery · Metaheuristic optimization · Process mining

1 Introduction

Modern information systems such as customer relation-
ship management (CRM) and enterprise resource planning
(ERP) systems record transactions corresponding to activi-
ties executedwithin the business processes that these systems
support. For example, a CRM system typically records trans-
actions corresponding to the creation of a customer lead, a

Communicated by Ulrich Frank.

B Adriano Augusto
a.augusto@unimelb.edu.au

1 University of Melbourne, Melbourne, Australia

2 University of Tartu, Tartu, Estonia

3 Queensland University of Technology, Brisbane, Australia

4 UGent, Ghent, Belgium

5 KU Leuven, Leuven, Belgium

request for quote, and various other activities related to cus-
tomer leads, quotes, and purchase orders. These transactional
records can be extracted via SQL queries or via dedicated
application programming interfaces (APIs) and used to ana-
lyze the execution of the business processes supported by the
CRM system, such as the lead-to-quote or the quote-to-order
process.

Process mining [33] is a family of techniques to analyze
transactional records associated to a given business process,
also known as an event log, in order to extract insights about
the performance of the process. Among other things, pro-
cess mining techniques allow us to discover a process model
from an event log, an operation known as automated process
discovery. Automatically discovered process models allow
analysts to understand how the process is executed in reality
and to uncover unexpected behavior. When enhanced with
performance information (e.g., average activity durations or

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00846-x&domain=pdf
http://orcid.org/0000-0001-7970-5246

A. Augusto et al.

waiting times), such models are also used for performance
analysis, e.g., to detect bottlenecks.

The problem of automated process discovery has been
intensely studied in the past two decades [8]. Research in
this field has led to a wide range of automated process dis-
covery approaches (APDAs) that strike various trade-offs
between accuracy,1 model complexity, and execution time.
Existing approaches in this field rely on parameters (with
certain default values) to strike this tradeoff. Analysts need
to fine-tune these parameters to find a model with the best
possible trade-off between different model quality metrics.
This article addresses the question of how to automate the
fine-tuning of automated process discovery techniques.

A few studies have suggested that the accuracy of APDAs
can be enhanced by applying optimization metaheuristics.
Early studies in this direction considered population-based
metaheuristics (P-metaheuristics), chiefly genetic algorithms
[13,16].However, these heuristics are computationally heavy,
requiring execution times in the order of hours to con-
verge when applied to real-life logs [8]. Such high execution
times make these techniques inapplicable in the context of
exploratory and interactive process discovery, where an ana-
lyst may need to discover process models corresponding to
several variants of a process (e.g., one processmodel per type
of product, per type of customer, or per region or country)
in order to compare the behavior of the process in different
settings. Accordingly, other studies have considered the use
of single-solution-based metaheuristics (S-metaheuristics)
such as simulated annealing [18,29], which are less compu-
tationally demanding. However, these latter studies remain at
the level of proposals without validation on real-life logs and
comparison of trade-offs between alternative metaheuristics.

In this setting, this article studies the following question:
to what extent can the accuracy of APDAs be improved by
applying single-solution-based metaheuristics? To address
this question, the article outlines a framework to enhance
APDAs by applying optimization metaheuristics. The core
idea is to perturb the intermediate representation of event
logs used by several of the available APDAs, namely the
directly-follows graph (DFG). The paper specifically con-
siders perturbations that add or remove edges with the aim
of improving fitness or precision, and in a way that allows
the underlying APDA to discover a process model from the
perturbed DFG.

The proposed framework can be instantiated by linking
it to three components: (i) an automated process discov-
ery approach; (ii) an optimization metaheuristic; and (iii)
the quality measure to be optimized, such as fitness, pre-

1 Here, the term accuracy is used in its informal sense to refer to how
well a given process model reflects the event log from which it was dis-
covered. Later in the article, we introduce specificmeasures of accuracy
such as fitness and precision.

cision, or F-score. The article considers instantiations of
the framework corresponding to three APDAs (Inductive
Miner [24],2 Fodina [34], and Split Miner [9]), four opti-
mizationmetaheuristics (iterative local search, repeated local
search, tabu search, simulated annealing), and one accuracy
measure (Markovian F-score).

Using a benchmark of 20 real-life logs, the article com-
pares the accuracy gains yielded by the above optimization
metaheuristics relative to each other, and relative to the
baseline (unoptimized) APDAs upon which they rely. The
experimental evaluation also considers the impact of meta-
heuristic optimization onmodel complexitymeasures aswell
as on execution times.

This article is an extended and revised version of a con-
ference paper [10]. In the conference paper, we presented
an approach to optimize the accuracy of one automated pro-
cess discovery approach, namely Split Miner, by applying
S-metaheuristics, and we reported a comparison between
the benefits of applying single-solution-based metaheuris-
tics against the benefits of applying P-metaheuristics (using
Evolutionary Tree Miner [13] as representative APDA of
this category). Our former comparison [10] showed that S-
metaheuristics outperformP-metaheuristics not only in terms
of execution time efficiency, but also in terms of accuracy
of the discovered process models; such a result also sup-
ported the findings of the latest literature review of automated
process discovery approaches [8]. This article extends our
previous approach [10] into a modular framework that can
be used to optimize other APDAs, specifically those APDAs
that construct a DFG from the event log and use it as an
intermediate artifact to discover a process model. This arti-
cle also extends the conference paper by considering not only
Split Miner, but also two other APDAs, namely Fodina and
InductiveMiner. Finally, the article reports an empirical eval-
uation covering all three approaches (Split Miner, Fodina,
and Inductive Miner). The evaluation not only proves the
applicability and relevance of S-metaheuristics to the prob-
lem of automated process discovery, but it also highlights the
benefits yielded by S-metaheuristics.

The rest of the paper is structured as follows. The next
section gives an overview of APDAs and optimization meta-
heuristics, where we discuss the background and the related
work. Section 3 presents the proposed metaheuristic opti-
mization framework and its instantiations. Section 4 reports
on the empirical evaluation, and Sect. 5 draws conclusions
and future work directions.

2 Weconsider a specific version of InductiveMiner knownas “Inductive
Miner—directly-follows”.

123

Optimization framework for DFG-based automated process discovery approaches

2 Background and related work

In this section,wegive anoverviewof existing approaches for
automated process discovery, followed by an introduction to
optimization metaheuristics in general, and their application
to automated process discovery in particular.

2.1 Automated process discovery

The execution of business processes is often recorded in the
form of event logs. An event log is a collection of event
records produced by individual instances (i.e., cases) of the
process. The goal of automated process discovery is to gen-
erate a process model that captures the behavior observed
in or implied by an event log. To assess the goodness of a
discovered process model, four quality dimensions are used
[33]: fitness, precision, generalization, and complexity. Fit-
ness (a.k.a. recall)measures the amount of behavior observed
in the log that is captured by the model. A perfectly fitting
process model is one that recognizes every trace in the log.
Precision measures the amount of behavior captured in the
process model that is observed in the log. A perfectly precise
model is one that recognizes only traces that are observed in
the log. Generalization measures to what extent the process
model captures behavior that, despite not being observed in
the log, is implied by it. Finally, complexity measures the
understandability of a process model, and it is typically mea-
sured via size and structural measures. In this paper, we focus
on fitness, precision, and F-score (the harmonic mean of fit-
ness and precision).

A recent comparisonof state-of-the-artAPDAs [8] showed
that an approach capable of consistently discovering models
with the best fitness-precision trade-off is currently miss-
ing. The same study showed, however, that we can obtain
consistently good trade-offs by hyperparameter-optimizing
some of the existing APDAs based on DFGs—Inductive
Miner [24], StructuredHeuristicsMiner [7], Fodina [34], and
Split Miner [9]. These algorithms have a hyperparameter to
tune the amount of filtering applied when constructing the
DFG. Optimizing this and other hyperparameters via greedy
search [8], local search strategies [14], or sensitivity analy-
sis techniques [27], can greatly improve the accuracy of the
discovered process models. Accordingly, in the evaluation
reported later we use a hyperparameter-optimized version of
Split Miner as one of the baselines.

The problem of discovering accurate process models from
event logs is inevitably related to that of ensuring event log
quality. There is a rich collection of methods for detecting
and handling data quality issues in event logs [?]. How-
ever, this latter body of work is largely orthogonal to the
contribution of this article, as this article focuses on dis-
covering process models assuming that data quality issues
have been addressed. This having been said, the methods

presented in this paper partially address one type of data
quality issue, namely thepresenceof noise (infrequent behav-
ior) in an event log [?]. To mitigate the impact of noise on
the discovered process model, automated process discovery
approaches, including those extended in this paper, apply a
dependency filtering step. The optimization techniques pro-
posed in this article fine-tune the level of filtering in order to
maximize the accuracy of the discovered process model.

2.2 Optimizationmetaheuristics

The term optimization metaheuristics refers to a parameter-
ized algorithm, which can be instantiated to address a wide
range of optimization problems. Metaheuristics are usually
classified into two broad categories [12]: (i) single-solution-
based metaheuristics, or S-metaheuristics, which explore the
solution space one solution at a time starting from a sin-
gle initial solution of the problem; and (ii) population-based
metaheuristics, or P-metaheuristics, which explore a popu-
lation of solutions generated by mutating, combining, and/or
improving previously identified solutions. S-metaheuristics
tend to converge faster toward an optimal solution (either
local or global) thanP-metaheuristics, since the latter by deal-
ing with a set of solutions require more time to assess and
improve the quality of each single solution. P-metaheuristics
are computationally heavier than S-metaheuristics, but they
are more likely to escape local optima. Providing an exhaus-
tive discussion on all the available metaheuristics is beyond
the scope of this paper, in the following, we focus on the
four S-metaheuristics that we integrated in our optimization
framework and on the P-metaheuristics that have been previ-
ously adapted to address the problem of automated process
discovery.

Iterated Local Search [30] starts from a (random) solu-
tion and explores the neighboring solutions (i.e., solutions
obtained by applying a change to the current solution) in
search of a better one. When a better solution cannot be
found, it perturbs the current solution and starts again. The
perturbation is meant to avoid local optimal solutions. The
exploration of the solution-space ends when a given termi-
nation criterion is met (e.g., maximum iterations, timeout).

Tabu Search [19] is a memory-driven local search. Its ini-
tialization includes a (random) solution and three memories:
short, intermediate, and long term. The short-term memory
keeps track of recent solutions and prohibits to revisit them.
The intermediate-term memory contains criteria driving the
search toward the best solutions. The long-term memory
contains characteristics that have often been found in many
visited solutions, to avoid revisiting similar solutions. Using
these memories, the neighborhood of the initial solution is
explored and a new solution is selected accordingly. The
solution-space exploration is repeated until a termination cri-
terion is met.

123

A. Augusto et al.

Simulated Annealing [22] is based on the concepts of tem-
perature (T , a parameter chosen arbitrarily) and energy (E ,
the objective function to minimize). At each iteration the
algorithm explores (some of) the neighboring solutions and
compares their energies with the one of the current solution.
This latter is updated if the energy of a neighbor is lower, or
with a probability that is function of T and the energies of

the current and candidate solutions, usually e−|E1−E2|
T . The

temperature drops over time, thus reducing the chance of
updating the current solution with a higher-energy one. The
algorithm ends when a termination criterion is met, which
often relates to the energy or the temperature (e.g., energy
below a threshold or T = 0).

Evolutionary (Genetic) Algorithms [11,20] are inspired
by Darwin’s theory of evolution. Starting from a set of
(random) solutions, a new solution is generated by mixing
characteristics of two parents selected from the set of the
current solutions, such an operation is known as crossover.
Subsequently, mutations are applied to the new solutions
to introduce randomness and avoid local optimal solution.
Finally, the solutions obtained are assessed and a subset is
retained for the next iteration. The algorithm continues until
a stop criterion is met.

Swarm Particle Optimization [21] starts from a set of
(random) solutions, referred to as particles. Each particle is
identified using the concepts of position and velocity. The
position is a proxy for the particle qualities and it embeds
the characteristics of the solution, while the velocity is used
to alter the position of the particles at each iteration. Fur-
thermore, each particle has memory of its best position
encountered during the roaming of the search space, as well
as the best position encountered by any other particle. At
each iteration, the algorithm updates the particles positions
according to their velocities and updates the best positions
found. When a termination condition is met, the algorithm
returns the particle having the absolute best position among
the whole swarm.

Imperialist Competitive Algorithm [4] is inspired by the
historical colonial period. It starts from a (random) set of
solutions, called countries. Each country is assessed via an
objective function, and a subset is selected as imperialistic
countries (the selection is based on their objective function
scores). All the countries left (i.e., those having low objec-
tive function scores) are considered colonies of the closest
(by characteristics) imperialistic country. Then, each colony
is altered to resemble its imperialistic country, the objec-
tive function scores are re-computed, and the colonies that
became better than their imperialistic country are promoted
to imperialistic countries and vice-versa. When a termina-
tion condition is met, the country with the highest objective
function score is selected as the best solution.

2.3 Optimizationmetaheuristics in automated
process discovery

Optimization metaheuristics have been considered in a few
previous studies on automated process discovery. An early
attempt to apply P-metaheuristics to automated process dis-
covery was the GeneticMiner proposed by deMedeiros [16],
subsequently overtaken by the Evolutionary TreeMiner [13].
Other applications of P-metaheuristics include the contribu-
tion of Alizadeh and Norani [3] who showed to improve
fitness and precision of the discovered process models by
using the imperialist competitive algorithm, outperforming
some state-of-the-art APDAs (including α + + [36], Flex-
ible Heuristics Miner [35], and Fodina [34]); however, the
implementation of the method designed by Alizadeh et al.
is not publicly available, and the benchmark they used dif-
fer from the one suggested in the latest literature review [8].
Some research studies adapted the particle swarm optimiza-
tion metaheuristic to solve the problem of automated process
discovery from event logs [15,17], but these studies are semi-
nal and they lack of a solid evaluation on real-life logs. One of
themost recent studies tried to combine evolutionary compu-
tationwith particle swarmoptimization [25] by extending the
work of Buijs et al. [13], but also in this case the authors did
not provide a working implementation of their method, and
they did not assess it on public datasets, so that it is difficult
to estimate the real benefits of their proposed improvements.
In our context, the main limitation of P-metaheuristics is
that they are computationally heavy due to the cost of con-
structing a solution (i.e., a process model) and evaluating its
accuracy. This leads to execution times in the order of hours,
to converge to a solution that in the end is comparable to
those obtained by state-of-the-art APDAs that do not rely on
optimization metaheuristics [8].

Finally, a handful of studies have considered the use
of S-metaheuristics to automatically discover optimal pro-
cess models, specifically simulated annealing [18,29], but
these proposals are preliminary and have not been compared
against state-of-the-art approaches on real-life logs.

3 Metaheuristic optimization framework

This section outlines our framework for optimizing APDAs
by means of S-metaheuristics (cf. Sect. 2). First, we give an
overviewof the framework and its core components.Next,we
discuss the adaptation of the S-metaheuristics to the problem
of process discovery. Finally, we describe the instantiations
of our framework for Split Miner, Fodina, and Inductive
Miner.

123

Optimization framework for DFG-based automated process discovery approaches

3.1 Preliminaries

In order to discover a process model, an APDA takes as input
an event log and transforms it into an intermediate repre-
sentation from which a process model is derived. Below,
we define one of the most popular intermediate represen-
tations, that is the directly-follows graph (DFG). Although
other intermediate representations are available in the liter-
ature (e.g., behavioral profiles [28]), our framework focuses
only on DFGs for two main reasons: first, because they are
adopted by many state-of-the-art automated process discov-
ery approaches [7,9,24,34,35]; second, because they allow
us to leverage the Markovian accuracy [5] to facilitate the
application of metaheuristics and the navigation of the solu-
tion space as we show later in this section.

Definition 1 (Event Log) Given a set of activitiesA , an event
logL is amultiset of traceswhere a trace t ∈ L is a sequence
of activities t = 〈a1, a2, . . . , an〉, with ai ∈ A , 1 ≤ i ≤ n.

Definition 2 [Directly-follows graph (DFG)] Given an event
log L , its directly-follows graph (DFG) is a directed graph
G = (N , E), where: N is the set of nodes, N = {a ∈ A |
∃t ∈ L ∧ a ∈ t}; and E is the set of edges E = {(x, y) ∈
N × N | ∃t = 〈a1, a2, . . . , an〉, t ∈ L ∧ ai = x ∧ ai+1 =
y [1 ≤ i ≤ n − 1]}.
By definition, each node of the DFG represents an activity
recorded in at least one trace of the event log, while each edge
of a DFG represents a directly-follows relation between two
activities (represented by the node source and the node target
of the edge). An APDA is said to be DFG-based if it first
generates the DFG of the event log, then applies an algorithm
to manipulate the DFG (e.g., removing edges), and finally
converts the processed DFG into a process model. Such a
processed DFG will not adhere any more to Definition 2;
therefore, we redefine it as Refined DFG.

Definition 3 (Refined DFG) Given an event log L and its
DFG GL = (N , E), a Refined DFG is a directed graph
G = (N ′, E ′), where: N ′ ⊆ N and E ′ ⊆ E . If N ′ = N and
E ′ = E , the refined DFG is equivalent to the event log DFG.

Examples of DFG-based APDAs are Inductive Miner [24],
Heuristics Miner [7,35], Fodina [34], and Split Miner [9].
Different DFG-based APDAs may extract different Refined
DFGs from the same log. Also, a DFG-based APDA may
discover different Refined DFGs from the same log depend-
ing on its hyperparameter settings (e.g., a filtering threshold).
The algorithm(s) used by aDFG-basedAPDA to discover the
Refined DFG from the event log and convert it into a process
model may greatly affect the accuracy of an APDA. Accord-
ingly, our framework focuses on optimizing the discovery
of the Refined DFG rather than its conversion into a process
model.

Given that a Refined DFG is a binary graph, it is possible
to represent it in the form of a matrix as follows.

Definition 4 (DFG-Matrix) Given a Refined DFG G =
(N , E) and a function θ : N → [1, |N |],3 the DFG-Matrix
is a squared matrix XG ∈ [0, 1] ∩N

|N |×|N |, where each cell
xi, j = 1 ⇐⇒ ∃(a1, a2) ∈ E | θ(a1) = i ∧ θ(a2) = j ,
otherwise xi, j = 0.

In the remaining of this paper, we refer to theRefinedDFG
as DFG for simplicity reason.

3.2 Framework overview

As shown in Fig. 1, our framework takes three inputs (in
addition to the log): (i) the optimization metaheuristics; (ii)
the objective function to be optimized (e.g., F-score); (iii) and
the DFG-based APDA to be used for discovering a process
model.

Algorithm 1 describes how our framework operates, while
Fig. 2 captures the control flow representation of the Algo-
rithm 1. First, the input event log is given to theAPDA,which
returns the discovered (refined) DFG and its corresponding
process model (lines 1 and 2). This (refined) DFG becomes
the current DFG, while the process model becomes the best
process model (so far). This process model’s objective func-
tion score (e.g., the F-score) is stored as the current score and
the best score (lines 3 and 4). The current DFG is then given
as input to the function GenerateNeighbors, which applies
changes to the current DFG to generate a set of neighbor-
ing DFGs (line 6). The latter ones are given as input to the
APDA,which returns the corresponding processmodels. The
process models are assessed by the objective function eval-
uators (line 9 to 13). When the metaheuristic receives the
results from the evaluators (along with the current DFG and
its score), it chooses the new current DFG and updates the
current score (lines 14 and 15). If the new current score is
higher than the best score (line 16), it updates the best pro-
cess model and the best score (lines 17 and 18). After the
update, a new iteration starts, unless a termination criterion
is met (e.g., a timeout, a maximum number of iterations, or a
minimum threshold for the objective function). In the latter
case, the framework outputs the best process model identi-
fied, i.e., the process model scoring the highest value for the
objective function.

3.3 Adaptation of the optimizationmetaheuristics

To adapt iterative local search (ILS), tabu search (TABU),
and simulated annealing (SIMA) to the problem of auto-
mated process discovery, we need to define the following

3 θ maps each node of the Refined DFG to a natural number.

123

A. Augusto et al.

Fig. 1 Overview of our optimization framework

Fig. 2 Algorithm 1—control flow sketch

three concepts: (i) the problem solution space; (ii) a solu-
tion neighborhood; (iii) the objective function. These design
choices influence how each of the metaheuristics navigates
the solution space and escapes local minima, i.e., how to
design the Algorithm 1 functions: GenerateNeighbors and
UpdateDFG, resp. lines 6 and 14.

Solution spaceOur goal being the optimization ofAPDAs,
we are forced to choose a solution space that fits well our
context regardless the selected APDA. If we assume that the
APDA is DFG-based (that is the case for the majority of the
available APDAs), we can define the solution space as the set
of all the DFG discoverable from the event log. Indeed, any

DFG-based APDA can generate deterministically a process
model from a DFG.

Solution neighborhood Having defined the solution space
as the set of all the DFG discoverable from the event log,
we can refer to any element of this solution space as a DFG-
Matrix. Given a DFG-Matrix, we define its neighborhood as
the set of all the matrices having one different cell value (i.e.,
DFGs having one more/less edge). In the following, every
time we refer to a DFG we assume it is represented as a
DFG-Matrix.

123

Optimization framework for DFG-based automated process discovery approaches

Objective function It is possible to define the objective
function as any function assessing one of the four quality
dimensions for discovered process models (introduced in
Sect. 2). However, being interested in optimizing the APDAs
to discover the most accurate process model, in our opti-
mization framework instantiations we refer to the objective
function as the F-score of fitness and precision. Further-
more, we remark that our framework could operate also with
objective functions that take into account multiple quality
dimensions striving for a trade-off, e.g., F-score and model
complexity, provided the multiple quality dimensions can be
combined into a unique objective function.

Having defined the solution space, a solution neighbor-
hood, and the objective function, we can turn our attention on

how ILS, TABU, and SIMA navigate the solution space. ILS,
TABU, and SIMA share similar traits in solving an optimiza-
tion problem, especially when it comes to the navigation of
the solution space. Given a problem and its solution space,
any of these three S-metaheuristics starts from a (random)
solution, discovers one or more neighboring solutions, and
assesses them with the objective function to find a solution
that is better than the current one. If a better solution is found,
it is chosen as the new current solution and the metaheuristic
performs a newneighborhood exploration. If a better solution
is not found, e.g., the current solution is locally optimal, the
three metaheuristics follow different approaches to escape
the local optimum and continue the solution space explo-
ration. Algorithm 1 orchestrates and facilitates the parts of
this procedure shared by the three metaheuristics. However,
we must define the functionsGenerateNeighbors (GNF) and
UpdateDFG (UDF).

TheGNF receives in input a solution of the solution space,
i.e., a DFG, and it generates a set of neighboring DFGs. By
definition, GNF is independent from the metaheuristic and it
can be as simple or as elaborate aswe demand.An example of
a simpleGNF is a function that randomly selects neighboring
DFGs turning one cell of the input DFG-Matrix to 0 or to
1. While, an example of an elaborate GNF is a function that
accurately selects neighboring DFGs relying on the feedback
received from the objective function assessing the inputDFG,
as we show in Sect. 3.4.

The UDF (captured in Algorithm 2) is the core of our
optimization framework, and it implements themetaheuristic
itself. The UDF receives in input the selected metaheuristic
(ω), the neighboring DFGs and their corresponding objective
function scores (S), the current DFG (Gc), the current score

Fig. 3 UDF when selecting ILS as optimization metaheuristic

123

A. Augusto et al.

Fig. 4 UDF when selecting TABU as optimization metaheuristic

Fig. 5 UDF when selecting SIMA as optimization metaheuristic

(sc), the APDA (α), and the event log (L). Then, we can dif-
ferentiate two cases: (i) among the input neighboring DFGs
there is at least one having a higher objective function score
than the current; (ii) none of the input neighboring DFGs has
a higher objective function score than the current. In the first
case, UDF always outputs the DFG having the highest score
regardless of the selected metaheuristic (see Algorithm 2,

lines 4, 11, and33—respectively, for ILS,TABU, andSIMA).
In the second case, the current DFGmay be a local optimum,
and each metaheuristic escapes it with a different strategy.
Figures 3, 4, and 5 show the high-level control flow of how
ILS, TABU, and SIMA update the current DFG (that is, the
UDF—Algorithm 2).

123

Optimization framework for DFG-based automated process discovery approaches

Iterative Local Search applies the simplest strategy, it
perturbs the current DFG (Algorithm 2, line 7). The per-
turbation is meant to alter the DFG in such a way to escape
the local optimum, e.g., randomly adding and removingmul-
tiple edges from the current DFG. The perturbed DFG is the
output of the UDF.

Tabu Search relies on its three memories to escape a local
optimum (Algorithm 2, line 25 to 30). The short-term mem-
ory (a.k.a. Tabu-list), which contains DFG that must not be
explored further. The intermediate-termmemory, which con-
tains DFGs that should lead to better results and, therefore,
should be explored in the near future. The long-termmemory,
which contains DFGs (with characteristics) that have been
seen multiple times and, therefore, not to explore in the near

future. TABU updates the threememories each time the UDF
is executed. Given the set of neighboring DFGs and their
respective objective function scores (see Algorithm 1, map
S), TABUadds eachDFG to a differentmemory. DFGswors-
ening the objective function score are added to the Tabu-list.
DFGs improving the objective function score, yet less than
another neighboringDFG, are added to the intermediate-term
memory. DFGs that do not improve the objective function
score are added to the long-term memory. Also, the current
DFG is added to the Tabu-list, it being already explored.
When TABU does not find a better DFG in the neighbor-
hood of the current DFG, it returns the latest DFG added
to the intermediate-term memory. If the intermediate-term
memory is empty, TABU returns the latest DFG added to the
long-termmemory. If both these memories are empty, TABU
requires a new (random) DFG from the APDA, and outputs
its DFG.

Simulated Annealing avoids getting stuck in a local opti-
mum by allowing the selection of DFGs worsening the
objective function score (Algorithm 2, line 36 to 40). In
doing so, SIMA explores areas of the solution space that
other S-metaheuristics do not. When a better DFG is not
found in the neighborhood of the current DFG, SIMA ana-
lyzes one neighboring DFG at a time. If this neighbor does
not worsen the objective function score, SIMA outputs it.
Instead, if the neighboring DFG worsens the objective func-

tion score, SIMA outputs it with a probability of e− |sn−sc |
T ,

where sn and sc are the objective function scores of, (respec-
tively), the neighboring DFG and the current DFG, and the
temperature T is an integer that converges to zero as a linear
function of the maximum number of iterations. The tem-
perature is fundamental to avoid updating the current DFG
with a worse one if there would be no time to recover from
the worsening (i.e., too few iterations left for continuing the
exploration of the solution space from the worse DFG).

3.4 Framework instantiation

To assess our framework, we instantiated it for three APDAs:
SplitMiner [9], Fodina [34], and InductiveMiner [24]. These
three APDAs are all DFG-based, and they are representatives
of the state of the art. In fact, the latest APDAs literature
review and benchmark [8] showed that Fodina, Split Miner,
and Inductive Miner outperformed other APDAs when their
hyperparameters were optimized via a brute-force approach.
Therefore, we decided to focus on those DFG-based APDAs
that would benefit the most from the application of our opti-
mization framework.

To complete the instantiation of our framework for any
concrete DFG-based APDA, it is necessary to implement
an interface that allows the metaheuristics to interact with
the APDA (as discussed above). Such an interface should

123

A. Augusto et al.

provide four functions: DiscoverDFG and ConvertDFGto-
ProcessModel (see Algorithm 1), the Restart Function (RF)
for TABU, and the Perturbation Function (PF) for ILS.

The first two functions, DiscoverDFG and ConvertDFG-
toProcessModel, are inherited from the DFG-based APDA,
in our case SplitMiner, Fodina, and InductiveMiner.We note
that Split Miner and Fodina receive as input parameter set-
tings that can vary the output of the DiscoverDFG function.
Precisely, Split Miner has two parameters: the noise filtering
threshold, used to drop infrequent edges in the DFG, and the
parallelism threshold, used to determine which potential par-
allel relations between activities are used when discovering
the process model from the DFG. While, Fodina has three
parameters: the noise filtering threshold, similar to the one of
Split Miner, and two threshold to detect, respectively, self-
loops and short-loops in the DFG. Instead, the DFG-based
variant of InductiveMiner [24] that we integrated in our opti-
mization framework does not receive any input parameters.

To discover the initial DFG (Algorithm 1, line 1) with
Split Miner, default parameters are used.4 We removed the
randomness for discovering the initial DFG because most of
the times, the DFG discovered by Split Miner with default
parameters is already a good solution [9], and starting the
solution space exploration from this latter can reduce the
total exploration time.

Similarly, if Fodina is the selected APDA, the initial DFG
(Algorithm 1, line 1) is discovered using the default param-
eters of Fodina,5 even though there is no guarantee that the
default parameters allow Fodina to discover a good starting
solution [8]. Yet, this design choice is less risky than ran-
domly choosing the values of the input parameters in order
to discover the initial DFG, because it is likely Fodina would
discover unsound models when randomly tuned, given that
it does not guarantee soundness.

On the other hand, Inductive Miner [24] does not apply
any manipulation to the discovered initial DFG. In this case,
we pseudorandomly generate an initial DFG starting from a
given seed, to ensure determinism. Differently than the case
of Fodina, this is a suitable design choice for InductiveMiner,
because it always guarantees block-structured sound process
models, regardless of the DFG.

Function RF is very similar to DiscoverDFG, since it
requires the APDA to output a DFG. The only difference
is that RF must output a different DFG every time it is exe-
cuted. We adapted theDiscoverDFG function of Split Miner
and Fodina to output theDFGdiscoveredwith default param-
eters the first time it is executed, and a DFG discovered
with pseudorandom parameters for the following executions.

4 The default parameters of Split Miner are the most likely to yield the
best results [9].
5 The default parameters of Fodina are the most likely to yield the best
results [34].

The case of Inductive Miner is simpler, because the Dis-
coverDFG function always returns a pseudorandom DFG.
Consequently, we mapped RF to theDiscoverDFG function.

Finally, function PF can be provided either by the APDA
(through the interface) or by the metaheuristic. However, PF
can be more effective when not generalised by the meta-
heuristic, allowing theAPDA to apply different perturbations
to the DFGs, taking into account how the APDA converts the
DFG to a process model. We chose a different PF for each of
the three APDAs.

• SplitMiner PFWe invoke SplitMiner’s concurrency ora-
cle to extract the possible parallelism relations in the log
using a randomly chosen parallelism threshold. For each
new parallel relation discovered that is not present in the
current solution, two edges are removed from the DFG,
whils, for each deprecated parallel relation, two edges are
added to the DFG.

• Fodina PF Given the current DFG, we analyze its
self-loops and short-loops relations using random loop
thresholds. As a result, a new DFG is generated where a
different set of edges is retained as self-loops and short-
loops.

• Inductive Miner PF Since Inductive Miner does not
perform any manipulation on the DFG, we could not
determine an efficient way to perturb the DFG. Thus,
we set PF = RF, so that instead of perturbing the current
DFG, a new random DFG is generated. This variant of
the ILS is calledRepeated local search (RLS). In the eval-
uation reported in Sect. 4, we use only RLS for Inductive
Miner, and both ILS and RLS for Fodina and Split Miner.

To complete the instantiation of our framework, we need
to set an objective function. With the goal of optimizing the
accuracy of theAPDAs,we chose as objective function the F-
score of fitness and precision. Among the existing measures
of fitness and precision, we selected the Markovian fitness
andprecision presented in [5,6].6 The rationale for this choice
is that these measures of fitness and precision are the fastest
to compute among state-of-the-art measures [5,6]. Further-
more, these measures indicate what edges could be added to
or removed from the DFG to improve the fitness or precision
of the model. This feedback allows us to design an effective
GNF.

In the instantiation of our framework, the objective func-
tion’s output is a data structure composed of: the Markovian
fitness and precision of the model, the F-score, and the mis-
matches between the model and the event log identified
during the computation of the Markovian fitness and pre-
cision, i.e., the sets of edges that could be added to improve

6 We used the Boolean function variant with order k = 5.

123

Optimization framework for DFG-based automated process discovery approaches

Fig. 6 Algotihm 3—control flow sketch

fitness or removed to improve precision. Algorithm 3 illus-
trates how we build this data structure, its high-level control
flow sketch is captured in Fig. 6.

Given an event log and a process model, we generate their
respective Markovian abstractions by applying the method
described in [5] (lines 1 and 2). We recall that the Markovian
abstraction of the log/model is a graph, where each edge
represents a subtrace7 observed in the log/model. Next, we
collect all the edges of the Markovian abstraction of the log
and of the model into two different sets: El and Em (lines 3
and 4). These two sets are used to determine the Markovian
fitness and precision of the process model [5], by applying
the formula in lines 4 and 10.We note that the edges in El that
cannot be found in Em (set Ed f , line 6) represent subtraces
of the log that cannot be found in the process model. Vice-
versa, the edges in Em that cannot be found in El (set Edp,
line 11) represent subtraces of the process model that cannot
be found in the log. We analyze these subtraces to detect
directly-follows relations, i.e., DFG edges (lines 9 and 14),
that can be addedor removed from theDFG that generated the
process model in order to either improve fitness or precision.
Precisely, theDFG edges that can be added to improve fitness
are those captured by the directly-follows relations that we
can find in the Markovian abstraction edges in set Ed f . On
the other hand, the edges that can be removed to improve
precision are those captured by the directly-follows relations
that we can find in the Markovian abstraction edges in set
Edp. Once these edges to be added or removed are identified
(sets E f and Ep), we can output the final data structure,
which comprises the Markovian fitness and precision, their
F-score, and the two sets E f and Ep.

7 The length of the subtrace is determined by the order of theMarkovian
abstraction, in our case k = 5.

Given the above objective function’s output, our GNF is
described in Algorithm 4, while Fig. 7 captures its high-level
control flow sketch.

123

A. Augusto et al.

Fig. 7 Algotihm 4—control flow sketch

This function receives as input the current DFG (Gc), its
objective function score (the data structure sc), and the num-
ber of neighbors to generate (sizen). If fitness is greater than
precision, we retrieve from sc the set of edges (Em) that could
be removed from Gc to improve its precision (line 2). Con-
versely, if precision is greater than fitness, we retrieve from
sc the set of edges (Em) that could be added to Gc to improve
its fitness (line 4). The reasoning behind this design choice
is that, given that our objective function is the F-score, it is
preferable to increase the lowest of the two measures (pre-
cision or fitness). That is, if the fitness is lower, we increase
fitness, and conversely if the precision is lower we increase
precision. Once we have Em , we randomly select one edge
from it, generate a copy of the current DFG (Gn), and either
remove or add the randomly selected edge according to the
accuracy measure we want to improve (precision or fitness),
see lines 7 to 13. If the removal of an edge generates a dis-
connected Gn , we do not add this latter to the neighbors set
(N), line 10. We keep iterating over Em until the set is empty
(i.e., no mismatching edges are left) or N reaches its maxi-
mum size (i.e., sizen). We then return N . The algorithm ends
when the maximum execution time or the maximum number
of iterations is reached.

4 Evaluation

We implemented the proposed optimization framework as a
Java command-line application.8 This tool uses Split Miner,

8 Available under the label “Optimization Framework for Automated
Process Discovery” at http://apromore.org/platform/tools.

Fodina, and Inductive Miner as the underlying APDAs, and
the Markovian accuracy F-score as the objective function
(cf. Sect. 3.4). Using this implementation, we undertook to
empirically evaluate themagnitude of improvements in accu-
racy delivered by different instantiations of the framework.

4.1 Dataset, quality measures, and experimental
setup

For our evaluation, we used the dataset of the benchmark
of automated process discovery approaches in [8], which to
the best of our knowledge is the most recent benchmark on
this topic. This dataset includes twelve public logs and eight
private logs. The public logs originate from the 4TU Cen-
tre for Research Data and include the BPI Challenge (BPIC)
logs (2012–17), the Road Traffic Fines Management Pro-
cess (RTFMP) log and the SEPSIS log. These logs record
executions of business processes from a variety of domains,
e.g., healthcare, finance, government, and IT service man-
agement. The eight proprietary logs are sourced from several
companies in the education, insurance, IT service manage-
ment, and IP management domains.

Table 1 reports the characteristics of the logs. The dataset
comprises simple logs (e.g., BPIC13cp) and very complex
ones (e.g., SEPSIS, PRT2) in terms of percentage of distinct
traces, and both small logs (e.g., BPIC13cp and SEPSIS) and
large ones (e.g., BPIC17 and PRT9) in terms of total number
of events.

From each of these logs, we discovered 16 process models
by applying the following techniques:

123

http://apromore.org/platform/tools

Optimization framework for DFG-based automated process discovery approaches

Ta
bl
e
1

D
es
cr
ip
tiv

e
st
at
is
tic

s
of

th
e
re
al
-l
if
e
lo
gs

(p
ub

lic
an
d
pr
op

ri
et
ar
y)

L
og

B
PI
C
12

B
PI
C
13

cp
B
PI
C
13

in
c

B
PI
C
14

f
B
PI
C
15

1f
B
PI
C
15

2f
B
PI
C
15

3f
B
PI
C
15

4f
B
PI
C
15

5f

To
ta
lt
ra
ce
s

13
,0
87

14
87

75
54

41
,3
53

90
2

68
1

13
69

86
0

97
5

D
is
t.
tr
ac
es

(%
)

33
.4

12
.3

20
36
.1

32
.7

61
.7

60
.3

52
.4

45
.7

To
ta
le
ve
nt
s

26
2,
20
0

66
60

65
,5
33

36
9,
48
5

21
,6
56

24
,6
78

43
,7
86

29
,4
03

30
,0
30

D
is
t.
ev
en
ts

36
7

13
9

70
82

62
65

74

T
r.
le
ng
th

(m
in
)

3
1

1
3

5
4

4
5

4

(a
vg
)

20
4

9
9

24
36

32
34

31

(m
ax
)

17
5

35
12
3

16
7

50
63

54
54

61

L
og

B
PI
C
17

f
R
T
FM

P
SE

PS
IS

PR
T
1

PR
T
2

PR
T
3

PR
T
4

PR
T
6

PR
T
7

PR
T
9

PR
T
10

To
ta
lt
ra
ce
s

21
,8
61

15
0,
37
0

10
50

12
,7
20

11
82

16
00

20
,0
00

74
4

20
00

78
7,
65
7

43
,5
14

D
is
t.
tr
ac
es

(%
)

40
.1

0.
2

80
.6

8.
1

97
.5

19
.9

29
.7

22
.4

6.
4

0.
01

0.
01

To
ta
le
ve
nt
s

71
4,
19
8

56
1,
47
0

15
,2
14

75
,3
53

46
,2
82

13
,7
20

16
6,
28
2

60
11

16
,3
53

1,
80
8,
70
6

78
,8
64

D
is
t.
ev
en
ts

41
11

16
9

9
15

11
9

13
8

19

T
r.
le
ng
th

(m
in
)

11
2

3
2

12
6

6
7

8
1

1

(a
vg
)

33
4

14
5

39
8

8
8

8
2

1

(m
ax
)

11
3

2
18
5

64
27
6

9
36

21
11

58
15

• Split Miner with default parameters (SM);
• SplitMinerwith hyper-parameter optimization9 (HPOsm);
• Split Miner optimized with our framework using the
following optimization metaheuristics: RLSsm, ILSsm,
TABUsm, SIMAsm;

• Fodina with default parameters (FO);
• Fodina with hyper-parameter optimization9 (HPOfo);
• Fodina optimized with our framework using the follow-
ing optimization metaheuristics: RLSfo, ILSfo, TABUfo,
SIMAfo;

• Inductive Miner IMd;
• InductiveMiner optimized with our framework using the
followingoptimizationmetaheuristics:RLSimd,TABUimd,
SIMAimd.9

For each of the abovemetaheuristics, we set themaximum
execution time to five minutes and the maximum number of
iterations to 50. The same timeout was also applied to the
hyper-parameter optimizations.

For each of the discovered models, we measured fitness,
precision, complexity, and execution time. For measuring
fitness and precision, we adopted two different sets of mea-
sures. The first set of measures is based on alignments,
computing fitness, and precision with the approaches pro-
posed by Adriansyah et al. [1,2] (alignment-based accuracy).
Alignment-based fitness selects for each trace in the log, the
closest trace recognized by the process model, and measures
the minimal number of error-corrections required to align
these two traces (a.k.a. minimal alignment cost). The final
fitness score is equal to one minus the normalized sum of the
minimal alignment cost between each trace in the log and
the closest corresponding trace recognized by the model.
Alignment-based precision builds a prefix automaton from
the event log, then it replays the process model behavior on
top of the log prefix automation (with the aid of alignments)
and counts the number of times that the model can perform
a move that the prefix automaton cannot. Each of these mis-
matching moves is called an escaping edge. The final value
of precision is function of the number of detected escaping
edges. Formore details regarding the alignment-based fitness
and precision, we refer to the corresponding studies [1,2].

The second set of measures is based on Markovian
abstractions, computing fitness, and precision with the
approaches in [5]. TheMarkovian fitness generates a Marko-
vian abstraction from the behavior recorded in the event log
and a Markovian abstraction from the behavior allowed by
the process model. As mentioned in the previous section, a
Markovian abstraction is a graph where each node represents
a subtrace of a fixed length. The Markovian fitness relies on
a graph comparison algorithm [23] to identify the edges of
the Markovian abstraction generated from the log that do not

9 Using the Markovian accuracy F-score as objective function.

123

A. Augusto et al.

appear in the Markovian abstraction generated from the pro-
cess model. Similarly, theMarkovian precision is calculated
by identifying (via the same graph comparison algorithm
[23]) the edges of the Markovian abstraction of the process
model that do not appear in the Markovian abstraction of the
log. For more details regarding the alignment-based fitness
and precision, we refer to the corresponding study [5].

For assessing the complexity of the models we relied on
size, control-flowcomplexity (CFC), and structuredness. Size
is the total number of nodes of a process model; Control flow
complexity (CFC) is the amount of branching induced by
the split gateways in a process model; Structuredness is the
percentage of nodes located inside a single-entry single-exit
fragment of a process model.

Note that we did not measure the generalization of the
discovered process models because available generalization
measures assess the capability of an APDA to generalise the
behavior recorded in the event log during the discovery of
a process model, and they do not assess the generalization
of the process model itself [32]. However, this should not be
seen as a limitation of this study, since our objective is to
analyze the benefits yielded by our optimization framework
in terms of F-score (through fitness and precision).

We used the results of these measurements to compare
the quality of the models discovered by each baseline APDA
(SM, FO, IMd) against the quality of the models discovered
by the respective optimized approaches.

All the experiments were performed on an Intel Core i5-
6200U@2.30GHz with 16GB RAM running Windows 10
Pro (64-bit) and JVM 8 with 14GB RAM (10GB Stack and
4GBHeap). The framework implementation, the batch tests,
the results, and all the (public) models discovered during
the experiments are available for reproducibility purposes at
https://doi.org/10.6084/m9.figshare.11413794.

4.2 Split Miner

Tables 2 and 3 show the results of our comparative eval-
uation for Split Miner. Each row reports the quality of
each discovered process model in terms of accuracy (both
alignment-based and Markovian), complexity, and discov-
ery time. We held out from the tables four logs: BPIC13cp,
BPIC13inc, BPIC17, and PRT9. For these logs, none of the
metaheuristics could improve the accuracy of the model
already discovered by SM. This is due to the high fitness
score achieved by SM in these logs. By design, our meta-
heuristics try to improve precision by removing edges, but
in these four cases, no edge could be removed without com-
promising the structure of the model (i.e., the model would
become disconnected).

For the remaining 16 logs, all the metaheuristics consis-
tently improved the Markovian F-score over that achieved
by SM. Also, all the metaheuristics performed better than

HPOsm, except in two cases (BPIC12 and PRT1). Overall,
themost effective optimizationmetaheuristicwas ILS,which
delivered the highest Markovian F-score nine times out of
16, followed by SIMAsm (eight times), RLSsm and TABUsm

(six times each). We note, however, that the F-score differ-
ence between the four metaheuristics is small (in the order
of one to two percentage points).

Despite the fact that the objective function of the meta-
heuristics was theMarkovian F-score, all four metaheuristics
also optimized in half of the cases the alignment-based F-
score. This is due to the fact that any improvement in the
Markovian fitness translates into an improvement in the
alignment-basedfitness. This does not hold for precision. The
result highlights the partial correlation between alignment-
based and Markovian measures, already discussed in the
previous section.

By close inspection to the complexity of the models, we
note that most of the times (nine cases out of 16) the F-
score improvement achieved by the metaheuristics comes
at the cost of size and CFC. This is expected, since SM
tends to discover models with higher precision than fitness
[9]. To improve the F-score, new behavior is added to the
model in the form of new edges (note that new nodes are
never added); this leads to new gateways and consequently
to higher size and CFC. On the other hand, when preci-
sion is lower than fitness, and thus the metaheuristic aims
to increase the value of precision to improve the overall
F-score, the result is the opposite: the model complexity
reduces as edges are removed. This is the case of the RTFMP
and PRT10 logs. Supporting examples of these two possible
scenarios are Figs. 8 and 9. Figure 8 shows the models dis-
covered by SIMAsm and SM from the BPIC14f log, where
the model discovered by SIMAsm is more complex than that
obtained with SM because it was necessary to improve its
fitness (adding edges). While Fig. 9 shows the models dis-
covered by SIMAsm and SM from the RTFMP log, where the
model discovered by SIMAsm is simpler than that obtained
with SM because it was necessary to improve the precision
(removing edges).

Comparing the results obtained by themetaheuristics with
HPOsm, we can see that our approach allows us to discover
models that cannot bediscovered simplyby tuning theparam-
eters of SM. This relates to the solution space exploration.
Indeed, HPOsm can only explore a limited number of solu-
tions (DFGs), i.e., those that can be generated by underlying
APDA (SM in this case) by varying its parameters. In con-
trast, the metaheuristics go beyond the solution space of
HPOsm by exploring new DFGs in a pseudorandom man-
ner.

In terms of execution times, the four metaheuristics per-
form similarly, having an average discovery time close to
150s. While this is considerably higher than the execution

123

https://doi.org/10.6084/m9.figshare.11413794

Optimization framework for DFG-based automated process discovery approaches

Table 2 Comparative evaluation results for the public logs—Split Miner

Event log Discovery approach Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

BPIC12 SM 0.963 0.520 0.675 0.818 0.139 0.238 51 41 0.69 3.2

HPOsm 0.781 0.796 0.788 0.575 0.277 0.374 40 17 0.58 4295.8

RLSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.3

ILSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.4

TABUsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 140.7

SIMAsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 151.1

BPIC14f SM 0.772 0.881 0.823 0.150 1.000 0.262 20 14 1.00 0.8

HPOsm 0.852 0.857 0.855 0.449 1.000 0.619 22 16 0.59 575.8

RLSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 139.0

ILSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 151.3

TABUsm 0.955 0.775 0.855 0.856 0.999 0.922 26 31 0.69 154.7

SIMAsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 140.3

BPIC151f SM 0.899 0.871 0.885 0.701 0.726 0.713 111 45 0.51 0.7

HPOsm 0.962 0.833 0.893 0.804 0.670 0.731 117 55 0.45 1242.3

RLSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 163.6

ILSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 166.8

TABUsm 0.948 0.843 0.892 0.774 0.805 0.789 125 64 0.33 187.2

SIMAsm 0.920 0.839 0.878 0.772 0.807 0.789 125 63 0.43 160.4

BPIC152f SM 0.783 0.877 0.828 0.514 0.596 0.552 129 49 0.36 0.6

HPOsm 0.808 0.851 0.829 0.561 0.582 0.572 133 56 0.30 1398.9

RLSsm 0.870 0.797 0.832 0.667 0.670 0.668 156 86 0.20 158.3

ILSsm 0.869 0.795 0.830 0.663 0.680 0.671 157 86 0.20 157.6

TABUsm 0.870 0.794 0.830 0.665 0.667 0.666 150 83 0.23 176.8

SIMAsm 0.871 0.775 0.820 0.677 0.662 0.669 159 93 0.26 167.4

BPIC153f SM 0.774 0.925 0.843 0.436 0.764 0.555 96 35 0.49 0.5

HPOsm 0.783 0.910 0.842 0.477 0.691 0.564 99 39 0.56 9230.4

RLSsm 0.812 0.903 0.855 0.504 0.775 0.611 110 53 0.35 151.5

ILSsm 0.833 0.868 0.850 0.533 0.775 0.631 120 66 0.23 153.8

TABUsm 0.832 0.852 0.842 0.558 0.690 0.617 121 64 0.23 173.4

SIMAsm 0.827 0.839 0.833 0.565 0.694 0.623 123 71 0.18 159.4

BPIC154f SM 0.762 0.886 0.820 0.516 0.615 0.562 101 37 0.27 0.5

HPOsm 0.785 0.860 0.821 0.558 0.578 0.568 103 40 0.27 736.4

RLSsm 0.825 0.854 0.839 0.634 0.672 0.652 114 57 0.21 146.9

ILSsm 0.853 0.807 0.829 0.649 0.657 0.653 117 64 0.27 147.8

TABUsm 0.811 0.794 0.803 0.642 0.661 0.651 115 61 0.24 161.7

SIMAsm 0.847 0.812 0.829 0.624 0.649 0.636 117 61 0.18 148.2

BPIC155f SM 0.806 0.915 0.857 0.555 0.598 0.576 110 38 0.34 0.6

HPOsm 0.789 0.941 0.858 0.529 0.655 0.585 102 30 0.33 972.3

RLSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 159.3

ILSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 153.8

TABUsm 0.885 0.818 0.850 0.739 0.746 0.743 137 79 0.14 173.3

SIMAsm 0.867 0.811 0.838 0.734 0.727 0.731 137 78 0.16 154.3

123

A. Augusto et al.

Table 2 continued

Event log Discovery approach Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

RTFMP SM 0.996 0.958 0.977 0.959 0.311 0.470 22 17 0.46 2.9

HPOsm 0.887 1.000 0.940 0.685 0.696 0.690 20 9 0.35 2452.7

RLSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 142.8

ILSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 143.8

TABUsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 114.8

SIMAsm 0.986 1.000 0.993 0.875 0.893 0.884 23 15 0.39 131.0

SEPSIS SM 0.764 0.706 0.734 0.349 0.484 0.406 32 23 0.94 0.4

HPOsm 0.925 0.588 0.719 0.755 0.293 0.423 33 34 0.39 28,846

RLSsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 145.4

ILSsm 0.812 0.625 0.706 0.455 0.436 0.445 35 28 0.86 157.1

TABUsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 137.0

SIMAsm 0.806 0.613 0.696 0.477 0.445 0.460 35 30 0.77 137.2

The values in bold are the best values of the measurements for each column within each block

Fig. 8 BPIC14f model discovered with SIMAsm (above) and with SM (below)

time of SM (∼ 1 second on average), it is much lower than
HPOsm, while consistently achieving higher accuracy.

4.3 Fodina

Tables 4 and5 report the results of our comparative evaluation
for Fodina. In these tables, we used “–” to report that a given
accuracy measurement could not be reliably obtained due to

the unsoundness of the discovered process model. We held
out from the tables two logs: BPIC12 and SEPSIS, because
none of the six approaches (base APDA, hyper-parameter
optimized and the four metaheuristics) was able to discover
a sound process model. This is due to Fodina’s design which
does not guarantee soundness.

Considering the remaining 18 logs, eleven times all the
metaheuristics improved theMarkovian F-score w.r.t. HPOfo

123

Optimization framework for DFG-based automated process discovery approaches

Table 3 Comparative evaluation results for the proprietary logs—Split Miner

Event log Discovery method Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

PRT1 SM 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 0.4

HPOsm 0.999 0.948 0.972 0.989 0.620 0.762 19 14 0.53 298.3

RLSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 155.3

ILSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 153.2

TABUsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 10.3

SIMAsm 0.983 0.964 0.974 0.814 0.722 0.765 20 15 1.00 132.6

PRT2 SM 0.795 0.581 0.671 0.457 0.913 0.609 29 23 1.00 0.3

HPOsm 0.826 0.675 0.743 0.501 0.830 0.625 21 13 0.67 406.4

RLSsm 0.886 0.421 0.571 0.629 0.751 0.685 29 34 1.00 141.4

ILSsm 0.890 0.405 0.557 0.645 0.736 0.688 29 35 1.00 172.3

TABUsm 0.866 0.425 0.570 0.600 0.782 0.679 29 33 1.00 143.1

SIMAsm 0.886 0.424 0.574 0.629 0.751 0.685 29 34 1.00 139.7

PRT3 SM 0.882 0.887 0.885 0.381 0.189 0.252 31 23 0.58 0.4

HPOsm 0.890 0.899 0.895 0.461 0.518 0.488 26 14 0.81 290.2

RLSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 138.4

ILSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 144.2

TABUsm 0.944 0.902 0.922 0.589 0.519 0.552 30 20 0.60 134.7

SIMAsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 133.7

PRT4 SM 0.884 1.000 0.938 0.483 1.000 0.652 25 15 0.96 0.5

HPOsm 0.973 0.930 0.951 0.929 0.989 0.958 26 24 0.31 867.5

RLSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 140.1

ILSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 152.3

TABUsm 0.955 0.914 0.934 0.883 0.988 0.932 26 26 0.77 138.6

SIMAsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 136.9

PRT6 SM 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 0.3

HPOsm 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 105.1

RLSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 141.1

ILSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 144.2

TABUsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 124.9

SIMAsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

PRT7 SM 0.914 0.999 0.954 0.650 1.000 0.788 29 10 0.48 0.6

HPOsm 0.944 1.000 0.971 0.772 1.000 0.871 22 9 0.64 173.1

RLSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 139.2

ILSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 142.9

TABUsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 134.0

SIMAsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 131.9

PRT10 SM 0.970 0.943 0.956 0.905 0.206 0.335 45 47 0.84 0.5

HPOsm 0.936 0.943 0.939 0.810 0.243 0.374 30 22 0.73 1214.3

RLSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 153.0

ILSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 155.4

TABUsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 117.6

SIMAsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 136.7

The values in bold are the best values of the measurements for each column within each block

123

A. Augusto et al.

Fig. 9 RTFMP model discovered with SIMAsm (above) and with SM (below)

Table 4 Comparative evaluation results for the public logs—Fodina

Event log Discovery approach Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

BPIC13cp FO 0.999 0.879 0.935 0.997 0.647 0.784 13 10 0.77 0.1

HPOfo 0.999 0.879 0.935 0.997 0.647 0.784 13 10 0.77 17.7

RLSfo 0.994 0.963 0.978 0.947 0.864 0.904 12 9 0.67 290.6

ILSfo 0.994 0.880 0.934 0.935 0.758 0.837 12 8 0.92 151.2

TABUfo 0.994 0.963 0.978 0.947 0.864 0.904 12 9 0.67 95.2

SIMAfo 0.994 0.880 0.934 0.935 0.758 0.837 12 8 0.92 130.0

BPIC13inc FO 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 0.291

HPOfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 112.0

RLSfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 304.7

ILSfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 180.1

TABUfo 0.998 0.743 0.852 0.987 0.604 0.749 14 15 1.00 129.0

SIMAfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 146.1

BPIC14f FO – – – – – – 37 46 0.41 36.8

HPOfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 8612.7

RLSfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 370.7

ILSfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 365.5

TABUfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 358.5

SIMAfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 300.2

BPIC151f FO 1.000 0.760 0.860 1.000 0.480 0.650 146 91 0.26 0.3

HPOfo 1.000 0.756 0.861 1.000 0.479 0.648 146 91 0.26 130.5

RLSfo 0.916 0.829 0.870 0.804 0.772 0.788 131 69 0.24 301.9

ILSfo 0.916 0.829 0.870 0.804 0.772 0.788 131 69 0.24 198.4

TABUfo 0.916 0.830 0.871 0.802 0.778 0.790 129 67 0.33 177.5

SIMAfo 0.918 0.833 0.873 0.777 0.799 0.788 127 67 0.34 174.4

BPIC152f FO – – – – – – 195 159 0.09 48.5

HPOfo – – – – – – 187 145 0.11 118.7

RLSfo – – – – – – 181 131 0.09 306.0

ILSfo – – – – – – 175 120 0.11 276.1

TABUfo 0.876 0.754 0.810 0.653 0.608 0.630 177 120 0.13 262.3

SIMAfo – – – – – – 175 121 0.12 284.1

123

Optimization framework for DFG-based automated process discovery approaches

Table 4 continued

Event log Discovery approach Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

BPIC153f FO – – – – – – 174 164 0.06 4.3

HPOfo 0.983 0.601 0.746 0.925 0.208 0.339 163 161 0.07 402.9

RLSfo – – – – – – 166 141 0.07 303.5

ILSfo 0.924 0.713 0.805 0.701 0.444 0.543 158 131 0.10 247.1

TABUfo – – – – – – 163 131 0.09 235.5

SIMAfo – – – – – – 163 131 0.09 241.8

BPIC154f FO – – – – – – 157 127 0.15 1.3

HPOfo 0.995 0.660 0.793 0.973 0.302 0.461 153 126 0.14 443.0

RLSfo 0.887 0.790 0.836 0.708 0.610 0.655 127 77 0.17 308.3

ILSfo 0.882 0.801 0.839 0.697 0.628 0.661 127 75 0.17 300.5

TABUfo 0.864 0.806 0.834 0.675 0.652 0.663 127 74 0.17 274.5

SIMAfo 0.882 0.801 0.839 0.697 0.628 0.661 127 75 0.17 252.2

BPIC155f FO 1.000 0.698 0.822 1.000 0.362 0.532 166 125 0.15 2.4

HPOfo 1.000 0.698 0.822 1.000 0.362 0.532 166 125 0.15 238.1

RLSfo 0.886 0.810 0.846 0.727 0.703 0.715 150 94 0.11 303.4

ILSfo 0.884 0.819 0.850 0.719 0.724 0.722 147 90 0.13 268.1

TABUfo 0.886 0.814 0.849 0.723 0.730 0.727 149 92 0.11 217.1

SIMAfo 0.884 0.808 0.844 0.721 0.743 0.732 141 83 0.14 208.5

BPIC17f FO 1.000 0.675 0.806 1.000 0.330 0.496 35 22 0.69 22.4

HPOfo 1.000 0.675 0.806 1.000 0.330 0.496 35 22 0.71 9755.7

RLSfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 309.9

ILSfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 313.5

TABUfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 305.7

SIMAfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 319.2

RTFMP FO 0.996 0.933 0.964 0.937 0.148 0.256 31 32 0.19 0.4

HPOfo 0.884 1.000 0.939 0.646 0.857 0.737 18 7 0.56 2666.2

RLSfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 268.7

ILSfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 134.1

TABUfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 131.2

SIMAfo 0.987 1.000 0.993 0.847 0.923 0.883 28 27 0.11 133.9

The values in bold are the best values of the measurements for each column within each block

(and consequently FO), while 16 times at least one meta-
heuristic outperformed both FO and HPOfo. The only two
cases where none of the metaheuristics was able to discover
a more accurate process model than HPOfo were PRT2 and
BPIC14f . In the former log, this is because none of the meta-
heuristics discovered a sound process model within the given
timeout of five minutes. However, we note that HPOfo took
almost four hours to discover a sound process model from
the PRT2 log. In the latter log, this is because all the meta-
heuristics discovered the same model of HPOfo.

Among the optimization metaheuristics, TABUfo per-
formed the best. This metaheuristic achieved 14 times out
of 18 the highest Markovian F-score, followed by ILS (ten
times). However, like for Split Miner, the differences in the

achieved F-score between the four metaheuristics are small.
There is a difference of only 1–2 percentage points between
themetaheuristics with highest F-score and the onewith low-
est F-score.

In the case of Fodina, the results achieved by the meta-
heuristics on the alignment-based F-score are more remark-
able than the case of Split Miner, and in-line with the results
obtained on the Markovian F-score. Indeed, 50% of the
times, all the metaheuristics were able to outperform both
FO and HPOfo on the alignment-based F-score, and more
than 80% of the times, at least one metaheuristic scored a
higher alignment-based F-score than FO and HPOfo. Such a
result is remarkable considering that the objective function
of the metaheuristics was the Markovian F-score.

123

A. Augusto et al.

Table 5 Comparative evaluation results for the proprietary logs—Fodina

Event log Discovery method Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

PRT1 FO – – – – – – 30 28 0.53 0.2

HPOfo 0.998 0.925 0.960 0.988 0.739 0.845 21 17 0.81 402.6

RLSfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 302.7

ILSfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 183.1

TABUfo 0.994 0.957 0.976 0.981 0.844 0.907 21 17 0.86 149.3

SIMAfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 154.0

PRT2 FO – – – – – – 38 45 0.76 92.7

HPOfo 1.000 0.276 0.432 0.998 0.148 0.258 29 78 1.00 12937.1

RLSfo – – – – – – 48 56 0.08 301.0

ILSfo – – – – – – 48 56 0.08 308.1

TABUfo – – – – – – 53 70 0.08 313.0

SIMAfo – – – – – – – – – 854.9

PRT3 FO 0.999 0.847 0.917 0.993 0.269 0.423 34 37 0.32 0.2

HPOfo – – – – – – 73 93 0.18 756.5

RLSfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 306.6

ILSfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 157.3

TABUfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 138.1

SIMAfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 143.0

PRT4 FO – – – – – – 37 40 0.54 46.0

HPOfo 1.000 0.858 0.924 1.000 0.965 0.982 32 41 0.50 10914.5

RLSfo 0.997 0.859 0.923 0.993 0.990 0.991 31 37 0.52 317.4

ILSfo 0.997 0.903 0.948 0.993 0.993 0.993 27 32 0.74 314.4

TABUfo 0.997 0.903 0.948 0.993 0.993 0.993 27 32 0.74 300.1

SIMAfo 0.977 0.887 0.930 0.793 0.963 0.870 32 38 0.50 309.1

PRT6 FO 1.000 0.908 0.952 1.000 0.632 0.775 22 17 0.41 0.1

HPOfo 1.000 0.908 0.952 1.000 0.632 0.775 22 17 0.41 25.0

RLSfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 278.8

ILSfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 140.0

TABUfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 129.3

SIMAfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

PRT7 FO 0.990 1.000 0.995 0.906 1.000 0.951 26 16 0.39 0.3

HPOfo 0.990 1.000 0.995 0.906 1.000 0.951 26 16 0.39 50.2

RLSfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 287.6

ILSfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 140.3

TABUfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 129.7

SIMAfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 132.1

PRT9 FO – – – – – – 32 45 0.72 53.1

HPOfo – – – – – – 24 18 0.54 2799.5

RLSfo 0.969 0.999 0.984 0.894 0.893 0.893 23 21 0.91 301.5

ILSfo – – – – – – 34 26 0.15 263.2

TABUfo – – – – – – 36 30 0.14 185.8

SIMAfo 0.968 1.000 0.984 0.887 0.956 0.920 20 17 0.80 278.4

123

Optimization framework for DFG-based automated process discovery approaches

Table 5 continued

Event log Discovery method Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

PRT10 FO 0.990 0.922 0.955 0.961 0.087 0.159 52 85 0.64 0.2

HPOfo 0.872 0.958 0.913 0.659 0.786 0.717 35 28 0.60 750.8

RLSfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 301.1

ILSfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 195.0

TABUfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 165.0

SIMAfo 0.965 0.963 0.964 0.874 0.809 0.840 44 47 0.25 161.2

The values in bold are the best values of the measurements for each column within each block

Regarding the complexity of themodels discovered by the
metaheuristics, more than 50% of the times, it is lower than
the complexity of the models discovered by FO and HPOfo,
and in the remaining cases in-line with the two baselines.
Such a difference with the results we obtained for SM relates
to the following two factors: (i) Split Miner discovers much
simpler models than Fodina, and any further improvement is
difficult to achieve; (ii) Fodina natively discoversmore fitting
models than Split Miner and hence, the metaheuristics aim at
improving precision, ultimately removing model edges, and
so reducing its complexity.

In terms of execution times, the four metaheuristics per-
form similarly,with an execution timebetween150 and300s,
slightly higher than the case of Split Miner.

4.4 Inductive Miner

Table 6 displays the results of our comparative evaluation for
Inductive Miner. We held out from the table the five BPIC15
logs, because none of the three metaheuristics could discover
a model within the five minutes timeout. This was due to
scalability issues experienced by the Markovian accuracy,
already known for the case of IM [6].

In the remaining 15 logs, 13 times all the metaheuristics
improved the Markovian F-score w.r.t. IMd, and only for the
BPIC17f log none of the metaheuristics could outperform
IMd. The best performing metaheuristic was SIMAimd, eight
times achieving the highest Markovian F-score, followed by
TABUimd and RLSimd, which scored seven, respectively, six
times the highest Markovian F-score. Again, we note that
the differences in the achieved F-score across the four meta-
heuristics are small. There are several cases inwhichmultiple
metaheuristics achieve the same F-score, and a difference of
only 1–2 percentage point between the best-performing and
the worst-performing metaheuristics.

The results of the metaheuristics on the alignment-based
F-score are similar to the case of Fodina, and they are broadly
in-line with the results achieved on the Markovian F-score.
Indeed, 80% of the times, all the metaheuristics were able to
outperform IMd, failing only in two logs out of 15.

Regarding the complexity of themodels discovered by the
metaheuristics, we recorded little variation w.r.t. the com-
plexity of the models discovered by IMd. Size and CFC did
not notably improve nor worsen, except for the PRT9 and
the BPIC14f logs, where both size and CFCwere reduced by
about 30%.

In terms of execution times, the three metaheuristics per-
form similarly, with an average execution time close to 300s,
meaning that the majority of the times the solution-space
exploration was interrupted by the timeout.

4.5 Discussion

The results of the evaluation show that the use of metaheuris-
tics optimization brings consistent improvements in accuracy
with respect to the baseline discovery approaches, in 80%
of the cases. Furthermore, it produces consistently higher
alignment-based F-score, even though this measure was not
used as an objective function, due to the low scalability of
alignment-based precision.

The drawback of using metaheuristics optimization is the
longer execution time—several minutes versus less than a
few seconds for the baselines.

In a small number of cases, the optimization framework
did not yield any F-score improvement with respect to the
corresponding unoptimized approach, due to: (i) a small
solution-space (i.e., the baseline already discovers the best
process model); or (ii) scalability issues (i.e., the Markovian
accuracy could be computed within the timeout). While the
former scenario is beyond our control and strictly relates to
the complexity of the input event log, the latter reminds us
of the limitations of the state-of-the-art accuracy measures
(and especially precision) in the context of automated pro-
cess discovery, and justifies our design choice of a modular
optimization framework, that allows the use of new accuracy
measures as objective functions in the future, which may be
able to overcome such scalability issues.

Another remarkable finding is that the metaheuristically
optimized versions of Split Miner and Fodina consistently
outperform their hyper-parameter optimized counterparts.

123

A. Augusto et al.

Table 6 Comparative evaluation results for the public and proprietary logs—Inductive Miner

Event log Discovery approach Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

BPIC12 IMd 1.000 0.168 0.287 1.000 < 0.001 < 0.001 30 28 1.00 0.7

RLSimd 0.661 0.763 0.708 0.220 0.163 0.187 40 21 1.00 300.0

TABUimd 0.661 0.763 0.708 0.220 0.163 0.187 40 21 1.00 309.4

SIMAimd 0.660 0.805 0.725 0.204 0.223 0.213 39 19 1.00 308.7

BPIC13cp IMd 1.000 0.862 0.926 0.999 0.161 0.277 15 11 1.00 0.4

RLSimd 0.984 0.889 0.934 0.882 0.424 0.573 9 5 1.00 301.4

TABUimd 0.990 0.888 0.936 0.942 0.414 0.575 10 7 1.00 101.8

SIMAimd 0.984 0.889 0.934 0.882 0.424 0.573 9 5 1.00 300.5

BPIC13inc IMd 1.000 0.673 0.805 1.000 0.109 0.197 10 9 1.00 0.5

RLSimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 301.5

TABUimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 71.9

SIMAimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 300.7

BPIC14f IMd 0.861 0.782 0.820 0.507 0.814 0.625 27 16 1.00 0.8

RLSimd 0.977 0.676 0.799 0.918 0.447 0.601 16 11 1.00 302.5

TABUimd 0.949 0.673 0.788 0.859 0.505 0.636 17 13 1.00 303.3

SIMAimd 0.977 0.676 0.799 0.918 0.447 0.601 16 11 1.00 300.8

BPIC17f IMd 1.000 0.679 0.808 1.000 0.284 0.442 34 23 1.00 1.5

RLSimd 0.674 0.815 0.738 0.241 0.214 0.227 27 11 1.00 302.7

TABUimd 0.693 0.817 0.750 0.262 0.204 0.230 28 13 1.00 83.8

SIMAimd 0.674 0.815 0.738 0.241 0.214 0.227 27 11 1.00 301.0

RTFMP IMd 1.000 0.543 0.704 1.000 0.003 0.005 15 12 1.00 0.8

RLSimd 0.938 0.886 0.911 0.784 0.379 0.511 21 14 1.00 321.1

TABUimd 0.938 0.886 0.911 0.784 0.379 0.511 21 14 1.00 52.1

SIMAimd 0.917 0.907 0.912 0.780 0.625 0.694 19 9 1.00 300.8

SEPSIS IMd 1.000 0.291 0.451 0.918 0.006 0.012 24 23 1.00 0.4

RLSimd 0.796 0.684 0.736 0.367 0.363 0.365 27 18 1.00 305.5

TABUimd 0.796 0.684 0.736 0.367 0.363 0.365 27 18 1.00 306.9

SIMAimd 0.813 0.581 0.678 0.482 0.310 0.377 25 16 1.00 301.6

PRT1 IMd 1.000 0.748 0.856 1.000 0.025 0.048 14 11 1.00 0.5

RLSimd 0.974 0.946 0.960 0.692 0.707 0.699 16 10 1.00 304.4

TABUimd 0.971 0.946 0.958 0.692 0.707 0.699 17 10 1.00 304.0

SIMAimd 0.974 0.946 0.960 0.692 0.707 0.699 16 10 1.00 300.7

PRT2 IMd 1.000 0.243 0.390 1.000 0.109 0.196 13 11 1.00 0.9

RLSimd 0.811 0.464 0.591 0.588 0.601 0.594 18 13 1.00 305.5

TABUimd 0.788 0.461 0.581 0.542 0.566 0.554 16 11 1.00 303.0

SIMAimd 0.792 0.413 0.543 0.524 0.674 0.590 18 13 1.00 307.3

PRT3 IMd 0.827 0.890 0.857 0.328 0.253 0.286 26 10 1.00 0.4

RLSimd 0.914 0.896 0.905 0.501 0.593 0.543 26 14 1.00 305.1

TABUimd 0.933 0.900 0.917 0.626 0.592 0.608 28 15 1.00 302.6

SIMAimd 0.930 0.898 0.914 0.562 0.539 0.550 29 17 1.00 300.8

123

Optimization framework for DFG-based automated process discovery approaches

Table 6 continued

Event log Discovery approach Align. Acc. Markov. Acc. (k = 5) Complexity Exec. time(s)

Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct.

PRT4 IMd 0.880 0.811 0.844 0.876 0.967 0.919 27 13 1.00 0.5

RLSimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 301.0

TABUimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 307.2

SIMAimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 300.8

PRT6 IMd 0.917 0.988 0.951 0.524 0.350 0.420 18 6 1.00 0.4

RLSimd 0.953 0.987 0.969 0.674 0.941 0.785 17 7 1.00 304.2

TABUimd 0.905 0.915 0.910 0.488 0.903 0.634 18 10 1.00 643.0

SIMAimd 0.953 0.987 0.969 0.674 0.941 0.785 17 7 1.00 300.6

PRT7 IMd 0.852 0.997 0.919 0.618 0.407 0.491 21 5 1.00 0.4

RLSimd 0.917 1.000 0.957 0.700 1.000 0.824 20 6 1.00 305.5

TABUimd 0.917 1.000 0.957 0.700 1.000 0.824 20 6 1.00 1013.9

SIMAimd 0.960 0.988 0.974 0.664 0.752 0.705 23 13 1.00 309.6

PRT9 IMd 0.586 0.461 0.516 0.078 0.014 0.024 22 15 1.00 2.6

RLSimd 0.945 1.000 0.972 0.851 1.000 0.919 16 9 1.00 304.2

TABUimd 0.946 1.000 0.972 0.856 0.947 0.899 18 10 1.00 306.6

SIMAimd 0.954 1.000 0.976 0.890 0.909 0.899 15 8 1.00 300.0

PRT10 IMd 0.530 0.656 0.586 0.386 0.000 0.001 36 28 1.00 0.5

RLSimd 0.859 0.961 0.907 0.664 0.691 0.677 30 24 1.00 300.3

TABUimd 0.912 0.907 0.909 0.790 0.484 0.600 30 24 1.00 33.1

SIMAimd 0.862 0.941 0.900 0.671 0.719 0.694 32 28 1.00 307.6

The values in bold are the best values of the measurements for each column within each block

This means that the space of possible process models that
can explored by tweaking the parameters in input (e.g., the
noise filter threshold) is not as rich as the space of process
models that can be generated by repeatedly perturbing the
DFG.

Finally, we found that all four metaheuristics considered
in the evaluation led to similar F-scores. The differences in F-
score between the best-performing and the worst-performing
metaheuristics are generally negligible, in the order of 1–2
percentage points. For Inductive Miner, all four metaheuris-
tics end up exploring the search space in a similar manner,
leading to the same results in several cases. This may be
explained by the fact that the set of possible models that
Inductive Miner can generate is narrower than that generated
by Fodina or Split Miner, because Inductive Miner can only
generate block-structured models.

5 Conclusion

This paper showed that the use of S-metaheuristics is
a promising approach to enhance the accuracy of DFG-
based automated process discovery approaches. The outlined
approach takes advantage of the DFG’s simplicity to define

efficient perturbation functions that improve fitness or preci-
sion while preserving structural properties required to ensure
model correctness.

The evaluation showed that the metaheuristically opti-
mized approaches consistently achieve higher accuracy than
the corresponding unoptimized baselines (Split Miner, Fod-
ina, and Inductive Miner—directly-follows). This observa-
tion holds both when measuring accuracy via Markovian
F-score and via alignment-based F-score. As expected, these
accuracygains comeat the expense of higher execution times.
This is naturally given that the metaheustics needs to execute
the baseline approach several hundred times and it needs to
measure the accuracy of each of the resulting processmodels.
The evaluation also showed that the choice of optimization
metaheuristic (among those considered in the paper) does
not have a substantial effect on the accuracy of the resulting
process models, nor on their size or complexity.

In its current form, the framework focuses on improving
F-score. In principle, the framework could also be used to
optimize other objective functions, such as model complex-
ity, measured by number of edges or control-flow complexity
measures, for example. Related to the above, the framework
could be extended to optimize multiple dimensions simul-
taneously, using multi-objective (Pareto-front) optimization

123

A. Augusto et al.

techniques instead of single-objective ones. Along the same
lines, it may also be possible to adapt the framework in order
to optimize one measure (e.g., F-score), subject to one or
more constraints on other measures (e.g., that the number of
edges in the discovered model must be below a given thresh-
old). Lastly, another opportunity for future work may be the
automation of the best metaheuristic selection, without com-
promising the time performance of the framework.

Another limitation of the proposed approach is that the
DFG perturbations employed in the optimization phase do
not use the frequencies of the directly-follows relations (i.e.,
arc frequencies in the DFG are not used). In other words, the
proposed approach makes the following two design choices:
(i) the perturbations either add an arc or remove an arc but
they do not alter the frequency of an arc; and (ii) the decision
as to which arcs to add or remove is not taken based on arc
frequencies. The rationale for the first of these design choices
is thatmodifying the arc frequencies would require us to have
a criterion for deciding by how much should be frequencies
be altered. This criterion would have to be dependent on the
way the underlying automated process discovery algorithm
uses the arc frequencies.We opted not to do in order to ensure
the optimization method is independent of the underlying
base algorithm. The rationale for the second choice is that the
perturbations should have an element of randomness in order
to allow the metaheuristics to explore a wider subset of the
search space. Poor perturbations are likely to lead to solutions
with lower F-scores, which are eventually discarded by the
metaheuristics, but a transformation that leads to solutions
with lower F-scores may later give rise to other solutions
with higher F-score as the search unfolds. This having been
said, it is possible that perturbations that remove arcs based
on arc frequency might help the heuristics to focus on areas
of the search spacewith higher F-score. A direction for future
work is to explore other perturbation heuristics including
frequency-aware ones.

A third limitation of the framework is that it only considers
four S-metaheuristics. There is room for investigating fur-
ther metaheuristics such as variants of simulated annealing,
e.g., using different cooling schedules. Along a similar direc-
tion, this study could be extended to investigate the trade-offs
between S-metaheuristics and P-metaheuristics in this set-
ting.

Finally, the evaluation put into evidence scalability limita-
tions of the Markovian precision measure for some datasets.
These limitations are not specific to this precisionmeasure—
they also apply, and sometimes to a larger extent, to other
precision measures including ETC precision and entropy-
based precision [26]. There is a need for more scalable
measures of precision in order to make metaheuristic opti-
mizationmore broadly applicable in the context of automated
process discovery.

Acknowledgements We thank Raffaele Conforti for his input to an ear-
lier version of this paper. This research is partly funded by theAustralian
Research Council (DP180102839) and the European Research Council
(PIX Project).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.,
van der Aalst, W.: Measuring precision of modeled behavior. ISeB
13(1), 37–67 (2015)

2. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance
checking using cost-based fitness analysis. In: EDOC. IEEE (2011)

3. Alizadeh, S., Norani, A.: ICMA: a new efficient algorithm for pro-
cess model discovery. Appl. Intell. 48(11), 4497–4514 (2018)

4. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algo-
rithm: an algorithm for optimization inspired by imperialistic
competition. In: Evolutionary computation, 2007. CEC2007. IEEE
Congress on, pp 4661–4667. IEEE (2007)

5. Augusto, A., Armas Cervantes, A., Conforti, R., Dumas, M., La
Rosa, M.: Measuring fitness and precision of automatically dis-
covered process models: a principled and scalable approach. IEEE
Trans. Knowl. Data Eng. (2020). To appear https://doi.org/10.
1109/TKDE.2020.3003258

6. Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La
Rosa, M., Reissner, D.: Abstract-and-compare: a family of scal-
able precisionmeasures for automated process discovery. In: BPM.
Springer, Berlin (2018)

7. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G.:
Automated discovery of structured processmodels from event logs:
the discover-and-structure approach. DKE 117, 373–392 (2017)

8. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M.,
Marrella, A., Mecella, M., Soo, A.: Automated discovery of pro-
cess models from event logs: Review and benchmark. IEEE Trans.
Knowl. Data Eng. 31(4), 686–705 (2019)

9. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy,
A.: Split miner: automated discovery of accurate and simple busi-
ness process models from event logs. KAIS 59(2), 251–284 (2018)

10. Augusto, A., Dumas, M., La Rosa, M.: Metaheuristic optimiza-
tion for automated business process discovery. In: BPM. Springer,
Berlin (2019)

11. Bäck, Thomas, Schwefel, Hans-Paul: An overview of evolutionary
algorithms for parameter optimization. Evol. Comput. 1(1), 1–23
(1993)

12. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization
metaheuristics. Inf. Sci. 237, 82–117 (2013)

13. Buijs, J., van Dongen, B., van der Aalst, W.: On the role of fitness,
precision, generalization and simplicity in process discovery. In:
CoopIS. Springer, Berlin (2012)

14. Burattin, A., Sperduti, A.: Automatic determination of parameters’
values for heuristics miner++. In: IEEE Congress on Evolutionary
Computation (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TKDE.2020.3003258
https://doi.org/10.1109/TKDE.2020.3003258

Optimization framework for DFG-based automated process discovery approaches

15. Chifu, V.R., Pop, C.B., Salomie, I., Balla, I., Paven, R.: Hybrid
particle swarm optimization method for process mining. In: ICCP.
IEEE (2012)

16. deMedeiros, A.K.: Genetic processmining. PhD thesis, Eindhoven
University of Technology (2006)

17. Effendi, Y.A., Sarno, R.: Discovering optimized process model
using rule discovery hybrid particle swarm optimization. In: 2017
3rd International Conference on Science in Information Technol-
ogy (ICSITech), pp. 97–103. IEEE (2017)

18. Gao, D., Liu, Q.: An improved simulated annealing algorithm for
process mining. In: CSCWD. IEEE (2009)

19. Glover, F.: Future paths for integer programming and links to arti-
ficial intelligence. Comput Oper. Res. 13(5), 533–549 (1986)

20. Holland, J.H.: Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. MIT Press, Cambridge (1992)

21. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of
Machine Learning, pp. 760–766. Springer, Berlin (2011)

22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simu-
lated annealing. Science 220, 4598 (1983)

23. Kuhn, H.W.: The Hungarian method for the assignment problem.
NRL 2(1–2), 83–97 (1955)

24. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable pro-
cess discovery and conformance checking. Softw. Syst. Model.
17(2), 599–631 (2018)

25. Nurlaili, A.L., Sarno, R.: A combination of the evolutionary tree
miner and simulated annealing. In: 2017 4th International Confer-
ence on Electrical Engineering, Computer Science and Informatics
(EECSI), pp. 1–5. IEEE (2017)

26. Polyvyanyy, A., Solti, A., Weidlich, M., Ciccio, C.D., Mendling,
J.: Monotone precision and recall measures for comparing exe-
cutions and specifications of dynamic systems. CoRR (2018).
arXiv:1812.07334

27. Ribeiro, J., Carmona Vargas, J.: A method for assessing parameter
impact on control-flow discovery algorithms. In: Algorithms &
Theories for the Analysis of Event Data (2015)

28. Smirnov, S., Weidlich, M., Mendling, J.: Business process model
abstraction based on behavioral profiles. In: International Confer-
ence on Service-Oriented Computing, pp 1–16. Springer, Berlin
(2010)

29. Song, W., Liu, S., Liu, Q.: Business process mining based on sim-
ulated annealing. In: ICYCS. IEEE (2008)

30. Stützle, T.: Local search algorithms for combinatorial problems.
PhD thesis, Darmstadt University of Technology (1998)

31. Suriadi, S., Andrews, R., ter Hofstede, A.H.M.,Wynn, M.T.: Event
log imperfection patterns for process mining: towards a systematic
approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017)

32. Syring, A.F., Tax, N., van der Aalst, W.M.P.: Evaluating confor-
mance measures in process mining using conformance propo-
sitions. In: Transactions on Petri Nets and Other Models of
Concurrency XIV, pp. 192–221. Springer, Berlin (2019)

33. van der Aalst, W.: Process Mining: Data Science in Action.
Springer, Berlin (2016)

34. vanden Broucke, S., De Weerdt, J.: Fodina: a robust and flexible
heuristic process discovery technique. DSS 100, 109–118 (2017)

35. Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In:
CIDM. IEEE (2011)

36. Wen, L., Van Der Aalst, W.M.P., Wang, J., Sun, J.: Mining process
models with non-free-choice constructs. DataMin. Knowl. Discov.
15(2), 145–180 (2007)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Adriano Augusto is an Associate
Lecturer at the University of Mel-
bourne. He completed his joint
Ph.D. at the University of Tartu
and the University of Melbourne,
in 2020, by defending a thesis
focused on automated process dis-
covery. His teaching and research
interests include business process
management, process mining,
automated process discovery, and
robotic process automation.

Marlon Dumas is Professor of
Information Systems at University
of Tartu, Estonia. His research
interests span across the fields of
software engineering, information
systems and business process man-
agement. He is co-author of the
textbook ”Fundamentals of Busi-
ness Process Management”
(Springer, 2nd edition).

Marcello La Rosa is Professor of
Information Systems at the Uni-
versity of Melbourne, Australia.
His research interests include pro-
cess mining, consolidation and
automation. He leads the Apro-
more Initiative, a cross-university
collaboration for the development
of an advanced process analyt-
ics platform, and co-authored the
textbook ”Fundamentals of Busi-
ness Process Management”
(Springer, 2nd edition).

123

http://arxiv.org/abs/1812.07334

A. Augusto et al.

Sander J.J. Leemans is an Assis-
tant Professor (Lecturer) at the
Queensland University of Tech-
nology, Australia, in the school
of Information Systems. His
research interests include process
mining, process discovery, con-
formance checking, stochastic pro-
cess mining, and robotic process
automation. In particular, he spe-
cialises in making solid academic
techniques available to end-users,
analysts, and industry partners. He
teaches business process manage-
ment, business process modeling

and business process improvement.

Seppe vanden Broucke received a
PhD in Applied Economics at KU
Leuven, Belgium in 2014. Cur-
rently, Seppe is working as an
assistant professor at the depart-
ment of Business Informatics at
UGent (Belgium) and is a lec-
turer at KU Leuven (Belgium).
Seppe’s research interests include
business data mining and analyt-
ics, machine learning, process man-
agement, process mining. His work
has been published in well-known
international journals and
presented at top conferences.

123

	Optimization framework for DFG-based automated process discovery approaches
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Automated process discovery
	2.2 Optimization metaheuristics
	2.3 Optimization metaheuristics in automated process discovery

	3 Metaheuristic optimization framework
	3.1 Preliminaries
	3.2 Framework overview
	3.3 Adaptation of the optimization metaheuristics
	3.4 Framework instantiation

	4 Evaluation
	4.1 Dataset, quality measures, and experimental setup
	4.2 Split Miner
	4.3 Fodina
	4.4 Inductive Miner
	4.5 Discussion

	5 Conclusion
	Acknowledgements
	References

