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Performance? 
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Abstract
Description
Sensorimotor rhythm-based brain-computer interfaces (SMR-BCIs) are used for the 
acquisition and translation of motor imagery-related brain signals into machine control 
commands, bypassing the usual central nervous system output. The selection of optimal 
external variable configuration can maximize SMR-BCI performance in both healthy and dis-
abled people. This performance is especially important now when the BCI is targeted for ev-
eryday use in the environment beyond strictly regulated laboratory settings.  In this review 
article, we summarize and critically evaluate the current body of knowledge pertaining to 
the effect of the external variables on SMR-BCI performance. When assessing the relation-
ship between SMR-BCI performance and external variables, we broadly characterize them 
as elements that are less dependent on the BCI user and originate from beyond the user. 
These elements include such factors as BCI type, distractors, training, visual and auditory 
feedback, virtual reality and magneto electric feedback, proprioceptive and haptic feedback, 
carefulness of electroencephalography (EEG) system assembling and positioning of EEG 
electrodes as well as recording-related artifacts. At the end of this review paper, future 
developments are proposed regarding the research into the effects of external variables on 
SMR-BCI performance. We believe that our critical review will be of value for academic BCI 
scientists and developers and clinical professionals working in the field of BCIs as well as for 
SMR-BCI users.
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Introduction
A brain-computer interface (BCI) is a device 
that records and translates the user’s brain 
activity into various command signals, thus 
bypassing muscle activity and allowing direct 
communication between the brain and various 
devices. Brain activity for BCI control can be 
recorded with high millisecond scale temporal 
resolution through magnetoencephalography 

(MEG), electroencephalography (EEG) and 
electrocorticography (ECoG).1 We limit the 
scope of this review article to the BCIs driven 
by electrical signals recorded with EEG. The 
reason behind this choice is that EEG-driv-
en BCIs are the number one target for BCI 
translation from the laboratory to real-world 
settings due to the high temporal resolution 
of EEG methodology. After capturing the EEG 

https://doi.org/10.36518/2689-0216.1188
mailto:milena.korostenskaja%40gmail.com?subject=
mailto:milena.korostenskaja%40gmail.com?subject=
http://www.hcahealthcarejournal.com


HCA Healthcare Journal of Medicine

144

interest, the BCI processes it by using a pre-de-
fined fixed or changing (“adaptive”) algorithm 
and translates the analyzed signal (its specific 
features) in real-time into computer com-
mands. (Figure 1)

Among several types of electrical brain sig-
nals that can be detected and utilized for BCI 
control, sensorimotor rhythm (SMR) is one 
of the most common. Sensorimotor rhythm-
based BCIs (SMR-BCIs) (also referred to as 
motor imagery BCIs or MI-BCIs) can detect 
the event-related desynchronizations (ERD) in 
electrical activity recorded with an EEG from 
the sensorimotor brain areas during a mo-
tor imagery (MI) task. SMR-BCIs hold great 
potential to advance the field of motor reha-
bilitation (for review, see Bamdad et al.2). A 
systematic review of cohort SMR-BCI studies 
by Monge-Pereira et al. demonstrated level II 
evidence that EEG-based SMR-BCI interven-
tion can be a promising rehabilitation approach 
for upper motor function rehabilitation after 
stroke.3 Moreover, a BCI may be used as a 
substitute to overcome functional deficits in 
individuals with compromised skeletal or motor 
system functions (such as paralysis and ampu-
tation).4 

With continued development, a future be-
comes possible where BCI is a commonplace 
technology fully incorporated into everyday life 
in both the clinical population and healthy peo-

ple. To achieve this widespread BCI adoption, 
it is imperative to understand how the user’s 
internal and external environment impact 
SMR-BCI performance. Indeed, the perfor-
mance of an SMR-BCI is largely determined by 
the efficacy of the user, the BCI itself and the 
operational conditions. This review article will 
focus on the effect of external factors on BCI 
performance. External variables are identified 
as those elements of the environment that 
mainly reside beyond the SMR-BCI user and 
within the SMR-BCI itself. Internal variables 
are defined as those factors largely originating 
from within the SMR-BCI user. It should be 
noted that these working definitions of inter-
nal and external variables are simply opera-
tional and are used for this specific paper only. 
Variations on these terms can be found else-
where. In some circumstances, internal and ex-
ternal variables an be used interchangeably. For 
example, distractibility (originating within the 
user) and distractors (originating outside the 
user). Figure 2 provides a flow chart depicting 
the relationship between internal and external 
factors with SMR-BCI performance. 

Several studies have been conducted in an at-
tempt to isolate some external variables, which 
may affect any metric of SMR-BCI perfor-
mance, such as signal information transfer rate 
(ITR), correct response rate (CRR), adoption 
rate, classification accuracy and reaching target 
accuracy (for more details, see Table 1).5-11

Figure 1. Brain Computer Interface set-up. An electrode array detects BCI user’s electrical brain 
activity during the motor imagery (for example, imagining making a fist). The BCI translates the 
acquired signal according to a fixed or adaptive algorithm, extracting relevant features, for exam-
ple, event-related desynchronization (ERD). BCI output manifests as the command of a device, 
such as steering a drone in its flight. (Photographs courtesy of the authors.)
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The goals of our current review paper are 
(1) to summarize existing knowledge about the 
external factors affecting SMR-BCI perfor-
mance and critically examine the studies on this 
subject published to date, as well as (2) to dis-
cuss limitations and propose further directions 
of MI-BCI research with other possible factors 
that may or may not affect the SMR-BCI’s per-
formance when presented within a real-world 
context. We think our paper will make a signif-
icant contribution to the transition of SMR-
BCIs from academic laboratories to clinical 
settings and also have real-world applications. 
This paper will be of valuable use for clinical BCI 
users, as well as academic scientists, clinicians 
and engineers working with BCIs.

1. External Variables
External variables in the context of SMR-BCIs 
discussed in the current articles are those that 
largely originate from within the BCI system 
itself or beyond the BCI user. Examples in-
clude BCI type, distractors, training, sensory 
feedback, carefulness of EEG assembling and 
positioning of EEG electrodes, and record-
ing-related artifacts. BCI types vary in the way 
they detect and analyze (for example, building 
a model and performing pattern recognition) 
specific brain signals. For this reason, the BCI 
type is based on the subject’s intrinsic brain 
activity and depends on it. Nevertheless, the 
choice of a pattern of interest is a decision 

made by the experimenter rather than BCI 
user. Such a decision depends on the purpose 
behind the BCI use. It is important to note that 
the way brain activity is captured within each 
specific BCI type can affect BCI performance. 
Therefore, we have chosen to categorize the 
BCI type as an external variable that influences           
BCI performance. Likewise, our selection of 
distractors as external variables follows a simi-
lar interrelated relationship with distractibility. 
Although distractors are an external variable, 
they are closely related to distractibility—an in-
ternal variable. This introduction is followed by 
the summaries of studies that have been per-
formed to investigate the effects of external 
variables on SMR-BCI performance. At the end 
of our current review, these external variables 
and their effect on SMR-BCI performance are 
recapped in Table 1.

1.1 BCI Type
BCI performance relies on specific electrical 
brain signals of the BCI user. The detection and 
analysis of specific EEG waveforms serve as 
the basis for the different types of BCIs. Due 
to the varying characteristics of these EEG 
waveforms, it would be expected that different 
BCI types would demonstrate varying levels 
of BCI performance. A series of studies have      
been performed by Guger et al. to investigate 
the adoption rates of P300, steady-state visual 
evoked potential (SSVEP) and SMR-BCIs.8 

Figure 2. Factors may be divided into external or internal variables. Either may influence SMR-BCI 
performance. These variables may positively, negatively, or not at all influence users’ SMR-BCI 
performance.76 An SMR-BCI that emphasizes design elements that positively influence SMR-BCI 
performance. Conversely, an SMR-BCI  that also mitigates design elements that negatively influ-
ence performance offers great hope for widespread, everyday SMR-BCI use. 

Factors

SMR-BCI 
performance

especially in a real-
world context

Internal
1. Motor Imagery and Hand 

Coordination
2. Attention and Motivation

3. Quality of Life
4. Mood

5. Neurophysiological Signals 
Other than SMR

External
1. BCI Type

2. Distractors
3. Training

4. Sensory Feedback
5. Carefulness of EEG 

assembling and positioning of 
EEG electrodes

6. Recording-Relating Artifacts
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Table 1. Summary of External Variables Affecting BCI Performance.
External 
Variables

Referenced Studies Effect on BCI 
Performance

Details

1.1 BCI Type Brunner et al. (2011);12 
Ding et al. (2006);13 
Guger et al. (2012);6 
Guger et al. (2009);7 
Guger et al. (2003);8 
Guger et al. (2015);14 
Guger et al. (2000);15 
Kapeller et al. (2013);16 
Kus et al. (2013);17 
Malone et al. (2014);18 
Musiek et al. (1992);19 
Srinivasan et al. 
(2006);20 
Yao et al. (2018);21 
Zhu et al. (2010)22

SSVEP-
BCIs have 
the highest 
adoption 
rate 

SSVEP-based and P300-based BCIs have sim-
ilarly high adoption rates, with SSVEP slightly 
higher than P300. SMR-BCIs have low adoption 
rates. Adoption rates are influenced by mediat-
ing factors. 

1.2 Distractors Brandl et al. (2016);23 
Calabrese (2008);24 
Chaby et al. (2015);25 
Emami and Chau 
(2018);26 
Friedrich et al. (2011)27

Positive 
effect 

Passive auditory distraction optimized men-
tal imagery-based BCI classification accuracy. 
Passive auditory distraction was also associated 
with the highest P300 amplitudes and shortest 
P300 latencies.  

Infrequent, small visual distractors altered mu 
and beta power of motor imagery-specific 
patterns but did not significantly alter SMR-BCI 
classification accuracy.

1.3 Training Kaiser et al. (2014);28 
Meng and He (2019);29 
Pichiorri et al. (2011);30 
Toppi et al. (2014).31 

Positive 
effect

Results revealed a significant increase in the 
group average SMR-BCI classification accuracy 
and information transfer rate.

Unique specific spectral and spatial cortical ac-
tivity patterns in response to a motor imagery 
training task

1.4.1 Visual 
and Auditory 
Feedback 

Angulo-Sherman and 
Gutierrez (2015);32 
Brumberg et al. 
(2018);33 
Chaby et al. (2015);25 
McCreadie et al. (2012; 
2014);34,35 
Miller et al. (2010);36 
Ono et al. (2013);37 
Orand et al. (2012);38 
Pichiorri et al. (2011);30 
Sollfrank et al. (2016);11 
Zich et al. (2015)39

Positive 
effect

A significant improvement in SMR-BCI classifi-
cation accuracy was associated with the funnel 
feedback paradigms relative to the CB para-
digm. 

Significant improvement of motor imagery 
learning in SMR-BCI users who received ab-
stract visual feedback.
Significantly enhanced motor imagery task-spe-
cific brain activity during feedback conditions 
relative to no EEG monitoring feedback.

SMR-BCI users with auditory feedback demon-
strated consistent and sustained enhancements 
of average classification accuracy and average 
peak classification accuracy. 

Optimal SMR-BCI performance may be 
achieved when multimodal feedback is consis-
tent with SMR-BCI task goals.
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External 
Variables

Referenced Studies Effect on BCI 
Performance

Details

1.4.2 Virtual 
Reality and 
Magnetoelec-
tric Feedback 

Burin et al. (2019);40 
Cho et al. (2016);41 
de Vries et al. (2009);42 
Guger et al. (2015);14 
Huang et al. (2019);43 
Johnson et al. (2018);44 
Long et al. (2018);45 
Pan et al. (2019);46 
Shu et al. (2018a);47 
Topper et al. (1999);48 
Vourvopoulos et al. 
(2019);49 
Yi et al. (2017)50

Positive 
effect

Increase in the intensity of MI-related brain 
activity.

Significant improvement of SMR-BCI perfor-
mance in stroke patients with high-frequency 
repetitive transcranial magnetic stimulation 
sessions.

1.4.3 Proprio-
ceptive and 
Haptic Feed-
back

Darvishi et al. (2017);51 
Missiroli et al. (2019);52 
Nakayashiki et al. 
(2014);53 
Penaloza et al. (2018);54 
Ramos-Murguialday et 
al. (2012);10 
Shu et al. (2018b);55 
Vukelic and Gharabaghi 
(2015);56 
Wang et al. (2019)57

Positive 
effect

Proprioceptive feedback facilitated motor 
imagery-related operant learning of SMR be-
ta-band modulation.

Motor imagery training significantly improved 
the percent of time the robotic arm moved, 
number of robotic arm onsets, and the reaching 
target accuracy of a neuroprosthesis controlled 
by an SMR-BCI.

No significant change in SMR-BCI proficien-
cy with vibration at the fingertips relative to 
controls who received haptic stimulation at the 
wrist.

1.5 Carefulness 
of EEG Assem-
bling and Posi-
tioning of EEG 
electrodes 

Baek et al. (2019);58 
Hänselmann et al. 
(2015);59 
Korostenskaja et al. 
(2017);1 
Lin et al. (2019);60 
Marini et al. (2019);61 
Raduntz and Meffert 
(2019);62 
Sannelli et al. (2010);63 
Spuler (2017);64 
Zhang et al. (2019)65

Positive 
effect

Dry-electrode performed comparably to the 
wet-electrode system.

Trend towards a consistent distance between 
hand motor area and site of mu-rhythm mod-
ulation for optimal EEG-recording electrode, 
placement. Distance most prevalent mediolat-
erally.

The performance of a portable EEG smart cap 
with novel dry active electrodes and novel spa-
tial filtering circuit was validated.

Design of portable SMR-BCI with dry elec-
trodes and a three-dimensional novel convolu-
tional neural network was validated.

1.6 Record-
ing-Related 
Artifacts 

Frolich et al. (2015);27 
Nijboer et al. (2010);9 
Winkler et al. (2011);66 
Yuan and He (2014)67

Negative 
effect

The ease of over the scalp EEG recording 
renders this technology more susceptible to 
artifacts.

Automatic classification algorithm to identify 
and remove most artifactual independent com-
ponent analysis source components optimized 
SMR-BCI performance.

Only muscle artifacts negatively influenced the 
SMR-BCI error rate. This association was elimi-
nated with a centrally arranged electrode array.

Table 1. Summary of External Variables Affecting BCI Performance. Cont’d.
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Adoption rate is defined as the proportion of 
the tested participants in the experimental 
group who can achieve “BCI literacy” (classi-
fication accuracy of at least 80%) for a given 
BCI type. The adoption rate does not include an 
element of choice, preference or selection on 
behalf of the subjects. 

Guger et al. performed an inquiry into how 
many people can use an SMR-BCI (in other 
words are “SMR-BCI literate”).8 These au-
thors examined the ability of subjects (n=99) 
to imagine right- and left-hand movements 
to control the shift of a computer cursor on a 
screen in the direction of the imagined move-
ment. Although 93% of subjects achieved a 
classification accuracy above 60%, only 19.2% 
of the subjects were able to complete the 
task with a classification accuracy between 
80–100%. Similarly, Yao et al. revealed that 
only 69.7% of 43 subjects achieved a classifica-
tion accuracy of at least 70% with a two-class 
somatosensory and motor imagery SMR-BCI.21 
The group average performance in this study 
was 77.2% ± 13.3%.21 Although this finding by 
Yao et al. is not a direct comparison of BCI 
literacy rates reported by Guger et al. (2003), it 
nevertheless demonstrates the same prepon-
derance of SMR-BCI users for lower adoption 
rates.8,21

A recent study by Chholak et al. offered great-
er promise for the widespread application 
of SMR-BCI.68 The authors proposed a more 
sophisticated motor imagery classification 
algorithm that may improve SMR-BCI perfor-
mance. MEG experiments performed by Ch-
holak et al. in healthy participants confirmed 
the presence of two distinct types of motor 
imagery-related brain activity. The investiga-
tors distinguished these distinct waveforms 
by the patterns of activation and inhibition of 
different brain regions containing motor-relat-
ed alpha- and beta-frequency electromagnetic 
signals. These authors detected two types of 
signals related to kinesthetic imagery and visu-
al imagery.68 Kinesthetic imagery, in this case, 
is linked to the muscular sensation during the 
motor imagery task. Such imagery is associat-
ed with the event-related desynchronization 
triggered by the motor imagery task. Visual 
imagery is defined as the visualization of an 
action that leads to event-related synchroni-
zation of the electromagnetic brain activity in 

alpha- and beta-frequency ranges. MEG during 
left and right-handed MI task trials revealed 
a preponderance of visual imagery activity. 
Chholak et al. proposed the application of ap-
propriate filtration techniques to select visual 
imagery as the main type of motor imagery in 
untrained users.68 

The SMR-BCI adoption rates reported by 
Guger et al. (2009) and Guger et al. (2012) are 
significantly less than those previously report-
ed in the P300-BCI and SSVEP-BCI studies.6,7 
For instance, in the P300-BCI study, 76.3% 
of participants with a single character (SC) 
paradigm and 89% of participants with a row/
column (RC) paradigm achieved BCI literacy.7 
Furthermore, in the SSVEP-BCI study, the 
authors reported an even greater adoption rate 
of 96.2%.6 In conclusion, the Guger et al. series       
of studies determined that SMR-BCIs had the 
lowest adoption rate while SSVEP-BCIs pro-
vided the highest adoption rates among the 
evaluated SSVEP-BCI, P300-BCI and SMR-BCI 
types.6-8,14 (Figure 3 provides a summary of 
these findings for further evaluation and com-
parison.) As a result, SMR-BCI is more limited 
in its usability compared to other BCI types 
due to its lower adoption rates. 

The adoption rates discussed above are consis-
tent with the neurophysiology literature con-
cerning the relative prevalence of SSVEP, P300 
and SMR responses.12,17 SSVEPs are more easily 
elicited than P300 and SMR.13,22 SSVEP is the 
earliest and most automatic response. P300 
and SMR are more cognitive responses, which 
makes them not as straightforward to elicit. 
Conversely, the P300 response is more difficult 
to elicit than SSVEP. P300 is a cognitive evoked 
potential that is not uniformly produced among 
all subjects.18 In fact, P300 is not produced at all 
in some individuals.19 On the other hand, SSVEP 
is more uniform in its distribution amongst po-
tential BCI users.20 Likewise, the experimenters 
discovered a lower adoption rate among BCI 
users for P300 BCIs. Moreover, the subjects’ 
capacity for abstract and imaginative thought 
fluctuates wildly on an individual basis. As a re-
sult, SMR-BCIs had the lowest adoption rates 
because they require the subject’s involvement 
in the most difficult operational task among all 
BCI types that have been studied by Guger et 
al.6-8,14 
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1.2 Distractors
While in the laboratory setting, the effect of 
distractors is minimized. However, the real 
world is not a quiet place. Sidewalks are filled 
with the clattering of footsteps. Streets are 
replete with the honking of horns and screech-
ing of tires. Distractors are a part of our liv-
ing environment. They create noise that can 
potentially affect the performance of a BCI 
system by decreasing the signal-to-noise ratio. 
At the same time, distractors may affect the 
BCI user by altering their brain activity, further 
confounding the user’s SMR-BCI performance. 
Serving as external factors influencing BCI 
performance, distractors are closely related to 
a subject’s distractibility, which is an internal 
variable. When considering the everyday appli-
cation of BCI technology, algorithms must be 
developed to account for settings beyond the 
laboratory. Therefore, algorithm development 
is crucial for the real-world application of SMR-
BCIs and the assessment of SMR-BCI perfor-
mance in a real-world context.23

Friedrich et al. explored the effect of auditory 
distractors on the performance of a cue-guid-
ed, four-class BCI operated by four different 
mental tasks: word association, mental sub-
traction, spatial navigation and motor imagery.5 
This study demonstrated that auditory dis-

tractors had no adverse effect on cue-guided, 
four-class hybrid P300-SMR-BCI performance. 
The subjects maintained their SMR-BCI per-
formance during all of the auditory distractors. 
Both passive and active distraction, as well as 
absent distraction control conditions, were 
simulated. The auditory stimuli were presented 
in an oddball paradigm. Friedrich et al. intended 
passive distraction to represent background 
noise. To simulate passive distraction, the 
authors instructed subjects (n=14) to ignore all 
tones presented in the “oddball” series.5 To sim-
ulate active distraction, the experimenters re-
quired subjects to respond with a button press 
to the target tone of the “oddball” paradigm. 
Active distraction recreated a multitasking con-
dition in the real world. Surprisingly, passive au-
ditory distractors optimized four-class hybrid 
P300-SMR-BCI performance during different 
mental tasks when compared to active distrac-
tors and absent distractors. This finding only 
offers further encouragement for the prospect 
of everyday BCI use.5

Friedrich et al. suggested that the Yerkes-Dod-
son law supported these findings. The cur-
rent literature supports this conclusion.5,24,25 
Researchers have successfully applied the 
Yerkes-Dodson law to numerous and diverse 
settings.25 The Yerkes-Dodson law is a psy-

Figure 3. BCI adoption rates for different BCI types described by Guger et al. (2012); Guger et al. 
(2009); Guger et al. (2003); Guger et al. (2015).6-8,14 SMR-BCI was driven by simple left and right-
hand motor imagery tasks. P300 BCI and SSVEP-BCI involved spelling task. BCI adoption rate 
was defined as the proportion of BCI users who achieved literacy during the completion of an op-
erational BCI task.8 Adoption rate was used as a measure of proficiency. It contained no elements 
of desire, selection, or choice. The “BCI literacy” here was defined as achieving a classification 
accuracy of at least 80%.
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chology concept that states moderate arousal 
can improve performance via the modulation 
of motivation, but high levels of arousal can 
impair performance due to a reduction in the 
quantity of cognitive information processing.25 
Likewise, passive auditory distraction improved 
BCI performance. Conversely, active auditory 
distraction impaired BCI performance since      
it overwhelmed, divided and diverted atten-
tional resources from the main goal, which was 
initially directed towards the SMR-BCI opera-
tion.

Emami and Chau further explored the influence 
of distractors by conducting a study of the re-
lationship between visual distractors and SMR-
BCI classification accuracy.26 Infrequent, small 
visual distractors altered mu and beta power 
of motor imagery-specific electrical brain 
activity but did not significantly alter SMR-BCI 
classification accuracy. Participants achieved a 
mean classification accuracy of 81.5 ± 14% for 
non-distractor trials and 78.3 ± 17% for distrac-
tor trials.26 These developments are promising 
for the everyday application of BCIs in chaotic, 
real-world contexts. 

1.3 Training
One of the stated goals for this review is to 
analyze methods for the optimization of SMR-
BCI performance. Life experience and anec-
dotal evidence can attest to the significance 
of practice in the mastery of a skill. For this 
reason, a discussion of the effect of external 
variables on SMR-BCI performance would be 
incomplete without consideration of train-
ing. For this section, we will only consider the 
binary presence or absence of training and its 
effect on SMR-BCI performance. The following 
sections—1.4 Visual and Auditory Feedback, 1.5 
Virtual Reality and Magnetoelectric Feedback 
and 1.6 Proprioceptive and Haptic Feedback— 
will consider a more nuanced review of training 
paradigms. It is anticipated that training would 
have a positive effect on SMR-BCI perfor-
mance. Training could be an essential factor in 
the adoption of SMR-BCI use among healthy 
and disabled users. With training, SMR-BCI 
users who do not demonstrate immediate BCI 
literacy would not become abandoned. Instead, 
training would improve SMR-BCI proficiency to 
accepted levels of competency, thus extending 
the scope of SMR-BCI use beyond those who 

were already sufficiently skillful at the initial 
stages of working with SMR-BCI. 

Indeed, research has affirmed the effect of 
training on SMR-BCI performance.28-31 Meng 
and He suggested that training sessions could 
lead to significant behavioral performance 
alteration and changes in event-related desyn-
chronization lateralization within only a few 
hours.29 The results of their study revealed a 
significant increase in the group average SMR-
BCI classification accuracy and information 
transfer rate just over three sets of training 
sessions. Multiple training sessions may be par-
ticularly useful for SMR-BCI users who initially 
struggle.28,29 Pichiorri et al. showed that SMR-
BCI training led to a significant increase in the 
amplitude and volume of the motor potential 
recorded from the opponens pollicis.30 Toppi et 
al. examined the effects of training on electrical 
brain activity.31 The authors identified unique 
specific spectral and spatial cortical activity 
patterns in response to a simple motor imag-
ery training task (e.g., the open-close motion of 
the hand). More complex motor imagery tasks 
(e.g., playing tennis) elicited moderately gener-
alized effects on electrical brain activity. These 
enhanced cortical activity benefits extended 
long-term, further emphasizing the significant 
role that training could play in the widespread 
adoption of SMR-BCI technology.31

 
1.4.1 Visual and Auditory Feedback 

Research on the effect of training on the per-
formance of different BCI types has continued 
into the realm of SMR-BCIs and sensory feed-
back. More evidence of the effect of SMR-BCI 
training came from the finding that the brain 
network changed its topology in response to 
neurofeedback, leading to enhanced SMR-BCI 
performance.30 Angulo-Sherman and Gutierrez 
further described the effect of SMR-BCI per-
formance on electroencephalographic activi-
ty.32 Results demonstrated a high correlation 
between event-related coherence and SMR-
BCI performance with classical visual feed-
back, auditory feedback or functional electrical 
stimulation feedback.32 Thus, elevated motor 
cortical excitability, functional brain network 
analysis and enhanced event-related coherence 
served as the neurophysiological evidence for 
improved SMR-BCI performance with neuro-
feedback.
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Visual Feedback
The effect of visual feedback on SMR-BCI per-
formance is an area of investigation. Miller et 
al. observed that motor imagery was associat-
ed with a level that constituted only 25% of the 
total magnitude of cortical activity associated 
with motor task execution.36 Visual feedback 
amplified the degree of motor cortex activa-
tion associated with mental imagery to levels 
comparable with, and even higher than, an 
actual motor movement task. Miller et al. also 
offered several explanations of potential mech-
anisms underlying the visual feedback phenom-
enon.36 The authors suggested that this altered 
pattern of cortical activation may have been a 
result of motor imagery’s direct attempt to re-
cruit a subset of the neuronal population. This 
recruitment primes those neurons immediately 
responsible for the transmission of motor com-
mands to the body, facilitating more responsive 
SMR-BCI performance in users. Alternatively, 
the authors proposed that enhanced cortical 
activation may have been a result of motor im-
agery’s ability to initiate a gain in the firing rate 
of large motor cortical neurons. 

Sollfrank et al. explored the role of enriched 
feedback in SMR-BCI performance.11 Enriched 
funnel feedback (EFF) may better support the 
initial SMR-BCI training phase than the conven-
tional cursor bar paradigm. In addition to the 
left and right classification of a left- or right-
hand motor imagery task for the control of an 
onscreen cursor, the EFF paradigm provided 
the SMR-BCI user with visual information 
representing the strength of the signal for BCI 
user’s control. In the EFF paradigm, a liquid 
cursor began at the top of the visual display 
in a funnel that was connected at the bottom 
to a test tube. The movement of the liquid 
cursor through the funnel to the left or right 
end of the test tube represented the left/right 
SMR-BCI classification like the cursor bar (CB) 
feedback. Also, this EFF paradigm provided the 
SMR-BCI user more visual information beyond 
that supplied by the CB paradigm. Specifically, 
the liquid cursor was initially an amorphous, 
diffuse collection of droplets that coalesced 
into a single, uniform blue sphere. This transi-
tion represented the BCI user’s control stabili-
ty.11 

The training effect of visual feedback has been 
supported by other studies. Orand et al. ob-

served a significant improvement in motor 
imagery learning in SMR-BCI users who re-
ceived abstract visual feedback.38 Conversely, 
users who received no visual feedback did not 
demonstrate a significant motor imagery learn-
ing effect.38 Ono et al. provided several forms 
of realistic visual feedback to BCI users who 
had previously received no visual feedback.37 
These authors proposed visual feedback in 
three novel forms: changing bar length, hand 
open/grasp picture animated at the level of 
the SMR-BCI user’s eye and the same hand 
picture overlaying the tested hand.37 Zich et al. 
assessed the effect of visual feedback in the 
form of real-time EEG monitoring on motor 
imagery activity.39 Results indicated significant-
ly enhanced motor imagery task-specific brain 
activity during feedback conditions relative to 
no EEG monitoring feedback.39 

Auditory Feedback
Auditory feedback may also improve SMR-BCI 
performance, either independently from visual 
feedback or combined with it. McCreadie et al. 
(2012) demonstrated that SMR-BCI users who 
received visual feedback performed better than 
those who received auditory feedback. Howev-
er, this effect diminished over several training 
sessions.34 In contrast, SMR-BCI users present-
ed with initial auditory feedback demonstrated 
consistent and sustained enhancements of av-
erage classification accuracy and average peak 
classification accuracy.35 The exact technology 
behind auditory feedback is not a significant 
concern. No variation in SMR-BCI performance 
was observed with distinct audio technologies 
such as mono, stereo or 3-D auditory feed-
back.35

Sollfrank et al. investigated the effect of au-
ditory feedback in combination with the EFF 
paradigm.11 The researchers termed this new 
paradigm multimodal funnel (MF) feedback. 
They observed an insignificant difference in 
SMR-BCI performance between EFF and 
MF feedback. The researchers reasoned that 
perhaps visual feedback was too dominant for 
simultaneous auditory feedback to contrib-
ute to enhanced SMR-BCI performance.11 The 
Yerkes-Dodson law supports the authors’ con-
clusion that multimodal feedback overwhelmed 
SMR-BCI users.25 Expanding upon the findings 
presented above, Brumberg et al. described a 
significant improvement of SMR-BCI classi-
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fication accuracy, distance to the target and 
movement time to the target with multimodal 
feedback relative to unimodal audio or visual 
feedback.33 The authors concluded that optimal 
SMR-BCI performance may be achieved when 
multimodal feedback is consistent with SMR-
BCI task goals. In contrast, multimodal feed-
back is not effective as a generic biofeedback 
signal.33 

1.4.2 Virtual Reality and 
Magnetoelectric Feedback 

Virtual Reality Feedback
Vourvopoulos et al. investigated the use of 
virtual reality (VR), an emerging modality for 
SMR-BCI training.49 The results of a stroke 
rehabilitation case report detailed an increase 
in the intensity of MI-related brain activity fol-
lowing a three-week intervention of ten BCI-VR 
training sessions. In this case report, a 60-year-
old male stroke patient performed a BCI-VR 
task in a self-paced, first-person BCI game. 
The patient applied motor imagery to a boat 
rowing task to collect as many flags as possible 
during a timed event. Ambient environmen-
tal sounds and goal sounds provided auditory 
feedback, and the vibrating motors inside cylin-
drical tubes for grasping provided haptic feed-
back.49 These data are promising for the future 
application of virtual reality feedback used with 
SMR-BCIs. Huang et al. currently seek to per-
form a randomized controlled trial to further 
evaluate the efficacy of immersive VR in stroke 
rehabilitation patients and detail the underlying 
brain.43 Extending the potential benefits of vir-
tual reality beyond stroke rehabilitation, Burin 
et al. developed a study protocol for a random-
ized controlled trial to evaluate the physical, 
cognitive and neural benefits of virtual reality 
training in healthy adult volunteers.40

Magnetic Stimulation Feedback
The influence of repetitive transcranial magnet-
ic stimulation is another area of investigation 
for SMR-BCI research. Studies have estab-
lished the ability of high-frequency, low-fre-
quency and/or combined repetitive transcranial 
magnetic stimulation (rTMS) to restore su-
perficial brain wave activity at the lesion site 
in patients who suffered a stroke.42,45,46,48 These 
findings suggest that rTMS should improve 
the user’s SMR-BCI performance. Indeed, Shu 
et al. (2018a) observed an improvement in 

SMR-BCI performance in stroke patients with 
high-frequency rTMS.47 Following 12 sessions 
of 10Hz rTMS interventions over four consec-
utive weeks, the results yielded a significant 
enhancement relative to controls who received 
no rTMS. SMR-BCI accuracy improved from 
63.5% to 74.3% in MI tasks and 81.9% to 91.1% 
in motor execution  tasks.47

Johnson et al. first described the combined 
effect of rTMS and a virtual reality SMR-BCI in 
stroke rehabilitation.44 Results demonstrated 
significant improvements in motor activity and 
behavioral function. The study included two 
groups of participants. The treatment group 
consisted of participants status post-stroke 
who received motor rehabilitation with VR and 
rTMS. The control group only received VR feed-
back. Control participants also demonstrated 
enhancement of motor activity and behavioral 
function, albeit not as significant as the patient 
group.44 These findings support the future use 
of rTMS for improved SMR-BCI performance. 

Electrical Stimulation Feedback
Yi et al. (2017) sought to enhance SMR-BCI 
performance by incorporating electrical stimu-
lation sensory feedback.50 Electrical stimulation 
induces steady-state somatosensory evoked 
potential (SSSEP). The authors noted that a 
combination of SMR-induced event-related de-
synchronization and SSSEP led to a significant 
14% improvement in SMR-BCI classification 
accuracy during a hybrid task composed of mo-
tor imagery and selective attention elements. 
The control group involved participants who 
performed the motor imagery task without 
any associated SSSEP. The hybrid task elicited 
additional SSSEP beyond that seen with only 
electrical stimulation. Users achieved an 89% 
mean classification accuracy.50 A series of stud-
ies with recoveriX confirmed this high mean 
classification accuracy. RecoveriX is a hybrid, 
two-class BCI guided by SMR activity and elec-
trical stimulation sensory feedback.15,41 Figure 4 
provides a visual representation of this novel 
BCI system. The findings of Yi et al. suggest 
the development of a novel hybrid SMR-SSSEP 
BCI would lead to significantly better SMR-BCI 
performance.50 In summary, visual, auditory      
and electrical feedback can play an important 
role in SMR-BCI training, and, therefore, en-
hance SMR-BCI performance.
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1.4.3 Proprioceptive and Haptic 
Feedback

Proprioceptive Feedback
Nakayashiki et al. attempted to describe a neu-
rophysiological mechanism of proprioceptive 
feedback.53 They noted that the strength of an 
event-related desynchronization associated 
with motor imagery varied with the change in 
hand positions. This was reflected either in the 
motor planning process or the resultant shifts 
of proprioception. The strength of an event-re-
lated desynchronization indicates the power of 
the SMR signal for BCI interpretation. For this 
reason, Nakayashiki et al. proposed that pro-
prioceptive feedback can influence SMR-BCI 
performance.53 

The effect of proprioceptive feedback is not 
only robust but is also more significant than 
the effect of visual feedback on SMR-BCI per-
formance. Darvishi et al. examined the effect 
of proprioceptive feedback as provided by two 
mechanical hand orthoses that responded 
to the motor imagery task of the user.51 The 
researchers characterized this relationship 
by the superior gain of task-related spectral 
perturbations in the alpha and beta-band. In 
particular, proprioceptive feedback facilitated 
motor imagery-related operant learning of 
SMR beta-band modulation. Also, enhanced 

SMR-BCI performance with proprioceptive 
feedback occurred through the neurophysiolog-
ical mechanisms of enhanced accuracy and du-
ration of acquired brain self-modulation. These 
changes only appeared in the beta-frequency 
band.51 Vukelic and Gharabaghi observed similar 
findings.56 The researchers demonstrated an 
advanced degree of functional coupling of the-
ta and beta-band modulation during a motor 
imagery task with proprioceptive feedback as 
compared to a motor imagery task with visual 
feedback.56 

Ramos-Murguialday et al. demonstrated a sig-
nificant positive effect of motor imagery on an 
SMR-BCI performance, specifically a BCI-driven 
robotic arm control.10 The researchers showed 
significant improvements across several per-
formance metrics: percent of the time the 
robotic arm moved, maximum consecutive sec-
onds the robotic arm moved, number of robot-
ic arm onsets and the classical reaching target 
accuracy. The authors defined classical reaching 
target accuracy as a successful trial is defined 
as the cursor is in the upper half of the screen 
upon completion. The only measured SMR-BCI 
performance that did not reach a significant 
enhancement was the robotic arm latency time 
of the first movement. Ramos-Murguialday et 
al. also observed a substantial between-ses-

Figure 4. The SMR-BCI system (recoveriX) for upper extremity motor recovery in patients status 
post-stroke. It is a hybrid two-class BCI based on SMR activity and electrical stimulation senso-
ry feedback. Motor recovery in stroke patients is an emerging application. This SMR-BCI system 
for rehabilitation consists of several components: Electroencephalography system (EEG); Avatar 
(“virtual reality”); Functional electrical stimulation (FES). While completing a motor imagery task, 
recoveriX provides patients with visual feedback through a virtual avatar and simultaneous tactile 
stimulation through electrical muscle stimulation. (Photograph courtesy of the authors.)
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sions group learning effect of motor imagery 
with and without proprioceptive feedback on 
several SMR-BCI metrics.10 The study published 
by Wang et al. supported this positive associ-
ation between proprioceptive neurofeedback 
and SMR-BCI classification accuracy.57 These 
authors demonstrated significantly increased 
cortical activations as measured by absolute 
event-related desynchronization powers and 
real-time lateralized event-related desynchro-
nization patterns. Also, increased mean clas-
sification accuracies and the activity of partial 
directed coherence-based functional connectiv-
ity networks further supported the conclusion 
that proprioceptive feedback led to improved 
SMR-BCI performance.57 Partial directed coher-
ence is a multivariate brain connectivity esti-
mator that represents patterns of links in the 
brain. Penaloza et al. further described the in-
fluence of a different neuroprosthesis on SMR 
activity: a human-like android robot (Geminoid 
HI-2).54 Findings suggested that android feed-
back-based SMR-BCI training enhanced modu-
lation of motor imagery-related EEG activity.54

Haptic Feedback
Haptic feedback is another area of investi-
gation for SMR-BCI research. The promising 
results of visual and auditory feedback led 
investigators to evaluate the effect of addi-
tional sensory modalities on SMR-BCI perfor-
mance. Shu et al. (2018b) observed a significant 
increase in SMR-BCI decoding accuracies in 
participants’ status post-stroke who received 
tactile stimulation at the wrist relative to 
control participants who did not receive tactile 
stimulation.55 With tactile stimulation during 
a motor attempt task, participants’ statuses 
post-stroke achieved 85.1% decoding accu-
racy. On the other hand, control participants 
who only performed the motor attempt task 
achieved a 74.5% signal decoding accuracy.55 
Researchers have expanded on the work of 
Shu et al. (2018b), focusing on haptic stimula-
tion. Missiroli et al. explored the role of haptic 
stimulation feedback’s anatomic site for the 
SMR-BCI-based operation of a hand exoskel-
eton.52 Relative to the wrist, a higher density 
of Meissner’s and Pacinian corpuscles mecha-
noreceptors is found at the fingertips, which 
is associated with their greater sensory role. 
Missiroli et al. anticipated that haptic stimula-
tion at the fingertips would improve the effect 
of proprioceptive feedback relative to its effect 

at the wrist.52 While performing hand grasping 
motor imagery tasks, study participants did 
not demonstrate a significant change in SMR-
BCI proficiency with vibration at the fingertips 
relative to control participants who received 
haptic stimulation at the wrist.52

1.5 Carefulness of EEG Assembling 
and Positioning of EEG Electrodes

Signal acquisition is an important component 
of the closed-loop BCI operatFion system. 
Brain activity for BCI control can be recorded 
with high temporal precision (millisecond reso-
lution) by a set of sensors when they use mag-
netoencephalography (MEG). This process uses 
a set of electrode arrays placed on the scalp 
that employ electroencephalography (EEG). 
Electrode grids  are also placed directly on the 
cortical surface when utilizing electrocorti-
cography (ECoG).1 Figure 5 summarizes these 
recording modalities. For this review article, we 
focus our discussion on signal acquisition with 
EEG electrodes. The assembly, attachment      
and positioning of these EEG electrodes are 
significant considerations for ensuring signal 
integrity and the logistics of everyday SMR-BCI 
use.63

SMR-BCI users report issues concerning the 
bulky size of larger EEG assembly caps.60 
Complications of electrode placement involve 
skin preparation and the use of conductive 
gels.65 Dry-electrode EEG systems have been 
developed to eliminate the need for lubri-
cating gels.58,64 Marini et al. investigated the 
use of dry-electrode mobile EEG systems as 
a viable alternative to those with traditional 
wet-electrodes.61 Researchers concluded that 
the dry-electrode system performed at levels 
comparable to the ones with wet-electrodes. 
Both systems exhibited similar power spectral 
densities and alpha rhythm suppression during 
an eyes-open condition.61

Electrode placement may also play an import-
ant role in optimal BCI performance. In their 
transcranial magnetic stimulation (TMS)-guid-
ed application of EEG electrodes study,  
Hänselmann et al. identified a trend towards a 
consistent distance between the hand motor 
area and the site of mu-rhythm modulation for 
optimal EEG-recording electrode placement in 
SMR-BCIs.59 The exact nature of this consistent 
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distance varied on an individual basis, but it is 
more prevalent in the mediolateral than the 
anterior-posterior direction.59

Solutions have been offered to eliminate the 
assembly and conductive gel concerns of SMR-
BCI users such as a smart EEG cap.60,65 Lin et al. 
developed a spatial filtering circuit with novel 
dry active electrodes to enhance EEG features 
in a local area and to optimize EEG channel 
selection automatically.60 These developments 
led to a reduction in the number of necessary 
electrodes in the assembly of the smart EEG 
cap, mitigating the previously described size 
and bulk concerns. The authors combined the 
smaller EEG assembly size with wireless trans-
mission to encourage portability and conve-
nience of use. An information transfer rate of 
about 6.06 bits/min validated the design of this      
smart EEG cap.60 

Zhang et al. proposed an alternative portable 
brain-computer interface solution.65 Dry elec-
trodes acquire the user’s sensorimotor signal. 
This signal is transmitted to the portable BCI. 
The authors developed a three-dimensional, 
novel, convolutional neural network using time 
as two-dimensions and the frequency band of 
the EEG signals. Their results demonstrated 
a significant improvement of classification 
performance in their proposed SMR-BCI design 
relative to the classification performance of 
current methods. These results support the use 
of their proposed SMR-BCI design as a viable 

alternative to traditional approaches.65 The 
conclusions of Lin et al. and Zhang et al. are 
encouraging for the future widespread appli-
cation of mobile SMR-BCIs for everyday use 
among both healthy and disabled users.

The findings of Raduntz and Meffert describe 
the limitations of current mobile electroen-
cephalography devices.62 Among seven mobile 
EEG designs with wireless signal transmission, 
subjects demonstrated no clear preference in 
their visual perception of the devices’ headset 
designs. Despite this finding, subjects were 
not willing to accept less comfort for a more 
appealing headset design. A significant change 
in maximal possible wearing duration further 
supported this conclusion. The authors detailed 
an exchange of enhanced signal quality and 
reduced artifacts with reduced convenience 
among mobile EEG devices. They identified a 
significant positive association between gel 
electrodes and attitude toward technology 
with practicability.62 

1.6 Recording-Related Artifacts
Artifacts obfuscate the interpretation of EEG 
signals, thereby negatively impacting the 
interpretation and performance of an SMR-
BCI.9 The ease of over the scalp EEG recording 
compared to invasive recording (e.g., ECoG. 
Refer back to Figure 5 for a representation of 
all recording modalities.) renders this technolo-
gy more susceptible to artifacts such as envi-
ronmental interference, electromyographic and 

Figure 5. Recording of magnetic (MEG) and electric (EEG, ECoG) brain activity that can be used 
for Brain-Computer Interface (BCI) applications. Left: Example of magnetoencephalography 
(MEG) at MEG Lab, AdventHealth for Children Orlando; Middle: Example of electroencephalog-
raphy (EEG) at the Department of Biophysics, Vilnius University; Right: Example of electrocorti-
cography (ECoG) at the Comprehensive Epilepsy Surgery Center, AdventHealth Orlando. (Photo-
graphs courtesy of the authors.)
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electrooculographic activity than other record-
ing electrode types like electrocorticography.67

 
Winkler et al. explored the correlation between 
artifacts and SMR-BCIs.66 The investigators 
developed an automatic classification algo-
rithm to identify and remove most artifactual 
components identified via an independent 
component source analysis. The users’ SMR-
BCI performance maintained consistency with 
pre-optimized linear classifier values when up 
to 60% of the EEG artifacts waveforms were 
removed. These data imply that Winkler et al.      
were successful in their pursuit of an auto-
mated solution for artifact removal and similar 
solutions can be used for optimizing SMR-BCI 
performance in a real-world context.66

Frolich et al. sought to augment SMR-BCI 
performance.27 In this study of artifact type, 
the findings suggested that only muscle arti-
facts negatively influenced the SMR-BCI error 
rate when using 119 EEG channels. However, 
investigators eliminated this association with 
an electrode array of 48 centrally located EEG 
channels. For the optimization of SMR-BCI 
performance, Frolich et al. recommended 
regularizing EEG assessment against muscle 
artifacts.27

Limitations and Future Perspectives
Many opportunities exist to expand and iter-
ate upon the research performed by Guger 
and associates. A series of Guger et al. stud-
ies determined that BCI adoption rates were 
greatest with steady-state visual evoked 
potential (SSVEP), less with P300 and least 
with SMR-BCIs.6-8,14 Opportunities exist to dis-
cover the adoption rates associated with other 
BCI types. Beyond BCI type, sample size is a 
concern. The subdivision of the P300 BCI into 
single character and row/column paradigms 
exacerbated the effect of the limited num-
ber of participants in the Guger et al. (2009) 
study.7 Increasing the sample size would have 
provided the experimenters with the oppor-
tunity to investigate the association between 
subject diversity and BCI adoption rates. More 
participants would have allowed for further in-
quiry into the effects of various internal factors      
and other external factors on the performance 
of different BCI types.

Several limitations are present in the Friedrich 
et al. study.5 This study demonstrated that 
auditory distractors had no adverse effect on 
cue-guided, four-class hybrid P300-SMR-BCI 
performance. First, the study should be repeat-
ed with a larger sample size. Next, future stud-
ies should include individuals with severe motor 
impairment. The inclusion of this population 
would allow for the results to have more direct 
application to contemporary clinical BCI users. 
Third, the study utilized standardized tones 
that were used to measure distraction instead 
of complex, real world noise. Standardized 
tones should be replaced with real-world noise 
to explore the impact of sound beyond the lab-
oratory setting more accurately. Such improve-
ments in study design could provide a greater 
application for BCI use in the real world. The 
effect of auditory distractors on other types of 
BCIs should also be explored further to com-
pare the effect among them. Infrequent, small 
visual distractors altered mu and beta power 
of motor imagery-specific patterns but did 
not significantly alter SMR-BCI classification 
accuracy.26 More research is needed to confirm 
this insignificant effect of visual distractors on 
SMR-BCI performance. Friedrich et al. also not-
ed that discrete feedback was provided at the 
end of each distraction trial, which can become 
a separate area of investigation to explore the 
effects of feedback on BCI performance.5 

Sollfrank et al. identified several study areas 
for future growth.11 The researchers cautioned 
against wholly attributing the improved initial 
SMR-BCI performance to the cursor bar of the 
enriched funnel feedback and multimodal fun-
nel feedback paradigms.11 An alternative expla-
nation could be due to the lack of online data 
inclusion. Online BCI calibration involves EEG 
waveforms obtained during a session for the 
development of a classifier to identify future 
EEG waveforms. On the other hand, offline 
BCI calibration involves the collection of EEG 
waveforms before a session. Users theoretical-
ly deduce the identity of these waveforms for 
the development of a classifier.69 The inclusion 
of online data in the reported offline findings 
may lead to a different association of these 
feedback methods with SMR-BCI performance. 
Sollfrank et al. clarified that the inter-session, 
non-stationarity of brain patterns affected all 
SMR-BCI classification accuracy results, but 
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the uncertainty metric of the funnel may have 
been more susceptible to the effect of in-
ter-session non-stationarity.11 This theory would 
appropriately explain the decline of SMR-BCI 
classification accuracy values across all funnel 
paradigm sessions. That classification accura-
cy, with respect to CB, did not dwindle in this 
manner.  

Sollfrank et al. also warned that the SMR-BCI 
classification accuracy results of the funnel 
feedback groups might not have been accu-
rate.11 For SMR-BCI end-users with minimal 
input signal integrity, the 15 second task dura-
tion may have been too long. A higher propor-
tion of users with funnel feedback paradigms 
timed out than those with the conventional CB 
paradigm. In the event of a time-out, research-
ers scored the session a miss even if the cursor 
was advancing in the correct direction. For this 
reason, the funnel feedback SMR-BCI classifi-
cation accuracy values may have been skewed 
too low. Sollfrank et al. only used healthy 
subjects in this study.11 Future research into this 
area should incorporate disabled BCI end-users 
to produce results that are more relevant for 
modern BCI users.

Several opportunities exist to expand upon 
the findings of Ramos-Murguialday et al.10 This 
study demonstrated a significant positive ef-
fect of motor imagery on an SMR-BCI perfor-
mance, specifically a BCI-driven robotic arm 
control. First, this study involved only healthy 
volunteers. Disabled users should be incorpo-
rated into the study population. Currently, a 
large proportion of SMR-BCI users are patients 
with neurodegenerative conditions or are mus-
cular system-compromised. A study on users 
with disabilities would produce results with 
more relevance for these users. This current 
study only contained 23 subjects. More subjects 
are needed to yield findings with a greater level 
of significance.10 In particular, SMR-BCIs are 
noted for a high level of inter-subject variabili-
ty.70,71 For this reason, the production of results 
with a strong correlation strength is of con-
cern. An exploration of the effect of mental 
imagery training on the SMR-BCI performance 
of a different prosthesis beyond a robotic arm 
used in a study by Ramos Murguialday et al.      
might also be beneficial.

2. Next Steps
The domain of SMR-BCI performance optimi-
zation involves the SMR-BCI itself. While not all 
variables have demonstrated a positive effect, 
external variables have the potential to improve 
SMR-BCI performance metrics such as classi-
fication accuracy, information transfer rate or 
task duration. Gaps of knowledge remain that 
may or may not affect the real-world applica-
tion of SMR-BCI. The sample size of a study is 
one of the most crucial aspects of producing 
significance. Below are provided some sugges-
tions for future investigations of external vari-
ables that may affect SMR-BCI performance.

2.1 Virtual Reality Feedback
Current studies have evaluated the effective-
ness of SMR-BCI training with virtual reality 
feedback for motor recovery of participants           
post-stroke.43,49 We propose that the next step 
expands on this research to explore the associ-
ation of virtual reality feedback with SMR-BCI 
performance. Virtual reality is an emerging 
technology with many new medical applica-
tions.72-75 The positive effect of multimodal 
feedback on SMR-BCI performance relative to 
unimodal auditory or visual feedback in Brum-
berg et al. is encouraging for virtual reality 
feedback applications.33 With its integration 
of auditory, visual, kinesthetic and vibrotactile 
feedback, virtual reality holds promise to offer 
more extensive sensory feedback than previous 
feedback modalities, thereby further optimiz-
ing SMR-BCI performance. 

2.2 Drones
Current studies describe the effect of SMR-
BCI performance with neuroprostheses such as 
a robotic arm, hand or lower body exoskeletons 
or full-body android.10,52,54 While these neuro-
prostheses have helped the advancement of 
motor rehabilitation—the classic goal of SMR-
BCI research—drones as neuroprostheses hold      
more potential. We propose future research 
to describe the effect of drones on SMR-BCI 
performance. Drones may potentially offer not 
just motor rehabilitation but motor enhance-
ment in the form of flight—a motor ability that 
surpasses the human body. 

2.3 Repetitive Transcranial Magnetic 
Stimulation (rTMS)

More research is needed to describe further 
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the effects of low-frequency and combined 
rTMS on SMR-BCI performance as well as the 
electroencephalographic activity at neural sites 
beyond the lesion and in healthy users. More 
subjects are needed to achieve these additional 
research goals.

2.4 EEG Placement and Positioning
As it was described in section 1.5 above, Hänsel-
mann et al. identified a nondistinct trend to-
wards a consistent distance between the hand 
motor area and the area of mu-rhythm mod-
ulation.59 More research is needed to elucidate 
the directionality of this relationship, its uni-
formity amongst users and its prevalence for 
SMR-BCI optimization. 

Conclusion and Future 
Perspectives
The goals of this review paper were (1) to in-
tegrate existing knowledge about the factors 
affecting SMR-BCI performance by critically 
examining the effects of external variables on 
SMR-BCI described in previously published 
studies, as well as (2) to discuss limitations and 
propose further directions for MI-BCI research 
along with other possible factors that may af-
fect the SMR-BCIs performance when present-
ed within a real-world context. 

Per these goals, we may share several conclu-
sions about the effect of external variables on 
SMR-BCI performance. BCI type is a significant 
factor when considering BCI performance. 
Patients have demonstrated the greatest 
adoption rate with SMR-BCIs, then P300 BCIs 
and, lastly, with SSVEP-BCIs. These adoption 
rates follow the prevalence and elicitability 
trends of the associated waveforms. Passive 
auditory distraction is associated with an in-
crease in SMR-BCI performance. At the same 
time, visual distractors seem not to have any 
significant effect on SMR-BCI performance. 
These findings are promising for the ecological 
application of SMR-BCIs in a real-world con-
text. Furthermore, auditory, visual, electrical, 
proprioceptive and haptic feedback individually 
optimize SMR-BCI performance. Repetitive 
transcranial magnetic stimulation also shares 
a similar relationship with SMR-BCI perfor-
mance. The influence of multimodal feedback 
on SMR-BCI performance is not as clear as 
the effect of unimodal feedback. Multimodal 
feedback enhances SMR-BCI performance only 

when the feedback is consistent with the op-
erational task. Current literature for the effect 
of virtual reality feedback on SMR-BCI perfor-
mance is limited. When the effect of artifacts 
on SMR-BCI is considered, the muscle artifact 
is negatively associated with SMR-BCI perfor-
mance. In order to maintain signal integrity and 
mitigate the effect of muscle artifact, EEG 
electrodes should be arranged centrally around 
the cranium. Optimization of these external 
variables along with internal variables may help 
achieve the intended application of widespread 
everyday SMR-BCI use among healthy and 
disabled users.76

The current literature for the effects of exter-
nal variables on SMR-BCI performance shares a 
significant limitation. Due to its limited avail-
ability, SMR-BCI research often includes small 
sample sizes. Larger sample sizes are needed 
to yield findings with more statistical power 
and evaluate the common goal of SMR-BCI 
performance in healthy users. We propose 
future perspectives of SMR-BCI research in 
the areas of virtual reality feedback, drones for 
motor enhancement, alternative modes of re-
petitive transcranial magnetic stimulation and 
optimal EEG placement and positioning for the 
improvement of SMR-BCI performance. SMR-
BCI research remains an exciting area of great 
promise for its future widespread application 
among both disabled and healthy users. Based 
on the data that we have reviewed, there are 
more internal rather than external variables 
affecting BCI performance. Therefore, we em-
phasize the need for evaluating these variables 
and optimizing them. We discuss the effect of 
internal variables on SMR-BCI performance in a 
separate review article.76
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