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a b s t r a c t

Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white
matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest
that make it a process that is very hard to reproduce across experts. Having automated tools that can
extract white matter bundles for tract-based studies of large numbers of people is of great interest for
neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is
to segment white matter bundles and make virtual dissection easier to perform. This can help explore
large tractograms from multiple persons directly in their native space. RecoBundles leverages latest
state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior
bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and
bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of
streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing
components. It is also robust to pathological brains with tumors and deformations. We evaluated our
results using multiple bundles and showed that RecoBundles is in good agreement with the neuroana-
tomical experts and generally produced more dense bundles. Across all the different experiments re-
ported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from
tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for
exploring tractograms and facilitating tractometry studies.

& 2017 Elsevier Inc. All rights reserved.
1. Introduction

Current tractography algorithms produce a large number of
streamlines (up to millions) that form a tractogram. Recently, it
has been reported that tractography can generate a great number
of invalid streamlines and white matter bundles (Côté et al., 2013;
Maier-Hein et al., 2016; Jones et al., 2013; Thomas et al., 2014),
which can create biases in tractometry analysis (Dayan et al., 2016;
Bells et al., 2011; Yeatman et al., 2012; O'Donnell et al., 2009;
Renauld et al., 2016) and connectivity analysis (Hagmann et al.,
2008). A partial solution to this problem is to inject strong ana-
tomical priors into the tractography and track-dissection processes
(Girard et al., 2014; Chamberland et al., 2017). The term virtual
dissection (Catani et al., 2002a) is often used when an interactive
visualization tool (Wang et al., 2007a; Chamberland et al., 2014) is
used to segment a bundle of interest while removing all stream-
lines and bundles that do not correspond to the anatomical defi-
nition of this bundle. For this reason, many groups still manually
segment hundreds of bundles using visual tools (Chamberland
et al., 2014) with inclusion/exclusion regions-of-interests (ROIs)
(Wang et al., 2007b). This manual process is very time consuming,
is strongly user-dependent and adds biases to tract-based ana-
lyses. It can take hundreds of hours for trainees and neuroanato-
mical experts to manually segment bundles over multiple parti-
cipants. There is thus an important need for automatic tools that
can facilitate the process and provide new databases of white
matter bundles.

We can divide the existing automated tools into two categories: a)
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Fig. 1. We see the recognition of the CST (upper-center) in a brain with a large
glioma grade 3 tumor. Notice how the tumor had affected the CST and how Re-
coBundles was able to identify it comparably to the expert's segmentation (upper-
right). The expert needed to add information from an fMRI finger tapping experi-
ment to segment this bundle while RecoBundles identified it using a single healthy
CST from a different individual (upper-left). At the lower panel we show the extent
of the tumor's damage using FA slices.
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connectivity-based and b) streamline-based. In (a), the streamlines of
the tractograms are filtered in relation to their connection to specific
ROIs, often pre-defined in a template. These approaches require
image-based multi-modal nonlinear registration, for example by re-
gistering a T1 to diffusion data (or the opposite) so that the
streamlines and the ROIs are in the same space. In (b), an atlas of
known bundles is given, and the streamlines of the atlas are used
directly to perform the segmentations of the given tractograms.

Most published methods belong in category (a). For example, one
of the most recent methods was introduced by Wassermann et al.
(2016) where the authors created rules describing how known ana-
tomical bundles connect different regions of the brain (parcellated
using Freesurfer), and then used those rules to extract bundles from
tractograms. Another method which is based on Freesurfer parcel-
lations is Tracula (Yendiki et al., 2011; Siless et al., 2016), which also
requires registration of an individual T1 to a common template. A
similar approach had been proposed earlier by Zhang et al. (2010)
and later by Tunç et al. (2014). These approaches all need to have
multiple modalities in a common space (Yeatman et al., 2012; Jin
et al., 2014) using image-based registration, a possible parcellation,
and filtering of streamlines connecting different ROIs. Obtaining such
a perfect alignment between streamlines and ROIs can be a difficult
task especially when processing pathological brains. The present
paper belongs in category (b). Here, most of the existing approaches
are quite recent (O'Donnell and Westin, 2007; Guevara et al., 2012;
Garyfallidis et al., 2015a; O'Donnell et al., 2017) and do need some
form of initial registration (Olivetti et al., 2016; Durrleman et al.,
2011). However, they mostly use distances between streamlines and
clustering of streamlines to simplify the segmentation process. Fur-
thermore, multiple bundle atlases can be used simultaneously to
increase the accuracy of segmentation as shown by Yoo et al. (2015)
and Labra et al. (2013, 2016).

In our novel approach, the need for fast clustering and sim-
plification of large tractograms using streamline distances is ad-
dressed using QuickBundles (Garyfallidis et al., 2012) and the need
for fast linear registration of streamlines is addressed using
Streamline-based Linear Registration (SLR) by Garyfallidis et al.
(2015b). We show how by combining these two methods at a
global and local level we can create a powerful streamline-based
segmentation method. The new method is called RecoBundles,
which stands for recognition of bundles. RecoBundles is 100%
streamline-based and is efficient to work with millions of
streamlines. Moreover, we show that RecoBundles is robust and
adaptive to incomplete data and bundles with missing compo-
nents. It is also robust to pathological brains with tumors which
deform or reduce the size of bundles. We quantitatively evaluated
our results in 4 bundles manually dissected by 2 experts in 60
individuals and showed that RecoBundles is in overall good
agreement with experts having high sensitivity and specificity. We
also qualitatively show that RecoBundles discovers the core parts
of the bundles and, overall, produces more complete (dense)
bundles. The amount of filling can be adjusted by a free parameter
(λ) which is an advantageous feature for neuroanatomists wanting
to explore the extent of specific tracts.

RecoBundles facilitates the testing of hypotheses about the
existence of different bundles and running them across many
participants. It opens novel perspectives for bundle-extraction for
neurosurgical planning and tractometry. The algorithmic aspects
of RecoBundles are explained in detail in Section 2 and the method
is validated with simulations in Section 3.1. Furthermore, we show
quantitative results with real datasets in Section 3.2.1 and quali-
tative results with healthy and patient datasets in Sections 3.2.2
and 3.3.
2. Methods

2.1. Intuition

The term bundle recognition is inspired from the field of com-
puter vision where object recognition describes the task of finding
and identifying objects in an image or video sequence. Humans
recognize a multitude of objects in images with little effort, de-
spite the fact that the image of the objects may vary in size and
scale or rotation. Similarly, in the field of neuroimaging, we want
to identify bundles in tractograms which have differences in or-
ientation, size and shape and which may be partly incomplete,
based on shape priors from pre-segmented bundles, all with
minimum effort, e.g. given only a single example bundle. This is
different from atlas-based bundle extraction where one gives as
input an entire set of bundles from an atlas as in Guevara et al.
(2012); Labra et al. (2016). Here, given a certain number of
streamline-based ‘bundle models’ generated from manual virtual
dissection or semi-automatic segmentation of the whole brain
tractogram, RecoBundles will automatically recognize and extract
streamlines that have similar shapes to these models. For example,
as seen in Fig. 1, one segments the left corticospinal tract (CST) of a
single healthy individual based on its whole brain full tractogram
in native space, as seen in S1 of Fig. 1. Then, RecoBundles can
identify the left CST (S2 of Fig. 1) of another individual in its own
native space as well using the healthy control CST as a shape prior
for the bundle recognition. This individual is a patient with a large
glioblastoma in the left hemisphere.

2.2. Methodological details

We denote a single streamline with s and a set of streamlines
with S. A streamline s is an ordered sequence of line segments
connecting 3D vector points ∈xk

3 with ⎡⎣ ⎤⎦∈k K1, , where K is the
total number of points of streamline s. A visual diagram of Re-
coBundles is shown in Fig. 2 to ease the understanding of the
details of technique.

The inputs of our method are a) the whole brain tractogram of
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E. Garyfallidis et al. / NeuroImage 170 (2018) 283–295 285
the participant SA from whom we want to recognize bundles, b)
the whole brain streamlines SM from which we obtained manually
segmented model bundles. For clarity, we divide the method in
two phases. Phase A provides an initial rough streamline-based
registration (usually affine), where we register to SM. The affine
registration is performed using the Streamline-based Linear Re-
gistration (SLR) method described by Garyfallidis et al. (2015b).
Phase B provides the recognition and is the main contribution of
this paper. It is in this phase that we use a model bundle ⊂B SM M
e.g., the left cingulum, and the goal is to recognize the same
bundle in SA.

To deal with large tractograms both phases use QuickBundles
clustering of streamlines (see Garyfallidis et al., 2012). Also, we can
accelerate many of the computations by analyzing the centroids of
the clusters rather than the individual streamlines. The same
streamline distance is used for clustering, registration and prun-
ing. This is the Minimum average Direct-Flip (MDF) distance. The
MDF is metric distance in the space of resampled streamlines as
shown in Garyfallidis et al. (2012). Working with a distance metric
has the advantage of simplifying many of the computations.

2.2.1. Phase A: affine registration using global SLR
The first phase starts with SA and SM being clustered using

QuickBundles (see Fig. 2a-c). Then the centroids, and CM, respec-
tively are registered using SLR. In Fig. 2d using blue/purple color,
the difference before and after registration of the centroids is
shown. Only the centroids of the largest clusters are used because
all clusters with less than c streamlines are removed (c ¼ 50 ev-
erywhere in the document). Only streamlines with lengths be-
tween 50 and 250 mm are used for the clustering. To further fa-
cilitate the process we only use the same number R of randomly
selected streamlines from SA and SM (R ¼ 50,000 streamlines).
After the SLR has finished, we apply the transformation to the
initial streamlines SA (nothing was removed, i.e. the whole trac-
togram) such that SA is linearly registered in the space of SM (see
Fig. 2e). We denote the transformed SA as SA′. Once SA′ is roughly
registered with SM with affine registration, we can move to the
second phase of the proposed method.

2.2.2. Phase B: bundle recognition using local SLR
The second phase starts with a clustering of SA′ using Quick-

Bundles. Now, QuickBundles is applied on the full dataset and new
centroids are obtained (see Fig. 2e-f). The distance threshold used
in QuickBundles is denoted θS (default value 15 mm).

The model bundle, BM, is also clustered but with a smaller
distance threshold θB ¼ θS/3 (default value 5 mm). Then, a far
pruning operation is performed to remove all streamlines from SA′
that are further than MDF distance Λ (default value 20 mm) from
any centroid of BM. This far pruning operation removes bundles
with very different shapes or from a different hemisphere. It also
allows us to focus on a smaller amount of streamlines than the
initial SA′. SA′ after far pruning is shown in Fig. 2h. Let's denote this
neighborhood of the model bundle as ⊂ ′N SA A where NA stands for
the neighborhood of BM in the target SA space. Next, NA is regis-
tered to BM using (SLR) and the transformation matrix from the
registration is applied to NA. We denote the transformed NA as NA′.
This step has performed not only a registration but also a matching
operation because the SLR is robust to incomplete and missing
data as shown in Garyfallidis et al. (2015b). Therefore, the SLR will
register only the parts of NA that look like the shape of BM and
ignore the rest. After having NA′ and BM matched (see Fig. 2i), we
can remove all streamlines (local pruning) from NA′ that are farther
than a threshold λ (usually set between 5 and 8 mm) from the
centroids of BM. Changing λ allows the users to shrink or expand
the final result (see section 2.2.3). The final extracted bundle is
shown in Fig. 2j. We denote this bundle as BA. We can now clearly
see that the recognized bundle BA in Fig. 2j is very similar to the
model bundle BM in Fig. 2g.

2.2.3. Pruning operation
Both far and local pruning operations work in an efficient way

by computing a distance matrix of the centroids rather than using
all the streamlines. For example, for the far pruning we calculate
the distance matrix between the centroids of SA′ and the centroids
of BM. We keep all the streamlines from SA′ that belong to clusters
with centroids which have a MDF distance less than Λ from at
least one of the centroids of BM. The same idea is used for local
pruning but between NA′ and BM. See Fig. 3 for an example of the
effect of λ. Here the model bundle is an inferior longitudinal fas-
ciculus (ILF) that had 337 streamlines and the expert segmented
1926 streamlines. RecoBundles generated 766 streamlines at 5 mm
and 2033 at 7 mm which is closer to the amount of streamlines
generated by the expert.

2.2.4. Cost function
The cost function used for the two registrations used in Phase A

and Phase B was the same used in Garyfallidis et al. (2015b). Given
two sets of streamlines, we denote = { … }S s s, ,a

a
A
a

1 and
= { … }S s s, ,b

b
B
b

1 , where A and B are the total number of streamlines
in each set respectively. We want to minimize a cost function so
that we can align the two sets together. For this purpose, we use
the Bundle-based Minimum Distance (BMD), which is defined as:
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where D is the rectangular matrix given by all pairwise MDF
streamline distances (Garyfallidis et al., 2012). Therefore, every
element of matrix D is equal to = ( )D s sMDF ,ij i

a
j
b . Notice, how in eq.

(1), the most similar streamlines from one streamline set to the
other are weighted more by averaging the minimum values of the
rows and columns of matrix D.

During Phase A, we minimize the cost function between the
centroids of SA and SM. During Phase B we do something different.
We minimize the cost function by randomly selecting a specific
number of streamlines from NA and the same from BM. Also, an-
other difference is that in Phase A we perform affine registration
by default but in Phase B we use rigid registration by default.
Nonetheless, the option of changing the type of registration in the
different phases is available to the user.
3. Experiments and results

3.1. Simulations

In this experiment, we studied the behavior of RecoBundles in
specific and simulated conditions. We wanted to validate Re-
coBundles for recognizing bundles with deformations. For this
purpose, we combined all bundles of the ISMRM 2015 challenge
(details in tractometer.org1 and description in Appendix B) to form
a full tractogram, then took one of the bundles, deformed it and
replaced it in the initial tractogram. So, now we have two tracto-
grams. SM is the initial tractogram including all bundles without
defects and SA contains all initial bundles except one which was
replaced by its deformed version. The idea here was to use the
non-deformed bundle as the model and try to identify the de-
formed bundle using RecoBundles. Ideally, the indices of the two
bundles in tractograms and SM should be identical if the

http://tractometer.org
http://tractometer.org/ismrm_2015_challenge


Fig. 2. Flow chart diagram showing phases A and B of RecoBundles. In Phase A the streamlines of the two subjects are registered using streamline-based linear registration
(SLR) and in Phase B a segmented bundle from one participant (model) is used as input to extract a homologous bundle in the other participant. Notice how in Phase B a local
SLR is also executed. This SLR is responsible for matching the bundles.
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recognition was successful.
At the right side of Fig. 4 we see an example of the simulation

of the defect. For example, in Fig. 4a, a bundle from the ISMRM
2015 white matter challenge is selected (here the anterior com-
missure - CA) which is then deformed with different defects that
can take place in any part of the bundle as shown in Fig. 4b and c.
The defect is simulated by moving the points p of the streamlines
according to their distance from a center c. The center can be
anywhere in the bundle, and its position is selected using an index

∼ ( | |)i U A1, where | |A is the total number of streamlines, and
∼ ( | |)j U S1, i where | |Si is the number of points for the streamline i.

That means, → ( ) ∈S i jp , 3. p is being updated with the following
equation to create the defect (simulated anomaly).
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟σ

= +
‖ ‖

−
‖ ‖

( )
rp p

v
v

v
exp

2 22

2
2

2

where = −v p c, ∼ ( )r U 0,5 is the strength of the defect, σ ∼ ( )U 1,6
is the standard deviation of the Gaussian in Eq. (2). The behavior of
this equation is shown in Fig. 4b and c. The maximum displace-
ment area has diameter 10 mm.

Now, with this experiment, we can validate RecoBundles by
looking at the indices of the streamlines of the recognized bundle
in contrast to the indices of the streamlines of the initial model
bundles. The standard method here is to look at the Jaccard index
(J) of their labels defined as ∩

∪
B B
B B

M A

M A
where BM is the set of indices of

the initial bundle and BA is the set of indices of the recognized



Fig. 3. Showing the change in RecoBundles' vs expert's segmentation after mod-
ifying the pruning threshold λ. Notice how by increasing/reducing λwe can expand/
shrink the final bundle (middle column).
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bundle.
We sampled the parameters c,r,s,t 50 times for each bundle

and used the same RecoBundles parameters for all. The parameters
used were cluster_thr ¼ 15, reduction_thr ¼ 15, transforma-
tion ¼ rigid, pruning_thr ¼ 5 (all units are in mm).

As we can see in the boxplot diagram, RecoBundles performed
nearly always close to perfect match (J ¼ 1) and always performed
higher than 0.75, which is a very high Jaccard index (see Avants
et al. (2011)). This experiment showed that RecoBundles is capable
of correctly identifying bundles with deformations and therefore
provided a positive indication for moving ahead with the detection
of bundles in healthy brains and brains with tumors.

3.2. Comparisons against expert anatomists

3.2.1. Quantitative evaluation in 60 subjects
In this experiment, we applied RecoBundles to identify the left

and right inferior fronto-occipital fasciculi (IFOF) and uncinate
fasciculi (UNC) (4 bundles in total) in 60 different subjects. The
tracking algorithm used with these datasets was FACT (Mori et al.,
1999) which is known to generate many incomplete streamlines
because it is based on a FA threshold and cannot resolve crossing
areas. For the full description of the dataset and tracking genera-
tion procedure see Appendix C. The main reason for selecting this
dataset for validation was that 2 independent neuroanatomists
manually segmented these 4 bundles in all 60 different subjects,
giving us the opportunity to quantitatively measure how Re-
coBundles compares to expert segmentations and see how it
performs in noisy and realistic data with good sample size. This
dataset also has the advantage that it contains bundles that were
shorter and curved (e.g. UNC) and bundles that were longer and
straighter (e.g. IFOF) and their lateral counterparts. Virtual (man-
ual) segmentation is a long and laborious task. The expert neu-
roanatomists spent many days segmenting those 4 bundles in 60
subjects using Trackvis, as described in Hau et al. (2016).

In Fig. 5, we see how RecoBundles was able to recognize the
UNC comparably to an expert in four different subjects. Re-
coBundles performed similarly in 60 subjects in total. The model
bundle used was another uncinate bundle from a different
participant.

To validate RecoBundles quantitatively and confirm the visual
inspection shown in Fig. 5, we used cross validation. From the 60
subjects, one was randomly selected. This became the model
tractogram SM. For this participant we used the bundle segmented
by a neuroanatomist as the model bundle BM. RecoBundles used
this model bundle to extract bundles in the other 59 subjects'
tractograms. We repeated this experiment 20 times, each time
randomly selecting a different participant (without replacement)
to be the one used as the model tractogram. Therefore, in this
experiment RecoBundles was executed 59 � 20 � 4 ¼ 4720
times in total. To measure the performance of the recognition we
used the standard and well established techniques from binary
classification both using directly the indices of the streamlines (see
Table 1) or looking at their spatial extent (see Table 2). In both ss,
we assumed that the experts' segmentations were the gold stan-
dard. The numbers of subjects used as models where 20 from a
pool of 60 subjects. The parameters used were reduction_thr 20,
clust_thr 15, matrix 400 � 400 and pruning_thr 8. These were the
same for all the bundles.

To help the reader, the following abbreviations are used: true
positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). In Table 1 we see that the sensitivity (TP/(TP þ FN))
is relatively high (between 0.68 and 0.92 on average), indicating
that few streamlines that were detected by the expert, were
missed by RecoBundles because FN is small in comparison to TP.
The specificity (TN/(TN þ FN)) was very high as expected as FN is
much lower than the number of TN. TN is expected to be high as
the tractogram is much larger (approximately 150,000 streamlines
per participant) than the size of a specific bundle (maximum
around 1500 streamlines). Now, the accuracy (TP þ TN)/
(TP þ TN þ FP þ FN) was also very high for all bundles shown that
the total number of false predictions (FP þ FN) was much smaller
than the number of true predictions (TP þ TN). So far, all these
metrics were expected. However, precision TP/(TP þ FP) and the
Jaccard index (TP/(TP þ FN þ FP)) were around 20–30% this is
because the FP were greater than TP. This means also that Re-
coBundles is generating more dense bundles than the experts as
visually the bundles look similar, but the precision is low. As
shown in the last two columns of Table 1 where the size of re-
cognized bundles (Rec_Size) is 2–3 times higher than the size of
the expert bundles (Exp_Size). The current experiment is very
precise because it uses the indices of the bundles on the tracto-
gram to calculate the binary classification metrics.

We calculated the sensitivity and Jaccard index taking into
account the spatial extent (number of voxels traversed by
streamlines). This is presented in Table 2. Notice that both mea-
sures are increasing in comparison to Table 1. This indicates that
the bundles are denser. This can also be seen qualitatively in Fig. 5.
We can also confirm this by looking at the metric called bundle
adjacency introduced in Garyfallidis et al. (2012). This normalized
metric shows which percentage of streamlines from the re-
cognized bundles has neighbors from the set of expert bundles or
vice verca. To detect if a streamline has a neighbor from the other
set we use the MDF distance and a low distance threshold (here at
2 mm). In Table 1 we can see that on average 53–68% of stream-
lines have close neighbors. This is another quantitative confirma-
tion that the recognition was largely successful. Note that nothing
was done to pre-process the model bundles in any way. The model
bundles were randomly picked as the experts segmented them
according to their criteria without removing short streamlines or
any other technique which could potentially make the recognition
process easier. These are all rough unprocessed models.



Fig. 5. At the left, we see the left uncinate model bundle with red segmented by an
expert and used as input to RecoBundles to automatically segment the same type of
bundle from 4 other tractograms (S1–S4). On the right side, we see the expert
segmentations for this type of bundle in the same four tractograms. Notice how
similar the automatic segmentations are using RecoBundles compared to the expert
segmentations.

Fig. 4. On the left we see the boxplots for the Jaccard indices of the detection of different types of bundles with defects (local deformations). Most of the time RecoBundles
was able to achieve perfect segmentation. Notice that 19 out of 21 times the median of the boxplots was at the maximum (1.0) and that all Jaccard indices were overall high
(greater than 0.75). On the right side, we see an example of the experimental setting. A bundle, here the anterior commissure (CA), is shown in (a) with no deformation.
Then, in (b) and (c) we see the same bundle with the defect (deformation) added in different places along the length of the bundle. The goal here is that given a healthy
model bundle we can still recognize the deformed version of the bundle inside the tractogram. The results on the left panel show considerable adaptivity and robustness of
RecoBundles in local defects.
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3.2.2. Qualitative evaluation
Here we describe the qualitative evaluation of two healthy

subjects using probabilistic tractography. In this experiment we
used two public datasets from the Human Connectome Project
(HCP). Participants 210,011 and 152,831. The tractogram of
participant 210,011 had 517,633 streamlines (1.79 GBytes) and
participant 152,831 had 494,521 streamlines (1.68 Gbytes). These
datasets were of higher resolution from the ones used in the
previous sections and are generated with probabilistic
tractography which creates more fluctuating streamlines. MAPMRI
(Özarslan et al., 2013) was used for reconstruction, and probabil-
istic tracking with particle filtering (Girard et al., 2014) was used
for generating the tractograms. A different and independent
anatomist from the anatomist used in the previous sections seg-
mented 8 bundles in both subjects. Those were the left and right
cingulum (CG), left and right inferior fronto-occipital fasciculi
(IFOF), left and right optic radiation, the splenium of corpus
callosum (SPL) and the middle cerebellar peduncle (MCP). More
details about the datasets and expert segmentation strategies are
given in Appendix D.
The expert neuroanatomist was asked to segment the first

participant's (210011) tractogram SM. The bundles of this partici-
pant (BM

i ) were used as model bundles for RecoBundles. The expert
was asked then to segment the bundles of the tractogram SE of
participant 152,831 (the subscript E stands for expert). We denote
the segmented bundles as BE

i . Finally, the expert bundles of BE
i

were qualitatively compared with the output of RecoBundles ap-
plied on the same participant using as model bundles the BM

i. We
denote the RecoBundles bundles as BA

i . Notice here that i is the
index of one of the 8 bundles. The results are shown in Fig. 6.

In the first row, we see that the cingulum bundle is well re-
cognized by RecoBundles. Although the model bundle does not have
as many streamlines to the frontal lobe as the one identified by the
expert, RecoBundles is able to detect more anterior streamlines than
the expert for CG_R. This is a straightforward example showing how
adaptive RecoBundles is and can produce useful results when using
incomplete models. In summary, the model bundle had 4064
streamlines, the RecoBundles bundle had 7499 streamlines and the
expert bundle had only 4670 streamlines. In the second row we see
a similar outcome with RecoBundles detecting a more dense bundle
than the expert for CG_L although the model is not as dense (model
4117, RecoBundles 7224 and expert 2425 streamlines).

All the parameters used for RecoBundles are the same for all
the bundles of this experiment (reduction_thr 20 mm, clust_thr
15 mm, matrix 400 � 400 and pruning_thr 5 mm). In the third
and forth rows we see a different behavior with RecoBundles not
detecting such a dense IFOF as the expert. This means that either
local SLR did not manage to align the IFOF bundles as closely as
possible or that the pruning_thr was too small (which could be
easily re-adjusted). Nonetheless, RecoBundles was able to detect a
large amount of the IFOF. For the right IFOF, the model bundle had
698 streamlines, the RecoBundles bundle had 321, and the expert
bundle had 546. For the left IFOF, the model bundle had 706
streamlines, the RecoBundles bundle 601 streamlines, and the
RecoBundles bundle 847 bundles.

In the fifth and sixth rows, we see a denser recognition of the
optic radiation again by RecoBundles. The right OR model bundle
had 129 streamlines, RecoBundles had 413 streamlines, and expert
bundle had 154 streamline. The left OR model bundle had 293
streamlines, RecoBundles bundle 413, and expert bundle 154
streamlines.



Table 2
Sensitivity and Jaccard index calculated using spatial extent (SE). Notice the in-
crease in comparison to the same metrics of Table 1. Here we are counting the
number of voxels which the streamlines pass. In the last two columns, we see the
mean and standard deviation of total number of voxels traversed by the recognized
bundles (SE_Rec_Size) and the bundles segmented by experts (SE_Exp_Size).

SE_Sensitivity SE_Jaccard SE_Rec_Size SE_Exp_Size

IFOF_L 0.76 7 0.1 0.31 7 0.08 8627.18 7 1378.06 3908.98 7 1274.15
IFOF_R 0.77 7 0.09 0.35 7 0.08 8880.38 7 1430.95 4490.02 7 1390.72
UNC_L 0.88 7 0.11 0.29 7 0.07 3808.58 7 594.91 1327.62 7 434.21
UNC_R 0.94 7 0.07 0.36 7 0.08 4838.31 7 667.53 1867.54 7 570.21

Fig. 6. Visual comparisons between RecoBundles' segmentation and expert's seg-
mentation of different bundles. For RecoBundles we used the segmented bundles
from a different participant than the target. The model bundles, BM

i , are shown on
the left column. The bundles segmented with RecoBundles using the model bun-
dles as priors are shown in the middle BA

i and on the right we see the bundles
segmented from experts BE

i using their knowledge of anatomy and a virtual dis-
section tool (here Trackvis). Notice how RecoBundles can recognize bundles equally
well to the experts and is adaptive to different types of bundles as models. Notice
also that the model is just a bundle from a different participant than the target and
not generated from an atlas.

Table 1
Different classification metrics are shown for the 4 bundles segmented in 60 subjects. Those are reported in the first 5 columns. In column 6 a more recent metric is reported
known as bundle adjacency (BA) and in the last two columns we see the number of streamlines per bundle recognized by RecoBundles (Rec_Size) and the expert (Exp_Size).

Sensitivity Specificity Accuracy Precision Jaccard BA Rec_Size Exp_Size

IFOF_L 0.68 7 0.12 1.0 7 0.0 0.99 7 0.0 0.26 7 0.08 0.23 7 0.07 0.53 7 0.09 1010.26 7 176.34 382.1 7 141.95
IFOF_R 0.69 7 0.11 1.0 7 0.0 0.99 7 0.0 0.3 7 0.09 0.26 7 0.07 0.56 7 0.09 1065.18 7 187.93 449.05 7 155.63
UNC_L 0.85 7 0.13 1.0 7 0.0 1.0 7 0.0 0.22 7 0.06 0.21 7 0.06 0.61 7 0.08 492.8 7 81.65 127.97 7 44.45
UNC_R 0.92 7 0.08 1.0 7 0.0 1.0 7 0.0 0.27 7 0.07 0.26 7 0.07 0.68 7 0.07 639.11 7 93.27 186.92 7 62.16
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In the seventh row, we see a thicker model bundle generating a
thinner than the expert's bundle but still the main and important
corpus of the splenium (SPL) has been found (model 522, Re-
coBundles 195, and expert 642 streamlines).

In the last row, using the middle cerebellar peduncle (MCP) as
the model bundle RecoBundles was able to detect a nearly equal
amount of streamlines in comparison to the expert. However the
frontal part of the MCP (around the pons) was not as dense as
determined by the expert. However, this can be adjusted by
changing the pruning_thr. The model bundle had 2378, Re-
coBundles generated 743, and the expert generated 736 stream-
lines. Notice here that the model had 3 times more streamlines
than the expert segmentation, but RecoBundles was not affected
by that and it was able to extract MCP from the other participant.

Finally, these tractograms had about half a million streamlines
each. We did not observe any reduction on the accuracy of the
algorithmwhenwe tried larger tractograms, for example, 1 million
or 3 million streamlines. RecoBundles was always able to find the
main corpus of the given bundle in efficient computation time.

3.3. Adaptation to tumors/patient data

In this section, we describe the application of RecoBundles in 11
tumor cases. The datasets were collected before brain surgery. The
study was performed according to the guidelines of the Internal
Review Board of the Center Hospitalier Universitaire de Sher-
brooke (CHUS). We saw the first case in which RecoBundles de-
tected a bundle going through a large tumor area mostly affecting
the upper part of the CST in Fig. 1. Tracking is difficult in brains
with large tumors because many of the bundles are either broken
in shorter parts, or deformed, or non-existent. Even for an expert,
it is difficult to segment such a bundle using manual virtual dis-
section. In this case (see Fig. 1), an expert neuroanatomist had to
use extra information from an fMRI finger tapping experiment to
make sure that the segmentation was accurate. Despite the diffi-
culty of this dataset, RecoBundles was able to successfully recover
the bundle as we showed in Garyfallidis et al. (2015a). The datasets
used here are described in Appendix A.1 and Appendix A.2.

In Fig. 1, we showed a dataset with a tumor mostly affecting the
upper part of the CST. In this example shown in Fig. 7, a different
dataset is provided and the tumor here is affecting the middle area
of the CST. We show both affected and unaffected sides. The pro-
cessing strategy used to generate this dataset is given in Appendix
A.2.

Here, we used RecoBundles to extract two corticospinal tracts
(CST) from a different brain with a large tumor (see Fig. 7). The



Fig. 7. Detecting bundles in brains with large glioblastoma tumors. a) showing only FA, b) FA and detected left and right CST bundles, c) only the detected bundles are
shown, and d) the bundles and a surface rendering of the large tumor is shown.
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tumor can be seen using fractional anisotropy in Fig. 7a and it is
also surface rendered in 7d. Tracking can be very difficult in tumor
areas because of edema but also the tumor can add pressure and
deform bundles. The deformation is shown also in Fig. 7b,c. In this
case, we see in Fig. 7c,d that RecoBundles was successful in re-
cognizing and extracting those bundles. The healthy CST bundles
used as model bundles were generated from the HCP data and
used during the ISMRM Tractography Challenge described in
Appendix B. Two model bundles of healthy CST were used and the
parameters for RecoBundles were reduction_thr 20 mm, clust_thr
12 mm, the SLR matrix size was 400 � 400, and pruning_thr
8 mm.

Note that any image-based atlas technique requiring a parcel-
lation and nonlinear registration will have a difficult time with
such dataset with a large tumor. We confirmed this by trying to
use connectivity-based tools e.g. TractQuerier (Wassermann et al.,
2013) or Tracula (Yendiki et al., 2011) which were not capable of
segmenting this dataset because the tumor was too large and the
initial parcellation from Freesurfer was failing in the tumor's re-
gion. Nonetheless, RecoBundles was able to detect the bundle. This
experiment illustrated the importance of using bundle models (in
their streamline form) as shape priors to drive the recognition/
segmentation.

Next, we show 9 more cases showing the detection of affected
and/or unaffected bundles (see Figs. 8 and 9). In Fig. 8, we show
3 new cases each from a different subject. For each case, one bundle
of interest was chosen to highlight the local impact of the tumor on
the brains connectivity. Bundles are displayed in green and red
simply based on the hemisphere they are in, the bundles in the same
hemisphere as the tumor are red, while the bundles in the opposite
hemisphere of the tumor are green. The tumor is rendered in purple,
and the FA is displayed in the background. The view was chosen to
be in the most relevant axis for visualization purposes. In Fig. 8A, a
31 year old, right handed female presenting with epilepsy due to a
right (or non-dominant) fronto-temporal insular anaplastic oligo-
dendroglioma. In Fig. 8B, a 62 year old, right handed male pre-
senting with cephalalgia due to a left (or dominant) temporal glio-
blastoma proximal to Wernickes area. In Fig. 8C, A 51 year old male
presenting with epilepsy due to a right temporal grade 2 astro-
cytoma, originating from the right hippocampus.

In Fig. 8A (IFOF) and Fig. 8C (OR), the tumor is directly in the
expected path of the bundle. In Fig. 8B (CST) the tumor is distant
from the bundle of interest but has pushed and deformed the mid-
upper part of the bundle (when compared to the other hemisphere).
In all three labels, the general shape of the bundle remains the same,
the displacement of the bundle is minor despite the size and
proximity of the tumor.

Fig. 9 shows 6 new cases. Both these 6 cases and the previous
cases were generated using deterministic tracking as described in
Appendix A.2. The same coloring scheme was used as in Fig. 8.
Here we provide a short description of the 6 cases. In Fig. 9A, a 44
year old, right handed female presenting with epilepsy and speech
deficits due to a left (or dominant) fronto-temporal glioblastoma.
In Fig. 9B, a 35 year old, right handed male presenting with epi-
lepsy due to a right (or nondominant) frontal glioblastoma. In
Fig. 9C, a 41 year old, right handed male presenting with epilepsy
due to a right (or nondominant) frontal glioblastoma. In Fig. 9D, A
29 year old, right handed female presenting with hemiparesis due
to a left (or dominant) frontal grade 3 astrocytoma. The objective
here was to determine if streamlines of the CG had been disrupted
or displaced. In Fig. 9E, a 48 year old, right handed male presenting
with epilepsy due to a right (or nondominant) temporal glio-
blastoma. The objective was to examine possible incoherent
structure of the ILF. In Fig. 9F, a 64 year old, right handed female
presenting with psychomotor retardation due to right or (non-
dominant) fronto-temporal glioblastoma. The primary objective
here was to use RecoBundles to visualize any distortions to the SLF,
which were anticipated by the neurocognitive deficits.

In Fig. 9, each column is showing the same bundle to demon-
strate how tumors can affect the same pathway in different cases.
Also for each column the same model bundle is used. In the first
column, the SLF is pushed in 2 different directions, either dorsally
as shown in Fig. 9A or caudally shown in Fig. 9B. It is important to
mention that the latter image was flipped to facilitate visualiza-
tion, originally the tumor is on the right side. In Fig. 9C the CG
being either disrupted at mid-length and in Fig. 9D pushed
medially. The last column shows the ILF. In Fig. 9E the tumor
seems to have a minor impact on the bundle (with a slight lateral
displacement). In Fig. 9F, the integrity of the bundle is highly
compromised, its volume and path are significantly affected.

The CST, OR and SLF were recognized using model bundles
from the ISMRM 2015 white matter challenge. The rest of the
bundles, i.e. CG, IFOF and ILF bundles were recognized using the
corresponding model bundles from subject 100,307 of the HCP
project as these bundles were not available in ISMRM 2015 chal-
lenge. The data description for the challenge is available in
Appendix B and for subject 100,307 in Appendix D. The para-
meters used for RecoBundles in Figs. 8 and 9 were clust_thr
16 mm, matrix_size 400 � 400 and transformation is rigid. The
pruning_thr are slightly different. For OR and IFOF is 7 mm. For CG,
ILF and CST is 6 mm and for SLF the pruning_thr is 5 mm.

In this section, we illustrated the adaptability of RecoBundles in
segmenting bundles despite variation in shape, length, volume
and distance between bundles and tumors in 11 cases of patients
with brain tumors (see Figs. 1, 7–9).



Fig. 9. RecoBundles detecting bundles in brains with large glioblastoma tumors in 6 cases (A–F). Two different tumors affecting the SLF are shown in A and B. Two different
tumors affecting the CG are shown in C and D. Finally, two different tumors affecting the ILF are shown in E and F. Pictures taken from most relevant axis that can facilitate
visualization of bundles and tumors.

Fig. 8. Detecting bundles in brains with large glioblastoma tumors in 3 cases (A–C). FA is displayed in the background of all cases. The tumors are depicted with purple. In A
and C, the tumor is directly affecting the path of bundles IFOF and OR respectively. In B, the tumor is deforming the CST bundle from distance without directly infiltrating the
bundle.
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4. Discussion

4.1. Overview

We showed in this manuscript how RecoBundles was able to
recognize bundles of different shapes, length and type both in
healthy and patient tractograms. We also measured its accuracy
quantitatively with simulations of deformations applied in healthy
bundles and we showed qualitative results of bundles deformed
by tumors. RecoBundles was able to detect deformed and often
interrupted bundles going through or around tumor areas (see
Figs. 1, 7–9). The quantitative and qualitative experiments showed
that RecoBundles is adaptive to shape changes, incomplete data-
sets and different quality of tractography output. For the uncinate
and inferior fronto-occipital fasciculi we were able to measure the
sensitivity of the algorithm across 60 subjects to be on average
between 76 and 94%, providing similar results to the expert seg-
mentations (see Fig. 5).
Notice that in order to generate the results shown in this paper,
we did not have to use any classification techniques or advanced
machine learning techniques e.g. deep learning (LeCun et al., 2015)
to perform the segmentations. All “the learning” was generated a)
by sparsifying the tractograms using QuickBundles and b) using a
straightforward local minimization with streamline-based linear
registration (SLR), to directly match the model bundles to the
target bundles. Now that we have a robust and efficient technique,
we can use it as a first step to generate fast segmentations in
thousands of datasets. One could then train a deep learning or
similarly advanced algorithm that requires large training datasets
of bundles which are currently not available.

Recent techniques to perform bundle segmentation (Wasser-
mann et al., 2013; Tunç et al., 2014, 2016; O'Donnell et al., 2017;
Wu et al., 2012; Guevara et al., 2011) have appeared in similar
spirit to RecoBundles. They all differ methodologically but are
developed towards the same goal, trying to extract known white
matter bundles using a set of prior models. It is too early to
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pinpoint advantages/disadvantages of these techniques but they
should be systemically compared to asses quality, speed and ro-
bustness to different input tractograms.

In this paper, we used the MDF distance for all the different
computations between streamlines i.e. clustering, registration and
pruning. However, RecoBundles can be easily modified to use
other distances proposed in the literature such as those used in
O'Donnell et al. (2017); Yoo et al. (2015); Labra et al. (2016) and
Gori et al. (2016).

The difference between QuickBundles and RecoBundles is that
while QuickBundles is a fast unsupervised method for simplifying
massive tractograms, RecoBundles is a fast supervised method that
requires a bundle model as input and detects relevant bundles in a
given tractogram. RecoBundles is a method that is easy to set up
and can be adjusted according to the neuroanatomists' needs by
adjusting the pruning threshold. Allowing for this free parameter
allows to the neuroanatomist to examine the surrounding region
of a bundle (see Fig. 3). Therefore, RecoBundles can be easily in-
tegrated in new virtual dissection tools (Porro-Muñoz et al., 2015)
and facilitate the segmentation process.

It currently takes a couple of minutes to have more than 20
different bundles segmented in tractograms of one million
streamlines. The part that takes most of the time is the initial
clustering in Phase A (see Fig. 2) which we are currently working
to shorten; see preliminary results here Garyfallidis et al. (2016).

RecoBundles will be able to i) help create large collections of
streamline-based bundle atlases which are currently not available
because of the large amount of work needed to manually segment
many bundles in multiple subjects and ii) help in tractometry
studies. In tractometry (Bells et al., 2011; Yeatman et al., 2012;
Dayan et al., 2016) the statistical analysis takes place in specific
bundles and an automatic segmentation tool such as RecoBundles
that allow to extract bundles directly in native space can help
make tractometry more efficient and more automated.

RecoBundles can potentially use model bundles that are gen-
erative. So, one could potentially simulate or even draw a hy-
pothetical bundle in a computer aided design (CAD) program and
detect this bundle using RecoBundles in an existing tractogram.
Moreover, one can include broken or shorter parts in a model
bundle to allow a more elaborate dissection. This for example
would be beneficial for patient data where bundles are potentially
completely cut, along their length, in one or more parts. As future
work we would like to recognize the superficial short association
bundles found in Guevara et al. (2017) and see which of them can
be found in lower quality datasets.

4.2. Disabling SLR

In this work, we studied the capablies of a method that is 100%
streamline-based and 100% linear. However, if one wants to boost
the segmentation precision even more, then one could disable
local streamline-based linear registration (SLR), register the ima-
ges using standard nonlinear registration techniques, as those
found in ANTs (Avants et al., 2009) and DIPY (Garyfallidis et al.,
2014), and then apply the deformation fields to the streamlines
and the deformed streamlines as input to RecoBundles. This
technique will give higher classification accuracy in healthy sub-
jects since the matching is already heavily resolved. Then it is only
a matter of clustering and pruning. However, if one is interested in
studying bundles of patients with severe brain damage, for ex-
ample TBI patients, large concussions or tumors where nonlinear
registration is difficult or fails then we suggest to use the SLR
which is our default choice in this paper.

In Maier-Hein et al. (2016), a minimalistic version of Re-
coBundles was used for the evaluation of the ISMRM 2015 chal-
lenge. This version of RecoBundles with SLR (global and local)
disabled was used because the tractograms were from the same
participant. However, the tractograms had deformations in com-
parison to the ground truth. So, only clustering and pruning were
used. Even in its minimal version, were registration is disabled,
RecoBundles can be used to solve important assignment problems
such as finding which generated bundles identify with the ground
truth. RecoBundles was used to score teams as tractograms were
not perfectly aligned with the ground truth as ROI and con-
nectivity based methods were not precise enough to find the
correct streamlines. RecoBundles was generating much denser and
closer to the ground truth bundles than standard ROI-based
(connectivity) extraction. For more details see Maier-Hein et al.
(2016).

4.3. Beyond the human brain

RecoBundles has no prior knowledge about if the input trac-
togram is a human brain tractogram or any other brain. There is no
dependence to a specific atlas. Therefore, although we have not
performed any experiments yet, in theory the same technique can
be used to segment bundles in tractograms of other animal brains
as long as expert anatomists have manually segmented some
bundles from the same species that can be used as models. In the
future, we would like to examine that possibility and use Re-
coBundles to create bundle atlases (Garyfallidis et al., 2015b) from
the tractograms of other mammalian brains.
5. Conclusion

RecoBundles is a new powerful and efficient method for re-
cognizing, mining, searching and investigating bundles in tracto-
grams of the same or different subjects or tractography algorithms.
The input and outputs of RecoBundles are streamlines and all the
processing takes place in the space of streamlines. Hence, it can
easily be integrated in any neuroimaging pipeline.

This gives great hope to use streamline-based algorithms and
bundle analytics for further research in neurological disorders. For
example, we will assess bundles in Alzheimer's patients with
white matter microlesions, gray matter atrophy and enlarged
ventricles, and measure shape changes in homologous bundles
during tractometry studies. RecoBundles will be publicly available
in DIPY .2
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Appendix A. USherbrooke data

All subjects were scanned according to the guidelines of the
Internal Review Board of the Center Hospitalier Universitaire de
Sherbrooke (CHUS). Imaging data were acquired using a 1.5 T
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SIEMENS Magnetom (Vision). For both the datasets described below, in Sections Appendix A.2 and Appendix A.1, the same protocol was
used for the diffusion MRI and high resolution anatomical T1-weighted images. Head motion was minimized using cushions. Each session
started by a dMRI acquisition and then with an anatomical T1-weighted 1 mm isotropic MPRAGE (TR/TE 6.57/2.52 ms) acquisition. Dif-
fusion images were acquired using the single-shot echo-planar imaging (EPI) multi-direction diffusion-weighted sequence. To reduce
susceptibility distortions, GRAPPA parallel imaging was employed with an acceleration factor of 2. A 6/8 partial Fourier factor was used
and 64 diffusion-weighted images were acquired along uniformly distributed directions using a b-value of 1000 s/mm2. A single b ¼ 0 s/
mm2 S0 image was also acquired. Other imaging parameters were matrix size of 128 � 128, 2 mm isotropic spatial resolution, TR/TE
11,000/98 ms, resulting in a 12 min acquisition.

Appendix A.1. USherbrooke 1.5T data

Diffusion data were upsampled to 1 mm isotropic resolution using a trilinear interpolation (Tournier et al., 2012; Smith et al., 2012;
Girard et al., 2014). The T1-weighted image was registered to a 1 mm isotropic DWI using ANTs (Avants et al., 2008). Quality control was
done to make sure the registration was done robustly by manual inspection. The Fractional Anisotropy (FA) map and color-FA were
overlaid on the T1-weighted image to make sure optimal alignment between images. Diffusion tensor estimation and corresponding FA
were estimated using DIPY (Garyfallidis et al., 2014). From this, the single fiber response function was estimated from all FA values above a
threshold of 0.7. This single fiber response was used as input to spherical deconvolution (Tournier et al., 2007) to compute the fiber
orientation distribution function (fODF) (Descoteaux et al., 2009) at every voxel of the brain with a maximal spherical harmonics order of
8 and the default parameters. We used streamline deterministic tractography, the streamtrack MRtrix command (Tournier et al., 2012) on
the field of FODs using multiple seeding and default tracking parameters (step size 0.2 mm, minimum/maximum streamline length 10/
200 mm, minimum radius of curvature 1 mm, fODF amplitude cutoff at 0.1) to reconstruct whole brain tractography datasets with 500,000
streamlines.

Appendix A.2. Tumor data

We used FOD reconstruction of order 8 as in the previous section and a deterministic tracking with step size 0.5, and FA value of 0.12 as
stopping criterion to generate around 1 million streamlines using MRtrix command (Tournier et al., 2012). We seeded to generate 1 million
streamlines but after removing short streamlines of length less than 20 mm, only 450–550 thousand streamlines survived.
Appendix B. ISMRM Challenge data

The set of ground truth fiber bundles was designed to cover the whole brain and feature many of the relevant configurations such as
crossing, kissing, twisting and fanning fibers, thus representing the morphology of real in vivo fiber bundles. The process to obtain these
bundles consists of three steps. First, a whole brain global tractography is performed on a high quality diffusion-weighted image. Then, 25
major bundles are manually extracted from the resulting tractogram. In the third step, these bundles are then refined to obtain smooth
and well defined bundles. The full and detailed process is described in Maier-Hein et al. (2016).
Appendix C. BIL&GIN diffusion data

Diffusion-weighted images were previously acquired for 60 healthy right-handed participants (30 female, mean age ¼ 30.1, age
range ¼ 20–53) belonging to the BIL&GIN database (Brain Imaging of Lateralization by the Groupe d’Imagerie Neurofonctionnelle; Ma-
zoyer et al. (2016)). All the subjects gave written informed consent to participate in the study, which was approved by the local ethics
committee (CCPRB Basse- Normandie). Imaging was performed on a Philips Achieva 3 T MRI scanner using a single-shot spin-echo echo-
planar sequence with 21 non-collinear diffusion gradient directions (b ¼ 1000 s/mm2). Seventy axial slices parallel to the AC-PC plane
were acquired from the bottom of the cerebellum to the top of the brain. The following imaging parameters were used: TR ¼ 8500 ms,
TE ¼ 81 ms, angle ¼ 90, SENSE reduction factor ¼ 2.5, FOV 224 mm, acquisition matrix 112 � 112, 2 mm3 isotropic voxel. The series of 21
directions was acquired twice by reversing the gradients polarity, for a total of 42 diffusion-weighted volumes. To improve the signal-to-
noise ratio, a second series of 42 vol was acquired leading to a total acquisition time of 15min 30s.

The raw diffusion images were corrected for eddy current distortion using FSL (Smith et al., 2004) and processed with the Diffusion
Toolkit software package to obtain the local tensor orientation estimates and fractional anisotropy maps and perform fiber tracking.
Deterministic whole-brain fiber tracking was performed in the native space of each individual using the Fiber Assignment by Continuous
Tracking algorithm (Mori et al., 1999) with stopping criteria of 0.2 fractional anisotropy and a 45 angular threshold. Tracking was initiated
by seeding from all voxels in the volume to generate the streamlines. This produced a 3D reconstruction of streamlines in the whole brain,
namely a tractogram, which can then be segmented into anatomically defined bundles. For the complete description of the manual virtual
dissection strategy see Hau et al. (2016).
Appendix D. HCP processing and dissection strategy

Subjects with IDs 100,307, 210,011, and 152,831 from the Human Connectome Project (HCP) dataset (Van Essen et al., 2013) were used.
This dMRI acquisition (Sotiropoulos et al., 2013) has 1.25 mm isotropic resolution, with 3 b-values (1000, 2000, 3000 s/mm2) and a total of
270 gradient directions (90 per shell) and 18 b ¼ 0 images. Fiber ODFs of order 8 were reconstructed with DIPY and probabilistic partial
volume estimation maps with FSL fast (Zhang et al., 2001) to extract the white-matter/gray-matter (wm/gm) interface and include/
exclusion probabilistic regions to run the anatomically-constrained particle filter probabilistic tractography algorithm of Girard et al.
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(2014) with 10 seeds per voxel of the wm/gm interface and other default parameters, as recommended in the paper. Subject 100,307 was
used in section 3.3 and the other two subjects were used in section 3.2.2.

Neuroanatomical expert dissection strategy. Cingulum left and right. A single sagittal ROI of the cingulum capturing the anterior to
posterior connectivity was utilized, two planar not region were utilized in the midline to exclude commissural connectivity, as well as
laterally to exclude thalamic projections, as reflected in Rojkova et al. (2016).

Inferior fronto-occipital fasciculus (IFOF) left and right. A two ROI approach was taken for each IFOF. A hand-drawn coronal ROI
capturing the projections leaving from the floor of the external capsule was placed in the frontal lobe and utilized in conjunction with a
hand-drawn coronal ROI within the occipital lobe to capture connectivity coming from the inferior and medial surfaces.

Optic radiation (OR) left and right. A 2 mm spherical was coronally placed in the posterior portion of the thalamus, lateral and superior
to the fimbria of the hippocampus. This was utilized in conjunction with the an occipital lobe ROI to obtain the optic radiation projections
from both hemispheres.

Splenium of the corpus callosum (SPL). Two ROIs were placed coronally at the level of the splenium of the corpus callosum in the
occipital lobe in somewhat analogous positions to capture the homotopic commissural connectivity of the forceps major or splenium.

The middle cerebellar peduncle (MCP) was filtered from the tractograms using ROIs near the pons capturing the left and right sides of
the MCP. All bundles were dissected using Trackvis and well established virtual dissection strategies as mentioned in Catani et al. (2002b).
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