
Data Quality Management in Large-Scale

Cyber-Physical Systems

Ahmed Abdulhasan Alwan

School of Architecture, Computing and Engineering

University of East London

A thesis presented for the degree of

Doctor of Philosophy

July 19, 2021

Abstract

Cyber-Physical Systems (CPSs) are cross-domain, multi-model, advance informa-
tion systems that play a significant role in many large-scale infrastructure sectors
of smart cities public services such as traffic control, smart transportation control,
and environmental and noise monitoring systems. Such systems, typically, involve
a substantial number of sensor nodes and other devices that stream and exchange
data in real-time and usually are deployed in uncontrolled, broad environments.
Thus, unexpected measurements may occur due to several internal and external
factors, including noise, communication errors, and hardware failures, which
may compromise these systems quality of data and raise serious concerns related
to safety, reliability, performance, and security. In all cases, these unexpected
measurements need to be carefully interpreted and managed based on domain
knowledge and computational models.
Therefore, in this research, data quality challenges were investigated, and a com-
prehensive, proof of concept, data quality management system was developed to
tackle unaddressed data quality challenges in large-scale CPSs. The data quality
management system was designed to address data quality challenges associated
with detecting: sensor nodes measurement errors, sensor nodes hardware failures,
and mismatches in sensor nodes spatial and temporal contextual attributes. De-
tecting sensor nodes measurement errors associated with the primary data quality
dimensions of accuracy, timeliness, completeness, and consistency in large-scale
CPSs were investigated using predictive and anomaly analysis models via utilising
statistical and machine-learning techniques. Time-series clustering techniques
were investigated as a feasible mean for detecting long-segmental outliers as an
indicator of sensor nodes’ continuous halting and incipient hardware failures. Fur-
thermore, the quality of the spatial and temporal contextual attributes of sensor
nodes observations was investigated using timestamp analysis techniques.
The different components of the data quality management system were tested and
calibrated using benchmark time-series collected from a high-quality, temperature
sensor network deployed at the University of East London. Furthermore, the
effectiveness of the proposed data quality management system was evaluated
using a real-world, large-scale environmental monitoring network consisting of
more than 200 temperature sensor nodes distributed around London.

i

The data quality management system achieved high accuracy detection rate us-
ing LSTM predictive analysis technique and anomaly detection associated with
DBSCAN. It successfully identified timeliness and completeness errors in sensor
nodes’ measurements using periodicity analysis combined with a rule engine. It
achieved up to 100% accuracy in detecting potentially failed sensor nodes using
the characteristic-based time-series clustering technique when applied to two days
or longer time-series window. Timestamp analysis was adopted effectively for
evaluating the quality of temporal and spatial contextual attributes of sensor nodes
observations, but only within CPS applications in which using gateway modules
is possible.

ii

Acknowledgements

I would like to express my heartfelt appreciation to Professor Allan J Brimicombe,
Dr. Mihaela Anca Ciupala, Dr. Paolo Falcarin and Dr. Andres Baravalle for their
professional guidance and support throughout this research.

This research was sponsored by the University of East London (UEL) under the
PhD scholarship scheme 2017 and through the UEL Research Internship pro-
gramme 2019. Therefore, I am very grateful for the generous sponsorship and
kind support from UEL staff, in particular Richard Bottoms and Charlotte Forbes.

I would like to thank all my friends and staff in the Ministry of Planning - Iraq for
their continuous support.

I am deeply grateful for the collaboration with Thingful. Ltd, UK, in particular, I
thank Usman Haque for his insight and expertise that assisted the research.

iii

To Suad, My parents and Rawia

iv

Contents

Abstract i

Acknowledgements iii

Table of Contents iv

List of Figures xi

List of Tables xxi

List of Abbreviations xxv

Author’s declaration xxvii

1 Introduction 1

1.1 Cyber-Physical Systems . 1

1.2 Smart Cities as Large-Scale CPSs . 6

1.3 Research Motivation . 11

1.4 The Research Aim . 15

1.5 The Research Questions and Objectives 16

1.6 Novelty of Research . 18

1.7 Research Boundaries . 19

1.8 Research Structure . 20

2 Literature Review 22

2.1 Data Quality Concepts and Terminology 23

2.1.1 Accuracy . 24

v

2.1.2 Time-Related Accuracy (Timeliness) 25

2.1.3 Completeness (Completability) 28

2.1.4 Consistency . 30

2.2 Data Quality Challenges in Large-Scale CPSs, a Systematic Litera-
ture Review . 31

2.2.1 Review Motivation / Introduction 32

2.2.2 Review Process and Methodology 34

2.2.3 Review Conduct and Primary Studies Selection 40

2.2.4 RQ1: Data Quality Challenges in Large-Scale CPSs. 57

2.2.5 RQ2: Data Mining and Data Quality Management in Large-
Scale CPSs. 61

2.2.6 RQ3: Unaddressed Data Quality Management Challenges
in Large-Scale CPSs and The Research Gap. 67

2.3 The Research Questions . 70

2.4 Summary . 71

3 System Design (Methodology) 72

3.1 Overview of Research Paradigms . 72

3.2 Empirical Research Methods . 74

3.2.1 Quantitative . 74

3.2.2 Qualitative . 74

3.2.3 Mixed-Method (Triangulation) 75

3.3 Empirical Research Strategy . 76

3.3.1 Experimental . 76

3.3.2 Case Study . 77

3.3.3 Choosing the Research Methodology 77

3.4 System Design and Development Phases 81

3.4.1 System Analysis and Design 85

3.4.2 Data Acquisition Unit . 87

3.4.3 Data Quality Assessment Unit 91

3.4.4 Selecting Data Analysing Methods 96

3.4.5 Time-Series Decomposition 96

vi

3.5 Online Mode - Predictive Analysis Models 99

3.5.1 Simple Forecasting Methods 101

3.5.2 Holt-Winters Seasonal . 102

3.5.3 ARMA, ARIMA and Seasonal ARIMA Models 104

3.5.4 Gaussian Process Regression 110

3.5.5 Long Short-Term Memory Networks 112

3.6 Online Mode – Anomaly Analysis Models 114

3.6.1 Distance-Based Spatial Clustering (K-means) 121

3.6.2 Density-Based Spatial Clustering (DBSCAN) 123

3.7 Online Mode - Timestamp Analysis (Temporal Consistency) 127

3.8 Offline Mode - Time-series Clustering 130

3.8.1 Dynamic Time Warping . 134

3.8.2 K-Shape . 135

3.8.3 Characteristic-Based Time-Series Clustering 135

3.9 Offline Mode – Timestamp Analysis (Spatial Attributes Consistency)136

3.10 Summary . 142

4 Implementation and Results 143

4.1 Data Acquisition and Data Process 144

4.1.1 Sensor Node Networks . 144

4.1.2 Datasets . 150

4.1.3 Software Framework . 156

4.2 Online-Mode Data Quality Assessment 164

4.2.1 Predictive Analysis Models 165

4.2.2 Anomaly Analysis Models 207

4.2.3 Timestamp Analysis (Temporal Consistency) 220

4.3 Offline-Mode Data Quality Assessment 223

4.3.1 Time-Series Clustering Models 224

4.3.2 Timestamp Analysis Model (Spatial Attributes Consistency) 235

4.4 Discussion and Summary . 243

4.4.1 The Data Acquisition Unit (Layers 1 and 2) 243

vii

4.4.2 The Data Quality Assessment Unit 244

5 Conclusions and Future Work 253

5.1 Revisiting the Research Questions and Objectives 254

5.1.1 Review Question-1: . 254

5.1.2 Review Question-2: . 260

5.1.3 Review Question-3: . 260

5.2 Contribution to Knowledge . 262

5.3 Conclusions . 263

5.4 Future Work . 266

References 267

Appendices 291

A Technical and Implementation Details 292

A.1 Sensor Nodes Anatomy and Data Quality 292

A.1.1 Hardware Components . 293

A.1.2 Operating System . 294

A.2 The Technical Details of the Local Sensor Node Network 296

A.3 Technical Details of The Data Acquisition Unit 301

A.3.1 JSON Parsing and Duplication Prevention Trigger 307

A.3.2 The Periodicity Analysis Rule Engine. 308

A.4 Configuration and programming details 310

A.4.1 Holt-Winters predictive model 310

A.4.2 ARMA and ARIMA predictive models 313

A.4.3 SARIMA predictive model 320

A.4.4 GPR predictive model . 322

A.4.5 LSTM predictive model . 326

A.4.6 K-means and DBSCAN Partitioning Models 329

A.4.7 DTW and K-Shape Models 335

A.4.8 Characteristics (features)-based Model 338

viii

B Research Integrity and Technology RI Completion Certificate 342

ix

x

List of Figures

1.1 Cyber-Physical Systems structure diagram. 3

2.1 A holistic overview of the processes adopted in this systematic
literature review. 35

2.2 The number of SLR primary studies by the year of publication,
(October 2020). 42

2.3 The number of SLR primary studies by the country of publication. 43

2.4 The ratio of the data quality dimensions addressed by the SLR
primary studies. 59

2.5 The key data quality challenges in large-scale CPSs. 60

2.6 The most popular data quality assessment/management methods
or techniques in large-scale CPS applications based on the number
(left) and the ratio (right) of the SLR studies. 62

2.7 The most popular data mining techniques in large-scale CPSs based
on the No. of the SLR studies utilising these techniques. 63

2.8 The key data mining techniques used to assess the main data quality
dimensions in large-scale CPSs. 63

2.9 A holistic diagram of the main data quality management/assess-
ment methods and techniques and their associated data quality
dimensions that these techniques are addressing, based on the SLR
results. 64

3.1 The main processes of the experimental research approach. 77

3.2 The main processes of the case study research approach. 77

3.3 Research approaches based on the interconnection of Research
Methods, Design, and paradigms. 78

3.4 The logical sequence to decide the research methodology, methods
and techniques. 80

xi

3.5 A holistic overview of the research overall phases. 82

3.6 Adoptive SDLC iterations and the key development phases of the
data quality management system (Satzinger et al., 2015, p. 300). . . 83

3.7 A holistic view of the data quality assessment models’ development
activities (Brimicombe, 2009, p. 89). 84

3.8 The main components of the proof of concept data quality man-
agement system. The mode-model structure of the data quality
assessment unit is illustrated in Figure 3.11. 86

3.9 Sensor nodes data stream as discrete, time-stamped observations
snapshots (Appice et al., 2014). 90

3.10 The high-level process diagram of the data acquisition unit. 92

3.11 The mode-model structure of the data quality assessment unit and
data quality dimensions. 95

3.12 Additive time-series decomposition, a time-series of a single real-
world, temperature sensor node. 98

3.13 An example (demo data) of a time-series with a seasonality that its
magnitude varies with the trend (Brownlee, 2017a). 99

3.14 The high-level processes of a predictive data accuracy assessment
model. 100

3.15 Predictive analysis techniques examined in the context of this research.102

3.16 The high-level process diagram of Holt-Winters seasonal prediction
model. 105

3.17 The high-level process diagram of the ARMA, ARIMA and SARIMA
prediction models. 109

3.18 A introductory example to Gaussian Processes Regression (Pe-
dregosa et al., 2011). 111

3.19 Sensor node’s time-series as a (n x 1) array of observations. 113

3.20 Time-series transformation (vectorisation) concept. 113

3.21 LSTM time-series transforming process, time-steps = 7 in this example.114

3.22 The high-level process diagram of the LSTM predictive model. . . . 115

3.23 Spatial autocorrelations among time-series of ideal nearby sensor
nodes. 117

3.24 The irregularity in temperature levels around London due to the
impact of Urban Heat Islands. The line A to B is presented in
Figure 3.25, (MetOffice, 2019). 119

xii

3.25 The heat profile map of London highlighting the impact of urban
heat islands, (MetOffice, 2019). 120

3.26 Voronoi tessellation method to describe spatially partitioned two-
dimensional data, (Guo et al., 2003, P. 126). 120

3.27 K-means partitional clustering model flowchart diagram illustrating
K estimating process using the Silhouette coefficient analysis method.124

3.28 DBSCAN parameters and data points categorisation (Raschka &
Mirjalili, 2017, p. 373). 125

3.29 DBSCAN partitional clustering model flowchart diagram illustrat-
ing Eps estimating process using the Silhouette coefficient analysis
method. 126

3.30 An example of a typical, real-world time-series with data inconsis-
tency issues. 128

3.31 The different categories of the point (short) outliers, (SURI et al.,
2019, p. 180). 131

3.32 Different categories of temporal long outliers, (SURI et al., 2019, p.
180). 132

3.33 An illustration of how DTW warps one time series to another (Sal-
vador & Chan, 2007). 134

3.34 An example of a basic sensor node network topology. 137

3.35 Each sensor node observation may hold up to three different times-
tamps added from the network components. 139

3.36 The main processes of the timestamp analysis model. 141

4.1 The geographical distribution of the real-world sensor nodes net-
work used as a case study in this research, the Met Office (blue),
Open Weather Map (red) and Smart Citizen (green). 145

4.2 The estimated network topology of the large-scale sensor node
network. 147

4.3 The deployment map of the local sensor node network at the Uni-
versity of East London. 148

4.4 The topology of the local sensor node network. 149

4.5 The key attributes of the real-world, large-scale sensor nodes dataset.152

4.6 Time-series of seven days window of sensor nodes observations
aggregated by the variations range in their value attribute. 153

xiii

4.7 An example of two temperature time-series with long segmental
outliers (b and c) comparing with a typical time-series collected
from a functional sensor node (a). 154

4.8 Examples of the temporal inconsistencies in time-series of real-
world sensor nodes using time-series decomposition, (sensor ID=47qwbfba,
11-23/01/2019, London). 155

4.9 Time-series of 274 sensor nodes categorised according to the range
of number of observations (seven days window). 156

4.10 An example of sensor nodes that their coordinates do not reflect
their correct location. 157

4.11 The classes and main attributes of the data acquisition software. . . 159

4.12 The sequence diagram of the data acquisition unit. 160

4.13 Data-pipes details used by the data acquisition software to construct
the RESTful Requests URLs. 161

4.14 The JSON parsing process from the destination table into the corre-
sponding observations table, air quality table as an example. 163

4.15 The process diagram of the duplication prevention mechanism of
the data acquisition unit. 164

4.16 The algorithms and techniques empirically tested to validate the
accuracy of sensor nodes’ observations in real-time. 166

4.17 Time series decomposition of the benchmark time-series (Sensor ID:
Monnit/493372). 168

4.18 Time series decomposition of the real-world sensor node time-series
(ID: Thingful/jcw5m701). 170

4.19 The merge and re-sampling processes applied to the selected dataset
to become a time-series with the timestamp attribute as a common
index (Pandas, 2020). 171

4.20 The structure of Holt-Winters Python package and its input param-
eters (Seabold & Perktold, 2010). 171

4.21 Holt-Winters was tested with twenty-five different dataset combi-
nations with one step forward observation shift in each test. 172

4.22 The predictions accuracy of H-W were alternating randomly with
each new observation fitted to the model. 172

4.23 The RMSE of the H-W prediction models is rapidly and randomly
changing with each newly fitted observation. 173

xiv

4.24 H.W regressive model is showing inconsistency in the accuracy
of predictions between the ideal (left) and the real-world (right)
time-series at the same point in time. 174

4.25 H-W prediction model can not adapt to rapid changes in the trend
of the time-series. 174

4.26 The time required by the Holt-Winters seasonal model to render the
prediction result of the 25 sequential tests. 175

4.27 Testing the stationarity of ARMA training datasets by dividing each
dataset and comparing the mean and the variance values of each
sub-set. (left) ideal dataset, (right) real-world dataset. 178

4.28 The results of applying the ADF and KPSS stationarity tests on the
ideal dataset. 179

4.29 The results of applying the ADF and KPSS stationarity tests on the
real-world dataset. 179

4.30 The ACF and PACF diagrams of the real-world (stationary) dataset. 180

4.31 The values of ARMA parameters of the ideal dataset (a) and the
real-world dataset(b) determined using the Grid Search and AIC
method. 181

4.32 The values of ARIMA parameters for the ideal dataset (a) and the
real-world dataset(b) determined using the Grid Search and AIC
method. 182

4.33 The values of SARIMA parameters for the ideal dataset (a) and the
real-world dataset(b) determined using the Grid Search and AIC
method. 182

4.34 The residua ACF and PACF diagrams of the ARMA (2,2) model
applied to the real-world dataset. 183

4.35 The residuals of the ARMA (2,2) models applied to the real-world
dataset. 183

4.36 The result of fitting the ARMA (2,1) model with the testing part of
ideal dataset. 184

4.37 The results of fitting the ARMA (2,2) model with the testing part of
the real-world dataset. 184

4.38 The one-step forecast approach applied to the ARMA models using
the real-world dataset. 185

xv

4.39 An overview of the full dataset, SARIMA prediction graph (green)
and SARIMA one-step prediction approach using the real-world
dataset. 186

4.40 The time required to optimise the ARMA (a), ARIMA (b) and
SARIMA (c) models for both the ideal and real-world datasets. . . . 188

4.41 The time required by ARMA (a), ARIMA (b) and SARIMA (c) mod-
els to render predictions results. 189

4.42 The structure and parameters of Gaussian Process Regressor pack-
age provided by Scikit-learn (Pedregosa et al., 2011). 190

4.43 The result of fitting the ideal dataset to the basic GPR model. 192

4.44 The result of fitting the real-world dataset to the basic GPR model. 193

4.45 The result of fitting the ideal datasets to the GPR model with the
optimiser iterations set to 20 and alpha to 5. 194

4.46 The result of fitting the real-world datasets to the GPR model with
the optimiser iterations set to 20 and alpha to 5. 195

4.47 The time required by the GPR models to render prediction results
of 25 sequential test for the ideal (Blue) and the real-world (Orange)
datasets. 197

4.48 The output of the LSTM model fitted with the ideal dataset. 201

4.49 The output of the LSTM model fitted with the real-world dataset. . 202

4.50 The time required by the LSTM model to render prediction results
of 25 sequential test for the ideal(Orange) and the real-world(Blue)
datasets. 203

4.51 The LSTM prediction model using 0.34Co as the deviation threshold
was utilised successfully to detect value attribute anomalies in the
real-world dataset. 206

4.52 The accuracy data quality issues (anomalies) detected by the LSTM
prediction model when applied on the real-world dataset. 206

4.53 The geographic distribution of all available temperature sensor
nodes over a real-scale map (London 04/2020). 209

4.54 K-means main parameters by scikit-learn (Pedregosa et al., 2011). . 209

4.55 Silhouette analysis to determine K-means k, the highest score was
reached at K=115. 210

4.56 The outcome of applying K-means (K=115) represented by Voronoi
tessellation approach plotted over the landscape of London, the
blue dots are the centroids of the clusters. 211

xvi

4.57 K-means model renders different outcomes after applying it many
times on the same dataset. 212

4.58 The time (Sec) required by K-means to render the clustering results
applied to the same dataset while testing a range of K (1 to 360). . . 213

4.59 DBSCAN algorithm’s main parameters applied using "cluster.DBSCAN"
Python package provided by Scikit-learn (Pedregosa et al., 2011). . 214

4.60 DBSCAN highest Silhouette score was obtained at Eps = 1.66 Km. . 215

4.61 DBSCAN clustering result, the blue lines are highlighting high-
density regions (S > 3) of sensor nodes distribution, the red arrows
(added manually) are showing examples of sensor node(s) in low-
density areas. 216

4.62 DBSCAN spatially partitioned the available data-points (sensor
nodes) into 50 clusters at Eps= 1.66. 216

4.63 The time (Sec) required by DBSCAN to render the clustering results
applied to the same dataset while testing a range of Eps (0.2 - 4 Km
40 step). 217

4.64 DBSCAN clusters labels and the number of sensor nodes in each
cluster. 218

4.65 The eight of the 47 sensor nodes in cluster-5 that streamed observa-
tions between ’2020-03-15 23:49:59’ and ’2020-03-15 23:59:59’ of the
real-world dataset. 219

4.66 Outlier detection in sensor nodes observations using anomaly anal-
ysis and spatial partitioning techniques. 220

4.67 The data stream as a two-dimensional array of Ct, Ct−1 observa-
tions to calculate the interval between every two sequential obser-
vations. 221

4.68 Aggregating observations intervals to determine the Threshold
Interval tThs for each sensor node. 222

4.69 An example of the logical expressions (policies) used inside the rule
engine. 222

4.70 The result of applying the timestamp analysis approach for tempo-
ral consistency assessment on the ideal dataset. 223

4.71 The result of applying the timestamp analysis approach for tempo-
ral consistency assessment on the real-world dataset. 223

4.72 The algorithms and techniques adopted and evaluated within the
context of the offline unit (module) of the data quality assessment. 224

xvii

4.73 The process diagram of the technical steps implemented to fit all
available time-series as a 3D array into the Dynamic Time Warping
(DTW) and K-Shape time-series clustering models. 227

4.74 DTW and K-Shape were able to successfully differentiate the in-
doors time series (incipient faults pattern) from other outdoors
time-series. 228

4.75 DTW successfully separated time-series with the long segmental
outliers from other (typical) time-series when applied to 7-days
window real-world dataset. 229

4.76 K-Shape successfully separated time-series with the long segmental
outliers from other (typical) time-series when applied to 7-days
window real-world dataset. 229

4.77 DTW is not able to differentiate time-series with long segmental
outliers from other typical time-series after it was applied to a
shorter two days’ time-window of real-world time-series. 230

4.78 K-Shape is less able to differentiate time-series with long segmental
outliers from other typical time-series after it was applied to a
shorter, two days’ time-window, of real-world time-series. 231

4.79 The feature-based time-series clustering method was able to dif-
ferentiate the indoors, incipient faults time series from the other
time-series of the ideal dataset. 232

4.80 The process diagram of the technical steps implemented to fit all
available time-series to the features-based time-series clustering
model. 233

4.81 The feature-based time-series clustering technique successfully dif-
ferentiated time-series with long segmental outliers when applied
to the real-world (seven days’ time window). The Graph lines with
the same colour belong to the same cluster. 234

4.82 The feature-based time-series clustering technique successfully dif-
ferentiated time-series with long segmental outliers even when
applied to relatively short two days’ time-series window of the
real-world dataset. The Graph lines with the same colour belong to
the same cluster. 234

4.83 The performance of the CPU four cores and the time required to
perform the same task by DTW comparing to K-Shape, each graph
line represents the performance of a single CPU core. 235

4.84 A time-window from the ideal dataset presenting observation from
all available (four) sensor nodes. 236

xviii

4.85 Applying ydt − ydt−1 rendered multiple values of Gdc and its mul-
tiplications for each sensor node. 237

4.86 Gdc intervals were approximated, aggregated and aggregated again
according to their greatest common divisor to determine the duty-
cycle of gateway modules for each sensor nodes. 238

4.87 Gdc, the gateway duty-cycles (if any) of the real-world sensor nodes
were replicating the duty-cycle of the data acquisition unit. 239

4.88 The geographical distribution of the Met office sensor nodes, high-
lighting the two sensor nodes of Kensington. 241

4.89 The two sensor nodes of Kensington as a reference to measure the
shortest distance between any two sensors in the Met Office sensor
node network used in this case-study. 241

4.90 Using the GPS-distance between coordinates calculator (GPS-Coordinates,
2020), revealed that Kensington sensors are separated by 255 meters
(0.26 KM). 242

A.1 The main components of a typical wireless sensor node (Vacca, 2015,
p. 2-1). 293

A.2 A representation of sensor-nodes components interaction chain (Forster,
2016). 295

A.3 The full network topology of the sensor node networks utilised in
this research. 300

A.4 The deployment diagram of the data acquisition software. 305

xix

xx

List of Tables

1.1 Cyber-physical systems cross-domain applications in the context of
smart cities. 10

2.1 SLR Review Questions and Objectives. 34

2.2 The SLR Search Terms and Keywords. 36

2.3 The list of the examined digital libraries to be used for the purpose
of the SLR. 37

2.4 The list of the most relevant digital libraries used for identifying
the SLR primary studies. 38

2.5 The SLR Inclusion and Exclusion Criteria. 38

2.6 The SLR Quality Assessment Questions (Matrix). 40

2.7 The SLR digital libraries, final search strings and the number of
identified primary studies. 41

2.8 The final number of primary studies included in the SLR after
applying the inclusion and exclusion criteria and fully reviewing
all studies. 43

2.9 Primary Studies Referencing Details and their Overall Quality As-
sessment Score. 45

2.10 Results of the SLR data extraction process addressing data quality
main challenges and the proposed solutions in large-scale CPS. . . 47

3.1 Qualitative and quantitative methods in empirical research strategies. 76

3.2 The main attributes of sensor nodes data streams in large-scale CPSs. 90

4.1 The four time-series of the ideal dataset (a snapshot). 151

4.2 The main attributes of the ideal dataset. 151

4.3 ARMA models parameters and requirements. 177

xxi

4.4 The RMSE of the ARMA prediction models for the ideal and the
real-world datasets. 187

4.5 A list of sensor nodes providers of all sensors used in this case-study.240

4.6 The evaluation results of the prediction analysis models applied to
the ideal and real-world datasets. 246

xxii

xxiii

Acronyms

AIC Akaike Information Criterion. 107

ARIMA Non-seasonal Autoregressive Integrated Moving Average. 108

ARMA Autoregressive Moving Average. 104

BIC Bayesian Information Criterion. 107

CPSs Cyber-Physical Systems. i, 11, 22, 32, 57

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 51–53,
65, 121, 208

DQ Data Quality. 23

DQCs Data Quality Characteristics. 23

DQDs Data Quality Dimensions. 23

ECSs Embedded Computing Systems. 32

GCD Greatest Common Divisor. 236, 251, 259

GPR Gaussian Process Regression. 110

H-Ws Holt-Winters seasonal. 102

HRTSs Hard Real-Time Systems. 4

IoT Internet of Things. xxviii, 5, 48

ISO International Standardization Organisation. 23

LSTM Long Short-Term Memory. 112

RNN Recurrent Neural Networks. 112

xxiv

SARIMA Seasonal Autoregressive Integrated Moving Average. 108

SD Standard Deviation. 24

SLR Systematic Literature Review. 31, 34

SRTSs Soft Real-Time Systems. 4

SSNs Smart Sensor Networks. 54

TRC Time-Related Accuracy. 25

TSD Time-Series Decomposition. 96

UHI Urban Heat Islands. 118, 207

WSNs Wireless Sensor Networks. 5, 30

xxv

xxvi

Author’s declaration

At no time during the registration for the degree of Doctor of Philosophy has the
author been registered for any other University award. Work submitted for this
research degree at the University of East London has not formed part of any other
degree either at the University of East London or at another establishment.

Relevant scientific seminars and conferences were regularly attended at which
work was often presented:

Publications:

A. A. Alwan, M. A. Ciupala, A. Baravalle and P. Falcarin, "HADES: a Hybrid
Anomaly Detection System for Large-Scale Cyber-Physical Systems," 2020
Fifth International Conference on Fog and Mobile Edge Computing (FMEC),
Paris, France, 2020, pp. 136-142, doi: 10.1109/FMEC49853.2020.9144751.

Alwan A.A., Baravalle A., Ciupala M.A., Falcarin P. (2019) An Open Source Soft-
ware Architecture for Smart Buildings. In: Arai K., Kapoor S., Bhatia R. (eds)
Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent
Systems and Computing, vol 869. Springer, Cham, doi:10.1007/978-3-030-
01057-7_14.

Publications Under Progress:

The Quality of Data in Smart Cities’Cyber-Physical Systems: A Systematic Re-
view.

Predictive Analysis for Data Quality Assessment in Large-Scale Cyber-Physical
Systems.

Time-Series Clustering for Fault Detection in large-Scale Cyber-Physical Systems.

The published and the under progress research papers are listed in Appendix ??.

xxvii

Presentations and conferences attended:

Training Internship: for two months at Thingful. Ltd, an IoT company based in
London, (30/04/2019 - 30/06/2019).

Training: Participating in the "5th International Winter School on Big data" at the
University of Cambridge, (07/01/2019 - 11/01/2019).

Training: Participating in "O’Reilly Artificial Intelligence training workshops",
London, (15/10/2019 - 17/10/2019).

Training: Participating in the summer school of "Building tomorrow society: IoT
applications and data management" at the University of Politecnico di Torino
/ Italy, (16/07/2018 - 20/07/2018).

Conference: Attending the “Intelligent Systems Conference (IntelliSys)”, London,
(05/09/2019 - 06/09/2019).

Poster: Participating in the AI round table event organised by the University of
East London, the poster title is: Large-Scale Cyber-Physical Systems in the
Built Environment: Real-Time Data Quality management, (15/11/2018).

Poster: Participating in UEL Excellence and Stuart Hall Scholarship awardees
and posters competition, the poster title is: Smart Cities as Cyber-Physical
Systems, (23/11/2017).

Word count for the main body of this thesis: ' 52K

Signed:

Date:

xxviii

Chapter 1

Introduction

“A challenge for our community, ..., is: How can we

design cyber-physical systems people can bet their

lives on?."
— Wing (2008)

This chapter is an introduction to cyber-physical systems and their implementa-

tions in smart cities’ large-scale applications. It also provides some insights into

the research overall context, its aim, objectives and scope.

1.1 Cyber-Physical Systems

Cyber-physical systems (CPSs) are integrated systems engineered to combine

computational and physical capabilities effectively using an embedded communi-

cation core (Törngren et al., 2017; Platzer, 2019). One of the earliest highlights to

the emergence of the concept of ‘cyber-physical systems’ was by Helen Gill in the

US National Science Foundation (NSF) Workshop on Cyber-Physical Systems in

October 2006 in Austin, Texas (Lee, 2006; Greer et al., 2019).

Helen Gill defined CPSs as “physical, biological, and engineered systems whose opera-

1

tions are integrated, monitored, and/or controlled by a computational core. Components

are networked at every scale. Computing is “deeply embedded” into every physical com-

ponent, possibly even into materials. The computational core is an embedded system,

usually demands real-time response, and is most often distributed. The behavior of a

cyber-physical system is a fully-integrated hybridization of computational (logical) and

physical action” (Gill, 2008b, p.3).

According to Sanislav & Miclea (2012)(p.28) "CPS integrates computing, communica-

tion and storage capabilities with monitoring and/or control of entities in the physical

world, and must do so dependably, safety, securely, efficiently and real-time" (Sanislav &

Miclea, 2012, p.28).

Based on the above definitions, it possible to highlight some of the fundamental

characteristics of CPSs as follows:

Deeply coupled with their environment: CPSs are thoroughly connected with

the physical world, CPSs monitor and control physical processes via physical

components, such as sensors and actuators combined with cyber compo-

nents, such as computer control algorithm where both components are con-

nected using many other subsystems such as signal converters and network

modules (Gumzej, 2018; Rawat et al., 2015). Generally, the physical world

within the context of CPSs paradigm is characterised as follows:

• Physical system covers all engineered systems which ideally aligned

with CPSs topology of real-time sensing, actuating and control e.g

automated production lines and programmable controllers based power

grids (Bordel et al., 2017; Gunes et al., 2014; Greer, 2014). CPSs utilises

sensor nodes for collecting measurements from the physical system

and send them as raw data to the control centre. Based on the received

data, the control centre generates feedback and sends it to the actuators

which regulate the physical conditions, as shown in Figure 1.1. This

2

cycle ultimately achieves the self-awareness of the system via its ability

to assess and correctly adjust its behaviour and performance in real-

time (Zhang et al., 2011; Kounev et al., 2018).

Figure 1.1: Cyber-Physical Systems structure diagram, (Zhang et al., 2011, p. 317).

• Physical environment in which CPSs monitor physical phenomena

and depending on the application domain might generate feedback to

control or support another sub-controlling system, such as in the case

of environmental, health monitoring, infrastructure health monitoring

systems (Bordel et al., 2017; Greer, 2014) and CPSs-based Building Infor-

mation Management (BIM) systems (Smarsly et al., 2017). CPSs control

(actuation) in such applications could be via physical actuators or could

be through software element of control (virtual actuation) (Smarsly

et al., 2017). CPSs are typically integrated into the physical environment

via wired or wireless sensor networks while the actuators (physical ac-

tuators) affect the environment in form of automatic sprinkling pumps,

alarms, and light, humidity or temperature regulators (Forster, 2016, p.

7).

Composed of heterogeneous entities: CPSs cover a wide range of applications

3

which have different degrees of complexity. e.g. a facility management cyber-

physical system typically relies on few sensor nodes distributed in a building.

In contrast, an environmental monitoring cyber-physical system usually

relies on hundred of sensor nodes distributed over a vast geographical

area (Gumzej, 2018; Chauhan et al., 2016).

Networked: communications and data exchange are deeply embedded in the

design of CPSs. Network integration among the different components (sen-

sor nodes, control unit(s) and actuators) of CPSs is an essential condition for

proper functionality (Gumzej, 2018; Gill, 2008a).

Real-time systems: typically, CPSs monitor and adjust their status continuously

in a nearly real-time fashion. CPSs real-time requirements depend on the

type, size and the level of the system complexity (Hu, 2014, p. 81). In

general, real-time systems are expected to function on a timely basis while

keeping a significant small and acceptable timeline for response. Thus, the

correctness of real-time systems is accounted for the accuracy and the timing

for their outcomes (Möller, 2016, p. 97). According to Burns & Wellings

(2001)1 real-time systems can be categorised into:

• Hard real-time systems (HRTSs): systems which require responses

within very restricted time deadlines, for example, aircraft’s control

systems, which may lead to a catastrophe in case of missing responses

deadlines.

• Soft real-time systems (SRTSs): systems (or sub-systems) which are

less restricted with responses deadlines, such systems can maintain a

relatively normal functionality even after missing few deadlines. For

example, data acquisition systems, which typically should collect sensor

nodes observations according to a specified frequency, however, such

1Pages 2-3, also available online: https://www.cs.york.ac.uk/rts/books/RTSBookThirdEdition.html

4

systems may tolerate some intermittent delays.

Cyber-physical systems is an umbrella term that covers many other disciplines

associated with robotics, automation, industrial management systems, and the

Internet of Things. All these systems share the same high-level functionalities of

sensing, controlling and regulating physical processes based on decisions made

by a computerised unit and using a communicate means (Fink et al., 2017, p.

133). CPSs and the Internet of Things (IoT) share the same definition and have

a lot of common characteristics and many common applications. However, IoT

emphasises Internet connectivity while CPSs do not necessarily require Internet

connectivity (Törngren et al., 2017, p. 5), therefore, many of IoT projects can be

considered as CPS applications (Minerva et al., 2015, p. 24).

Applications that involve a large number of sensor nodes and, or actuators de-

ployed over a broad geographical territory are considered as large-scale CPSs (Rawat

et al., 2015, p. 182, 228). For example, applications such as environmental monitor-

ing systems, typically involve a wide network of wireless sensor nodes deployed

over a vast geographical area forming a large-scale CPS (Benyuan Liu & Towsley,

2004; Mois et al., 2016; Sanislav et al., 2014; Ahmed et al., 2017). A sensor network

may consist of a group of a few to thousands of specialised sensor nodes connected

to each other or to an external server via wired or wireless medium (Sohraby et al.,

2007, p. 15). "A sensor network is an infrastructure consisting of sensing, computing,

power source, and communication elements, which offer the ability to observe, instrument,

and react to events and phenomena in a specified environment" (Siddesh et al., 2015, p

106).

Wireless Sensor Networks (WSNs) were adopted successfully in environmental

monitoring applications based on many small and self-powered sensor nodes

connected by an ad-hoc wireless networking protocol (Fitriawan et al., 2017).

WSNs is the result of the recent development of networked wireless technology

5

and the emergence of small, embedded, inexpensive, low-power consumption

microprocessors which emerged as an essential mean for monitoring and exploring

some phenomena in remote and harsh environments (Alhmiedat, 2015). According

to Forster (2016) "cyber-physical system (CPS) is a newer term for a wireless sensor

network...when being integrated into a physical environment" (Forster, 2016, p 7).

The control action (actuation) of a sensor network encompasses three main tasks:

coverage control, data source detection, and on request data collection (Cassandras,

2016; Lamnabhi-Lagarrigue et al., 2017).

Sensor nodes within WSNs are low-cost monitoring devices with one major draw-

back of their limited power capacity, which may limit their service lifetime (Antoo

& Mohammed, 2014). Typically, WSNs are deployed in open remote environ-

ments. Unexpected measurements may occur due to external effects or internal

malfunctions in the sensor nodes. In both cases, these unexpected measurements

(anomalies) need to be carefully managed and interpreted based on domain knowl-

edge discovery and computational models (Chen et al., 2018). More details about

WSNs limitations and their impact on the quality of data in CPSs are outlined in

the next chapter.

1.2 Smart Cities as Large-Scale CPSs

Smart cities are "Cities using technological solutions to improve the management and

efficiency of the urban environment" (European Commission, 2021). A smart city uses

modern technology in everyday urban life such as logistics, transport systems,

security, safety, energy efficiency sustainability (Giffinger & Pichler-Milanović,

2007). Smart cities provide services based on collecting and analysing data from

the environment using sensors, video cameras and social media means to support

data-driven decisions related to how and when to take action by city operators or

automatically (Cisco, 2020). Therefore, smart cities can be viewed as large-scale,

6

heterogeneous CPSs that utilise technologies like the Internet of Things (IoT),

surveillance cameras, social media, and others to make informed decisions and

drive the innovations of automation in urban areas (Zanni, 2015; Rhee, 2019).

CPSs are an active area of research (Ashibani & Mahmoud, 2017; Lohstroh et al.,

2018), with a significant importance to the future of smart cities and the fourth

industrial (Industry 4.0) revolution (Haseeb et al., 2019). CPSs are the next genera-

tion information systems that integrate communication, computation, and control

to achieve higher performing buildings and better public services with more

energy-efficient operations and a higher level of automation (Foehr et al., 2017).

CPSs are multidisciplinary cross-domain systems that bring together different

sectors of smart cities’ public services, such as smart transportation management,

smart utility management, smart buildings, smart environment management and

smart governance, where data sensing, knowledge extraction, and higher automa-

tion are critical elements in the future of these services (Wu et al., 2016, p. 303), for

example:

• London Air Quality Network (LAQN)2: A network of weather and air pol-

lution monitoring devices mounted in cabins distributed in fixed site around

London and southeast England to provide a long sequence of independent

scientific measurements from the same location. LAQN measurements are

used to assess air pollution across London and to track trends over time that

support government policies, future planning, and research related to the

effect of air pollution on health. The monitored air pollution parameters

mainly cover Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Ozone (O3),

PM10 Particulates, PM2.5 Particulates, and Sulphur Dioxide (SO2) which are

normally collected every 15 minutes to provide real-time indicators to other

business bodies or public services provides such as Business Improvement

Districts (BIDs), TfL and Defra (Environmental Research Group, 2021; De
2London Air Quality Network: https://www.londonair.org.uk/LondonAir/Default.aspx

7

et al., 2017).

• Smart Santander:3 proposes a unique city-scale experimental research facil-

ity in support of smart applications and services for a smart city. The project

mainly supports advance large-scale CPS/IoT research utilising 20,000 sen-

sors, 12,000 of which are deployed in Santander and the rest in Belgrade,

Guildford and Lübeck. The sensor networks exploit a variety of urban disci-

plines using static (fixed) sensors such as environmental, traffic, parking slots

and agriculture monitoring and cover a wide range of parameters such as

temperature, pollution (CO), noise levels, light density, traffic volumes, road

occupancy, vehicle speed, moisture, humidity and wind speed. The project

supports mobile sensing via attaching sensors to public service vehicles such

as public transport buses. The collected data were used in numerous experi-

ments to enhance the quality of the monitored public services. Furthermore,

the collected data were utilised in many augmented reality and participatory

sensing applications (Smartsantander, 2021; De et al., 2017).

• Barcelona Digital City4: is a platform for technological innovation for the

city services. The project benefits from a network of 500 kilometres of fiberop-

tic cables extended within the city utilised as a backbone network for 12

different large-scale CPS/IoT systems including transportation, water, waste

and energy management and covering 83 smart applications across the city

different urban disciplines. The project involves static (fixed) sensors such as

cameras, infrared detectors, air quality sensors, irrigation and water levels

monitoring sensors deployed to monitor public transport facilities, parks,

traffic and pavement status. The collected data were also shared through an

open-source web-based platform (Barcelona Ciutat Digital, 2021; LAURA,

2016; De et al., 2017).

3SmartSantander: https://www.smartsantander.eu/
4Barcelona Digital City: https://ajuntament.barcelona.cat/digital/ca

8

Most of these large-scale CPSs can be considered as heterogeneous and multi-

model information systems which analyse a massive amount of data collected

from various devices provided by different manufacturers (Barnaghi et al., 2015).

Typically, smart cities’ large-scale CPS applications are designed to sense, process

and react to changes in a real-time fashion (Hakiri & Gokhale, 2014). These

systems rely on hundreds of sensor nodes and other devices which usually sense

and stream readings of various parameters constantly producing a large volume

of data known as Big Data (Badidi et al., 2018). The term Big Data describes a

massive volume of complex and different types of structured and unstructured

data that accumulate in a relatively high velocity (Kale et al., 2019, p. 5). Mining

and analysing big data has a significant role in providing a rich source of data

about smart cities’ utilities and citizens’ activities which provide more efficient

management, better services and sustainable development (Bibri, 2018, p. 24).

CPSs implementations in different sectors of smart cities, public services are listed

in Table 1.1, which also highlights big data and data quality management as

common challenges across all of these large-scale CPS applications.

More details about data quality concepts, terminology, dimensions and challenges

associated with large-scale CPSs are outlined in chapter-2.

9

Table 1.1: Cyber-physical systems cross-domain applications in the context of smart cities.

CPS applications /
systems

Smart
Environment

Smart
Transportation

Smart
Healthcare

Human activity /
Smart spaces

Smart
Governance

Smart utility
management

X(1) 5 X(2) X(3) X(4) X(5)

Traffic and road
management

X(6) 6 X(7) - X(8) X(9)

Sensors and sensing
technology

X(10) 7 X(11) X(12) X(13) X(14)

Energy management X(15) 8 X(16) - X(17) X(18)

Common challenges of large-
scale CPS in smart cities
Big Data management X(19) 9 X(20) X(21) X(22) X(23)
Data quality management X(24) 10 X(25) X(26) X(27) X(28)

5 1-Včelák et al. (2017), 2-Mahmood & Zubairi (2019), 3-Goldberg & Zhang (2018), 4-Kim (2017), 5-Zhang et al. (2019).
6 6-Naik et al. (2018), 7-Brincat et al. (2019), 8-Lin et al. (2020), 9-Naik et al. (2018).
7 10-Liu et al. (2017), 11-Herrera-Quintero et al. (2018), 12-Bose et al. (2016), 13-Bonafini et al. (2019), 14-Santos et al. (2017).
8 15-Bisadi et al. (2018), 16-Patel et al. (2018), - , 17-Walia et al. (2019), 18-Minoli et al. (2017).
9 19-Andrés (2016), 20-Rathore et al. (2015), 21-Chen et al. (2018), 22-Lee et al. (2020), 23-Liu et al. (2012).

10 24-Fang (2018), 25-Shukla et al. (2016), 26-Larburu et al. (2015), 27-Luo et al. (2019), 28-Lawson & Ramaswamy (2016).

10

1.3 Research Motivation

Cyber-Physical Systems (CPSs) are designed as a network of computational ele-

ments that combine physical input and output mechanisms to interact with the

surrounding environment (Robbins & Tanik, 2013, p. 142). CPSs are getting more

popular in the context of large-scale, smart cities applications which produce a

significant amount of data from numerous devices raising quality-of-service con-

cerns mainly related to real-time big data analysis and data quality management

(Sta, 2019; R. et al., 2020; Kim et al., 2019). CPSs are data-driven decision-making

system which optimises or control physical processes in the real world, therefore

ensuring the quality of the data is crucial for CPSs successful operation. CPSs may

cause significant consequences in case of interpreting faulty data, which impact

the soundness of their decisions and thus reduce the quality of their service (Sha

& Zeadally, 2015).

The quality of data in CPS applications is mainly affected by inaccurate observa-

tions that do not represent the real value of the measured phenomena (Geisler

et al., 2016) and to delay in receiving observations especially in real-time applica-

tions (Bhargavi, 2016, p. 52). Data quality issues may occur in large-scale CPSs

due to many reasons such as sensor nodes malfunctions (Labouseur & Matheus,

2017), calibration issues, poor sensor nodes quality, environmental effects, exter-

nal noise (Okafor et al., 2020), networks or communication errors, and real-time

scheduling problems (Sha & Zeadally, 2015; Kim et al., 2016). Furthermore, limita-

tions in communication channels may cause observations’ overlooking in sensor

networks during data transmission or aggregation processes (Barnaghi et al., 2015;

de Aquino et al., 2019).

The challenges of data quality management becomes greater in large-scale CPSs,

e.g. in environmental monitoring systems, which rely on various sensors and other

11

devices connected by extended networks and usually operate under noisy and

dynamic conditions (Lawson & Ramaswamy, 2016; Liu et al., 2014; Labouseur &

Matheus, 2017). Such applications have enormous technical challenges due to their

multiple layers and complex structure that companies hardware, software, analyt-

ical algorithms, business knowledge and communication infrastructure (Togneri

et al., 2019). Large-scale environmental monitoring CPS, typically, involve a large

number of low-cost sensor nodes deployed in broad geographical terrains forming

a large-scale Wireless Sensor Network (WSN) (Okafor et al., 2020; de Aquino

et al., 2019; Abid et al., 2015). Failures in sensor nodes and sensor networks are

an inevitable events in large-scale CPSs, which may cause severe data missing,

produces invalid information and potentially reduce the quality of their service (Li

et al., 2019). Sensor nodes in environmental monitoring CPS applications stream

observations with various attributes such as temperature, humidity, wind speed

besides other contextual attributes such as timestamp and locations coordinates.

The impact of the occurrence of quality data issues with any of these attributes

(faulty data) scales from making wrong data available to stakeholders in the best

case in to tragic consequences in case of failing to support critical CPS decision

in case of major environmental events such as floods, water pollution of forest

fires (Drăgoicea et al., 2019).

In general, sensor nodes in WSNs have limited computing power, limited storage

capacity and limited transmission radius (Lawson & Ramaswamy, 2016; Bhuiyan

et al., 2017). Therefore, wireless sensor nodes can not send observations to a remote

data destination (the sink) directly. Alternatively, a hub device or other sensor

nodes works as a bridge to transfer other sensor node’s observations. sensor

nodes that are closer to the sink consume more power because they support

other sensors to transmit their observations and are expected to have more power

failures causing data quality issues (Liao et al., 2019; Togneri et al., 2019). Therefore

sensor nodes may determine the network lifetime based on their battery capacity

12

and may impact the system’s quality of information (Du et al., 2016).

Typically, wireless sensors nodes of WSNs are distributed according to a spatial or

geographical logic over the targeted environment, (Bhajantri & Pundalik, 2017).

Large-scale applications which exchange geographic information may face spatial

data quality challenges mainly due to the amount of the delivered data from

remote sensing devices which may directly affect the correctness of related spatial

analysis and spatial decision making, (Bahl, 2015). Thus, data quality challenges

are not only related to observations value attributes but also to mismatches in sen-

sor nodes temporal and spatial contextual attributes (Togneri et al., 2019; Barnaghi

et al., 2015).

As illustrated in Table 1.1, data quality challenges are associated with all major

large-scale CPSs in the context of smart cities applications, e.g. smart environment

monitoring systems (Andrés, 2016) , smart transportation (Rathore et al., 2015),

smart healthcare (Chen et al., 2018), human activity and smart spaces manage-

ment (Lee et al., 2020), and smart governance (Liu et al., 2012).

Based on the result of the systematic literature review illustrated in Chapter 2,

it was possible to identify unaddressed data quality management challenges in

large-scale CPSs which this research is bridging and for providing evidence to

support the research questions as follows:

1.3.0.1 Sensor nodes’ Measurement Errors Detection

The SLR primary studies which adopted prediction analysis models as data accu-

racy assessment techniques are sharing the following limitations:

1. All of the proposed prediction analysis models were based on an assumption

that data accuracy issues occur for a short interval of time (point outliers).

None of the SLR primary studies proposed a solution to address data ac-

13

curacy issues associated with long outliers. Long outliers change the time-

series’ pattern, so the inaccurate observations appear as the standard. In

case, a time-series with long outliers is used as the predictive model training

dataset. It will compromise the modes’ ability to detect data accuracy issues

correctly.

2. No systematic method or approach was demonstrated by any of the SLR

empirical primary studies on how it was possible to ensure the quality of

real-world dataset used to train or calibrate the predictive analysis model.

3. None of the SLR primary studies provided a comparison or a justification

for why a particular predictive analysis technique was chosen over another.

For example, it is not clear when to apply deep learning neural networks as

a predictive technique (Krishna, 2018) instead of linear regression (Okafor

et al., 2020).

4. SLR primary studies that investigated anomaly analysis as a solution to

evaluate the accuracy of sensor nodes measurements by comparing their

observations with different sensor nodes or to a pre-calculated threshold

value were based on the assumption that these sensor nodes are spatially

correlated. However, this assumption is not necessarily always valid in large-

scale CPSs. The spatial continuity among sensor nodes in large-scale CPS

applications might be compromised because of the vast distance separating

these devices or other factors that disrupt the spatial continuity constraints,

as detailed in Section 2.2.5.1 and Section 3.6.

1.3.0.2 Sensor nodes’ and Sensors Networks’ Failures Detection

The SLR primary studies provided no systematic method or a generic approach for

detecting sensor nodes and sensor node networks hardware failures in large-scale

CPSs. All proposed failure detection mechanisms were mainly domain-specific

14

solutions. For example, signal processing techniques were utilised for monitoring

the hardware status of a Chinese network of weather radars by Togneri et al. (2019)

which can not be applied as a generic solution for hardware failures detection in

sensor node networks of large-scale CPSs.

1.3.0.3 Ensures the Quality of Observations’ Spatial and Temporal Contextual

Attributes

The SLR primary studies revealed that further research is required to address the

challenge of ensuring the quality of sensor nodes contextual information of both

spatial and temporal attributes. Spatial data quality issues (sensor nodes location)

may affect the validity of any related spatial analysis. Furthermore, very limited

or no research have practically investigated the possibility of using observations

timestamp analysis techniques as a potential solution to improve the quality of

sensor nodes spatial contextual information.

The systematic literature review protocol, methodology and data analysis results

are detailed in Section 2.2.

1.4 The Research Aim

This research aims to:

To develop a comprehensive data quality management system for large-scale

cyber-physical systems and empirically evaluate its validity.

Data quality management is a set of procedures and activities that aim to fulfil

data quality requirements by continuously monitoring, measuring, and ensuring

data fitness for use. The aim of this research, practically, is the development

15

of a data quality management system to detect data quality issues associated

with errors in sensor nodes measurements, sensor nodes hardware failures that

affect the quality of their measurements, and to detect mismatches in sensor

nodes’ observations spatial and temporal contextual attributes11. Furthermore, to

evaluate the proposed data quality management system using observations from

real-world sensor node networks. The data quality management system must

be comprehensive in the context of its ability to simultaneously detecting sensor

nodes measurement errors associated with the main data quality dimensions of

accuracy, timeliness, completeness and consistency in large-scale CPS applications.

1.5 The Research Questions and Objectives

As detailed in Chapter-2, Section-2.2, the systematic literature review has provided

evidence to support the research questions (listed below), thus, a set of objectives

were set to address these research questions and ultimately fulfil the aim of the

research, as follows:

RQ-1: Is it feasible to develop a proof-of-concept data quality management

system for large-scale CPSs that can; (1) detects sensor nodes measurements

errors associated with the four main data quality dimensions of accuracy,

timeliness, completeness, and consistency, (2) detects hardware failures in

sensor nodes and sensors’ communication networks and (3) ensures the

quality of both spatial and temporal contextual attributes of sensor nodes

observations. To address this question the following objectives were set:

Objective 1: To investigate data quality challenges in large-scale cyber-

physical systems based on the literature and based on empirical data

11The features of the proposed proof-of-concept data quality management system were deter-
mined based on the outcomes of a systematic literature review illustrated in Chapter 2

16

analysis of observations collected from a real-world, large-scale sensor

node network.

Objective 2: To investigate data mining techniques that may support the

research aim, such as predictive and anomaly analysis techniques, time-

series and timestamp analysis techniques.

Objective 3: To construct, test and evaluate all the required models, com-

ponents and tools of the proof-of-concept data quality management

system to address the research aim. The data quality management

system is expected to detect errors in sensors measurements, sensor

nodes hardware failures, and mismatches in sensor nodes’ spatial and

temporal contextual attributes.

RQ-2: Is it possible to empirically evaluate the effectiveness of the proposed

data quality management system using a real-world, large-scale sensor node

network as a case-study?

Objective 4: To evaluate the effectiveness and performance of the proposed

data quality management system utilising a real-world large-scale sen-

sor node network as a case-study.

RQ-3: How to address bias concerns related to the evaluation process of the data

quality management system, which emerges due to the presence of data

quality issues in the testing or evaluating real-world dataset?

Objective 5: To validate the functionality and performance of the pro-

posed data quality management system using a real-world, high-quality

benchmark sensor node network. The benchmark sensor network must

comprise high-quality sensors that stream consistent and error-free ob-

servations forming long time series of the same parameters collected

from the large-scale sensor network.

17

1.6 Novelty of Research

1. This research delivered a novel, proof of concept, data quality management

system which is capable of evaluating sensor nodes’ measurements based on

the four dominant data quality dimensions, it detects sensor nodes’ hardware

failures and ensures the quality of observations’ spatial and temporal con-

textual attributes in large-scale CPSs. Such a system can be utilised as a data

quality assessment mechanism with compatible industrial or smart-cities

scale CPS or IoT applications.

2. This research is an empirical study that utilises a real-world large-scale en-

vironment monitoring sensor node network consists of over 200 ambient

temperature sensors distributed around London to support its outcomes and

conclusions and further validate the robustness of the proposed data quality

management system. Furthermore, it brings together advance predictive

analysis, spatial partitioning, time-series clustering and timestamp analy-

sis techniques which were successfully utilised to support the aim of this

research. Therefore, this research can be used as an academic reference for

future research conducted to address emerging data quality management

challenges in the context of large-scale CPS applications.

3. This research is one of the very few studies that deliver an empirical data

quality assessment solution based on advanced data science and machine-

learning models while systematically addressing the bias concerns related

to the evaluation process of the used models, which emerges because of the

presence of data quality issues in the testing or evaluating real-world dataset.

Thus in this research, a high-quality sensor node network was deployed

at the University of East London and utilised to produce long, consistent,

high-quality data streams of benchmark observations to train and adjust the

18

different data quality assessment models and to evaluate the performance

and accuracy of these models before using them in real-world scenarios.

4. This research is an initiative empirical study that practically addresses data

quality challenges associated with the contextual spatial and temporal at-

tributes of sensor nodes observations in large-scale CPSs. It is one of the very

few studies that provides and empirically validates a systematic approach

for detecting inconsistency in temporal attributes and mismatches in the

spatial attributes of sensor nodes’ observations in the context of large-scale

CPSs.

5. This research provides more insights and empirically exploits many of the

large-scale CPSs features, e.g. this research has shown empirically that

sensor nodes which are located near to each other (high-density areas) are

highly likely to be spatially correlated. In contrast, distant sensor nodes (low-

density area) might not fit in any spatial cluster or may form a cluster with

other distant sensor nodes which violate their spatial continuity and thus

verifying the accuracy of their observations using spatial correlation-based

anomaly detection techniques may not render a reliable assessment result.

1.7 Research Boundaries

The following topics are out of the scope of this research:

1. The purpose of this study is to evaluate sensor nodes observations fitness

for use in the context of CPSs not to test or evaluate a particular CPS.

2. In this research data quality management was investigated using a relatively

low-frequency large-scale environmental monitoring system as a case study.

The monitoring system consists of over 200 sensor nodes distributed around

19

London. The duty cycle of these sensors is around 10 minutes or longer.

Therefore, none of the components of the proposed data quality management

system was evaluated or tested for higher frequency (shorter duty cycle)

CPS applications.

3. This research focuses on data quality management of static large-scale CPSs,

where sensor nodes are fixed in specific geographic locations identified in

their observations spatial attributes and do not change with time. Mobile

CPS applications such as smart vehicles, or smart-wearables that involve

mobile sensor nodes that inquire new location with time are out of this

research’s scoop.

4. Investigating the mathematical foundation of the adopted data mining or

data analysis models is out of the scope of this research.

5. Implementing technical solutions such as parallel computing, high-performance

distributed computing or cloud computing that can provide higher compu-

tational power to boost the performance of the data quality management

system is out of the scope of this research.

1.8 Research Structure

Chapter-1 is an introduction to cyber-physical systems and their implementations

in smart cities large-scale applications. It also provides some insights into

overall context of the research, its aim, objectives and scope.

Chapter-2 is an introduction to data quality and the main challenges associated

with it in large-scale CPS applications. It incorporates a systematic literature

review which analysis the existing literature to draw meaningful conclusions

related to data quality challenges in large-scale CPS and identifies the gaps

in the current literature that this research is bridging.

20

Chapter-3 is to describe the research context. It describes the research design, the

structure of the data quality management system, data analysis methods,

the techniques used to address the research objectives and it explains the

adopted logical sequence to conduct the research activities.

Chapter-4 the implementation details and results of testing and evaluating the

different components and models of the data quality management systems

are presented in this chapter.

Chapter-5 revisits the research questions and illustrates the extent to which these

questions were satisfied. It provides more insights into the key components

of the data quality management systems. Finally, it outlines the conclusions

of the research and future work.

21

Chapter 2

Literature Review

“... the growing complexity of the I/T infrastructure

threatens to undermine the very benefits information

technology aims to provide."

— Horn (2001)

This chapter is an introduction to data quality and the main challenges associ-

ated with it in large-scale CPSs. It incorporates a systematic literature review

which analyses the existing literature to draw meaningful conclusions related to

data quality challenges in large-scale CPSs and identifies the gaps in the current

literature that this research is bridging. Furthermore, the systematic literature

review provides evidence to support the research questions and establishes the

theoretical background to the techniques or methods being used to achieve the

research objectives.

This chapter covers the following topics:

• Data quality concepts and terminology.

• Data quality challenges in large-scale CPSs.

• Data mining and data quality management.

• Unaddressed data quality management challenges and research questions.

22

2.1 Data Quality Concepts and Terminology

Data quality management is a set of procedures and activities aim to fulfil data

quality requirements by continuously monitoring, measuring, and ensuring the

data fitness for use (Mosley et al., 2009, p. 23-27). According to the International

Standardization Organisation (ISO), quality, in general, is the "the totality of

characteristics of an entity that bear on its ability to satisfy stated and implied

needs" (ISO 8402, 1994, p. v). In comparison, Data Quality (DQ) is defined as data

fitness for the purpose of the intended use (Juran et al., 1988; Maydanchik, 2007) or

its conformance to requirements (Crosby, 1979; Batini & Scannapieco, 2016). This

definition outlines that data which very well meet some predefined expectations,

specifications, or standards are considered to be high-quality data that fit for use

in a particular application. The concept of fitness to use associated with data

quality is also covers how effectively the data describe any events, observations or

measurements it was created to represent, where the characteristics of the data are

linked to the system used to collect these events (Sebastian-Coleman, 2013).

Data quality can be quantified, measured and monitored using a set of context-

dependent parameters or indicators known as Data Quality Characteristics (DQCs)

or Dimensions(DQDs) (Wang et al., 1993; Sebastian-Coleman, 2013). More than

200 data quality dimensions have been introduced since the eighties (Guillet &

Hamilton, 2007, p. 106). However, these dimensions can be categorised into four

core data quality dimensions; accuracy, completeness, timeliness and consistency

(Sebastian-Coleman, 2013; Guillet & Hamilton, 2007; Scannapieco et al., 2005; Wand

& Wang, 1996), which are ,typically, associated with data quality requirements

and mapped to define data quality assessment criteria (Fürber & Hepp, 2010, p.

147-148).

23

2.1.1 Accuracy

Accuracy is defined as how close observations are to reality (Nguyen et al., 2014).

It presents the "degree of conformance of observations and computations with the

truth" (Brimicombe, 2009, p. 215). The ISO 5725-1 (1994) defined the term accuracy

as the precision and trueness of measurements or test results, as follows:

• Trueness is the closeness of agreement between the true value of a measured

parameter in comparing with an accepted reference value. Thus, the true

value of some measurements can not be known exactly. Alternatively, a

reference value of the amusement is accepted. The reference value can be

adopted from other measurement methods or selected from a known sample.

• Precision is the closeness of agreement between the results of multiple inde-

pendent tests obtained under specified and controlled conditions. Precision

is the distribution of random errors between measurements which can be

presented by the Standard Deviation (SD), where higher SD indicates higher

imprecision. The notion of considering precision is significant in every

measurement procedure due to the inherited and unavoidable attribute of

random errors which influences the results of measurements and cannot be

controlled (ISO 5725-1, 1994).

Accuracy, typically, is the most inspected attribute associated with data quality

issues (Kenett & Shmueli, 2016, p. 31), especially in the context of identifying and

avoiding measurement errors, where errors are the deviation of observations from

the reality and can be in the form of sudden short outliers, systematic or random

bias (Brimicombe, 2009, p. 215).

Measuring the accuracy of data requires comparing it to a real-world reference

entity that itself was validated for accuracy. The reference entity can be from

an outside, but a related source that the measurements can be validated directly

24

against. If a direct comparison between parallel measurements in large-scale

datasets is not possible, then a reference criteria value (threshold value) can be

used to validate the accuracy of them. However, in this case, it is possible to

identify measurements (observations) that are probably inaccurate but can not

determine to what extent inaccurate are they (Sebastian-Coleman, 2013, p. 62-64).

In both cases, accuracy characterisation, which is based on the measurements value

attribute is known as the "structural-accuracy" or, plainly, "accuracy". However,

in real-time systems those collect observations of real-life phenomena, accuracy

is not only associated with data quality issues related to the value attribute of

observations, but also with the rapidity in which observations are reflecting the

reality, which is known as time-related accuracy (Batini & Scannapieco, 2016, p.

23). More about the time-related accuracy is in the next section.

2.1.2 Time-Related Accuracy (Timeliness)

In general, the term "timeliness" is used to refer to the Time-Related Accuracy

(TRC) data quality dimension which covers data characteristics associated with

time aspects, such as currency, volatility and timeliness (Batini & Scannapieco,

2016, p. 27).

• Currency is the degree in which the measurements are current with reality.

It defines how up to date the data are, based on an expected update rate or

an estimated frequency. Currency is an initial parameter which defines the

lifetime limits of data, and it may require manual or automatic techniques to

be measured and verified (Loshin, 2011, p. 140).

• Volatility is the frequency in which the data is expected to change. Volatility

is a critical parameter to evaluate the validity of data, and it is closely asso-

ciated with currency and timeliness (Sebastian-Coleman, 2013, p. 62). For

example, the volatility of particular data such as birth dates is equal to zero

25

since such data do not change with time. In contrast, the volatility of the

attribute value of age is annual, while the volatility of the attribute value of

the atmospheric temperature is continuous, which means it remains valid

for a relatively short time (Mahanti, 2019).

• Timeliness (latency) is the data attribute which implies whether a recorded

value is out of date to be useful for a particular usage (Ballou & Pazer, 1985).

Data that still available within a specified threshold time frame are timeliness

data (Berti-Équille, 2007, p. 118).

The timeliness of real-time data can be very short due to the rapid change

(high volatility rate) of data, adding more strain on real-time processing

technologies which must analyse the data before it becomes outdated and

invalid (Cai & Zhu, 2015). Timeliness is an essential data quality constraint

in real-time event processing applications which continuously streams obser-

vations and supports time-critical and automated decisions (Aggarwal, 2013,

p. 79). Furthermore, timeliness events in information systems can be used

as a reliability indicator of the data transmission mechanisms (Sebastian-

Coleman, 2013, p. 63). Thus, timeliness is a crucial notion in CPSs which

typically must close the loop of sensing, computing and control within a

specific processes time frame in order to function properly (Rawat et al.,

2015, 147).

According to Ballou et al. (1998), the timeliness of events can be measured

based on quantifying the currency and volatility aspects of data using a

unified time unit. The measurement of the currency is a function based on

the time-related metadata1typically associated with data value attributes

1In the context of CPS in this research, sensor’s data value attributes were referred to as
observations, while observation’s occurrence time or their database receiving time were referred to
as time-tags or timestamps.

26

and defined as the following:

Currency = (DeliveryTime − AcquisitionTime) + Age (2.1)

– AcquisitionTime: when the data of a real-world event were obtained,

e.g. database record’s timestamps of newly entered sensor nodes’ ob-

servations.

– DeliveryTime: the time when the data arrived at its usage destination,

which can be a computing unit, a digital entity or a customer.

– (DeliveryTime - AcquisitionTime): how long the data have been avail-

able in the system.

– Age: how old the observations when they were received. Age is the

time difference between observations occurrence time and when these

observations entered the system, as shown in equation 2.2 (Ballou et al.,

1998, p. 468).

Age = (AcquisitionTime − ObservationTime) (2.2)

It is possible to measure data currency by applying equation 2.1 to the

time-related metadata attributes, typically using the most recent metadata.

However, this approach is only valid if the frequency (duty-cycle) of data up-

dates is constant. In contrast, in information systems that do not have a fixed

data updating frequency, it is possible, e.g., to measure the currency based

on the average of data updating frequencies which may exhibit some errors.

Other methods can be used based on the characteristics of the information

system and the domain application requirements (Batini & Scannapieco,

2016, p. 27-28).

The second data quality criteria required to measure timeliness is volatility.

27

Volatility is the frequency in which the data is expected to change. Thus,

practically, volatility is the inverse of the time interval in which the data still

valid. Therefore, timeliness is defined as (Ballou et al., 1998, p. 468):

Timeliness = max

{
0,1 −

currency

volatility

}
(2.3)

Equation 2-3 illustrates that the value of timeliness varies from (0 poor) to (1

excellent). Furthermore, high volatility data are more sensitive to currency

comparing with low volatility data which are less sensitive to currency.

2.1.3 Completeness (Completability)

In general, the data quality completeness dimension is the measure of the presence

of all necessary values of a specific variable to complete a particular process

(Ballou & Pazer, 1985; Wang & Strong, 1996, p. 32). According to Lemahieu et al.

(2018)2 and Pipino et al. (2002), completeness can be characterised based on the

following:

• Column completeness: at the data unit level, e.g. data records, observations,

objects, column completeness is defined as the degree (ratio function) of the

existence of missing values in a data column (Pipino et al., 2002). A column

is considered to be complete if it has no missing values at all time (Bühmann

et al., 2006, p. 188).

• Population completeness: the percentage of the presence of all data entities

of a particular reference population (Rula et al., 2016, p. 103), for example, if

a dataset contains three of the year seasons only, it considered as a dataset

with population incompleteness since the reference population, typically,

consists of four seasons.
2Pages 82-84

28

• Schema completeness: the degree in which structures and attributes of a real-

world information system or application domain are covering all schema3

(metadata) features of data (Ehrlinger & Wöß, 2018, p. 23).

Completeness, typically, achieved when all necessary data elements are available

to complete a particular process (Jugulum, 2014, p. 34), and can be measured

for each of the three types (mentioned above) as the ratio of the number of the

incomplete or missing data points, (readings, records, observations or objects) to

the number of the expected ones subtracted from 1 as shown in equation 2.4.

Completeness (C) = 1 −
Missingn data

Expected(reference)n data
(2.4)

Equation 2.4 is limited to measure the completeness dimension of static data

which do not change with time in regards to completeness or dataset snapshot at

a particular point in time.

Pernici & Scannapieco (2003) introduced the notion of completability which de-

fines completeness in temporal dynamic information systems that exchange data

continuously and their data dynamically evolve with time. Completability (C) is

estimated as a function with time (t), as shown in equation 2.5.

C=

∫ tn
tcurr

C(t) (2.5)

Equation 2.5 measures the completability at the instance t, where t is between tinit

and tn, t ∈ (tinit , tn), tinit is the initial time instant of the collected data. And

tcurr is the time when the completability was evaluated, tn is the time of the next

expected data update(s) where tn > tcurr.

3A schema in information systems describes data structures, relationships and features which
are also known as metadata (Ehrlinger & Wöß, 2018, p. 1)

29

2.1.4 Consistency

Consistency is how well data comply with integrity constraints, logical rules or

specific context without contradictions (Batini & Scannapieco, 2016, p. 23). The

consistency can be measured based on the comparison in relation to data from

other instances or systems which were produced under similar conditions or using

the same production process. Measuring consistency may involve finding logical

connection patterns within the data in real-world scenarios while focusing on the

consistency of data over time (Sebastian-Coleman, 2013, p. 63).

Sha & Shi (2008) have proposed six consistency models for providing different con-

sistency evaluation levels for data streams from Wide-Networks Sensors (WSNs).

However, they argued that these consistency models are application-specific con-

cepts, and they implied that examining the quality of data streams from Wireless

Sensor Networks (WSNs) should be mainly based on the trend, frequency and

spatial consistency.

Inconsistency in sensor’s observations in CPSs is a common data quality issue that

may occur among functional or faulty sensor nodes due to many reasons such

as unreliable wireless communication, external inference and noise. Therefore,

observations redundancies from reliable sensor nodes should be considered to

ensure data availability in CPS applications (Li et al., 2016). This approach of using

a set of high-quality, reliable sensor nodes as a benchmark for data availability and

consistency evaluation was adopted and examined in this research. More details

about data quality dimensions and real-world, large-scale CPSs will be detailed in

the next sections.

30

2.2 Data Quality Challenges in Large-Scale CPSs, a

Systematic Literature Review

This section incorporates a Systematic Literature Review (SLR) in which the litera-

ture systematically aggregated, examined and analysed to: investigate data quality

challenges in large-scale CPSs, to identify the most common techniques used to

address these challenges and assess the overall effectiveness of these techniques.

SLR is defined as an objective and unbiased method for aggregating, analysing and

extracting knowledge from the available literature in relation to specific research

questions or a given topic using a set of well-defined and repeatable procedures.

SLR’s are considered as secondary studies synthesised from individual primary

studies, such as peer-reviewed research papers, to summarise existing evidence

or to identify any gaps in current research for further investigation (Kitchenham

et al., 2015, p. 10-11).

The SLR approach was implemented to avoid some of the limitations of the

traditional (unsystematic) narrative review approach. According to Green et al.

(2006)4, unless the researcher is an expert in the field, it is critical to use a systematic

approach to produce quality literature reviews. Moreover, to avoid the common

drawbacks of the narrative overviews such as subjective selectivity or biased

interpretations of the primary studies (Efron & Ravid, 2018, p. 21).

As a result, the SLR was essential to identify the gaps in the current literature con-

cerning data quality management in large-scale CPSs that this research is bridging

and for providing evidence to support the research questions. Furthermore, the

SLR approach helps to establish the theoretical background of the techniques or

methods used to achieve the objectives of this research.

4Pages 103-104

31

2.2.1 Review Motivation / Introduction

CPSs are designed as a network of computational elements that combine physical

input and output mechanisms to interact with the surrounding environment (Rob-

bins & Tanik, 2013, p. 142). CPSs can be seen as large and/or heterogeneous

Embedded Computing Systems (ECSs)5 with high computation and communi-

cation capabilities that perform dedicated functions, typically, according to strict

real-time constraints (Möller, 2016; Jahromi & Kundur, 2020, p. 7).

CPSs rely on data acquisition from sensor nodes, data processing in the control

(computing) unit(s) and data communication with the actuators to regulate the

physical environment. This data cycle is necessary for CPSs to meet their opera-

tional requirement and ultimately enables the system’s self-control and awareness,

especially in real-time applications (Pan et al., 2019; Zhang, 2015; Rawat et al., 2015,

p. 140). Data, typically, circulate continuously among the different components of

CPSs in real-time (Tao et al., 2018, p. 160). Therefore, data has a crucial role in the

successful operation of CPSs (Rawat et al., 2015, p. 141), especially considering

that CPSs may cause severe consequences in the case of providing decisions based

on low-quality data (Sha & Zeadally, 2015; Williams & Tang, 2020; Vaidya et al.,

2018).

CPSs might compromise safety constraints and might have life-threatening con-

sequences in cases of receiving incorrect data, missing time deadlines or missing

critical readings from sensors in real-time (Grega & Kornecki, 2015, p. 755). En-

suring the quality of data is an open challenge in large-scale CPSs (Farooqi et al.,

2018; Peng et al., 2019; Prathiba et al., 2016; Shih et al., 2016; Perez-Castillo et al.,

2018) mainly due to the large amount of data that these systems exchange at (near)

5An ECS is a specialised physical system controlled by computer-based components which
fully encapsulated as core elements in the ECS system itself. The development of ECS, which
was associated with computing networking solutions, has led to the emergence of Cyber-Physical
Systems as the new generation of information systems (Möller, 2016, p. 94).

32

real-time, the vast geographical area, and the dynamic and noisy conditions where

these systems are usually deployed (Barnaghi et al., 2015, p. 6:3).

This systematic literature review is incorporated to analyses the existing literature

to draw meaningful conclusions related to data quality challenges in large-scale

CPSs and to provide evidence to support the research questions and establishes

the theoretical background to the techniques or methods being used to achieve the

research objectives. The next section provides more details about the SLR review

process, questions, methodology and results.

33

2.2.2 Review Process and Methodology

This systematic literature review (SLR) was conducted based on the guidelines

proposed by Kitchenham & Charters (2007), which provides an organised and

repeatable procedure to perform the SLR based on three main stages: planning,

conducting and reporting the review results. A holistic view of the processes

adopted to conduct this SLR is illustrated in Figure 2.1.

2.2.2.1 SLR Questions and Objectives

The SLR review questions (RQs) have a significant role in driving the review

methodology and identifying the primary studies. Thus, the analysis and synthesis

process of the primary studies must extract the data in a way that answers the

review questions (Kitchenham & Charters, 2007, p. 9). The SLR review questions

are listed in Table 2.1.

Table 2.1: SLR Review Questions and Objectives.

RQ# SLR Research Question / Objectives

RQ1
What are the most common data quality challenges associated with

large-scale CPS applications?

RQ2
Which solutions/methods were adopted to address data quality

challenges in large-scale CPSs?

RQ3
What are the unaddressed data quality management challenges in

large-scale CPSs?

2.2.2.2 SLR Protocol (Strategy)

The Review protocol is the strategy of implementing a set of specified steps

to undertake the SLR. The purpose of the SLR protocol is to narrow down the

34

Figure 2.1: A holistic overview of the processes adopted in this systematic literature
review.

possibility of researcher bias by pre-defining the review processes and procedures

of selecting and analysing the primary studies that will address the research

questions. The review protocol involves specifying the research terms (keywords),

digital libraries, refinement terms (synonyms for the main search terms), the

35

quality questionnaire and the data extraction forms (Kitchenham & Charters, 2007;

Malhotra, 2015, p. 40-45), as follows:

• Identifying Search Terms

Digital libraries must be searched using search terms and keywords to iden-

tify the primary studies that will address the review questions. The search

terms typically are extracted from the search questions, including any possi-

ble alternative terms or synonyms as shown in Table 2.2.

Table 2.2: The SLR Search Terms and Keywords.

Category Search terms Level of Abstraction

Primary terms Quality of Data

Title and abstract

Data Quality
Quality of Information
Information Quality

Secondary terms Cyber-Physical System
Internet of Things
Wireless Sensors Network

Exclusion terms Social Media

Fully reviewing the study
Smart-Wearables
Vehicle Services
Social Sensing

The search method is based on incorporating the keywords and terms from

Table 2.2 using Boolean expressions (OR, AND, NOT...etc) to form Boolean

search string, which used to search the pre-selected digital libraries.

Using the term “large-scale” in the Boolean search string has significantly

reduced the number of the primary studies rendered by the searched digital

libraries furthermore, using it with an OR clause did not affect the outcome

of the search results, therefore the term “large-scale” was excluded from the

SLR search terms and keywords. However, all the selected studies in this

SLR are exploring, proposing, or presenting a data quality management/

assessment solution in large-scale CPS/IoT where the term “large-scale”

was not used but the study is focusing on a particular large-scale CPS/IoT

36

application. For example, (Farooqi et al., 2018), (Li et al., 2019) and (Peng

et al., 2019) have been selected after applying the inclusion and exclusion

criteria and after being fully viewed, none of these studies use the term

“large-scale” but still all presents large-scale CPS applications.

• Selecting Digital Libraries

Selecting digital libraries is an essential step for identifying relevant primary

studies that will address the research questions. It is critical to include many

digital libraries in the search process since no signal source can comprehen-

sively provide all relevant primary studies and to ensure resource-dependent

search to cover the search topic. The SLR initially included all of the digital

libraries listed in Table 2.3.

Table 2.3: The list of the examined digital libraries to be used for the purpose of
the SLR.

Interface Search Screen Database

EBSCO https://search.ebscohost.com/Community.aspx?

Academic Search Complete
British Education Index
Business Source Complete
Education Abstracts
(H.W. Wilson)
Educational Administration
Abstracts
Information Science
and Technology Abstracts
Education Research
Complete

IEEE Xplore http://ieeexplore.ieee.org/search/searchresult.jsp
IEEE Xplore
digital library

Elsevier https://www.sciencedirect.com/science/search ScienceDirect
ProQuest https://ebookcentral.proquest.com/ eBook Central
ProQuest https://search.proquest.com/advanced/ ProQuest

ACM https://dl.acm.org ACM Digital Library
SAGE http://journals.sagepub.com/action/doSearch? SAGE Journals

Emerald http://www.emeraldinsight.com/action/doSearch? Emerald Insight
IET https://digital-library.theiet.org IET Digital Library

However, most of these digital libraries did not render any significant out-

come after being searched using the keywords and terms listed in Table 2.2

combined with Boolean expressions and after applying the inclusion and

exclusion criteria listed in Table 2.5. Therefore, the most relevant digital

37

libraries that some of its rendered primary studies passed the inclusion and

exclusion criteria are listed in Table 2.4. Where Table 2.4 shows the list of

the most relevant digital libraries searched for identifying the SLR primary

studies.

Table 2.4: The list of the most relevant digital libraries used for identifying the
SLR primary studies.

ID Digital Library Online Search Interface

1 IEEE IEEE Xplore https://ieeexplore.ieee.org

2 ACM ACM Digital Library https://dl.acm.org

3 IET IET Digital Library https://digital-library.theiet.org

4 Elsevier ScienceDirect https://www.sciencedirect.com

• Defining Inclusion and Exclusion Criteria

The purpose of the inclusion and exclusion section is to define the criteria of

selecting which primary studies will be approved for further analysis while

excluding other studies that do not satisfy these criteria. The inclusion and

exclusion criteria of the SLR are listed in Table 2.5.

Table 2.5: The SLR Inclusion and Exclusion Criteria.

The inclusion criteria are:

- The study is categorized as a peer-reviewed journal and conference paper

relevant to the SLR topic and addresses one or more of its review questions.
- The study is relevant to large-scale CPSs or IoT applications.

The exclusion criteria are:

- The study is: an editorial, tutorial, magazine, book, course, poster or it is

not a peer-reviewed journal.
- The focus of the study is related to mobile CPSs or IoT.
- The study is written in a different language other than English.
- The full version of the study is not available.
- The study is published before 2014.
- Duplicated studies.

The SLR digital libraries were searched based on the primary studies title and

abstract which are typically written in English even if the research paper itself is

38

written using a different language. The search results did not render any studies

which are written in a language other than English. However, since there was

no professional interpreter assigned to this research it is important to highlight

that the SLR was conducted while focusing mainly on primary studies which are

written in English.

The SLR search was limited to studies that were published during and after 2014

because expanding the search to include studies that were published before 2014

did not significantly change the SLR digital libraries search outcome. Furthermore,

limiting the search to studies that were published during and after 2014 helped

to focus the investigation on the most recent emerging data quality challenges in

large-scale CPSs.

2.2.2.3 SLR Quality Assessment

The purpose of the SLR quality assessment is to evaluate the relevance of primary

studies that already met the inclusion criteria to the review topic. SLR quality

assessment is crucial because it is a further measure to limit the possibility of

researcher bias (Kitchenham et al., 2015, p. 81), it presents a repeatable guideline for

interpreting the results, and it provides a quantitative numeric mean to determine

how strongly the selected primary studies are associated with the SLR objectives

via a quality score. Typically, the SLR quality assessment can be by implemented

by scoring individual primary studies using a quality questionnaire form and

based on assessment criteria (Malhotra, 2015, p. 42-43). The SLR primary studies

were scored based on the quality assessment questions listed in Table 2.6.

2.2.2.4 SLR Data Extraction Form

The data extraction form summarises and extracts information from the primary

studies to answer the review questions. It specifies which primary study addresses

39

Table 2.6: The SLR Quality Assessment Questions (Matrix).

Q# Quality assessment questions associated with data quality
challenges in large-scale CPS’s?

Quality Score
Yes Partially No

Q1 A review or an empirical study? 1 n/a 0.5

Q2
Is the study combines multi-methods/techniques to address
data quality challenges? 1 0.5 n/a

Q3
Is the study justifies the use of these different
methods/techniques? 1 n/a 0

Q4
Is there any comparative analysis of the different used
methods/techniques? 1 n/a 0

Q5 How many data quality issues associated with the four
core data quality dimensions are the study addressing?

No. of Dimensions
4 3 - 1 n/a

which of the SLR review questions, analyse the results and identifies the primary

study strengths and weaknesses. The structure of the data extraction form used in

this SLR is as follows:

• Citation details.

• Study purpose/application.

• Dataset types/details.

• Targeted data quality dimensions.

• Addressed data quality challenges.

• Proposed solutions/methods.

2.2.3 Review Conduct and Primary Studies Selection

The SLR review was conducted using the pre-defined structure highlighted in

the review process and methodology section and based on the three main steps:

selecting, evaluating and summarising the primary studies as follows:

2.2.3.1 Searching Digital Libraries

The first step to implement the SLR processes and methodology was to identify

relevant primary studies by searching the digital libraries listed in Table 2.4 using

40

search strings developed based on the keywords and terms as specified in Table 2.2

and as shown in Table 2.76.

Table 2.7: The SLR digital libraries, final search strings and the number of
identified primary studies.

ID Digital
Library

Action Boolean Search Strings (10/10/2020) No. of
Papers

1 IEEE
Xplore

Search
string

(("Document Title":"cyber physical system" OR "internet
of things" OR "wireless sensors network") AND "Docu-
ment Title":"data quality" OR "quality of data" OR "quality
of information")

376

Filter Publication Type (Conferences, Journals), Publication
Topics (learning (artificial intelligence) Internet of Things
data analysis data mining wireless sensor networks Big
Data decision making pattern classification data handling
optimisation pattern clustering information systems qual-
ity of service statistical analysis) Published between (2014
and 2020)

2 ACM
Digital
Library

Search
string

[Publication Title: "data quality"] OR [Publication Title:
"quality of data"] OR [Publication Title: "quality of in-
formation"] AND [Publication Date: (01/01/2014 TO
12/31/2020)]

91

Filter Published between (2014 and 2020)

3 IET
Digital
Library

Search
string

("data quality" OR "quality of data" OR "quality of infor-
mation") AND ("cyber physical system" OR "internet of
things")

52

Filter Published between (2014 and 2020)

4 Science
Direct

Search
string

Articles with these terms ("cyber physical system" OR
"internet of things" OR "wireless sensors network") and
Title ("data quality" OR "quality of data" OR "quality of
information")

23

Filter Review articles, Research articles, published between
(2014 and 2020)

2.2.3.2 Applying the Inclusion and Exclusion Criteria

The next step is to determine whether the identified primary studies satisfy all of

the pre-defined inclusion and exclusion criteria, listed in Table 2.5. The number of

the primary studies included in the SLR after applying the inclusion and exclusion

criteria is shown in Table 2.8.
6 There are some slight differences among the Boolean search strings used to search different

digital libraries, these differences are related to the design of the search interface of the digital
libraries and the availability of the primary studies.

41

2.2.3.3 Conducting the SLR Quality Assessment

The quality assessment (as highlighted in Section 2.2.2.3) is a crucial step to

evaluate the relevance of primary studies and scoring them according to the

assessment matrix specified in Table 2.6 where the relationship among the quality

assessment questions is shown in Equation 2.6.

Quality Score = Q1 +Q2 +Q3 +Q4 +Q5 (2.6)

Although the quality assessment of the primary studies does not answer the

review questions, it provides an opportunity to understand the trend of most

recent studies concerning large-scale CPSs data quality management, Figure 2.2

and their geographical distribution of interest where Figure 2.3 shows the number

of SLR studies by the country of publication.

Figure 2.2: The number of SLR primary studies by the year of publication, (October
2020).

The final number of the primary studies included in the SLR after applying the

inclusion and exclusion criteria and after fully reviewing all studies is detailed in

Table 2.8. The primary studies citation details and their overall quality assessment

score are shown in Table 2.9.

The total number of the primary studies included in the SLR after searching the

42

Figure 2.3: The number of SLR primary studies by the country of publication.

Table 2.8: The final number of primary studies included in the SLR after applying
the inclusion and exclusion criteria and fully reviewing all studies.

Activity \ Digital Library IEEE ACM IET Science
Direct

Total

Searching digital libraries and applying filters 376 91 52 23 542

Reviewing titles and abstracts 78 26 6 8 118

Fully reviewing all studies 40 13 4 3 60

most relevant digital libraries listed in Table 2.4 using the Boolean search strings

listed in Table 2.7 and after applying the inclusion and exclusion criteria is 542 as

shown in Table 2.8.

The total number of the primary studies was reduced to 118 after filtering the

studies based on reviewing their title and abstract. For example, the case of

the Zhiping et al. (2014) primary study which was eliminated based on its title

"A novel authentication protocol for mobile nodes in multi-base-station wireless

sensor network" which states that the research paper is focusing on mobile nodes

which is an elimination criterion as listed in the SLR inclusion and exclusion

criteria Table 2.5.

Furthermore, the SLR primary studies were filtered to 60 after full reviewing

43

all of the 118 studies. For example, the title "Energy-aware quality of informa-

tion maximisation for wireless sensor networks" of the study by Du et al. (2016)

suggests that its focus on enhancing the quality of the information in wireless

sensor networks using energy-aware means. However, fully reviewing the re-

search paper revealed that it investigates how to enhance the reliability of wireless

sensor networks by reducing the power consumption of its sensors using an opti-

mising algorithm that reduces sensors sampling rate and consequently reduces

their internal transmit power consumption. The study does not address any data

quality dimension and does not enhance the quality of the information in WSNs.

It proposes a trade-off between the quality of information and the energy expendi-

ture in wireless sensor networks using an optimisation technique and thus it was

excluded.

2.2.3.4 SLR Data Extraction

The purpose of the data extraction process (as highlighted in section 2.2.2.4) is to

quantitatively summarises the information from the primary studies to answer the

SLR review questions. Table 2.10 shows the results of the data extraction process.

44

Table 2.9: Primary Studies Referencing Details and their Overall Quality Assessment Score.

Ref. Study Identifier Year Research type Approach Q1 Q2 Q3 Q4 Q5 Score
S1 - Farooqi et al. (2018) IEEE Conferences 2018 Solution proposal Framework 1 0.5 1 1 3.5
S2 - Li et al. (2019) IEEE Conferences 2019 Solution proposal Method 1 0.5 1 1 1 4.5
S3 - Karkouch et al. (2015) IEEE Conferences 2015 Review Guideline 0.5 0.5 1 2
S4 - Peng et al. (2019) IEEE Conferences 2019 Solution proposal Framework 1 0.5 1 2.5
S5 - Karkouch et al. (2016) IEEE Conferences 2016 Solution proposal Framework 1 2 3
S6 - Kim et al. (2019) IEEE Journals 2019 Solution proposal Model 0.5 0.5
S7 - Liao et al. (2019) IEEE Conferences 2019 Solution proposal Method 1 1 2
S8 - Perez-Castillo et al. (2018) IEEE Conferences 2018 Solution proposal Framework 0.5 0.5
S9 - Larburu et al. (2014) IEEE Conferences 2014 Solution proposal Model 0.5 0.5 1 3 5
S10 - Du et al. (2016) IEEE Journals 2016 Solution proposal Algorithm 1 1 2
S11 - Rager et al. (2018) IEEE Journals 2018 Solution proposal Framework 1 2 3
S12 - Lawson & Ramaswamy (2016) IEEE Conferences 2016 Solution proposal Framework 1 0.5 4 5.5
S13 - Liu et al. (2014) IEEE Journals 2014 Solution proposal Framework 1 0.5 2 3.5
S14 - Kim et al. (2016) IEEE Conferences 2016 Solution proposal Model 1 0.5 1 2.5
S15 - Togneri et al. (2019) IEEE Conferences 2019 Solution proposal Framework 1 0.5 1 1 3.5
S16 - Shrivastava et al. (2019) IEEE Conferences 2019 Solution proposal Tool 1 0.5 1 1 3.5
S17 - Micic et al. (2017) IEEE Conferences 2017 Review Guideline 0.5 1 1.5
S18 - Auger et al. (2016) IEEE Conferences 2016 Solution proposal Tool 1 1 2
S19 - Chidean et al. (2016) IEEE Journals 2016 Solution proposal Model 1 0.5 1 2.5
S20 - Bahl (2015) IEEE Conferences 2015 Solution proposal Framework 0.5 1 1.5
S21 - Auger et al. (2017) IEEE Conferences 2017 Review Guideline 0.5 0.5
S22 - Prathiba et al. (2016) IEEE Conferences 2016 Review Guideline 0.5 0.5
S23 - Karmakar et al. (2020) IEEE Journals 2020 Solution proposal Model 1 1 2
S24 - Bhuiyan et al. (2017) IEEE Journals 2017 Solution proposal Method 1 0.5 1 2.5
S25 - Ghosh et al. (2019) IEEE Conferences 2019 Review Survey 0.5 1 1.5
S26 - Krishna (2018) IEEE Conferences 2018 Solution proposal Tool 1 0.5 3 4.5
S27 - Al-Milli & Almobaideen (2019) IEEE Conferences 2019 Solution proposal Algorithm 1 0.5 1 1 3.5
S28 - Xinrui et al. (2019) IEEE Conferences 2019 Solution proposal System 1 0.5 2 3.5
S29 - Jayswal & Shukla (2016) IEEE Conferences 2016 Review Guideline 0.5 0.5 1 2
S30 - Bhajantri & Pundalik (2017) IEEE Conferences 2017 Solution proposal Model 0.5 0.5
S31 - Mylavarapu et al. (2019) IEEE Conferences 2019 Solution proposal Tool 1 0.5 1 2.5
S32 - Pełech-Pilichowski (2018) IEEE Conferences 2018 Evaluation research Guideline 1 0.5 1 2.5

45

Table 2.9 continued from previous page
Ref. Study Identifier Year Research type Approach Q1 Q2 Q3 Q4 Q5 Score
S33 - Abid et al. (2015) IEEE Conferences 2015 Solution proposal Tool 1 0.5 1 2.5
S34 - Pattanavijit et al. (2015) IEEE Conferences 2015 Solution proposal Method 1 1 1 1 1 5
S35 - Zhou et al. (2018) IEEE Conferences 2018 Solution proposal Model 1 1 2
S36 - Tomescu et al. (2019) IEEE Conferences 2019 Solution proposal Tool 1 1 2
S37 - Hanrong Lu et al. (2016) IEEE Conferences 2016 Solution proposal Method 1 0.5 1 1 3.5
S38 - Puiu et al. (2016) IEEE Journals 2016 Solution proposal Framework 1 1
S39 - Giacobbe et al. (2018) IEEE Conferences 2018 Solution proposal Method 1 1 2
S40 - Abid et al. (2017) IET Journals 2017 Solution proposal Method 1 0.5 1 2.5
S41 - Sta (2019) IEEE Conferences 2019 Solution proposal Model 0.5 0.5
S42 - Nesa et al. (2018) IEEE Conferences 2018 Solution proposal Framework 1 0.5 1 2.5
S43 - Barnaghi et al. (2015) ACM Journals 2015 Review Guideline 0.5 3 3.5
S44 - Schelter et al. (2018) ACM journals 2018 Solution proposal System 1 0.5 3 4.5
S45 - Sha & Zeadally (2015) ACM Journals 2015 Review Guideline 0.5 0.5
S46 - Labouseur & Matheus (2017) ACM Journals 2017 Review Guideline 0.5 0.5
S47 - Glowalla & Sunyaev (2014) ACM Journals 2014 Review Guideline 0.5 0.5
S48 - Geisler et al. (2016) ACM Journals 2016 Solution proposal Framework 1 0.5 1.5
S49 - Jain et al. (2020) ACM Conference 2020 Review Survey 0.5 0.5
S50 - Januzaj et al. (2019) ACM Conference 2019 Solution proposal Method 1 1
S51 - Guo et al. (2018) ACM Conference 2018 Solution proposal Model 1 1 2
S52 - Liu et al. (2019) ACM Conference 2019 Solution proposal Model 1 0.5 2 3.5
S53 - Zemicheal & Dietterich (2019) ACM Conference 2019 Solution proposal Method 1 0.5 1 2.5
S54 - de Aquino et al. (2019) ACM Journals 2019 Solution proposal Method 1 1
S55 - Shih et al. (2016) IET Journals 2016 Review Guideline 1 0.5 1 2.5
S56 - Auger et al. (2017) IET Journals 2017 Review Guideline 0.5 2 2.5
S57 - Wang & Bu (2020) IET Journals 2020 Solution proposal Method 1 0.5 1 1 3.5
S58 - R. et al. (2020) SD Journals 2020 Solution proposal Method 1 1 2
S59 - Song et al. (2017) SD Journals 2017 Solution proposal Model 1 1
S60 - Okafor et al. (2020) SD Journals 2020 Solution proposal Model 1 1 1 1 1 5

46

Table 2.10: Results of the SLR data extraction process addressing data quality main challenges and the proposed solutions in
large-scale CPS.

Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S1 Weather data quality
control. Accuracy Automatic verification of data quality, data

integrity and scalability in weather data.

Improving the accuracy of data using machine learning
models based on the Random Forest Prediction method
(Random Forest Regression), which reduces overfitting
without increasing the ratio of error.

S2
Data quality enhance-
ment in power termi-
nals.

Completeness
Sensors and sensor networks failures are in-
evitable events in power IoT systems, which
may cause severe data missing.

A one-step forward forecasting model based on the
autoregressive–moving-average (ARMA) algorithm was
implemented for detecting and mitigating the impact of
missing data.

S3
An overview of data
outliers detection pro-
cess.

Accuracy Improving data quality, focusing on data
accuracy in the context of IoT applications.

Outlier detection for enhancing the quality of data more
efficiently and systematically in IoT environments.

S4

An anomaly analysis
platform to monitor
the quality of data in
ubiquitous power IoT.

Accuracy

Monitoring the quality of data of ubiquitous
power IoT platform considering its high
data exchanging rate, diversity of compo-
nents and the absence of any effective data
management mechanism.

Anomaly detection based on the isolated forests integrated
unsupervised machine-learning algorithm. For training the
ML model, the historical data was reconstructed to form a
time series using the sliding time window model.

S5

A data quality report-
ing framework using
graphical editors and
models.

Accuracy,
Completeness

Data quality is a subjective concept that
varies by the purpose or the intended use
of the data. There are no standard criteria
to define high-quality data which typically
diverse in measure attributes and require-
ments.

A Model-Driven Architecture (MDA) framework developed
by Object Management Group (OMG) for software devel-
opment. It initially developed for data quality management
in the context of web applications.

S6

A process-centric
framework to improve
the quality of
streamed sensors data.

-
Improving the quality of data in IoT applica-
tions which rely on real-time data streaming
sensors and have different data structures.

A proposed data quality management framework based on
the Process Reference Model (PRM) which only suitable for
offline applications with a well-defined process.

47

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S7

A mechanism to op-
timise data collection
process in WSN while
maintaining the level
of the quality of infor-
mation (IoT).

Timeliness

Improving the quality of information by re-
ducing observations delay and enhance the
data lifetime in WSN networks. Improving
the reliability of WSN and extending its life-
time by reducing its power consumption
rates.

A proposed data transmission path planning mechanism
named the Energy Harvesting Path Planning Strategy. It
manages observations travel path from sensor nodes to the
network sink.

S8

A framework for
managing data quality
in smart connected
product (SCP) / IoT
environments.

-

The open challenges in SCP/ IoT applica-
tions are: data quality standardisation, data
quality management especially for appli-
cations that collect a significant volume of
data from different sources.

A guideline for improving data quality management in SCP
environments aligned with ISO/IEC 25012 characteristics
and proposed an IoT model based on ISO 8000–62 including
the processes of part 8000–61.

S9
A computational
model for clinical data
quality assessment.

Accuracy,
Timeliness,
Consistency

(Dependability)

Improving telemedicine systems technolog-
ical context to become data quality-aware
systems.

A computational model to assess the quality of context data
based on optimising the end-to-end resource configuration
chain.

S10 An algorithm to im-
prove the QoI in WSNs Accuracy

Improving the lifetime of WSNs, enhancing
its data transmission rate while maintaining
the quality of information (QoI).

Using the proximal optimisation approach (algorithms),
which enhances the performance metrics of WSNs.

S11

A QoI framework
for WSNs, focusing
on completeness and
timeliness.

Completeness ,
Timeliness

Scalability and performance prediction in
WSNs concerning the QoI requirements.

Top-K algorithm was adopted for evaluating data complete-
ness metric. Top-k is an image selection algorithm which
was implemented to address the non-linear relationship of
data completeness with throughput.

S12

A cloud-service frame-
work for optimising
the quality of data
streams in real-time
WSNs.

Accuracy,
Timeliness,

Completeness,
Consistency

Investigating the quality of data of remote
environmental sensors data streams in rela-
tion to energy efficiency in WSNs.

A cloud-service framework for optimising the quality of
data streams in WSNs while assessing their energy effi-
ciency in real-time. The proposed framework dynamically
modify and regulate sensors to maintain data quality and
energy-efficient operation in WSN.

S13

Energy management of
environmental sensors
while maintaining the
QoI constraints.

Accuracy,
Timeliness (latency)

Efficient energy management of environ-
mental monitoring sensors while maintain-
ing the quality-of-information (QoI) in a
multitask-oriented environment.

An energy management service compatible with sensors
lower layer protocols and over-arching applications, based
on signal propagation and processing latency modelling.

48

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S14

Enhancing the qual-
ity of the information
in real-time decisions-
based IoT.

Accuracy (value)

To enhance the quality of the information in
real-time decisions-based IoT applications
which bring many safety and security chal-
lenges related to real-time scheduling prob-
lems comparing to traditional applications,
especially in data processing and smart de-
vices management.

A scheduling model was proposed to enhance the qual-
ity of the information in applications that need multiple
data items to make decisions based on quality adjustment
algorithms and scheduling policies.

S15 Data quality assurance
in IoT applications Accuracy (value)

Providing higher data quality assurance in
regards to data completeness (availability)
and consistency(integrity) of IoT sensors
data, which usually affected by sensors fail-
ures.

Anomaly detection using the Local Outlier Factor algorithm
to identify sensors failures and mismatch in sensors spatial
contextual information.

S16
Data quality advisor
solution for large-scale
IoT.

Accuracy (value)
Developing an interactive, large-scale sen-
sors data quality advisor for large-scale, IoT
Applications.

A data quality framework that automatically performs data
validations. The core of the framework is based on the Di-
rect Acyclic Graph(DAG) model for data quality checks and
Scalable Execution Engine (SEE) for executing the validation
function.

S17

A data quality assess-
ment framework for
heterogeneous data re-
sources.

Accuracy

Meeting the expectations of data accuracy
and reliability in large sensor networks is
a significant challenge due to the heteroge-
neous nature of engineering data.

Data quality of sensors observations which form long time
series can be examined using outlier detection and trend
analysis. However, this approach does not address the
challenges of checking and analysing a system of sensors
network or a realm of heterogeneous time series simultane-
ously.

S18

QoI assessment as a
service platform for
smart cities applica-
tions.

Accuracy,
Timeliness

Developing an autonomic, collaborative, ex-
tensible and configurable solution to cope
with the challenge of QoI assessment within
smart cities sensing platforms.

The study proposes an Information Quality Assessment
solution as a Service (iQAS) based on measuring data at-
tributes such as accuracy and timeliness using filtering and
prediction mechanisms for a given application.

S19

Energy efficiency and
data quality improve-
ment in large-scale
WSNs.

Accuracy Increasing energy efficiency in WSNs with-
out sacrificing the quality of data.

The study proposes a model for enhancing energy-efficiency
in large-scale WSNs by controlling the number of sensors
transmissions using the second-order data coupled clus-
tering (SODCC) and the compressive projections principal
component analysis (CPPCA) algorithms.

49

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S20 Addressing spatial
data quality concerns. Consistency

Addressing spatial geometric inconsistency
and topological inconsistencies in geo-
graphic information systems.

A proposed framework for correcting the inconsistency in
spatial data based on the Triangular Pyramid Framework
for spatial analysis.

S21

An overview of the
challenges of sensor
streams in large-scale
IoT applications.

-
Addressing the Quality of Observation
(QoO) challenges between IoT sensors and
their observations destination.

The study proposes a cloud-based IoT platform for collect-
ing, processing and delivering sensors observations.

S22 A review of data qual-
ity issues in WSNs. -

The study specified four data quality chal-
lenges in WSNs; synchronisation issues, in-
efficient testing of algorithms, energy man-
agement and the lack of novel mathematical
modelling.

The study discussed the existing data quality and fault tol-
erance techniques in WSNs.

S23
Sensors data trust in
IoT applications using
temporal correlation.

Accuracy Assessing the trust of sensors data in large-
scale IoT applications.

A model for assessing trust in large-scale IoT sensors data
using a temporal correlation-based approach and adopting
Deep Neural Networks (DNN).

S24

Data quality of event-
sensitive monitoring in
vibration sensor net-
works.

Accuracy (value)

Ensuring the quality of data in vibra-
tion data-intensive monitoring applications
which must deliver high-resolution obser-
vations accurately and continuously to the
system processing core.

A decentralised control and data reduction algorithm utilis-
ing the Goetzel algorithm to address data quality challenges
in event sensitive WVSN applications.

S25

A review of outlier de-
tection techniques in
WSNs in IoT frame-
works.

- Addressing data quality checking tech-
niques in wireless sensors networks.

The quality of data in large-scale IoT frameworks can be
examined using machine learningtechniques such as neural
Networks, clustering and classification for being powerful
methods to detect outliers in sensors data.

S26 IoT reliability in sen-
sors networks systems.

Accuracy,
Consistency,
Reliability

Optimising sensors coverage and reduc-
ing energy consumption in IoT sensing net-
works.

The study proposes a model which uses the minimum set
cover theorem for identifying reliable sensor nodes with
more extended sensing sequence of observations, higher
accuracy rate and consistency per sensing region to facilitate
optimal coverage.

S27
Addressing the issue of
missing data in medi-
cal IoT applications.

Accuracy Developing a prediction model for imput-
ing missing data in IoT applications.

The study proposed a prediction model for detecting and es-
timating missing data in IoT applications using deep learn-
ing neural networks.

50

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S28
Data quality control
of the Chinese wind
radars’ network.

Accuracy,
Completeness

Ensuring data accuracy and conventional
functionality of a large-scale wind radars’
network.

The data quality evaluation and detection mechanisms are
mainly based on statistical techniques such as standard
deviation, correlation coefficient and data acquisition rate
of the observation collected from the wind profile radar
network.

S29

Reviewing different
clustering techniques
for detecting outliers
in data streams.

Accuracy

Outliers detection in streamed data due to
its high-speed, non-stationary, large vol-
ume, and attributes diversity comparing to
static data sets.

The study concluded that clustering has a fundamental
role in data streams mining possess for outliers detection,
especially the basic density-based clustering (DBSCAN) al-
gorithms.

S30
Improving the quality
of data of WSNs se-
mantic information.

-
Improving the quality of semantic row data
in WSNs, and improving sensors spatial
and temporal ontology.

A model for providing semantic sensor data through a Se-
mantic Sensor Web (SSW) services to enhance the quality
of sensors semantic data using data integration and fusion
techniques.

S31 A big data accuracy as-
sessment tool. Accuracy Developing a big data quality assessment

tool.

The study proposes a data accuracy assessment tool based
on machine learning (K-Nearest Neighbors, Logistic Regres-
sion and Decision Trees) and Apache Spark for handling
large-scale datasets.

S32

Inconsistency anal-
ysis in large-scale,
non-stationary and
inconsistent time
series.

Consistency Interpolation of missing/insufficient data
in real-world, large time-series.

The study outlined four different time-series interpolation/
predictions methods for short-term statistical time-series
analysis using the one step ahead prediction and the moving
data window approach.

S33

Anomaly detection
based on spatial
distribution data in
WSNs.

Accuracy of spatial
attributes

Detecting abnormalities based on spatial
distribution data of sensor nodes and using
numerical data outlier detectors in WSNs.

K-nearest neighbours algorithm (KNN) and Euclidian dis-
tance were adopted to detect abnormalities from the spatial
distribution of data and depending on WSNs Low Energy
Adaptive Clustering Hierarchy protocol (LEACH).

S34

Controlling the quality
of data in large-scale
water-level monitoring
system.

Accuracy

Developing a solution to replace DBSCAN
(Density-Based Spatial Clustering of Appli-
cations with Noise) with a more efficient
higher performance clustering algorithm.

A linear-clustering algorithm was developed to replace DB-
SCAN for data quality control in a large-scale, water-level
monitoring system. The experimental results indicated that
the performance of the proposed domain-specific outlier
detection algorithm is higher than DBSCAN.

51

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S35
Missing data estima-
tion/replication in in-
dustrial WSNs.

Availability
Enhancing data availability in the presence
of sensor nodes failures in industrial WSNs
(IWSNs).

The proposed solution is based on utilising sensor nodes
memory space to save measurements from their neighbour-
ing nodes and carry the last observation forward to estimate
missing data. This approach is limited to time series with
stable trend.

S36
A monitoring system
for large-scale sensors
networks.

-

Automatically monitoring the infrastruc-
ture of large-scale sensors networks (124
stations) deployed over vast geographical
terrain (20 sq. km).

The proposed solution is based on a rule engine which reads
the system’s parameters and compares them against pre-
calculated threshold values.

S37
Duplicate records de-
tection in real-world
applications.

Duplication
Detecting and cleaning duplicated records
to ensures the quality of data and maintains
applications performance.

A genetic neural network-based approach for detecting du-
plicated records.

S38
QoI framework for
smart cities applica-
tions.

-
Meeting information quality requirements
for smart cities scale data analysis applica-
tions.

The study proposes a large-scale data analysis framework to
provide near real-time machine-interpretable data for smart
cities applications. The proposed framework considered
many quality measures and fault recovery techniques to
enable quality-aware and up-to-date smart city applications.

S39

Evaluating the QoI in
IoT as a service in a
smart cities scale appli-
cations.

Accuracy
Enhancing public information assets using
advanced methods to support public ad-
ministrations services.

The study proposes a quality of information evaluation strat-
egy based on Multiple Criteria Decision Making (MCDM)
methods in the context of evaluating the quality of pub-
lic data and related metadata in the scale of smart cities
applications.

S40 Outliers detection in
WSNs. Accuracy

Ensuring the quality of data through outlier
detection for identifying intrusion, errors
and noise in wireless sensor networks ap-
plications.

Density-based outlier detection technique was evaluated
using DBSCAN as outlier detection technique for systems
with expected normal behaviour.

S41
Data quality evalua-
tion in a large-scale
transportation system.

-
Addressing the problem of real-time data
analysis and handling imperfections in sen-
sors data of smart cities IoT applications.

Proposing a data integration platform from different sources
to interpret the information certainty level using an eviden-
tial database based on the evidence theory.

52

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S42
Density-based cluster-
ing for outlier detec-
tion in WSNs.

Accuracy

Improving the quality of information via
outlier measurements, mainly by detecting
errors, noise and failures in wireless sensor
networks.

A modified density-based spatial clustering of applica-
tions with noise (DBSCAN)-OD algorithm was developed
based DBSCAN algorithm in order to detect computing
and spatial-temporal parameters to identify outliers from
standard sensors.

S43
A guideline for data
quality challenges in
smart cities.

-

Identifying the main data quality challenges
in smart cities applications especially issues
related to wireless networks energy restric-
tions, sensors bandwidth or connectivity
limitations or for challenges associated with
the large data volumes, high data velocity,
dynamicity or diversity of types and struc-
tures.

The study classified data quality issues in smart cities scale
applications into three main types: measurements or pre-
cision errors in sensor nodes, external noise or network
communication errors and integrity of sensors observations
in both spatial and temporal dimensions.

S44
Automating large-
scale data quality
verification.

Accuracy,
Consistency,

Completeness

Verifying the quality of data against missing
or incorrect information.

The study proposes an automated data quality verifications
system. The proposed system adopts a declarative API to
combine standard data quality constraints with user pre-
defined validation rules and leverages machine learning for
anomaly detection using data predictability approach based
on historical time series.

S45
A guideline to the main
data quality challenges
in CPSs.

- The most significant challenge in CPSs is
identifying and filtering faulty data.

The study highlights the need for developing novel algo-
rithms and protocols that can effectively detect and filter
erroneous data in CPS applications such as faulty data
and information loss models, localized algorithm and the
lightweight secure data storage and transmission protocols.

S46
An introduction to
dynamic data quality
challenges.

Accuracy

Ensuring the quality of dynamic data in IoT
applications which typically generated by
multi-vendors devices, micro services, au-
tomated processes and different types of
sensors.

The study highlights that maintaining the quality of dy-
namic data in IoT applications is an open challenge which
provides new research opportunities.

S47
A review of process-
driven data quality
management.

-
Developing a broadly applicable process-
based model for improving and sustaining
the quality of data.

The study concludes that further representational analysis
is required to enhanced process modelling language for
process-driven data quality management (PDDQM) mod-
elling.

53

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S48 Data quality manage-
ment for data streams. -

Maintaining the quality of the data stream
without affecting the real-time performance
of the system.

The study proposes an ontology-based data quality moni-
toring framework based on the characteristics of relational
data stream management to observe data quality values and
take counteractions to balance the performance.

S49

A survey about the
importance of high-
quality data for ma-
chine learning.

-
Enhancing the performance and accuracy
of machine learning models by ensuring the
quality of their training dataset.

The study concluded that researches were focusing on im-
proving the quality of machine learning models. In contrast,
insufficient works were conducted to improve the quality
of data in the context of its value for machine learning ap-
plications.

S50
Distributed data min-
ing for identifying data
quality issues.

- Facilitating data quality analysis of data in
their distributed state.

The study proposed a data quality issues identifier based
on the knowledge extracted from pre-clustering data in
its distributed status. The experimental results showed
comparable results with those conducted on the integrated
warehoused data.

S51
Data quality challenges
in large industrial en-
vironment.

Consistency
Addressing the challenge of data inconsis-
tency to enhance the quality of data in large
industrial data environment.

A proposed mathematical data quality assessment and mon-
itoring model based on data cleaning, duplicated records
detection and traditional data sorting and merging meth-
ods.

S52
Data quality assess-
ment for electrical
data.

Accuracy,
Completeness

To address the challenge of data quality as-
sessment for electricity consumption big
data.

The study proposes a model that addresses six data quality
assessment indexes including accuracy, completeness and
comprehensiveness using time-relevant k-means to detect
outliers in voltage curves.

S53 Data quality control for
weather data.

Completeness
(missing values)

Improving the accuracy of weather data
which can be degraded by missing sensors
readings.

The study evaluated five strategies for detecting failed sen-
sors and statistically identifying anomalies; Mean imputa-
tion, MAP imputation, Reduction, Marginalization and Pro-
portional distribution and concluded that missing values
handling algorithms can significantly enhance the reliability
of weather systems.

S54
Data quality assess-
ment in smart sensor
networks.

-

Smart Sensor Networks (SSNs) rely on sen-
sors with limited resources and usually de-
ployed in remote and harsh environments
which impose data quality challenges in IoT
applications.

The study proposes a mechanism to reduce memory and
network communication overhead and to impose networks
delay.

54

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S55

A review of the chal-
lenges associated with
designing large-scale
CPS/IoT applications.

Timeliness

Five main challenges oppose the devel-
opment of CPS/IoT applications in smart
cities applications; middleware develop-
ment, computation models, fault tolerance,
data quality management, and a virtual run-
time environment.

The study examined a correlation model among sensors
using readings from different sensors to calibrate or verify
another sensor’s observations when the data are missing.

S56

A survey about the
quality of observations
within sensors web sys-
tems.

Accuracy,
Timeliness

Addressing the challenge of ensuring the
quality of observations in sensors webs
which represent the middleware layer be-
tween sensors and applications.

The study identified essential requirements for developing
the future adaptive quality of observations aware sensor
web solutions including standardisation, the need for a
layer-based architecture, mediation, adaptation and recon-
figuration.

S57
Enhancing situation
awareness in renew-
able power systems.

Accuracy

Developing situation awareness system for
power systems, that can accurately detect
anomalies and robust against multiple data
corruptions.

This study tackles two primary challenges faced by conven-
tional situation awareness in power systems: 1) accurately
detect anomalies using aggregation of random matrix and
long short-term memory network. 2)To be robust against
multiple data corruptions using a dedicated workflow de-
signed to decrease the impact of data corruptions.

S58
Faulty data detection
in cyber-physical sys-
tems.

Timeliness
Detecting and filtering faulty data effi-
ciently to improve the quality of the col-
lected data from a system’s perspective.

The study proposes an automatic reliability improvement
framework of three data quality assessment stages per-
formed on the system input, output and feedback data using
machine learning, and operator in the loop approach for
detecting faulty-data and improving the reliability of the
system.

S59

Data quality manage-
ment for manufactur-
ing cyber-physical sys-
tems.

-

Developing effective managerial policies for
controlling the quality of the data generated
by improper operations of physical and cy-
ber components of a service-oriented man-
ufacturing CPS.

The study proposes a two-stage optimization model for data
quality management of service-oriented manufacturing CPS
(SMCPS). Formal semantics of workflow nets (WF-nets) al-
gorithm together with a two-stage optimization model were
used to find the optimal policies that balance the system’s
objectives.

55

Table 2.10 continued from previous page
Ref. Purpose/application Dimensions Data quality challenges Proposed solutions/methods

S60

Improving the qual-
ity of data of low-
cost IoT environmental
monitoring networks.

Accuracy

Identifying the main factors that affect the
data quality (accuracy) of low-cost IoT
sensors in environmental monitoring net-
works.

The study investigated the use of artificial neural network
and linear regression for calibrating low-cost environmental
monitoring sensors to improve the accuracy of their read-
ings. These devices are vulnerable to environmental factors
such as temperature and humidity; therefore, it is necessary
to take these parameters into account when developing the
calibration model. The results demonstrated the importance
of feature selection process in optimising multi-parameter
calibration models.

56

2.2.4 RQ1: Data Quality Challenges in Large-Scale CPSs.

This section is to answer the first SLR review question (RQ1) listed in Table 2.1.

Cyber-Physical Systems (CPSs) are designed as a network of computational ele-

ments that combine physical input and output mechanisms to interact with the

surrounding environment (Robbins & Tanik, 2013, p. 142). CPSs are getting more

popular in the context of large-scale, smart cities applications which produce a

significant amount of data from numerous devices raising quality-of-service con-

cerns mainly related to real-time big data analysis and data quality management

(Sta, 2019; R. et al., 2020; Kim et al., 2019).

The quality of data in CPS applications is mainly affected by inaccurate observa-

tions that do not represent the real value of the measured phenomena (Geisler et al.,

2016). Data quality issues may occur in large-scale CPSs due to many reasons such

as sensor nodes malfunctions (Labouseur & Matheus, 2017), calibration issues,

poor sensor nodes quality, environmental effects, external noise (Okafor et al.,

2020), networks or communication errors, and real-time scheduling problems (Sha

& Zeadally, 2015; Kim et al., 2016). Furthermore, limitations in communication

channels may cause observations’ overlooking in sensor networks during data

transmission or aggregation processes (Barnaghi et al., 2015; de Aquino et al.,

2019).

The challenges of data quality management becomes greater in large-scale CPSs,

e.g. in environmental and noise monitoring systems, which rely on various sen-

sors and other devices connected by extended networks and usually operate

under noisy and dynamic conditions (Lawson & Ramaswamy, 2016; Liu et al.,

2014; Labouseur & Matheus, 2017). Such applications have enormous technical

challenges due to their multiple layers and complex structure that companies hard-

ware, software, analytical algorithms, business knowledge and communication

57

infrastructure (Togneri et al., 2019).

Large-scale CPS applications, such as environmental monitoring systems, typically,

involve a large number of low-cost sensor nodes deployed in broad geographical

terrains forming a large-scale Wireless Sensor Network (WSN) (Okafor et al., 2020),

(de Aquino et al., 2019; Abid et al., 2015). Failures in sensor nodes and sensor

networks are an inevitable events in large-scale CPSs, which may cause severe

data missing, produces invalid information and potentially reduce the quality of

their service (Li et al., 2019).

In general, sensor nodes in WSNs have limited computing power, limited storage

capacity and limited transmission radius (Lawson & Ramaswamy, 2016; Bhuiyan

et al., 2017). Therefore, wireless sensor nodes can not send observations to a remote

data destination (the sink) directly. Alternatively, a hub device or other sensor

nodes works as a bridge to transfer other sensor node’s observations. sensor nodes

that are closer to the sink consume more power because they support other sen-

sors to transmit their observations and are expected to have more power failures

causing data quality issues (Liao et al., 2019; Togneri et al., 2019). Therefore sensor

nodes may determine the network lifetime based on their battery capacity and

may impact the system’s quality of information (Du et al., 2016).

Typically, wireless sensors nodes of WSNs are distributed according to a spatial or

geographical logic over the targeted environment, (Bhajantri & Pundalik, 2017).

Large-scale applications which exchange geographic information may face spatial

data quality challenges mainly due to the amount of the delivered data from

remote sensing devices which may directly affect the correctness of related spatial

analysis and spatial decision making, (Bahl, 2015). Thus, data quality challenges

are not only related to observations value attributes but also to mismatches in sen-

sor nodes temporal and spatial contextual attributes (Togneri et al., 2019; Barnaghi

et al., 2015).

Based on the SLR data extraction process presented in Table 2.10, it is possible

58

to link all of the addressed data quality challenges in large-scale CPSs in to the

following categories:

• Errors in sensor nodes measurements.

• Hardware failures in sensor nodes and communication networks.

• Mismatches in sensor nodes contextual information of both spatial and

temporal parameters.

Figure 2.47, shows the main data quality dimensions defined by the SLR data

extraction Table 2.10 according to the ratio of the primary studies addressing data

quality challenges associated with these dimensions.

Figure 2.4: The ratio of the data quality dimensions addressed by the SLR primary
studies.

Figure 2.5 provides a holistic view of the main data quality management methods

in large-scale CPSs, data quality dimensions and the main data quality challenges

associated with these systems.

7Descriptive studies were excluded.

59

Figure 2.5: The key data quality challenges in large-scale CPSs.

60

2.2.5 RQ2: Data Mining and Data Quality Management in Large-

Scale CPSs.

This section is to answer the second SLR review question (RQ2) listed in Table 2.1 based

on the results of the SLR.

Data quality assessment in large-scale CPS applications using traditional methods

are no longer efficient due to the heterogeneous large volume of data that these

systems typically exchange (Togneri et al., 2019). Thus, such systems, usually, rely

on a large number of sensor nodes that stream large volume of data in real-time

which requires a high-performance, scalable and flexible tools to effectively pro-

vide insight real-time data processing and analysing mechanisms (Kim et al., 2019;

Lawson & Ramaswamy, 2016; Geisler et al., 2016; Jayswal & Shukla, 2016).

Based on the results of the SLR data extraction process illustrated in Table 2.10,

many statistical, technical and machine-learning models were proposed, tested

and evaluated mostly for identifying data quality issues, decreasing their occur-

rence probability and overcoming their impact on the system. Most of these

proposed solutions, methods or models were developed to enhance the reliability

of a particular system by improving its data quality based on prior knowledge

extracted from the data itself, a process known as Data Mining. Considering

the SLR empirical studies only (41 studies), it is possible to categorise all of the

adopted data quality assessment/management methods, techniques or solutions

into there main groups:

• Data mining.

• Technical solutions/ models.

• Mathematical models.

Figure 2.6 shows the usage ratio of the methods of each of the above groups,

61

indicating that data mining methods are the most widely used compared to other

technical or mathematical techniques.

Figure 2.6: The most popular data quality assessment/management methods or
techniques in large-scale CPS applications based on the number (left) and the ratio
(right) of the SLR studies.

Data mining is the process of auto-discovering knowledge, patterns or models

from large volumes of data using advance data analysis methods (Black, 2019,

p. 12). Data mining techniques are essential for data analysis in large-scale CPSs

which relay on sensor node networks that, typically, stream a continuous flow

of spatiotemporal8 data at a relatively high-speed and dynamicity (Appice et al.,

2014, p. 2-3).

Focusing on the SLR primary studies that adopted data mining methods/tech-

niques for tackling data quality challenges in large-scale CPSs reveals that these

methods are mainly divided into statistical and machine-learning based methods.

Furthermore, it reveals that most popular data mining techniques used for data

mining in large-scale CPSs are anomaly analysis, predictive analysis and clustering

analysis, as shown in Figure 2.7.

Moreover, these three leading data mining techniques were applied to address
8Spatiotemporal data are sensor nodes observations of events that occur in a given place at a

particular time.

62

Figure 2.7: The most popular data mining techniques in large-scale CPSs based on
the No. of the SLR studies utilising these techniques.

various data quality issues associated with the main data quality dimensions, as

shown in Figure 2.8.

Figure 2.8: The key data mining techniques used to assess the main data quality
dimensions in large-scale CPSs.

Figure 2.9 shows a holistic diagram of the main data quality management/assess-

ment methods and techniques and their associated data quality dimensions that

these techniques are addressing, based on the SLR results.

63

Figure 2.9: A holistic diagram of the main data quality management/assessment
methods and techniques and their associated data quality dimensions that these
techniques are addressing, based on the SLR results.

2.2.5.1 Anomaly Analysis for Data Quality Management

Anomaly analysis also called outlier detection, is the process of identifying un-

usual patterns in datasets which do not comply with well-established normal

behaviour (Appice et al., 2014, p. 3). If the absolute value of deviation of a sensor

node’s observation is higher than a pre-calculated threshold value, then this obser-

vation is an outlier (Chen et al., 2018).

As shown in Figures 2.7 and 2.8, anomaly analysis is a significant research field in

the context of data quality assessment in large-scale CPSs, which mainly investi-

gated using statistical and machine-learning based outlier detection techniques.

64

e.g., Deep Neural Networks (DNN) (Hanrong Lu et al., 2016), K-Nearest Neigh-

bours algorithm (KNN) (Hanrong Lu et al., 2016), K-means clustering algorithm

(Liu et al., 2019) as machine-learning based outlier detection methods, and stan-

dard deviation, correlation coefficient (Xinrui et al., 2019) and DBSCAN (Jayswal

& Shukla, 2016; Abid et al., 2017; Nesa et al., 2018) as statistical outlier detection

methods.

Outlier detection relies on the assumption that the values of sensor nodes’ ob-

servations are correlated spatially, temporally or both spatially-and-temporally.

However, this assumptions is not necessarily always valid, especially in large-

scale CPSs where the correlations between sensor nodes may be affected by many

parameters such as the size of the deployment environment and the geographical

distribution of sensor nodes (Laso et al., 2017). For example, the approach of

spatial continuity cannot be applied directly to the real-world temperature obser-

vations collected from the temperature sensor nodes distributed around London

due to a phenomenon known as the Urban Heat Islands (UHI) 9. According to the

Met Office, the phenomenon of urban heat islands is caused by many associated

factors, such as the heat released from industrial, domestic facilities, concrete and

other building material which observe sun heat during the day and release it

back during the night. The phenomenon of urban heat islands may cause up to

5 degrees (unexpected) deviation among sensor nodes observations at the same

point in time, which violates the spatial continuity constrains (MetOffice, 2019) 10

among sensor nodes observations. Moreover, the heat distribution in an urban

area depends on many environmental parameters and geographical terrains such

as wind speed, humidity, sunshine density, the existence of rivers and the density

and height of urban structures. The heat profile map of London is shown in

Figure 3.25, where the temperature in central London may reach 11 degree C0 and

9https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-
and-archive/library/publications/factsheets/factsheet_14-microclimates.pdf

10More details will be provided in chapter-3.

65

dropped by over 6 degrees Co in the suburbs at the same point in time (MetOffice,

2019; Chandler, 1965), as shown in Figure 3.25.

2.2.5.2 Predictive Analysis for Data Quality Management

Predictive analysis is the process of mining current and historical data to identify

patterns and to forecast the future values of time series (Adhikari et al., 2015;

Rawat et al., 2015, p. 507). Predictive analysis might be conducted using statistical

or machine learning based techniques (Ratner, 2017, p. 9-12).

For example, machine learning model based on the Random Forest Prediction

(Random Forest Regression) method was adopted by (Farooqi et al., 2018) for

developing an automated data quality control mechanism for weather data. An-

other example based on statistical predictive analysis using the one step-forward

approach, autoregressive–moving-average (ARMA) model for tackling the in-

evitable challenge of sensors and sensor networks failure in power terminals, (Li

et al., 2019). Furthermore, some applications required a mixed-methods approach,

where both machine-learning and statistical methods were adopted to tackle a

particular data quality challenge. For example, Okafor et al. (2020) investigated

the use of artificial neural network and linear regression for calibrating low-cost

environmental monitoring sensors to improve the accuracy of their observations.

Predictive analysis methods rely on predictive models developed using histor-

ical data as a training data set. Therefore using predictive analysis in real-time

(online mode) applications raises performance concerns due to the complexity

and volume of the required training data set, (Sta, 2019; Rager et al., 2018). Using

predictive analysis is a challenge in real-time large-scale CPSs; thus it may re-

quires analysing hundreds of sensor nodes data streams in a relatively short time,

(Mylavarapu et al., 2019; Auger et al., 2016). Furthermore, the training process for

predictive analysis models requires relatively long and valid (anomaly-free) time

series, which cannot be guaranteed in real-world scenarios (Chen et al., 2018, p.

66

560).

2.2.6 RQ3: Unaddressed Data Quality Management Challenges

in Large-Scale CPSs and The Research Gap.

This section is to answer the third SLR review question (RQ3) listed in Table 2.1.

Data is the bridge between the real physical and the digital worlds where data

are used to make intelligent decisions in CPS applications (Karkouch et al., 2015;

Farooqi et al., 2018). Large-scale CPSs relay on the data gathered by sensors and

other devices to make intelligent decisions, low-quality data may impact these

decisions’ reliability, and compromise these systems’ quality of services. In general,

ensuring the quality of data in large-scale CPSs is a challenge due to the following:

The heterogeneous nature of their data structures, the scale of data that these

systems exchange and due to their real-time requirements (Farooqi et al.,

2018; Liu et al., 2014).

CPSs are vulnerable to several external and internal factors such as communi-

cation networks errors, sensors failures which interrupt data transferring

process, compromise the integrity of data and reduce the performance and

reliability of these applications (Al-Milli & Almobaideen, 2019). Failures

in wireless sensors and sensor networks are inevitable events in large-scale

CPSs, and unusually such failures are unpredictable (Li et al., 2019; Larburu

et al., 2014). Furthermore, there is a high possibility of getting erroneous

data from sensor node networks due to the limitation in their computing

power, storage capacity and communication capabilities (Liao et al., 2019;

Abid et al., 2015; Ghosh et al., 2019).

There are no standard criteria to define high-quality data which typically di-

verse in measure attributes and requirements from an application to another

67

(Karkouch et al., 2016). Data quality is a subjective concept that varies by the

purpose or the intended use of the data. Therefore data quality standards

have not been fully identified or applied successfully in large-scale CPSs

(Perez-Castillo et al., 2018).

The SLR data extraction Table 2.10 illustrates the attempts to tackle data quality

issues associated with large-scale CPSs while revealing further emerging data

quality challenges in which very little or no work has been done. Addressing

data quality issues in large-scale CPSs is still an open challenge that is not fully

enclosed yet (Peng et al., 2019; Perez-Castillo et al., 2018; Farooqi et al., 2018;

Prathiba et al., 2016; Shih et al., 2016), which offers new research opportunities

and higher possibilities for having more attention in the future. The data quality

management issues that the literature did not resolve based on the SLR results are

detailed in the following subsections:

• Sensor nodes’ Measurement Errors Detection: The SLR primary studies

which adopted prediction analysis models as data accuracy assessment

techniques are sharing the following limitations:

1. All of the proposed prediction analysis models were based on an as-

sumption that data accuracy issues occur for a short interval of time

(point outliers). None of the SLR primary studies proposed a solution

to address data accuracy issues associated with long outliers. Long

outliers change the time-series’ pattern, so the inaccurate observations

appear as the standard. In case, a time-series with long outliers is used

as the predictive model training dataset. It will compromise the modes’

ability to detect data accuracy issues correctly.

2. No systematic method or approach was demonstrated by any of the

SLR empirical primary studies on how it was possible to ensure the

68

quality of real-world dataset used to train or calibrate the predictive

analysis model.

3. None of the SLR primary studies provided a comparison or a justifi-

cation for why a particular predictive analysis technique was chosen

over another. For example, it is not clear when to apply deep learning

neural networks as a predictive technique (Krishna, 2018) instead of

linear regression (Okafor et al., 2020).

4. SLR primary studies that investigated anomaly analysis as a solution

to evaluate the accuracy of sensor nodes measurements by comparing

their observations with different sensor nodes or to a pre-calculated

threshold value were based on the assumption that these sensor nodes

are spatially correlated. However, this assumption is not necessarily

always valid in large-scale CPSs. The spatial continuity among sensor

nodes in large-scale CPS applications might be compromised because of

the vast distance separating these devices or other factors that disrupt

the spatial continuity constraints, as detailed in Section 2.2.5.1 and

Section 3.6.

• Sensor nodes’ and Sensors Networks’ Failures Detection: The SLR pri-

mary studies provided no systematic method or a generic approach for

detecting sensor nodes and sensor node networks hardware failures in large-

scale CPSs. All proposed failure detection mechanisms were mainly domain-

specific solutions. For example, signal processing techniques were utilised

for monitoring the hardware status of a Chinese network of weather radars

by Togneri et al. (2019) which can not be applied as a generic solution for

hardware failures detection in sensor node networks of large-scale CPSs.

• Ensures the Quality of Observations’ Spatial and Temporal Contextual

Attributes: The SLR primary studies revealed that further research is re-

69

quired to address the challenge of ensuring the quality of sensor nodes

contextual information of both spatial and temporal attributes. Spatial data

quality issues (sensor nodes location) may affect the validity of any related

spatial analysis. Furthermore, very limited or no research have practically

investigated the possibility of using observations timestamp analysis tech-

niques as a potential solution to improve the quality of sensor nodes spatial

contextual information.

2.3 The Research Questions

The systematic literature review has provided evidence to support the research

questions, which aim to approach some of the emerging data quality challenges in

large-scale CPSs. Accordingly, the broad research questions of this research are as

follows:

1. Is it feasible to develop a proof of concept data quality management system

for large-scale CPSs that can deliver the following:

(a) Detects sensor nodes measurements errors associated with the four

main data quality dimensions; accuracy, timeliness, completeness, and

consistency.

(b) Detects hardware failures in sensor nodes and sensors’ communication

networks.

(c) Ensures the quality of both spatial and temporal contextual attributes

of sensor nodes observations.

2. Is it possible to empirically evaluate the effectiveness of the proposed data

quality management system using a real-world, large-scale sensor node

network as a case-study?

70

3. How to address bias concerns related to the evaluation process of the data

quality management system, which emerges due to the presence of data

quality issues in the testing / evaluating real-world dataset?

2.4 Summary

This chapter is an introduction to data quality and the main challenges associated

with its management in large-scale CPSs. It incorporated a systematic literature

review which indicated that data quality management in large-scale CPSs is still

an open challenge. The SLR concluded that not much had been done to provide

a practical, comprehensive data quality management solution to detect sensor

nodes measurements errors associated with the main data quality dimensions

of accuracy, timeliness, completeness, and consistency in large-scale CPSs. No

systematic or generic approach was demonstrated for sensor nodes, and sensor

node networks failures detection and further research is required to address the

challenge of ensuring the quality of the spatial and temporal contextual attributes

of sensor nodes observations.

To address these challenges, a proof of concept data quality management system

is proposed for large-scale CPSs to detect errors in sensor nodes measurements,

identify hardware failures in sensor nodes or sensor node networks and detect

mismatches in temporal and spatial conceptual attributes of sensor nodes obser-

vations. The proposed system will be evaluated using real-world, sensor node

networks. More details about the structure of the proposed system, the evaluation

and validation methods will be provided in the next chapter (Chapter 3).

71

Chapter 3

System Design (Methodology)

“... there are three steps in a quality control process:

the specification of what is wanted, the production of

things to satisfy the specification, and the inspection

of the things produced to see if they satisfy the

specification."

— Shewhart & Deming (1986)

The purpose of this chapter is to describe the research context. It presents the re-

search design, the structure of the data quality management system, data analysis

methods, the techniques used to address the research objectives, and explains the

adopted logical sequence to conduct the research activities.

3.1 Overview of Research Paradigms

This research is an empirical study that uses software engineering and data science

techniques to tackle the research questions and to deliver its objectives. Like

any other applied engineering branches, software engineering disciplines can be

utilised to develop new methods (solutions) via verifying a particular theory using

72

empirical observations, utilising these new methods in industrial projects, and

continuously improving these methods during the projects life-cycle (Staron, 2020,

p. 2-8).

According to Basili (1993), there are various forms of software engineering re-

search methodologies which mainly categorised into experimental or analytical

paradigms based on the conducted research method:

• The Experimental Paradigm

The experimental paradigm includes the following methods:

– Scientific method: proposing a theory or a model to measure, analyse

a real-world behaviour and if possible, validate the hypotheses of that

theory or model using a simulation model.

– Engineering method: observe an existing solution, and propose a better

one, build measure and analysis until achieving tangible improvements.

– Empirical method: proposes a model and measure, analyses and vali-

dates that model using case studies or experiments (Wohlin et al., 2012,

p. 3-8)

• The Analytical Paradigm

– Mathematical method: proposes a formal theory, obtains results and

validates it if possible, with experimental measurements.

Empirical based studies use real-world systems as case studies to validate a given

theory or hypothesis (Aggarwal et al., 2009). Empirical studies help evaluate,

monitor, predict, and enhance a targeted system’s performance quickly and at

a relatively low cost. Empirical studies are especially beneficial for large-scale

systems which compose various activities and resources that need to be managed

with additional attention (Malhotra, 2015, P. 1).

The empirical approach was adopted in this research because it is the most suitable

73

method to achieve the research aim of developing a data quality management

system for large-scale CPSs and evaluate its performance through empirical tests

based on real-world case studies. More details about the research strategy and

methods are detailed in the following sections.

3.2 Empirical Research Methods

Empirical research methods are mainly categorised into qualitative and quanti-

tative approaches. However, it is almost always better to use a combination of

both approaches to investigate a software engineering research hypothesis or to

validate its outcome, which is known as the mixed-methods research methodol-

ogy (Seaman, 2008, p. 60).

3.2.1 Quantitative

Quantitative methodology is an empirical research method, mainly concerned with

numerical data-driven results where the collected observations are analysed using

mathematical means to interpret a process or a project under study (Guéhéneuc &

Khomh, 2019, p. 289). Quantitative research tends to process large-scale and repre-

sentative sets of data collected from a controlled experimental environment (Blax-

ter, 2010, p. 65). In general, results generated by quantitative methods are repro-

ducible and unbiased since they are based on statistical or mathematical techniques

to validate a hypothesis or investigate a phenomenon (Malhotra, 2015, p. 3-4).

3.2.2 Qualitative

Qualitative research investigates in-depth a new process or technique based on ex-

planation or textual descriptions related to human beliefs or behaviour (Malhotra,

74

2015, p. 4). Qualitative research attempts to understand a phenomenon using meth-

ods such as observations, maps, interviews, and focus group’s discussions without

having precise measurements or quantify analysis in their results (Creswell &

Creswell, 2017, p. 49-51). Moreover, qualitative research can be used as a source

of hypotheses for further investigation using quantitative research (Carvalho &

White, 1997, p. 20).

3.2.3 Mixed-Method (Triangulation)

An empirical research approach involves data collection and analysis using quali-

tative and quantitative techniques to answer more complicated research questions

(the case of this research) or verify the research hypothesis. Thus, a mixed-method

research approach involves collecting a more robust array of evidence than those

collected from the qualitative or the quantitative research method alone (Yin, 2017,

p. 100-101).

Mixed-method is a research methodology as well as a research method of inquiry,

where both qualitative and quantitative strands must be fully integrated (Mixed)

through multiple data points about the same phenomenon in the study. If both

qualitative and quantitative approaches, were used in the same study but without

any links between them, then it is known as Quasi-mixed methods (Creamer, 2017,

p. 41). Mixed-method is an empirical research method that often involves using

software engineering methods to apply theories from other disciplines in order to

be able to interpret quantitative and qualitative data (Guéhéneuc & Khomh, 2019,

p. 289-290).

75

3.3 Empirical Research Strategy

Empirical studies can further be categorized according to the type of the imple-

mented research strategy as an experimental, case study and survey approaches.

The relation among empirical research methods and strategies is shown in Ta-

ble 3.1, where experiments are mainly quantitative since experiments, typically,

focus on collecting numerical measurements of a monitored phenomenon and

provide results using statistical methods. In contrast, case-study can be conducted

using any or both qualitative or quantitative approaches (Wohlin et al., 2012, p.

10-12).

Table 3.1: Qualitative and quantitative methods in empirical research strategies.

Strategy Qualitative methods Quantitative methods

Experiment - X

Case study X X

Survey X X

The next sections focus on the experimental, and the case study research strategies

as this research mainly rely on both of these approaches.

3.3.1 Experimental

Typically, an experimental study is an empirical test conducted under a controlled

scope or laboratory environment to prove an established hypothesis or test a

supposed correlation between system input and output variables (Münch et al.,

2012, p. 178-180). It is difficult to define the experiments controls in software

engineering experiments because software engineering tasks are mainly dependent

on current technology and individuals’ experiences. Thus, no standard method

or procedure is adopted in the past to perform such tasks (Kitchenham et al.,

76

2002). Typically, the outcome of an experiment is either accepting or rejecting the

experiment hypothesis. The term "null hypothesis" represents the opposite state

of the suggested hypothesis, consequently proving an experiment hypothesis can

be expressed as rejecting its null hypothesis (Smalheiser, 2017, p. 128). The main

processes of the experimental research approach are shown in Figure 3.1.

Figure 3.1: The main processes of the experimental research approach.

3.3.2 Case Study

A case study is an empirical research method aimed at investigating or tackling a

real project or case within its real-world context. Typically, case studies rely on

prior theoretical propositions or analysis methods to cope with the complex and

dynamic characteristics of real-world projects (Yin, 2017, 46). Typically, the case

study method presents scientific evidence collected under a lower level of control

compering with the experimental method (Zelkowitz & Wallace, 1998). The main

processes of the case study approach are shown in Figure 3.2.

Figure 3.2: The main processes of the case study research approach.

3.3.3 Choosing the Research Methodology

Research methodology is a framework that links supporting methods, approaches

and guidelines to formulate models and theories about the studied phenomenon,

as well as to validate these models and theories to address the research objectives

77

in a systematic way (Blessing & Chakrabarti, 2009, p. 9-11). The choice of an ap-

propriate research methodology approach involves deciding whether a qualitative,

quantitative, or mixed-method approach should be adopted to study the research

topic and which research strategy will be employed to conduct that approach.

The choice of the research approach can be made based on the interconnection of

three components; research methods, design, and paradigm which interpret the

approach into practice, as shown in Figure 3.3. Other parameters may influence

the choice of the research approach, such as the existing literature, the nature of

the research problem, the researcher’s personal experience, and well-established

research practices (Creswell & Creswell, 2017, p. 43).

Figure 3.3: Research approaches based on the interconnection of Research Methods,
Design, and paradigms.

• Research paradigm is a set of beliefs that attach a researcher to a particular

worldview on how the research problem should be addressed (Kuhn, 1962,

p. 264). In general, research is an interactive process driven by the researcher

and affected by his or her scientific background, gender, ethnicity, social class,

and even by other people involved in the research (Denzin & Lincoln, 2017,

78

p. 195). The research narratives or paradigms can be broadly categorised as

postpositivist, constructivist and pragmatic (Creswell & Creswell, 2017, p.

43-47). Postpositivist paradigm is also known as the objectivist, empirical

science and the scientific method. It is the traditional form of research based

on the deterministic philosophy in which the researcher tries to identify and

estimate the causes of the research problem by implementing a set of small

tests or experiments to verify, fulfil, and refine the research questions or

hypothesis. Postpositivist is an evidence-based paradigm where data, obser-

vations, numeric measurements and information collected by instruments or

by the researcher himself are used to determine the effects or outcomes of

the studied phenomena (Creswell & Creswell, 2017, p. 44).

• Research design1 (methodology) is the early stages of research development,

which, includes the development of the research questions, hypothesis and

data analysis methods (Denzin & Lincoln, 2017, p. 549-450). The research

design must be formulated depending on the type of research and the data

collection strategy (Bairagi & Munot, 2019, p. 75). The research design

emphasizes the research approach as qualitative, quantitative, or mixed

methods and known as inquiry strategy of inquiry (Creswell & Creswell,

2017, p. 49).

• Research methods involve all the researcher’s basic techniques to perform

data processes in the study, such as data collection, analysis, features extrac-

tion and validation techniques. The research method’s choice depends on

the type of collected data and the intended type of information required by

the researcher to fulfil the research objectives. It also reflects the choice of

the research approach (Creswell & Creswell, 2017, p. 53-55).

A wide range of possible choices can drive the researcher’s logical chain of actions

1*within the context of the postpositivist paradigm

79

to address his research objectives. However, it is possible to drive the research

through the appropriate direction by defining the most abstract level of action, the

research paradigm in this case, and move on to elaborate the research methodology,

methods and techniques, this approach is known as the Research Pyramid, as

shown in Figure 3.4, (Jonker & Pennink, 2010, 23).

Figure 3.4: The logical sequence to decide the research methodology, methods and
techniques.

The quantitative methodology was mainly adopted in this research to enable the

possibility of using software engineering and data science literature to support

the theoretical aspects of the research and empirically fulfil its objectives. This

research mainly relies on primary data (real-world observations) to address its

objectives and to verify its proposed solution’s validity. These observations are

collected from two different data sources as follows:

• Large-scale, real-world sensor node network: Observations from a large-

scale environmental sensor node network, a temperature network in particu-

lar distributed around London were collected in real-time forming continu-

ous time-series for each sensor node in the network.

• Local sensor node network: Observations were collected from a fully con-

trolled, high-quality temperature sensor node network deployed at the Uni-

80

versity of East London / Dockland campus. This network aims to provide

benchmark observations to validate the quality of the data collected from

the large-scale network. Thus, this network’s collected data have no missing

values or outliers and can be used to calibrate the system models before

applying them using a real-world dataset. Furthermore, it provides a con-

trolled environment to identify some data quality issues that were difficult to

identify using the data collected from the real-world sensor node network.

Figure 3.5 shows a holistic overview of the overall research phases, which broadly

identified as (i) Research definition, (ii) Literature review, (iii) Research design, (iv)

Research conduct and (v) The research results interpretation. The details of the

related phases are discussed in the following sections.

3.4 System Design and Development Phases

Systems analysis and systems design are key components of the process of in-

formation systems development2. Systems analysis is a set of activities required

to understand and specify the purpose of the system, its functionality and de-

scribe its details. In comparison, systems design describes the implementation

details of the information system as well as describes how it will work and how

its components are going to engage together. The outcome is a detailed technical

implementation description of the system development process (Satzinger et al.,

2015, p. 5-6). A management framework usually guides the analysis, design, and

other development phases of an information system. This framework is known

as the System Development Life Cycle (SDLC). SDLC of an information system

includes all the planning, analysis, design, programming and testing stages and

covers other development, deployment, and even maintenance details (Langer,
2Information systems are combinations of hardware, software, data and processes that interact

coherently to provide a particular output. Some information systems may involve human actions
in their process (Tilley & Rosenblatt, 2016, p. 4).

81

Figure 3.5: A holistic overview of the research overall phases.

2007, p. 10-15). Many different SDLC approaches can be adopted to develop

information systems, but they are categorized into predictive and adaptive in

general.

The predictive approach is usually adopted for developing information systems

that all their requirements are well defined, and their development does not in-

82

volve introducing new processes. This approach requires extensive planning and

coordinating in advance, to develop the information systems as specified in their

designs.

The adaptive approach is suitable for developing information systems that cannot

be thoroughly planned because it is not possible to provide a complete solution

or determine all system requirements at the early stages of the system develop-

ment (Satzinger et al., 2015, p. 297-298).

The data quality management system was developed as a series of models that

have been modified many times or iterated during the research progresses. Itera-

tion means that the phases of the system development life cycle were implemented

sequentially with some overlapping, as shown in Figure 3.6. These models have

gone through the same analysis steps, design, development and test and trans-

ferred the results as feedback to the next iteration until they satisfied a particular

accuracy or performance criterion. Thus, this research methodology is mainly

based on the adaptive SDLC approach. Since all of its development activities,

designs and models have been modified often or iterated during the research

progresses.

Figure 3.6: Adoptive SDLC iterations and the key development phases of the data
quality management system (Satzinger et al., 2015, p. 300).

This research aims to develop a proof of concept data quality management sys-

tem for large-scale CPSs. It relays on different statistical and machine learning

models for detecting sensor nodes measurement errors, sensor nodes fauilers

83

and mismatches in sensor nodes contextual attributes. Each of these models has

gone through the same high-level design and development activities shown in

Figure 3.7, as adopted from (Brimicombe, 2009, p. 89).

Figure 3.7: A holistic view of the data quality assessment models’ development
activities (Brimicombe, 2009, p. 89).

84

3.4.1 System Analysis and Design

The data quality management system was designed to address data quality chal-

lenges associated with detecting: sensor nodes measurement errors, sensor nodes

hardware failures, and mismatches in sensor nodes spatial and temporal con-

textual attributes. Detecting sensor nodes measurement errors associated with

the primary data quality dimensions of accuracy, timeliness, completeness, and

consistency in large-scale CPSs were investigated using predictive and anomaly

analysis models via utilising statistical and machine-learning techniques. Time-

series clustering techniques were investigated as a feasible mean for detecting

long-segmental outliers as an indicator of sensor nodes’ continuous halting and

incipient hardware failures. Furthermore, the quality of the spatial and temporal

contextual attributes of sensor nodes observations was investigated using times-

tamp analysis techniques. More details about each component of the data quality

management system will be provided in the coming sections, while this section

will provide a general overview of the system design. The main components of

the proof of concept, data quality management system are shown in Figure 3.8. It

consists of three layers characterised according to their functionality, as follows:

• Layer -1: Sensor Node Networks Layer: Observations from two sensor

node networks were collected and provided as input data to the system’s

second layer (the data warehousing layer). The first network is an out-

sourced large-scale sensor node network. It consists of hundreds of sensor

nodes that collect observations of different environmental parameters such

as temperature, humidity and air quality from around London. The second

source of data is a temperature sensor node network that served as a bench-

mark data to test and calibrate the different components of the data quality

management system, as shown in Figure 3.8, layer -1.

85

Figure 3.8: The main components of the proof of concept data quality management
system. The mode-model structure of the data quality assessment unit is illustrated
in Figure 3.11.

• Layer -2: Data Warehousing and Integration Layer: The data quality man-

agement system is designed to perform data management and data integra-

tion in real-time. In this case, this is a challenge due to the large volume

of the received data and the high diversity in data structure and attributes.

Data warehousing was adopted as a solution for data collection and manage-

ment. Data from different sources were linked together (integrated) based on

various parameters, such as observations timestamps, geographic attributes

and type. Technically, the data warehousing layer consists of two databases.

The first database is the Integration Database which hosts two different data

schemes the large-scale sensor node network observations schema and the

benchmark local sensor node network observations schema. as shown in,

86

Figure 3.8, layer -2. The second database is the Archive Database. It has

the same structure as the Integration Database, but it is dedicated to histori-

cal data storage which will be transferred automatically from the primary

database (the data integration database).

The integration and the archive databases in the data warehousing Layer are

linked using two direction arrows, thus the data from the archive database

could be retrieved and used for training and testing the predictive analysis

or time-series clustering models of the data quality assessment unit which

require a long window of sensor-nodes time-series to enhance their accuracy.

The combination of both Layer-1 and Layer-2 of the data quality management

system forms the Data Acquisition Unit.

• Layer-3: Data Quality Assessment Layer: consists of four main components;

predictive analysis models, anomaly analysis models, time-series clustering

models and timestamp analysis models. Many statistical, machine learning

and time-series clustering technique were investigated as data quality as-

sessment mechanisms in the data quality management system, as shown in

Figure 3.8, layer-3. The role of each of these components is highlighted in

Figure 3.11.

More details about the data quality management system are provided in the

following sections.

3.4.2 Data Acquisition Unit

The first objective of the research is to investigate data quality challenges in large-

scale cyber-physical systems based on the literature and based on empirical data

analysis of observations collected from a real-world case-study. This objective

was tackled in chapter-2, The Literature Review, and extended in Chapter-4,

87

Implementation and Results, using empirical analysis for observations’ streams

collected from the real-world, large-scale sensor node network.

In order to empirically investigate data quality issues in large-scale CPSs, the Data

Acquisition Unit (DAU) was developed to collect data streams from sensor node

networks in real-time. Its conceptual structure is shown in Figure 3.8 Layer-1 and

Layer-2, which consist of the following components:

3.4.2.1 Sensor Node Networks

The proposed data quality management system was empirically validated using

real-world data collected from environmental monitoring sensor node networks.

Although many environmental parameters were collected at the early stages of

conducting this research, temperature sensor nodes were selected as the primary

data source to test the proposed data quality management system. Thus, tempera-

ture sensor nodes are the most available type of sensors, vastly distributed around

London, and they managed by different providers, which offers an excellent op-

portunity to investigate data quality issues of such large-scale network of sensor

nodes. Data Acquisition is the process of efficiently acquiring observations from

sensor node networks. The notion of efficiency refers to the fact that sensor nodes

are, typically, battery-powered and in most cases are distributed in remote and

inaccessible terrains. Thus, data acquiring from sensor nodes must be achieved in

the most energy-efficient method to prolong sensor nodes battery life. Another

factor of efficiency is linked to the communication cost. Thus, reducing data trans-

actions within the network will reduce the communication cost, which must be

achieved without compromising the accuracy of observations (Sathe et al., 2013,

p. 11). The topology of the two sensor node networks used in this research is

a relatively complex mix of data pull-based, and data push-based observations

triggered mechanisms. Both networks also utilise cloud computing as an essential

component in their structure. In the pull-based method, the end-user defines the

88

frequency of triggering the data acquiring process. In contrast, in the push-based

method, sensor nodes and their gateway (base-station or server) have their own

interactive communication function which determines when sensor nodes push

their observations to the gateway automatically (Sathe et al., 2013, p. 15,18). Wire-

less sensor nodes main hardware components and anatomy are briefly introduced

in Appendix A, Section A.1.

3.4.2.2 Data Streams

Large-scale CPS applications such as environment monitoring systems typically

involve many sensor nodes distributed over a vast geographical area, forming a

large-scale sensor node network. If a sensor node network is denoted by S and

the number of sensor nodes within the network S is between 1 and m, then it is

possible to identify each sensor node in the network S by Sj where j = {1, . . . ,m}

and 1 6 j 6m then:

S= {Sj | 1 6 j6m} (3.1)

Assuming that the value of an observation from the sensor node Sj at a point in

time ti is Vij and if the sensor node Sj is configured to stream observations regularly

based on a pre-set duty-cycle then the sampling rate or the duty-cycle of the sensor

node Sj equals ti+1 - ti. Thus, the timestamp attribute of the observations become

irrelevant, and it is possible to use an index value i for indicating the time axis

in the data stream (Sathe et al., 2013, p. 13-14). Since sensor nodes in large-

scale environment monitoring systems are usually deployed in vast geographical

terrains, each of these sensors, typically, has geographical coordinates attributes

(Xj,Yj).

Based on this brief introduction, it is possible to specify the main attributes that the

data acquisition unit must be able to process, as shown in Table 3.2, where, each

89

row represents a single observation and the included data are for demonstration

purpose only.

Table 3.2: The main attributes of sensor nodes data streams in large-scale CPSs.

Time index Timestamp Sensor ID Coordinates Value

i ti Sj Xj Yj Vij

1 02/02/2020 01:00:00 1 -0.18 51.4 4.5

1 02/02/2020 01:00:00 2 -0.19 51.3 4.2

1 02/02/2020 01:00:00 3 -0.2 51.5 5.1

2 02/02/2020 01:15:00 1 -0.18 51.4 4.4

2 02/02/2020 01:15:00 2 -0.19 51.3 4.1

2 02/02/2020 01:15:00 3 -0.2 51.5 5.1

In an ideal situation, as shown in Table 3.2, observations from large-scale sensor

node networks occur periodically in specific points in time and spatially labelled

with two dimensional coordinates (Latitude and Longitude). Observations from

active sensor nodes would be presented as discrete, time-stamped observations

snapshots which form spatiotemporal time-series (Appice et al., 2014, p. 5-7), as

shown in Figure 3.9.

Figure 3.9: Sensor nodes data stream as discrete, time-stamped observations
snapshots (Appice et al., 2014).

Each of the blue circles presents an observation from a particular sensor node

with a value attribute Vij shown as a number. Moreover, D1 , D2, ... , Dt are

90

data snapshots equally separated by time (t) and the (X, Y) coordinates are the

geographical latitude and longitude location attributes of the sensor nodes.

3.4.2.3 Software Framework

The software framework is the combination of all software components and solu-

tions used to facilitate observations transactions from remote sensor nodes to the

local database warehouse of the data quality management system. The software

framework includes cloud computing modules, databases, and objected-oriented

programming tools used to develop the data acquisition software, particularly

for this research. The high-level process diagram of the data acquisition unit is

shown in Figure 3.10. The full description of the main components of the software

framework is illustrated in details in Chapter-4.

The data acquisition unit is designed to collect sensor nodes observations effec-

tively in real-time. It collects observations continuously based on a duty-cycle

which triggers the data collection action every T minutes, where T = ti+1 − ti and,

T is a dynamic parameter that may change based on the changes in the duty-cycles

of sensor nodes. T is smaller than the shortest duty-cycle of any of the sensor

nodes in the network. The data acquisition unit is designed to check actively and

adjust its data collection duty-cycle T actively to find the shortest duty-cycle, as

shown in the high-level process diagram of the data acquisition unit, Figure 3.10.

3.4.3 Data Quality Assessment Unit

The data quality assessment unit is the core component of the data quality man-

agement system designed to detect data quality challenges associated with errors

in sensor nodes measurements, hardware failures in sensor nodes, and to detect

mismatches in spatial and temporal contextual attributes of sensor nodes observa-

tions to ensure these observations fitness for use in large-scale CPS applications. It

91

Figure 3.10: The high-level process diagram of the data acquisition unit.

92

utilises many data mining techniques, such as statistical and machine-learning pre-

dictive analysis, anomaly detection, time series clustering and timestamp analysis

which can be categorised according to their operational mode into:

1. Online mode, the system checks data quality issues associated with errors

in sensor nodes measurements in real-time. The data quality management

system assesses the quality of the sensor nodes observations against the

following four primary data quality dimensions accuracy, timeliness, com-

pleteness, and consistency in real-time.

In this context, the real-time notion means that the data quality evaluation

of an observation must be completed before receiving the next observation

from the same sensor node for all sensors in the network. In other words,

if the data quality assessment unit completes the data quality checks in a

shorter interval of the shortest duty-cycle of all sensor nodes in the network,

then it is considered that the system had satisfied the real-time constraint.

Predictive analysis models and Anomaly analysis models were adopted,

focusing mostly on evaluating the accuracy of observations based on their

temporal correlation with older observations from the same sensors or their

spatial correlation with other neighbouring sensor nodes observations, re-

spectively.

2. Offline mode: the systems’ components that typically analyse all sensor

nodes time-series simultaneously to evaluate their compliance with data

quality constraints. Unlike the online mode, which relies on short simple out-

liers’ detection approach. The offline mode is mainly based on detecting long

segmental outliers’, which requires checking a window of time-series (set of

observations). Therefore, in the offline model, the data quality management

system performs much less routine data quality checks in comparison with

the online mode. It may be triggered once every six hours or once a day.

93

The offline mode is useful for detecting systematic errors due to hardware

failures in sensor nodes or communication networks and data quality issues

related to sensor nodes observations consistency and geographical location

accuracy.

Figure 3.11 shows the mode-model structure of the data quality assessment unit.

Sensor nodes data stream is, typically, composed of a long sequence of observations

forming long time-series. Theoretically, a sensor node data stream is infinite.

Therefore, a time range of the data stream must be specified to be dealt with

according to a model which can be specified to suit applications needs (Wang et

al., 2016, p. 100-103). The most relevant data stream handling models (approaches)

are:

• The Snapshot Model: a fixed-length data stream window specified between

two pre-defined timestamps. The length of the snapshot window varies

according to applications requirements.

• The Landmark Model: The data stream window ranges between the first

fixed timestamp and the current time timestamp where the second timestamp

shifts forward when new observations arrive.

• The Sliding Window Model: the length of the data stream window is speci-

fied without explicitly defining its starting the endpoints of the data stream

window. When new observations arrive, the data stream window slides to

cover the new range of observations without changing its interval.

94

Figure 3.11: The mode-model structure of the data quality assessment unit and
data quality dimensions.

95

3.4.4 Selecting Data Analysing Methods

There is a wide range of data analysis or data mining methods in the literature that

can be applied to address the objectives of this research. The choice of the data

analysis techniques is mainly based on the features or functions that these analysis

techniques can provide, such as predictive analysis, clustering, and time-series

clustering. Each of these techniques can be implemented using many different

methods. In this research, the selection of the data analysis methods is based on

comparing their features while focusing on the following aspects:

1. Accuracy: the precision or the correctness of the results produced by the

applied method.

2. Performance: How fast the data analysis method is, what kind of compu-

tational power it requires, and how much time is required for training its

model.

3. Automation: evaluating the possibility of fully automating the selected data

analysis method for real-time applications.

Furthermore, choosing data analysis methods is also depends on the character-

istics of the investigated data stream, mainly the existence of the trend and the

seasonality which can be determined using Time-Series Decomposition (TSD)

techniques.

3.4.5 Time-Series Decomposition

Time series decomposition is a graphical technique that provides a better un-

derstanding of the characteristics of time-series by splitting it into three pattern-

categorised components (Montgomery et al., 2015, p. 15):

96

• Trend is a progressive increase or decrease in the value of the investigated

attribute, which can be a slow long-term or a rapid short span change,

Figure 3.12b.

• Seasonality is a constant repetitive behaviour within the time-series, such

as, every day, week or year, Figure 3.12c.

• The remainder is the residue from a time-series after taken out both the

trend and the seasonality components from it, Figure 3.12d.

Time series decomposition can be additive or multiplicative, in additive decom-

position, a time-series Yt can be defined as Yt = Tt + St + Rt where Tt, St and Rt

are the Trend, Seasonality and the Remainder components, all at interval t. An

example of the additive time-series decomposition is shown in Figure 3.12, using

a time-series collected from a single real-world, temperature sensor node.

Additive decomposition is most suitable for time-series with seasonality that

does not correlate with the trend. If the magnitude of the seasonality varies with

the trend, as shown in Figure 3.133, the multiplicative decomposition is more

appropriate to be applied on the time-series. In multiplicative decomposition, a

time-series Yt can be defined as Yt = Tt x St x Rt.

Figure 3.12b shows that temperature has a trend which gradually increases or

decreases over days of slow-changing. Also, it has a clear daily seasonality (Fig-

ure 3.12c) where the temperature varies a few degrees from its lowest at the early

hours of the morning and rises to a peak level in the afternoon. The time series

decomposition showed that temperature time-series has a clear trend and season-

ality, which indicates that it is possible to apply predictive analysis on this type of

time-series.
3https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/

97

Figure 3.12: Additive time-series decomposition, a time-series of a single real-
world, temperature sensor node.

98

Figure 3.13: An example (demo data) of a time-series with a seasonality that its
magnitude varies with the trend (Brownlee, 2017a).

3.5 Online Mode - Predictive Analysis Models

Accuracy assessment for the value attribute of observations was investigated

based on the predictive analysis (regression) approach and using statistical and

machine learning techniques within the online data quality assessment unit. This

section outlines the design details of the predictive analysis models. The results

interpretation and conclusions are detailed in Chapters-4. Predictive analysis

models depend on the temporal correlation among sequential observations to

predict forthcoming observations. Theoretically, predictive models can detect

anomalies in observation’s values based on comparing the predicted values with

the actual observations. The high-level process diagram of the predictive data

accuracy assessment model is shown in Figure 3.14.

All of the predictive analysis techniques used in the context of this research were

evaluated using temperature observations from real-world sensor node networks.

These observations form long time-series of each sensor node with only one

independent variable (temperature). Therefore, sensor nodes time-series may

99

Figure 3.14: The high-level processes of a predictive data accuracy assessment
model.

require to go through a sequence of preparing steps before being fitted into a

predictive model, such as attribute reduction and aggregation. These steps vary

from a model to another, depending on the used prediction analysis technique.

In general, predictive models must be tested using a dataset that is different from

100

the dataset used for training the model, in order to eliminate the possibility that

the model may perform well if tested using the same training dataset but poorly

with a different distinct data. Typically, the time-series of sensor node can be

randomly divided into a training and testing datasets, as shown in Figure 3.14.

In this research, predictive models were tested and evaluated based on three

parameters: accuracy, performance and automation feasibility. The main difference

between these models was the algorithms or techniques used to construct them.

The next step is to empirically test and verify these newly developed models

using the ideal real-world observations collected from the high-quality sensor

node network of the University of East London and ultimately using the real-

world observations collected from the large-scale sensor node network distributed

around London. The accuracy, performance and the feasibility of automation were

compared and evaluated for each of the tested predictive analysis models.

The regression algorithms and techniques examined within the context of this

research are: simple statistical forecasting methods, Holt-Winters Seasonal method,

Autoregressive moving average (ARMA), Non-Seasonal Autoregressive integrated

moving average (ARIMA) and Seasonal ARIMA Models. In addition, two advance

machine learning techniques were also empirically investigated; Gaussian Process

Regression and Long short-term memory recurrent neural network (LSTM-RNN),

as shown in Figure 3.15.

3.5.1 Simple Forecasting Methods

Some of the most well-known simple forecasting methods are:

1. Average method: all predicted values are equal to the average (or “mean”)

of the values of historical data.

2. Naïve method: the predicted value is equal to the latest observation, it is

also known as the Random Walk because it works well with data that have

101

Figure 3.15: Predictive analysis techniques examined in the context of this research.

random patterns such as some economic and financial time series.

3. Seasonal naïve method: a prediction method that only can be applied to

data with clear seasonality. The seasonal naïve method is based on setting

each prediction to be equal to the last observed value from the same time as

the previous season, such as previous year, months or quarters (Hyndman &

Athanasopoulos, 2018, p. 57-58).

3.5.2 Holt-Winters Seasonal

Holt-Winters seasonal (H-Ws) method is a statistical forecasting technique that

involves predicting observations of time-series that exhibit a trend and seasonality

patterns. H-Ws prediction model is based on a forecasting and three smooth-

ing equations for the level (Lt), trend (Tt) and seasonality (St). It also utilises

three smoothing constants (α, β, γ) corresponding with each smoothing equa-

tion (Lee et al., 2013, p. 947-950). The forecasting equation of Holt-Winters seasonal

method can be used with additive or multiplicative time-series (Islam & Watana-

palachaikul, 2012, p. 44). Holt-Winters additive forecasting function (F) for the

102

time period (f) is4:

Ft+1 = Lt + Tt+f + St−s+f (3.2)

Where (Lt) is the estimated value of the level of a time-series at a time (t), the level

is the simple exponential smoothing of a time-series, as shown in Equation 3.3.

Lt = α(yt − S(t−f)) + (1 −α)(L(t−1) + T(t−1)) (3.3)

Where α is the smoothing constant of the level component, it adjusts the rate at

which the weighted average of all observations yt of time-series (y1,y2, ...,yT) (Hyn-

dman & Athanasopoulos, 2018, p. 247-257).

The value of α ranges between 0 and 1, if α is close to (0), then the oldest obser-

vations in the time-series will have more effect (weight) on the predicted values,

otherwise, if α is close to (1), then the most recent observations will have more

weight. If α = 0 then all predictions will be equal to the mean value of the time-

series which is known as the Average forecasting method. It α = 1 then, the value

of the predicted observation will be equal to the last observation (latest) in the

time-series which is known as the Naïve forecasting method (Random Walk). The

estimated value of the trend (Tt) of the time-series (yt) at time (t) is:

Tt = β(Lt − Lt−1) + (1 −β)Tt−1 (3.4)

Where β is the smoothing constant of the trend, 0 6 β 6 1. The equation of the

seasonality component (St) is denoted as:

St = γ(yt − Lt−1 − Tt−1) + (1 − γ)St−f (3.5)

4Equations 2 to 10.3 are mainly referenced from (Hyndman & Athanasopoulos, 2018).

103

Where the value of the seasonal component smoothing constant of the seasonal

component (γ) is within the range of:

0 6 γ6 (1 −α) (3.6)

Based on this brief introduction, the Holt-Winters seasonal forecasting method

requires four parameters to be set before fitting its forecasting equation: the

smoothing constants α,β,γ and f. The value of f can be determined from the

time-series, and it varies from application to another, it can be, e.g., monthly,

weekly, daily.

The smoothing constants α,β,γ can be set to an initial value, 0.4 for example,

before fitting the training dataset (using the sliding window mode) to H-Ws

prediction model, the next step is to compare the predicted values against the test

dataset to evaluate the accuracy of the model. The feedback from the evaluation

process can be used as a outcome to adjust the values of the smoothing constants.

It is possible to repeat these steps to optimise the accuracy of the prediction model

and practically determining the smoothing constants automatically, as shown in

Figure 3.16.

3.5.3 ARMA, ARIMA and Seasonal ARIMA Models

Autoregressive Moving Average (ARMA) is a statistical analysis model that

can perform time-series analysis and prediction based on previous observations.

ARMA model, ARMA(p,q), consists of a combination of both Autoregressive (AR)

and Moving Average(MA) models and inherits their features (Islam & Watana-

palachaikul, 2012, p. 49). In general, Regression is a linear correlation between

two variables (Lind et al., 2018, p. 380), if a prediction model regresses a vari-

able against itself by using the linear combination of its previous observation,

such model is known as Autoregressive model, which can be described by the

104

Figure 3.16: The high-level process diagram of Holt-Winters seasonal prediction
model.

following equation:

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt (3.7)

105

Where yt is the value of observation at time t. φp is the least-squares regression

coefficient or the weight, which regulate the effect of the previous observations

on the model. c is the average of the difference between sequential observations,

and εt is the white noise where yt = c+ yt−1 + εt. The parameter p is known as

the order of the autoregressive model which indicates the number of previous

observations (lagged) that the model will use in the prediction process.

Autoregressive models are restricted to process stationary data only, alongside

other restrictions related to the different combinations of parameters that the

model equation can process. For example, for an AR(2) model, the value of φ

must be between -1 and 1, and φ1 +φ2 < 1, (Hyndman & Athanasopoulos, 2018,

p. 295-305).

The second component of the ARMA is the Moving Average (MA) model. It is

known as the moving average model because it continually changes and moves

its predicted value with the timeline when new observations occur in the time-

series and neglect the more distant ones (Anderson et al., 2016, p. 820). In the

context of ARMA, the MA model uses the weighted average of a q number of

the past forecast errors associated with the outcome of the autoregressive model

as described in the following equation (Hyndman & Athanasopoulos, 2018, p.

307-308).

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (3.8)

Or,

yt = c+ εt +

q∑
i=1

θjεt−j (3.9)

The parameter q is the order of the moving average model, θ is the coefficient,

ε is the white noise, and c is the average of the difference between sequential

observations. The MA model is also restricted to process stationary data only,

alongside other restrictions related to the different combinations of parameters of

the model equation.

106

Combining AR and MA reveals the ARMA model, it can effectively analysis any

time-series based on its previous observations yt and the εt errors associated with

these observations (Fabozzi et al., 2014, p. 178). ARMA algorithm is described in

the following equation:

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φp yt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

(3.10)

As shown in Equation 3.10, the ARMA model is based on fewer parameters

comparing with the total number of parameters required by the AR are MA

models separately. The high-level process diagram of the ARMA prediction model

is shown in Figure 3.17. Using the ARMA model involves three main steps:

1. Checking whether the fitted dataset to the ARMA model is stationary or not

if not, a series of differencing and stationary-status tests must be applied on

the dataset till it meets the stationary status requirements.

2. Defining the (p, q) parameters that deliver the best prediction accuracy based

on setting an initial value of p and q and fitting the model using a routine

loop while testing different compensations of (p, q) with each iteration, as

shown in Figure 3.17. Next, the prediction model’s accuracy is checked

against the testing dataset or using the Akaike Information Criterion (AIC),

and Bayesian Information Criterion (BIC) tests. The combination of (p, q)

that delivers the lowest AIC and BIC value is adopted in the prediction

model to optimise its prediction accuracy. The empirical implementation

aspects of this method are detailed in Section 4.2.1.3.

3. Verifying the ARMA model adequacy by inspecting the residuals, which

should show the characteristics of white noise by not exhibiting any serial

correlation. One method to check the residuals serial correlation is the Q-

statistic test. The result of the test must show no reason to reject the null

107

hypothesis of no autocorrelation (Fabozzi et al., 2014, p. 178-179).

ARMA models are limited to process stationary datasets that do not have a trend

nor a seasonality. Time-series exhibit non-stationary properties can be transferred

into stationery using differencing or, and seasonal differencing.

Differencing can stabilise both the trend and seasonality components of a non-

stationary time-series. In some cases, applying differencing on non-stationary

time-series is not sufficient to stabilise them to the stationary status, in this case, it

is possible to apply the differencing on the time-series again which is known as

the second-order differencing.

If the time-series is showing high seasonality, Seasonal differencing can be ap-

plied. It is known as the lag-differencing because it subtracts an observation of the

previous consecutive observation. It can stabilise time-series with high seasonality

and can be used combined with the ordinary differencing to obtain the stationary

status.

The process of testing and differencing time-series before fitting it to the ARMA

model may involve a level of complexity and redundancy if applied manually, to

tackle this issue, the Non-seasonal Autoregressive Integrated Moving Average

(ARIMA) and, the Seasonal ARIMA (SARIMA) models were introduced. The

non-seasonal ARIMA includes the integration parameter (d), which presents the

differencing order of the model. (d) can be set to one in most cases or two in some

cases in order to the dataset to reach stationary status.

Seasonal ARIMA prediction model is capable of processing seasonal time-series.

It introduced additional seasonal parameters (P,Q,D) m to the ARIMA model.

(P,Q,D) are for the seasonal part of the ARIMA model and m is equal to the

number of observations in a single seasonal period (Hyndman & Athanasopoulos,

2018, p. 331-333).

ARMA models (ARMA, ARIMA and SARIMA) were examined within the context

108

Figure 3.17: The high-level process diagram of the ARMA, ARIMA and SARIMA
prediction models.

109

of this research. The aim was to investigate the possibility of using ARMA models

as a predictive analysis mechanism to evaluate data accuracy in large-scale CPS.

The tests were designed to compare ARMA models’ performance with other

regression techniques and compare the different ARMA models. It is expected

that ARMA, ARIMA and SARIMA will have the same prediction accuracy; since

all share the same mathematical foundation. However, the comparison among

them was to evaluate differences in performance and complexity. ARMA models

main testing and optimising processes are shown in Figure 3.17.

3.5.4 Gaussian Process Regression

Gaussian Process Regression (GPR) is a supervised machine learning technique

utilises Gaussian Processes (GP) algorithm in its forecasting models. GP based

regression models are nonlinear and non-parametric models based on the as-

sumption that data regression models can be interpreted by an infinite number of

parameters which can be reduced to the necessary number of parameters that can

represent the data (Martin, 2018, p. 233).

GPRs model produces a continuous output composed of the mean and variance

values of the predicted set of values, where the mean is the value of the prediction

with the highest probability, and the variance are the ranges of confidence of the

other possible values, as shown in Figure 3.185.

The margins of variance present a continuous measure of confidence with signifi-

cant importance for identifying outliers or data-accuracy issues of observations

detected outside these confidence margins where the accuracy of these margins

depends on the number and the accuracy of the observations fitted to the GPR

model.

GPR is a machine-learning model that can "learn" from a training dataset to pre-

5https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html.

110

Figure 3.18: A introductory example to Gaussian Processes Regression (Pedregosa
et al., 2011).

dict future estimated observations. The mathematical representation between the

observations and predictions depends on a set of modelling relations algorithms

known as the kernel. The kernel modelling approach is based on measuring the

similarity between any two data vectors using similarity functions which self-

optimised during the learning phase using the training dataset. The kernel makes

predictions based on prior measures acquired from the training dataset.

GPR models can deliver constant predictions even when the input regressor con-

sists of a relatively small number of observations (short time-series), or it may

include noisy data (Kocijan, 2016, p. 2-5).

The main processes of the GPR predictive model are similar to the generic regres-

sion model shown in Figure 3.14.

111

3.5.5 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are the innovation and extension

of the Deep Learning-based Recurrent Neural Networks (RNN). LSTM is an im-

provement to the RNN architecture to become able to process long sequences of

data with temporal dependencies or simply, to perform time-series prediction.

LSTM models consist of liner-memory cells controlled by three types of gate units

which control the flow of data in and out of the memory cell and also control when

to clear the cell of any stored information (Swamynathan, 2017, p. 333).

RNN, like many other conventional deep learning techniques, cannot retain or

retrieve a long sequence of observations into its prediction model. This limitation

is known as the vanishing gradient problem, and it was solved in LSTM version

of RNN by adding the gates to the structure of the RNN model.

LSTM prediction model cannot process time-series directly. Time-series must

be prepared to become compatible with the data structure requirements of the

LSTM input layer, which includes, data normalisation, standardisation and data

transforming into fixed, discrete, time-stepped datasets, a process know as "vec-

torisation" (Brownlee, 2017b, p. 27-35). The following steps outline the main data

preparation process:

• Dividing the time-series into a training and testing datasets. The dividing

ratio can be 80% training to 20% testing.

• Scaling the values of observations using data normalisation and standardisa-

tion processes into a range between -1 and 1 using a scaling coefficient (min

and max) to become suitable to be fit to the LSTM model and to eliminate

any possible influence of extreme values on the model. This process must be

inverted later to return the values of observations to their original order.

• Transforming the dimensions of the training dataset to become compatible

112

with the data format of the LSTM’s input layer, which expects to receive a

three-dimensional data array; Samples, Time steps and Features. Thus, it

is common to divide long time-series into relatively short sequences (time-

windows) of data points, transferring the time series into a multi-dimensional

data form (Wang et al., 2021, p. 262). Sensor nodes time-series consist of a

sequence of an infinite number of observations. Since the contextual features

of time-series, such as timestamps are considered as indices, the time-series

can be viewed as a (1 x n) one-dimensional array, as shown in Figure 3.19.

Where (n) is the total number of samples n→∞, and (y) is the value of the

observation at any time (t).

Figure 3.19: Sensor node’s time-series as a (n x 1) array of observations.

Therefore, it is required to transform the dimensions of the time-series to

become compatible with the data structure required by the LSTM input

layer by dividing the time-series into fixed discrete datasets according to a

Time-Steps model, as shown in Figure 3.20.

Figure 3.20: Time-series transformation (vectorisation) concept.

Time-steps model divides sensor nodes time-series into discrete rows of

datasets where each dataset consists of (N) time-steps of sequential observa-

tions. The difference among these rows is a one-timestamp shift of (t). These

rows form a new two dimensional array, as shown in Figure 3.21, where

113

N=7 in this example. The value of the third dimension, "features", will be

set to 1 since all the tests of this research were applied using a single feature

(ambient temperature) only.

Figure 3.21: LSTM time-series transforming process, time-steps = 7 in this example.

• Fitting the transformed training dataset to the LSTM model.

• Evaluating the performance of the LSTM model, as shown in Figure 3.22.

The high-level process diagram of the LSTM predictive model is shown in Fig-

ure 3.22.

3.6 Online Mode – Anomaly Analysis Models

Anomaly analysis techniques were proposed as a possible solution to detect data

quality issues associated with observations accuracy in large-scale cyber-physical

systems(CPSs) (Jayswal & Shukla, 2016; Abid et al., 2015; Ayadi et al., 2017). An

outlier is an observation with a value that significantly deviates from the values of

other reference observations or threshold value. It also referred to as abnormality

or anomaly in the literature, and it represents an irregular change in the patterns

of observations of real-world sensor node networks (Aggarwal, 2016, p. 1-2).

Predictive analysis models are most suitable for evaluating the accuracy of sensors

114

Figure 3.22: The high-level process diagram of the LSTM predictive model.

measurements errors that appear for a short interval (short outliers). Measure-

ment via detecting outliers that occur for a relatively long time effect predictive

models ability to render an accurate forecast. The pattern of time-series with long

outliers will be distorted to a certain extent reflecting the wrong measurement as

the standard pattern, which leads to higher forecast errors and limits the ability of

the predictive analysis modes to detect data accuracy issues correctly (Berk, 2015,

115

p. 25). Therefore, anomaly analysis was investigated to tackle predictive analysis

models’ limitation.

Large-scale sensor node networks stream data continuously, forming spatiotem-

poral time-series of observations which occur at a specific time in a particular

place (Appice et al., 2014, p. 3), where spatiotemporal time-series have spatial and

temporal attributes.

The spatial attributes of sensor nodes observations in large-scale CPSs can be

labelled according to its characteristics into contextual or behavioural. Spatial

attributes are behavioural when they change dynamically with other attributes

of the time-series. e.g. data collected from mobile sensor nodes, where sensor’s

location attributes change with other temporal attributes. In contrast, sensor mea-

surements collected from different sensor nodes that have static locations, such

as ambient temperature monitoring stations, are observations with contextual

spatial attributes. An outlier in contextual time-series is an observation with value

attribute is significantly diverts from the value attribute of other spatially corre-

lated observations collected from nearby sensor nodes (Aggarwal, 2016, p. 346).

This approach is known as the spatial continuity or spatial autocorrelations which

is justified by Tobler’s law of geography, which states that “everything is related

to everything else, but near things are more related than distant things” (Tobler,

1970, p. 234). Spatial autocorrelations can be recognised among the time-series

collected from the benchmark, sensor node network deployed at the University

of East London which consists of four high-quality wireless temperature sensors,

three of which were deployed outdoors, and the fourth was deployed indoors.

The distance between the outdoor sensor nodes is relatively small (70 meters).

A seven days time-window of the time-series from these sensor nodes is shown

in Figure 3.23. As illustrated in Figure 3.23, the time-series of outdoors sensor

nodes are showing a high correlation in value attribute, and pattern since all were

distributed in a relatively small geographical area and governed by the spatial

116

Figure 3.23: Spatial autocorrelations among time-series of ideal nearby sensor
nodes.

117

continuity concept of Tobler’s law. The time-series of the indoor sensor node

(first) showed a significant correlation in pattern with the time-series of the rest of

the sensor nodes associated with a systematic, consistent difference in the value

attribute (temperature) of roughly +15 degrees.

However, Tobler’s law is not necessarily always valid in large-scale CPSs applica-

tions. The same approach of spatial continuity can not be applied directly to the

real-world observations collected from the large-scale, temperature sensor nodes

distributed around London, because of the relatively high distance separating

among them and due to a phenomenon known as the Urban Heat Islands (UHI).

According to the Met Office6, the phenomenon of heat islands is caused by many

associated factors (MetOffice, 2019), including:

• Heat released from industrial and domestic facilities, concrete and other

building material which observe sun heat during the day and release it back

during the night.

• Solar radiation reflected by buildings glass and windows, manufacturing

and cars emission which create a cloud of smog trapping the solar radiation

inside and building up a pollution dome.

• The absence of strong wind which is significantly blocked and disturbed

by tall buildings which increase the surface roughness and reduce the wind

speed causing less heat dissipation and preventing cooler air exchange from

rural areas.

The irregularity in temperature readings around London due to the impact of

Urban Heat Islands is shown in Figure 3.247.

In general, the heat distribution in an urban area depends on many environmental

6https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-
and-archive/library/publications/factsheets/factsheet_14-microclimates.pdf

7minimum temperatures in C, clear skies and light winds.

118

Figure 3.24: The irregularity in temperature levels around London due to the im-
pact of Urban Heat Islands. The line A to B is presented in Figure 3.25, (MetOffice,
2019).

parameters and geographical terrains such as wind speed, humidity, sunshine

density, the existence of rivers and the density and height of urban structures. The

heat profile map of London is shown in Figure 3.25, where the temperatures in

central London may reach 11 degree C0 while dropped by 6 degrees Co in the

suburbs (MetOffice, 2019; Chandler, 1965).

The phenomenon of urban heat islands may cause unexpected variations in the

value attribute of the real-world, temperature sensor nodes observations which

violate their spatial continuity (Aggarwal, 2016, p. 346-348). To tackle this issue,

Spatial Partition Modelling was adopted and empirically tested in this research.

Spatial data partitioning models facilitate correlation between data points which

change over the space of interest by breaking up that space into more represen-

tative regions for local data points, which do not overlap and do not necessarily

correlate with the centres of nearby regions. It is possible to describe spatially

partitioned two-dimensional data using Voronoi tessellation method, as shown in

119

Figure 3.25: The heat profile map of London highlighting the impact of urban heat
islands, (MetOffice, 2019).

Fig 3-25, where the dots are the centres of clusters or regions, also known as tiles

(Lawson & Denison, 2002, p. 125-126).

Figure 3.26: Voronoi tessellation method to describe spatially partitioned two-
dimensional data, (Guo et al., 2003, P. 126).

Partitional clustering can be categorised into three main types: distance-based,

model-based (distribution-based) and density-based (Guo et al., 2003, P. 232).

120

Model-based clustering is a probability distribution model based on the assump-

tion that data-points in each cluster have a specific pattern of distribution, and the

entire region of interest may have several distribution models (Bouveyron et al.,

2019, p. 2-4).

Model-based clustering does not utilise similarity measures to partition data into

groups (Bouveyron et al., 2019, p. 15). Data points grouped by model-based clus-

tering are not necessary spatially correlated, which does not support the approach

of spatial continuity, and thus it was not investigated further in this research.

Distance-based and density-based clustering models were empirically investi-

gated as spatial partitioning techniques for outlier detection based on K-means

and DBSCAN clustering techniques, respectively. Both clustering methods were

tested using the real-world observations collected from the large-scale temperature

sensor node network distributed around London. K-means and DBSCAN were

utilised as spatial partitioning techniques to label sensor nodes (cluster) according

to their relative distance and density similarity measures.

Spatial partitioning clustering models were not applied to the ideal dataset col-

lected from the benchmark sensor node network because its sensors were located

in a relatively small geographic area (inside the University of East London / Dock-

lands campus, within a 70 meters distance separating the wireless sensor nodes),

and they are roughly at the same geographical location.

3.6.1 Distance-Based Spatial Clustering (K-means)

K-means is a distance-based clustering algorithm divides unlabelled dataset into

k number of non-overlapping subsets (clusters) each of which is represented by

the mean of the distance between its data points (Hartigan & Wong, 1979). The

number of clusters (k) must be provided as an input parameter to the K-means

algorithm which randomly allocates k number of data-point as the initial clusters

121

representatives (centroids) and assigns the remaining data points to their nearest

centroid point. K-means then, re-allocates the clusters’ centroids by calculating the

mean of the data points of the same cluster and keeps repeating this process until

the change becomes minimal or reaching a threshold criterion (Bhattacharyya &

Kalita, 2013, p. 73).

K-means partitions unlabelled dataset observations into k clusters where each

observation is assigned (labelled) into a cluster, the result is partitioning the dataset

into Voronoi tiles (cells) (Brunton & Kutz, 2019, p. 164), as shown in Figure 3.26. A

significant challenge of using K-means is how to estimate k, the number of clusters,

the most commonly solutions used to tackle this issue are; a graphical technique

known as the Elbow method and a metric technique known as the Silhouette

analysis:

• Elbow method is based on applying K-means on the dataset using a range

of K values and calculating the value of the sum of squared error (SSE) for

each K. The next step is plotting the value of SSE for each K and locate

the elbow point on the graph line. The best value of K is at the elbow

point, which depicts the smallest number of clusters (k) with the lowest

SSE (Swamynathan, 2019, p. 199-201).

• Silhouette analysis method evaluates the consistency of a cluster by mea-

suring how closely are the data-point within the cluster and how the clusters

are separated from each other. The value of the Silhouette coefficient (score)

ranges from -1 to 1, where the following equation defines the Silhouette

coefficient score:

Silhouette Coefficient Score = (x− y)/max(x,y)8 (3.11)

x is the average distance between data-points in the same cluster and y is the

8(Kumar, 2016, p. 267)

122

average distance between data-points in nearby clusters. High silhouette co-

efficient indicates that all data points within the cluster are closely correlated

and all clusters are very separated apart (Kumar, 2016, p. 267-268).

Since the Silhouette analysis method can provide a quantitative (metric) mea-

surement to evaluate the accuracy of the clustering algorithm, it will be used in

this research to estimate the optimum number of clusters in K-means. The main

processes used to determine the optimum number of K-means clusters based on

the Silhouette analysis method are shown in Figure 3.27.

K-means was applied, as detailed in Chapter 4, Section 4.2.2.2, using the snapshot

data model on the spatial attributes of all available sensor nodes in the large-scale

network. K-means was initiated with K =2 and applied for n times where n is the

maximum number of iterations, and it is equal to the total number of available

sensor nodes -1. With each iteration, K gets increased by one (k= n and n=n+1),

and the Silhouette coefficient was registered. K-means model with the highest

Silhouette coefficient was selected, and its associated K parameter was considered

as the optimum number of clusters.

3.6.2 Density-Based Spatial Clustering (DBSCAN)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), a par-

titioning algorithm, identifies clusters based on the density of points within a

specified radius. It separates regions that are more crowded with data-points

(sensor nodes in this case) from relatively less crowded regions. Unlike the K-

means, DBSCAN does not need the number of clusters to be pre-set as an input

parameter. Alternatively, it requires two parameters, “MinPoints” and Eps where

“MinPoints” is the minimum number of data points within the radius Eps (ep-

silon). DBSCAN categorises data points into core, border and noise points, as

illustrated in Figure 3.28, (Raschka & Mirjalili, 2017, p. 372-377).

123

Figure 3.27: K-means partitional clustering model flowchart diagram illustrating
K estimating process using the Silhouette coefficient analysis method.

DBSCAN labels a data point as a core point if it has at least the number of "Min-

Points" neighbouring data points within the radius Eps. Data points which lay

within the radius of the core point but may have less than "MinPoints" neighbour-

ing points are considered as border points, and any other data points which are

not core nor border data points are considered noise, Figure 3.28.

DBSCAN assigns a cluster for each core point, except if there are more than

one core point within a range of Eps, in this case, DBSCAN connects these core

124

Figure 3.28: DBSCAN parameters and data points categorisation (Raschka &
Mirjalili, 2017, p. 373).

points into one cluster and assign border points according to their associated core

points (Bhattacharyya & Kalita, 2013, p .77-79). DBSCAN can capture complicated

nonlinear shaped clusters, and it is able to identify points which are not included

in any cluster as noise. DBSCAN has a slower performance comparing to k-means,

but still, it can deal with relatively large datasets (Müller et al., 2016, p. 189-190).

DBSCAN determines the number of clusters based on the pre-set radius parameter

Eps and the minimum number of data points (sensor nodes) within that radius.

The main challenge associated with applying DBSCAN is how to determine the

best Epsilon Eps parameter since the “MinPoints” parameter can be assigned to

two (“MinPoints” = 2) to reflect the minimum number of sensor nodes required

to establish a deviation comparison for outlier detection. To tackle the issue of

determining the Epsilon parameter of DBSCAN, the Silhouette analysis method

was adopted to estimate the optimum value of Eps based on the best clustering

performance. DBSCAN was initiated with Eps =minimum possible value and

applied for n times where n is the maximum number of iterations.

With each iteration, Eps gets increased by a small fraction f, Eps = Eps+ n ∗ f ,

and the Silhouette coefficient was registered. DBSCAN model with the highest Sil-

125

houette coefficient was selected, and its associated Eps parameter was considered

as the optimum Epsilon value, as shown in Figure 3.29. The emperical test of the

DBSCAN model is detailed in Chapter 4, Section 4.2.2.3.

Figure 3.29: DBSCAN partitional clustering model flowchart diagram illustrating
Eps estimating process using the Silhouette coefficient analysis method.

126

3.7 Online Mode - Timestamp Analysis (Temporal Con-

sistency)

Time-series are a structured form of data consisting of a series of observations

measured at different time points. Typically, time-series consist of data-points that

occur according to a regular interval, e.g., every minute, hour, day or week. A

dataset is a time-series if it exhibits timestamps with each data-point, regularity or

time intervals, indicating the intervals among different timestamps (McKinney,

2017, p. 323). Active sensor nodes in large-scale CPS applications stream a constant

georeferenced and timestamped time-series of numeric observations which are

equally spaced in time. However, sensor nodes may become inactive and do not

stream observations for an interval of time (Appice et al., 2014, p. 4). Sensor

nodes in large-scale CPSs are vulnerable to many external and internal effects,

as detailed in Chapter 2, that may impact the integrity of their measurements by

compromising the timeliness (Rager et al., 2018; Auger et al., 2016) completeness,

(Li et al., 2019; Togneri et al., 2019) and temporal or spatial consistency, (Togneri

et al., 2019; Krishna, 2018; Liu et al., 2019) of their data stream. An example

of a typical real-world time-series with data inconsistency issues is shown in

Figure 3.30. Therefore, the ideal-case assumption that sensor nodes observations

are evenly distributed in time, and every observation will be delivered in time

with its associated timestamp is unrealistic in real-world scenarios. Thus data

inconsistency issues may occur due to sensor nodes internal issues or due to

limitations in data collection methods (Chu, 2014, p. 60-61).

127

Figure 3.30: An example of a typical, real-world time-series with data inconsistency
issues.

In order to detect timeliness, completeness and temporal-consistency data quality

issues in sensor nodes’ time-series, time-series periodicity mining ("periodic pat-

tern mining") technique was investigated in this research.

In general, periodicity in time-series is the tendency of observations to recur at

regular intervals (Otunba et al., 2014, p. 793-804). Periodicity analysis techniques

consider time-series as a sequence of symbols where each symbol is associated

with a timestamp and presents an event (observation) which do not necessarily

occur precisely at the same point of time in each cycle due to inherited offset or

noise (Chu, 2014, p. 45) as shown in Figure 3.30.

Assuming that the duty-cycle of an active sensor node S is tdc than, tdc is equiva-

lent to the interval between any two timestamps in an ideal case, tdc = Ct −Ct−1,

whereCt is the timestamp of the current observation and Ct−1 is the timestamp

of the previous observation of the same sensor node. However, in real-world

scenarios, observations may be delayed or even missed, which can be reflected by

the time offset coefficient (e), where:

tdc = Ct −Ct−1 − e (3.12)

128

Where e= 0 in the ideal-case in which sensor nodes observations arrive in a timely

manner. Therefor, it is possible to estimate active sensor nodes duty-cycle from

their data stream using the principle of periodicity analysis as follows:

1. Applying the one time-step data transformation model to transform the

data stream into a two-dimensional array of Ct, Ct−1 sets of observations

to calculate the interval between every two sequential observations in the

time-series, as illustrated in Figure 3.20. The shortest interval calculated by

Ct − Ct−1 will be considered as the duty-cycle of the related sensor node

(tdc) at the server-side associated with the shortest offset coefficient error e.

2. Aggregating these intervals with their associated offset error coefficient.

The aggregation of observations intervals will render a definite number of

possible intervals between observations with a score (a rank) for the most re-

currence intervals. A proximity function, such as rounding, may be applied

in this step to eliminate the effect of the intervals decimal fractions (millisec-

ond fractions associated with the minutes duty-cycle) on the aggregation

outcome.

3. Identifying the interval with the highest recurrence score as the Threshold

Interval tThs to use it as a reference to define the temporal consistency status

of all observations from the related sensor node.

A rule-engine was developed inside the database of the data quality management

system using SQL (Query Structured Language) to provide real-time insights

about the temporal consistency of each observation. The SQL rule-engine is

built-in inside the database of the system. Thus it can evaluate the timeliness,

completeness of observations at the instant of their arrival to the database at

record’s level. The rule engine imposes the following policies:

• If (tdc/tThs) > 0 and (tdc/tThs) 6 1 , then no temporal consistency issue is

129

detected.

• If (tdc/tThs) > 1 and (tdc/tThs) 6 2 , then that observation is delayed be-

yond the regular offset coefficient error interval, indicating a timeliness data

quality issue.

• IF (tdc/tThs) > 2 and (tdc/tThs) 6 3 than a single observation is missing,

which indicates a data completeness issue.

• If (tdc/tThs) > 3, that indicates two missing sequential observations or a long-

outlier, which typically associated with hardware or communication failure

and will be covered by the offline-mode of the data quality assessment unit.

• If (tdc/tThs) = 0, that observation with its associated timestamp is duplicated,

which may also (but not necessarily) indicates a hardware or communication

failure.

The empirical evaluation of this approach is demonstrated in Chapter 4, Sec-

tion 4.2.3.

3.8 Offline Mode - Time-series Clustering

The data quality management system composes of many different data quality

assessment models. Each one of these models is designed to address a particular

data quality challenge. The predictive analysis model, Section 3.5, is designed to

detect accuracy data quality issues associated with sensor nodes’ measurement

errors based on their observations temporal correlation with earlier observations.

Predictive analysis can distinguish "point outliers" or observations that signifi-

cantly deviate from earlier observations for a relatively short interval of time.

Point outliers, also known as the contextual or short simple outliers, are sudden

and abnormal errors that occur and disappear in a short interval of time (Zhuang

130

& Chen, 2006). A point outlier is an extreme observation that significantly deviates

from their expected value and from the context of their immediate history (Aggar-

wal, 2015, p. 481-482). Therefore, the predictive analysis approach was adopted to

detect point outliers, as detailed in Section 3.5. Examples of point (short) outliers

are shown in Figure 3.31, as follows:

Figure 3.31: The different categories of the point (short) outliers, (SURI et al., 2019,
p. 180).

• Alternating outliers are temporal outliers that occur in intermittent (occa-

sional) points in time.

• Transient outlier, which occurs only once in the time-series (SURI et al., 2019,

p. 179-180).

The second type of outliers is the long segmental outliers, also known as the shape

outliers, are irregular observations that emerge for a relatively long time (Zhuang

& Chen, 2006; Aggarwal, 2013, p. 189). Long segmental outliers occur in particular

cases where a phenomenon has a long-term impact, such as forest fires or oil spills

or due to sensor nodes failure (Ghorbel et al., 2015). According to Sailhan et al.

(2010)(p. 6), long segmental outliers associated with sensor nodes failures are

mainly categorised into:

Continuous halting faults: long outliers that show no or minimal variation in the

131

value attributes of their data stream for a relatively long interval of time, as shown

in Figure 3.32.

Figure 3.32: Different categories of temporal long outliers, (SURI et al., 2019, p.
180).

Abrupt (emerging) and incipient faults: a constant or linear increase offset to

the measurement value that occurs over a longer interval than expected. Long

segmental outliers last for a relatively long time and change the pattern of sensor

nodes time-series (set of observations) (Aggarwal, 2015, p. 481-482). Thus, long

segmental outliers break the temporal correlation of observations after and before

their emergence and violate the possibility of using predictive analysis detection

techniques to detect this type of anomalies (Berk, 2015, p. 25-27). To tackle this

challenge, time-series similarity measures techniques were investigated in this

research as a sensor nodes fault detection mechanism based on detecting long seg-

mental outliers in the examined sensor nodes’ time-series. Time-series similarity

measures define outliers on time series’s windows based on comparing them with

other non-overlapping windows using a measurement metric such as Euclidean

distance to measures the distance between different time series (Aggarwal, 2015;

Aghabozorgi et al., 2015; Dean, 2014, p. 153). Therefore, time-series similarity

measures were utilised in time-series clustering methods to compare the pattern

of an entire or a substantial window of a time series with another based on their

long-term temporal correlation (Dean, 2014; Aggarwal, 2017, p. 293). All of the

time-series clustering techniques used in this research were experimented to detect

132

continuous (halting), abrupt (emerging) and incipient sensor nodes faults using

real-world datasets, as follows:

The large-scale dataset consists of more than 200 time-series collected from real-

world sensors distributed around London. This dataset will be utilised to test

the ability of time-series clustering techniques to detect continuous (halting), and

abrupt (emerging) long-outliers. Thus these types of long-outliers were detected in

some time-series of the large-scale datasets, as detailed in Chapter 4, Section 4.1.2.2.

The local-network dataset consists of four time-series collected from real-world,

high-quality sensor nodes deployed at the university of east London. One of the

sensor nodes was installed indoor and the other three outdoor. This dataset was

used to test the ability of the time-series clustering techniques to detect incipient

faults with consistent offset long-outlier. Thus the indoor sensor node, in this case,

represented a sensor with incipient fault. The indoor sensor streamed a time-series

that is identical in its pattern with other three-time-series from the outdoor sensors

but with a consistent offset of 10-15 Co, as shown in Figure 3.23.

The purpose of time-series clustering is to identify faulty sensor nodes by com-

paring the shape or features of their time-series with time-series of other properly

functioning sensor nodes. Furthermore, if the time-series clustering model detects

multi-sensor nodes failures in the same network simultaneously, in that case,

that usually indicates a power failure or network breakdown or other technical

issues that have a mass impact on the sensor node network. In this research,

Dynamic-Time Wrapping (DTW) time-series clustering technique was tested as

an anomaly detection mechanism. DTW test was extended to include K-Shape

and Characteristic-Based Clustering techniques in an attempt to find a higher

performance clustering technique that can render accurate results while examin-

ing shorter time-series.The empirical implementation details of this approach are

detailed in Chapter 4, Section 4.3.1.

133

3.8.1 Dynamic Time Warping

Dynamic time warping (DTW) is a time series clustering algorithm utilised to

find corresponding regions of similarity between time-series. DTW can stretch

or shrink (warp) time series non-linearly along its time axis to finds the optimal

correlation between different time series (Salvador & Chan, 2007), as shown in

Figure 3.33.

Figure 3.33: An illustration of how DTW warps one time series to another (Salvador
& Chan, 2007).

DTW has many implementations in different disciples, such as gesture recognition,

robotics, manufacturing. However, it was mainly used for data mining as a

distance measure between data points of time-series (Salvador & Chan, 2007).

DTW is a shape-based time series clustering technique. Its algorithm computes the

warping path distance between time series. DTW is not sensitive to time-shifting,

and it does not require the time series to be on the same length as a condition to

compare among them. For example, to compare time series T1, T2 of length n and

m, then DTW is going to measure the distance (T1, T2) with time complexity of

(n ∗m). Thus, DTW is a computationally expensive method for clustering long

time-series or a large number of time-series simultaneously (Aggarwal & Reddy,

2014, p. 367-369).

134

3.8.2 K-Shape

K-Shape is a time-series clustering algorithm that uses cross-correlation measures

to determine both the distance measure and the centroids for time-series clusters.

K-Shape analyses the shape of the time series while clustering them. The theory

behind K-Shape is similar to the one used by the K-means clustering algorithm.

Both rely on the iterative refinement procedure, which scales linearly and produce

equivalent and sufficiently separated clusters.

Comparing K-Shape to Dynamic Time Warping (DTW), both are shape-based

time series clustering methods which considers the shape similarity between

time series regardless of differences in amplitude and phase. Unlike the DTW

method, K-Shape is a highly efficient and more domain-independent time series

clustering method. K-Shape relies on time series cross-correlation measures, which

are significantly faster than the time series distance measures method adopted by

DTW (Paparrizos & Gravano, 2016).

3.8.3 Characteristic-Based Time-Series Clustering

Characteristic-based time-series clustering, also known as features extraction-

based or statistical characteristics-based time series clustering. Unlike the shape-

based time series clustering methods such as DTW or K-Shape, the characteristic-

based clustering does not use the distance measure or the cross-correlation mea-

sures methods. Alternatively, it clusters time-series based on their captured global

characteristics using classical statistical methods.

The set of features extracted from each time series can be fitted into any arbitrary

clustering algorithm. The extracted features describe the statistical characteris-

tics (global measures) of the time series, which can be extended to extract more

than 100 different features, such as the absolute sum of changes, autocorrelation,

135

standard deviation and partial autocorrelation. The characteristic-based clustering

reduces the dimensions of time series which makes it much less sensitive to the

effect of missing values or noisy data. The advantage of the characteristic-based

clustering is its high performance even if used to perform similarity searches or

clustering amongst very long time series (Wang et al., 2006), as empirically shown

in Chapter 4, Section 4.3.1.3.

3.9 Offline Mode – Timestamp Analysis (Spatial At-

tributes Consistency)

Timestamp analysis was investigated to test the possibility of utilising timestamps

of sensor node observations in order to detect mismatches in the spatial contextual

attributes of sensor nodes through the following scenarios:

• Detecting spatial mismatches in the contextual attributes of sensor nodes’ ob-

servations. If a sensor node shows a significant deviation in its geographical

location compared to the location of the other sensor nodes connected to the

same local network (gateway module) than the coordinates of that sensor

are potentially inaccurate.

• Detecting gateways or network failures. If all sensor nodes which are con-

nected to the same gateway stop streaming observations at the same point

in time that indicates a gateway or network failure.

This model utilises spatial and temporal analysis mechanism to identify mis-

matches in sensor nodes, geographical contextual attributes. This approach can

also be utilised to identify network blackouts or gateway module failures. The as-

sumption behind this approach is that; it is possible to identify sensor nodes which

are connected to the same gateway module based on the spatial and temporal

136

attributes associated with their observations.

Considering a sensor node network topology like the one shown in Figure 3.34,

as a case study. It consists of a group of sensor nodes (S1t,S2t,S3t,S4t) which

stream observations via an analogue means using wired or wireless networks to

be delivered to the gateway module g1t. The distance between the sensor nodes

and the gateway device cannot be significant, because sensor nodes usually have

a limited transmission range, often about 50 to 200 meters maximum.

Figure 3.34: An example of a basic sensor node network topology.

Depending on its duty-cycle, each sensor node, typically, sends an observation

every St minutes to its local network via the gateway module. Sensor nodes

duty-cycles are not necessarily even in all sensor in the network, and they are not

synchronised so that sensor nodes do not stream their observations at the same

time. Sensor nodes utilise a routing protocol to: control when each sensor sends its

observation, to optimise the use of the network bandwidth, and to enhance their

power efficiency. As listed in Table 3.2, sensor nodes in large-scale CPSs stream

observations with essential attributes including their identification ID, observation

value and their associated timestamp and location coordinates. The gateway

module receives sensors’ observations, accumulates them ,adds its identification

137

number and timestamp, and sends them later to the database according to a pre-

set duty-cycle, as shown in Figure 3.35. The database receives the data stream

from the gateway via the network and stores the observations sequentially, each

observation in a new record. Typically, each record gets a unique ID ("row id")

number and a new database timestamp which presents the database time at the

observation arrival in the database (acquisition time), as shown in Figure 3.35.

However, this is the ideal situation as typically, real-world observations do not

show any details related to their gateways or local networks. To determine whether

a group of sensor nodes are connected to the same gateway module without the

availability of the gateway details, timestamp analysis was investigated in this

research. The assumption behind the timestamp analysis approach is that: if a

group of sensor nodes repeatedly exhibit the same database timestamps at a time t and

exhibits the same gateway duty-cycle or its greatest common divisor, then these sensor

nodes are probably connected to the same gateway. This assumption was tested using

the timestamp analysis model based on the following procedure:

1. To calculate sensor nodes’ duty-cycle based on the following equation:

Sdc = x(yst − yst−1) (3.13)

Where Sdc is the duty-cycle of sensor node Smeasured in seconds. x is the

integer multiplication of the sensor node duty-cycle, yst is the timestamp

of the observation y at time t, and yst−1 is the timestamp of the previous

observation y at time t − 1. The values of observations are not relevant

in this context. Sensor nodes’ duty-cycles at the database’s end are not

constant. They may vary according to the gateway duty-cycle or other

latency parameters, as shown in Figure 3.36.

2. To calculate the gateway duty-cycle, based on subtracting the observations

138

Figure 3.35: Each sensor node observation may hold up to three different times-
tamps added from the network components.

timestamp ydt in the database from the sensor nodes observation timestamp

139

yst.

Gdc = x(ydt − yst) (3.14)

The gateway duty-cycle Gdc at the database’s end is not constant, and this

may vary according to the sensor nodes duty-cycles and the observations

delays, as shown in Figure 3.36.

3. To calculate the exact gateway duty-cycle by using the Greatest Common

Divisor (GSD) factor to rank the gateway duty-cycles for each sensor node

and choose the one with the highest probability. The same procedure is used

to determine the sensor node duty-cycle, as shown in Figure 3.36.

4. Sensor nodes which have coordinated database timestamps and have the

same gateway duty-cycle are highly likely to be connected to the same

gateway module or local network.

The proposed timestamp analysis model is empirically evaluated using time-series

collected from the local sensor node network of the University of East London

as a benchmark dataset and using the large-scale time-series collected from the

real-world sensor node network distributed around London. More details about

the implementation of this timestamp analysis model are provided in chapter-4,

Section 4.3.2.

140

Figure 3.36: The main processes of the timestamp analysis model.

141

3.10 Summary

In this chapter, the research context was outlined including the structure and

design of the data quality management system, data analysis methods, the tech-

niques used to address the research objectives and the adopted logical sequence

to conduct the research activities. The next chapter presents the implementation

details and results of testing and evaluating the different components and models

of the data quality management systems.

142

Chapter 4

Implementation and Results

“..there is often great virtue in bringing into the

open the kind of assumptions that lead to useful

methods. The need for robust methods seems to be

intimately mixed up with the need for simple

models."
— (Box, 1979, p. 15)

This chapter shows the empirical findings and results from testing and evaluating

the different components of the proposed data quality management system which

were facilitated in Chapter-3.

This chapter fulfils the third and fourth objectives of the research related to the

construction of the proof of concept, data quality management system, and evalu-

ate its validity and performance using real-world large-scale sensor node network

as a case study. This chapter comprises three sections; the first section is to show

the practical aspects of the data acquisition unit. The second section is to present

the empirical results of evaluating the different models of the online-mode data

quality assessment unit, which consists of predictive analysis, anomaly analysis,

and timestamp analysis models. These models are responsible for detecting data

143

quality issues associated with errors in sensor nodes measurements in real-time.

The third section presents the results of evaluating the components of the offline

unit which detects sensor nodes’ hardware failures and detects spatial contextual

attributes mismatches of sensor nodes’ observations using time-series clustering

and timestamp analysis respectively. Figure 3.11 shows the structure of the data

quality assessment unit and the role of each of its components.

4.1 Data Acquisition and Data Process

This section presents the technical details related to the data acquisition unit

focusing on the characteristics of the two sensor node networks used as data

sources to investigate real-world data quality issues in large-scale CPSs and to

validate the different models of the proposed data quality management system.

The structure and design of the data acquisition unit were discussed in Chapter-3

the methodology, section 3.4.2. The data acquisition unit collected observations

from sensor node networks in real-time. It consists of the three components: sensor

node networks, data streams, and the software framework.

4.1.1 Sensor Node Networks

As mentioned in the previous section, real-world observations were used in all

the tests conducted in this research. Two data sources were utilised for this

purpose: a local sensor node network which was deployed at the University of

East London and, a large-scale sensor node network distributed around London.

Both networks are environmental monitoring sensor node networks, which collect

ambient temperature observations, as follows:

144

4.1.1.1 The Large-Scale Sensor Node Network

The large-scale sensor node network is the primary data source of this research.

It consists of over 200 temperature sensor nodes distributed around London and

managed by different providers such as the Met Office1, Open Weather Map2

and Smart Citizen3. The geographical distribution of these sensors is shown in

Figure 4.1.

Figure 4.1: The geographical distribution of the real-world sensor nodes network
used as a case study in this research, the Met Office (blue), Open Weather Map
(red) and Smart Citizen (green).

Data streams from the large-scale sensor node network were coordinated by an

1https://www.metoffice.gov.uk
2https://openweathermap.org
3https://smartcitizen.me

145

Internet of Things (IoT) search engine known as Thingful4. Thingful is owned

by a U.K based company named Umbrellium.Ltd5 which is specialised in IoT

projects associated with smart cities, connected vehicles, machine learning and big

data analytics. Umbrellium has granted special access to its networks of sensor

nodes data stream as a kind of sponsorship to this research and cooperation with

the University of East London. Observations from sensor nodes that monitor

different environmental phenomena such as weather conditions, air quality, noise

and tide levels were collected using the data acquisition unit of the data quality

management system. The technical details related to sensor nodes, network

modules, gateways were not available. No information was available related to

sensor nodes’ age, type, calibration or maintenance history. Figure 4.2 shows the

estimated topology of the large-scale sensor node network.

Although many environmental parameters were collected at the early stages of

conducting this research, temperature sensor nodes were selected as the primary

data source to test and evaluate the proposed data quality management system.

Thus, temperature sensor nodes were the most available type of sensor, vastly

distributed around London, and they were managed by different providers, which

is an excellent opportunity to investigate data quality issues of such diverse and

large-scale sensor node networks. The data acquisition unit is also responsible for

the authentication processes and data management as detailed in the following

sections.

4.1.1.2 The Local Sensor Node Network

The data quality assessment unit is based on many statistical and machine learning

models. Most of these models utilise advance data mining techniques that involve

data models training and testing phases, such as with the LSTM and the GPR

4https://www.thingful.net/
5https://umbrellium.co.uk/products/thingful/

146

Figure 4.2: The estimated network topology of the large-scale sensor node network.

predictive models. The development process of most of the data quality assess-

ment models involves an iteration phases of testing and calibration processes

until these models satisfy a particular level of accuracy or performance criteria, as

viewed in Section 3.4. These training and calibration processes require a relatively

long sensor nodes’ observations time-series with minimal outliers, missing values

or noise to avoid any biased or misleading performance by the developed data

quality assessment model which may occur because of the influence of the data

quality issues on the accuracy or the performance of trained models. Since there

was no practical means to ensure that the observations collected from the real-

147

world, large-scale sensor node network are free from outliers, noise or missing

observations, a high-quality temperature sensor node network was deployed at

the University of East London in order to provide high-quality time-series to

train and calibrate the data quality assessment models. The local sensor node

network works as a benchmark to the large-scale sensor node network which was

needed to produce long, consistent, high-quality data streams of observations to

train and adjust the different data quality assessment models and to evaluate the

performance and accuracy of these models before utilising them in real-world

scenarios6.

Figure 4.3 shows the deployment map of the local sensor node network at the

University of East London.

Figure 4.3: The deployment map of the local sensor node network at the University
of East London.

The network topology of the local sensor node network was explicitly chosen

to match the main structure of the large-scale sensor node network, where both

networks collect observations from sensor nodes or gateway models to a remote

6It is possible to consider each test based on the observations from the local sensor node network
as an experiment, not a case study because it was conducted using observations collected from a
fully controlled environment.

148

cloud-based solution owned by Umbrellium in the large-scale network and Imon-

nit in the local network. Both networks stream observations to a pre-defined

destination (UEL MySQL server in this case) based on API requests by the data

acquisition unit and using JSON format. Both networks utilise the same security

protocols and authentication processes. The topology of the local sensor node

network is shown in Figure 4.4, and the full network topology is shown in Ap-

pendix A, Figure A.3.

Figure 4.4: The topology of the local sensor node network.

The aim was to involve the same type of modules and processes in the local net-

work in order to experience the same type of latency and possibly the same data

quality issues that may occur in the large-scale network. The sensor node network

consists of four high-quality wireless temperature sensor nodes, all connected to

the same wireless gateway module. Three sensor nodes were deployed outdoors

on the same distance from the gateway (70 m) and at the same height (4m),

the fourth sensor node was deployed indoors to simulate a faulty sensor which

149

streams off-set observations. The local sensor nodes and the wireless gateway7

were outsourced with a complete software solution which covers hardware man-

agement and facilitates streaming the observations to the cloud of the provider

company, Monnit Corporation8. Sensor nodes’ observations were collected from

Monnit cloud using the data acquisition unit applying the same steps used to

collect the observations from the large-scale sensor node network through Thing-

ful.Ltd. The technical specifications of the sensor nodes and gateway module of

the local network are detailed in Appendix A, Sections A.2.

4.1.2 Datasets

All components of the proposed data quality management system were tested

using real-world datasets collected from two different ambient temperature sensor

node networks. The ideal (baseline) dataset collected from the local sensor node

network deployed at the University of East London and the real-world (standard)

dataset collected from the large-scale sensor node network distributed around

London.

4.1.2.1 The Ideal Dataset

The ideal dataset was collected from the local sensor node network. The local

sensor node network consists of four high-quality wireless temperature sensor

nodes and a wireless Gateway. Each sensor node streams a single observation

every 10 minutes. The Gateway receives and holds the observations and sends

them to the database server in one push every 10 minutes. Three of these sensor

nodes were deployed outdoors around the campus of the University of East

London, while the fourth sensor node was deployed indoors inside the Knowledge

7https://wireless-sensors.co.uk/
8https://www.monnit.com/

150

Dock building, Figure 4.3. The ideal dataset consists of four time-series, as shown

in the snapshot dataset example starting from 26/09/2019 8:00 a.m to 02/10/2019

23:50:00, in Table 4.1.

Table 4.1: The four time-series of the ideal dataset (a snapshot).

Time series (Sensor ID) No. of Observations location

493361 1008 Indoor

493367 1008 Outdoor

493368 1011 Outdoor

493372 1006 Outdoor

Total No. of Observations: 4033

The main attributes of the ideal dataset are shown in Table 4.2. The ideal dataset is a

high-quality, consistent time-series of four ambient temperature observations with

no missing values or outliers. It was used as a benchmark (or as a baseline) dataset

to evaluate and calibrate the different statistical, machine learning and time-series

clustering techniques before applying them to the real-world observations of the

large-scale sensor node network.

Table 4.2: The main attributes of the ideal dataset.

SensorID MessageDate Values (Co) Battery (Volt) Gateway ID Signal
Strength

493361 11/10/2019 22:13 24.8 100 936486 100

493361 11/10/2019 22:23 24.9 100 936486 100

493361 11/10/2019 22:33 24.8 100 936486 100

493361 11/10/2019 22:43 24.7 100 936486 100

All sensor nodes of the local network were deployed in a relatively small geo-

graphical area. Therefore, these time-series have high similarity in the trend’s

shape but may have some differences in the value attribute. This feature is of

significant importance in testing shape-based time-series clustering methods, as

detailed in Section 4.3.1.

151

4.1.2.2 The Real-World Dataset

The real-world dataset was collected from over 200 different sensor nodes, dis-

tributed around London and owned by many providers, all coordinated by Um-

brellium.Ltd. These sensor nodes are geographical distributed as shown in Fig-

ure 4.1. The key attributes of the real-world dataset are shown in Figure 4.5.

Figure 4.5: The key attributes of the real-world, large-scale sensor nodes dataset.

The real-world dataset comprises observations collected from sensor nodes de-

ployed in different geographical locations to monitor the ambient temperature

from around London. In such systems, data quality issues may occur because of

many reasons such as sensor nodes hardware failures, unreliable communication,

external inference and noise. Thus, the real-world dataset typically involves many

data quality issues. The accuracy and performance of all the data analysing models

used in this research were evaluated by investigating their ability to detect data-

quality issues associated with errors in sensor nodes measurements, hardware

failures in sensor nodes, and mismatches in sensor nodes’ spatial and temporal

contextual attributes. Inspecting the real-world dataset using data visualisation

and aggregation methods broadly revealed the presence of the following data

quality issues:

4.1.2.2.1 Inaccurate Observations and Long-Outliers

Temperature time-series typically exhibits a daily seasonality and a trend, as

shown in Figure 3.12. Time series that show a constant value attribute or a very

152

low seasonality over a relatively long-time are highly likely to encompass data

quality issues related to the accuracy of the observations forming long-outliers.

For example, applying aggregation functions9 on a one-week interval of sensor

nodes’ time-series revealed that all the Smart Citizen and six of the Mat Office

sensors did not show any variations in their observations’ value (trend), as shown

in Figure 4.6.

Figure 4.6: Time-series of seven days window of sensor nodes observations aggre-
gated by the variations range in their value attribute.

In this case, the sensor nodes did not stop streaming observations but kept re-

peating the same value attributes, forming long-outliers. This behaviour is highly

likely to be related to sensor nodes hardware failure that affects their detection

ability. Alternatively, it may indicate that these sensor nodes are down (power

failure), and the system is compensating for their missing observations by repeat-

ing the last observation it received from these faulty sensors. Figure 4.7 shows an

example of long segmental outliers. Two sensor nodes time-series are showing

fixed value attribute for a relatively long time, compared to another time-series

generated by a functional sensor node managed by the Met Office during the same

time-window.

4.1.2.2.2 Missing or Inconsistent Observations

Examining sensor nodes time-series revealed that real-world time-series exhibits

temporal inconsistencies which occur for a relatively short time and deform the

seasonality component, as illustrated in the time-series decomposition diagram,
9Group by, Max and Min functions using SQL.

153

Figure 4.7: An example of two temperature time-series with long segmental
outliers (b and c) comparing with a typical time-series collected from a functional
sensor node (a).

Figure 4.8. Thus, the pattern of a test part of a time-series is anomalous if its occur-

rence frequency differs significantly from its expected standard frequency (Suri

et al., 2019, p. 45).

Such inconsistency issues may occur due to noise, temporary hardware failures,

or short network breakdowns. It may also occur because of hardware miscon-

figuration, e.g., if a gateway module’s duty-cycle is equal or slightly longer than

the duty-cycle of a sensor node in the same network. In that case, the gateway

will regularly escape sending up to two of that sensor nodes’ observations to

their destination. Although the required frequency of observations may differ

from an application to another, there is a certain threshold after which the data

become non-beneficial. For example, in the case of temperature sensor nodes, and

assuming that the minimum number of observations per day for each sensor node

is four (one every 6 hours), a seven-day time-series must at least consist of 28

observations. Otherwise, it considered as time-series with consistency data quality

issue. For example, Figure 4.9 shows time-series of seven days’ time window

154

Figure 4.8: Examples of the temporal inconsistencies in time-series of real-
world sensor nodes using time-series decomposition, (sensor ID=47qwbfba, 11-
23/01/2019, London).

155

of 274 of the real-world sensor nodes categorised according to the range of the

number of observations. Which demonstrates that the time-series of 8 of the Met

office and 26 of the Open Weather Map sensor nodes have less than 28 observation

between ‘2018-09-02 00:00:00’ to ’2018-09-08 32:59:00’ revealing a potential data

consistency issues.

Figure 4.9: Time-series of 274 sensor nodes categorised according to the range of
number of observations (seven days window).

4.1.2.2.3 Inaccurate Spatial Attributes

The geographical location of sensor nodes indicated by the spatial contextual

attributes associated with their observations does not necessarily reflect the actual

location of where these devices are deployed. Furthermore, there is no mechanism

to verify that these attributes reflect the actual geographical location of the sensors.

For example, the spatial distribution of some of the Smart Citizen sensor nodes

(community sensors) ‘ showed that these devices are deployed somewhere over

or very close to the German Embassy, the Embassy of Austria and the Egyptian

Consulate in London, which is highly unlikely, as shown in Figure 4.10. These

sensor nodes were probably used as test or as educational projects, and their

spatial attributes were set randomly to central London as their estimated location.

4.1.3 Software Framework

The software framework is the third component of the data acquisition unit. It was

developed to collect sensor nodes observations in real-time. It consists of software

156

Figure 4.10: An example of sensor nodes that their coordinates do not reflect their
correct location.

components and solutions applied to facilitate transactions of observations from

remote sensor nodes to the local database at the University of East London. The

software framework includes cloud computing modules, My-SQL database, and

Java-based data acquisition software specifically developed for this research. The

key component of the software framework are:

4.1.3.1 Cloud Computing Modules

As mentioned in the previous section, the data acquisition unit collects sensor

nodes’ observations from two different sensor node networks, the ideal and the

large-scale networks. The access to the observations stream of these networks

was provided and managed by two companies: Umbrellium and Monnit through

their cloud solutions Thingful10 and iMonnit11, respectively. In both cases, sensor

nodes observations were not streamed directly to the required destination, which

10https://www.thingful.net/
11https://www.imonnit.com/Account/LogonOV?ReturnUrl=/

157

is in this case, the local database at the University of East London. Instead, these

observations were streamed from the sensor node networks to the cloud of the

solution provider (Umbrellium, Monnit) and then were streamed back, on request,

to the local database. The data acquisition unit facilitated the process of requesting

the observations from the computing clouds of these companies via continuous

recurrent RESTful requests.

As shown in Figure 4.2 and Figure 4.4, both data provides, “Umbrellium” and

“Monnit”, were using a communication structure known as RESTful API to stream

sensor nodes observations. REST (Representational state transfer) is a simple,

high-performance and scalable data transaction architecture which can establish

an efficient and secure connection between online data streaming services and

any remote application or database. RESTful considered as a data structure,

not a communication protocol because it is merely a set of design rules, pre-

configured by the data provider to determine what responses their online API

will afford (Dong et al., 2009, p. 243). RESTful settings define the structure of

the full Uniform Resource Locator (URL) address of the endpoint API of the data

provider, which known as the Request URL. The Request URL also includes the

security authentications parameters which should be provided in order to approve

data transactions to the requesting destination. The structure of the Request

URL typically differs from data provider to another, depending on applications

requirements and their security authentication procedures.

4.1.3.2 Java-Based Data Acquisition Software

The data acquisition software is the core component of the data acquisition unit. It

coordinates all necessary processes including facilitating security authentications,

requesting observations from Thingful and iMonnit, processing and saving obser-

vations in the local database at the University of East London. The data acquisition

software was developed using Java and consists of six main components (classes),

158

as shown in the class diagram Figure 4.11.

Figure 4.11: The classes and main attributes of the data acquisition software.

Each one of these classes has a specific role and combined these classes describe

how the data acquisition software operates, as follows:

"Startup" class: starts the data acquisition process by inquiring the Requests URLs

details from the local database and forward the request results to the “dataMan-

ager” class, as shown in the sequence diagram, Figure 4.12, steps 2 to 4.

159

Figure 4.12: The sequence diagram of the data acquisition unit.

Figure 4.13 shows the requested details include the data providers details "Dp_details",

authentication keys "Dp_API_token", the number of the observations or the re-

quested time interval "Dp_sample_size". The requested details also include the

160

titles of the destination tables where the acquired observation will be stored (corre-

sponding tables) "Dp_Table" according to the type of the environmental parameter.

Figure 4.13: Data-pipes details used by the data acquisition software to construct
the RESTful Requests URLs.

"dataManager" class: manages the data acquisition process, it sends requests to

the authentication classes "thingfulAuthorization" and "imonnitAuthorization"

to create the authentication script based on the details retrieved by the "Startup"

class. Both are responsible for creating the RESTful API Request URL. After re-

ceiving the Request URL script, the “dataManager” class send the authentications

token keys to the RESTful APIs of Thingful and iMonnit and open the connection

in order to start requesting data. It connects with the selected RESTful API to make

sure that the connection is open, and the security authentications were approved,

as illustrated in Figure 4.12, step 5.

The next step is acquiring the observations list, which arrives as a one-piece

JavaScript Object Notation (JSON) object. The “dataManager” class sends the

JSON object to the "dataStream" class which verify that the received object is a

valid JSON data object and dissolve it back as a JSON array. Each row in the array

is a sensor node observation with all its associated details such as the sensor id,

timestamp, geographical coordinates, provider details and license type, but in

JSON format. The class returns the JSON array to the “dataManager” class, as

shown in Figure 4.12, steps 7 to 10. The “DataManager” class forward the JSON

array to the “toDatabase” class which establish a connection with the MySQL

database and send the JSON array to it. Each row in the JSON array becomes a

new record in the JSON destination table, as initially showed by the details table

161

in Figure 4.13. At this stage, the "toDatabase" class closes its connections with the

current RESTful API and with the My-SQL database server and send a request to

the “Startup” class to start acquiring data from the next data-pipe, as shown in

Figure 4.12 steps 11-19.

After acquiring observations from all available “Requests URLs”, the “Startup”

class activates the "timer" class. The “timer” class halts the open-loop executing

procedure for T minutes, where T is one minute less than the shortest sensor

nodes duty-cycle in the system, Figure 4.12 steps 20-23. The data acquisition

software runs continuously as a built-in service impeded in the operating system.

It was deployed on a Linux Fedora 31 workstation. The deployment environment

diagram of the data acquisition software and the deployment code are illustrated

in Appendix A, Section A.3.

4.1.3.3 MySQL Database and Data Process

After receiving the JSON objects from the data acquisition software, the first data

process that takes place inside the database is JSON decoding (parsing). All of

the database JSON destination tables are configured to decode the JSON strings

into a readable data format and save it in the corresponding observations tables.

Each JSON destination table is configured to trigger a JSON parse procedure after

receiving new records and send them as new records to the corresponding table,

as shown in Figure 4.14.

The second data process is related to preventing duplication’s in the observation’s

tables. This issue must be solved without losing or rejecting any observation from

being saved in the database. Duplication’s occur systematically in the observations

tables due to miss-matching between the duty-cycle of the data acquisition requests

and the duty-cycles of some sensor nodes. For example, if the frequency of the

data acquisition requests issued by the data acquisition software is one every ten

162

Figure 4.14: The JSON parsing process from the destination table into the corre-
sponding observations table, air quality table as an example.

minutes, in that case, the JSON destination table will receive the same observation

six times from the sensor node that has a one-hour duty-cycle.

In order to tackle this issue while keeping all records, no duplication prevention

constraints were set in the JSON destination tables. Thus, all JSON tables will

always accept all arrived records sent by the data acquisition software, forcing

no constraints that may expel some of these observations. However, duplication

prevention countermeasures are active in the corresponding tables. Whenever a

record arrives, the corresponding table checks if the observation is already exists

based on the observation sensor id, timestamp and value. If the corresponding

table detects a duplicated observation, it automatically increases the duplication

counter of that record by one and updates the server’s last observation timestamp.

Figure 4.15 shows the process diagram of the duplication prevention mechanism

of the data acquisition unit, and Figure 4.14 shows both the RowCount and

ServerLastUpdate attributes. This procedure has provided important indicators

which were used later in the timestamp analysis model.

More technical details related to the data acquisition unit are presented in Ap-

pendix A, Section A.3.

163

Figure 4.15: The process diagram of the duplication prevention mechanism of the
data acquisition unit.

4.2 Online-Mode Data Quality Assessment

As outlined in section 3.4.3, the data quality assessment unit is the core component

of the data quality management system. It consists of four main components: pre-

dictive analysis, anomaly analysis, time-series clustering and timestamp analysis

models, which operate in online and offline modes. Each of these components

has a specified role in detecting a particular type of data quality issues in data

streams of large-scale CPSs. The focus of this section is on data quality assessment

techniques that detect data quality issues associated with errors in sensor nodes

measurements in real-time. The real-time notion in this context means that the data

164

quality assessment must be completed in a shorter interval than the shortest sensor

node duty-cycle in the system. In other words, the data quality assessment of a set

of observations must finish before receiving the next set of observations from the

same sensor nodes for all sensors in the network. Thus, the online mode of the

data quality assessment unit represents all components that satisfy the real-time

constraints. Predictive and anomaly analysis models were utilised for evaluating

the accuracy of observations by detecting short-simple and long-outliers based

on their temporal correlation with earlier observations or based on their spatial

correlation with other observations from neighbour sensor nodes, respectively.

The detection of data quality issues of sensor nodes measurements associated

with timeliness, consistency and completeness dimensions was facilitated using

timestamp analysis by utilising periodicity analysis and a rule engine to detect

temporal irregularity in sensor nodes time-series. The full structure of the online

data quality assessment unit is shown in Figure 3.11. Many statistical and ma-

chine learning techniques were empirically experimented12 within the context of

real-time predictive and anomaly analysis models, as shown in Figure 4.16.

4.2.1 Predictive Analysis Models

This section outlines the empirical details of testing different predictive analysis

techniques for evaluating the accuracy of sensor node measurements via detecting

irregularities (short-outliers) in these sensors’ observations. Chapter 3, Section 3.5

describes the structure and design of the predictive analysis models tested in this

section.
12Note: All tests of this case study were conducted using Python 3.7 64 bits installed over a

Linux (Fedora 31 64 bits) workstation. The processor of the workstation is an Intel(R) Core (TM)
i7-7920HQ CPU @ 3.10GHz (8 CPUs), with 32 GB of RAM and A NVIDIA Quadro M1200 dedicated
video card with 4GB DDR5 RAM.

165

Figure 4.16: The algorithms and techniques empirically tested to validate the
accuracy of sensor nodes’ observations in real-time.

4.2.1.1 Datasets Modes and Details

As outlined in Chapter-3, Section 3.5, it is possible to examine the accuracy of a

sensor node observation by comparing its value attribute to its predicted value

using an autoregressive predictive model (Farooqi et al., 2018; Rager et al., 2018).

An autoregressive model is a prediction model that regresses a variable using

a combination of its previous observations (Lind et al., 2018, p. 380). Here, the

autoregressive models were developed using sensor nodes’ previous observations

(time-series) to evaluate the accuracy of their current observations. To ensure

the accuracy of the autoregressive (prediction) models, it is recommended to

develop and train these models using a consistent time-series with a minimum

level of outliers or missing values. Since there was no practical method to ensure

that the collected data from the real-world large-scale sensor node network are

outliers, noise free and complete, a benchmark time-series was required to train

166

and verify the accuracy of the predictions models and to verify the data quality of

the observations of the selected (examined) real-world sensor.

A benchmark sensor node was selected randomly from the three outdoors wireless

temperature sensor nodes of high-quality sensor node network deployed at the

University of East London. The benchmark sensor node was selected randomly

from the local network since the time-series of all sensors in the local network

showed significant similarity in their pattern (trend) and consistency, as shown

in Figure 3.23. Thus, all sensor nodes of the local network were sourced from the

same manufacture, have the same configuration, all new with new batteries and

deployed over a relatively small geographical location. The time-window of the

selected time-series is between 2020/03/01 00:00:00 and 2020/03/15 23:59:59, with

a total number of (2157) observations. The time-series decomposition graph of the

benchmark time-series is shown in Figure 4.17.

The time-series decomposition graph of the benchmark sensor node (493372)

shows a typical temperature trend, which slightly changes depending on the

season. It also shows a daily temperature seasonality of +/− 2Co degrees. The

residual is revealing a relatively high alternation, which is related to the charac-

teristics of the ambient temperature as a natural phenomenon affected by many

parameters, such as wind speed, humidity, sunshine density and the location of

the sensor nodes (under a tree, beside a river or on a top of a building).

A real-world time-series was selected from the large-scale sensor node network

based on two factors: first, it must have the same or the nearest possible sampling

rate as the benchmark time-series, six observations per hour, 144 observations per

day. Second, it must have minimal data quality issues related to completeness

and consistency of observations. The time-window of the time-series of sensor

node (jcw5m701) was selected to match the benchmark time-window with a total

number of (937) observations. Figure 4.18 shows the time series decomposition

167

Figure 4.17: Time series decomposition of the benchmark time-series (Sensor ID:
Monnit/493372).

168

graph of the real-world time-series. The time-series decomposition graph revealed

a trend relatively similar to the trend of the benchmark time-series.

Both the real-world and ideal time-series were re-sampled, the re-sampling process

is necessary to reconstruct the dataset into a time-series in which observations are

precisely spaced in time. The re-sampling process does not change the values of

observations. It equalises the time spaces between observations. The re-sampling

process was configured to compensate missing values of the real-world time-series

using the mean value of observations before and after the missing observations, if

any. The re-sampling process makes it possible to merge the two datasets into one

with the timestamp attribute as a common index, as shown in Figure 4.1913.

4.2.1.2 Holt-Winters

Holt-Winters’ seasonal method is a statistical forecasting technique that involves

predicting future observations of time-series that exhibit trend and seasonality

patterns. The design of Holt-Winters modlel was illustrated in Section-3.5.2. This

section is to present the empirical results of applying Holt-Winters (H-W) using

both datasets described in Section- 4.2.1.1 while evaluating its accuracy, perfor-

mance and the feasibility of automation. Practically, the Holt-Winters Python

package provided by Statsmodels.org (Seabold & Perktold, 2010) was used to

implement this test. Holt-Winters package does not need any of the three smooth-

ing constants (α,β,γ) required by Holt-winters algorithm to be pre-configured

in advance. In contrast, it has an optimisation mechanism to determine these

smoothing constants from the training dataset and based on getting more basic

parameters as input, as shown in Figure 4.20.

Both the trend and seasonality parameters were set to additive. The "seasonal periods"

parameter was set to 144 (6 observations per hour * 24 hours), the configuration

13https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

169

Figure 4.18: Time series decomposition of the real-world sensor node time-series
(ID: Thingful/jcw5m701).

170

Figure 4.19: The merge and re-sampling processes applied to the selected dataset
to become a time-series with the timestamp attribute as a common index (Pandas,
2020).

Figure 4.20: The structure of Holt-Winters Python package and its input parame-
ters (Seabold & Perktold, 2010).

and programming details are illustrated in Appendix A, Section A.4.1. The results

of testing the Holt-Winters autoregressive model are as follows:

4.2.1.2.1 Model Accuracy

The H-W predictive model accuracy was evaluated based on a range of 25 tests

using different dataset combinations with one step forward shift in each dataset.

These sequential tests were conducted to evaluate the H-W models’ prediction

accuracy using a wide range of testing instances. These tests were conducted using

a four days’ time-series window of both the ideal and the real-world datasets. The

test time-series consists of over 570 observations, with a shift of one observation

(one step forward) in each test, for a 25 step, as shown in Figure 4.21.

Although Holt-Winters prediction model showed its capability to produce rel-

171

Figure 4.21: Holt-Winters was tested with twenty-five different dataset combina-
tions with one step forward observation shift in each test.

atively accurate predictions, its predictions accuracy was not sustainable. The

accuracy of H-W predictions was alternating randomly with each new observa-

tion fitted to the model using the sequential testing approach. For example, the

difference between the predicted and the actual observation is 0.3oC at step 554,

while this difference jumps to 5oC after a one-step forward shift in the time-series,

as shown in Figure 4.22.

Figure 4.22: The predictions accuracy of H-W were alternating randomly with
each new observation fitted to the model.

The ideal dataset was utilised to verify whether the accuracy fluctuating of H-W

prediction model resulted from the presence of data quality issues, such as outliers,

in the real-world dataset. This behaviour of accuracy fluctuating was identified in

W-H prediction model with both the ideal and the real-world datasets.

172

Prediction model’s accuracy can be measured using a scale-dependent unit based

on the mean absolute or squared forecast error. The forecast error does not describe

a mistake; it is the distance between an observation and its forecast value, and it is

on the same scale of the evaluated observations (Hyndman & Athanasopoulos,

2018), as shown in Equation 4.1 (Hyndman & Athanasopoulos, 2018)14.

Absolute Forecast Error (et) = |Predicted observation−Actualobservation|

(4.1)

One of the most common scale-dependent forecasting accuracy measurement

methods is the Root Mean Squared Error (RMSE), which is based on the forecast

error, as shown in Equation 4.2.

Root mean squared error (RMSE) =
√

mean(e2
t) (4.2)

The prediction accuracy of the H-W model was rapidly changing with each newly

fitted dataset using the one-step forward shift approach, as shown in Figure 4.23.

Figure 4.23: The RMSE of the H-W prediction models is rapidly and randomly
changing with each newly fitted observation.

The inconsistency in the accuracy of predictions of the H-W regressive model is

shown in Figure 4.24. It compares the accuracy of predictions between the ideal
14https://otexts.com/fpp2/accuracy.html

173

(left) and the real-world (right) time-series at the same point in time.

Figure 4.24: H.W regressive model is showing inconsistency in the accuracy of
predictions between the ideal (left) and the real-world (right) time-series at the
same point in time.

The H-W model was tested to predict the values of the following 323 observations

(3 days). This test revealed an essential behaviour of H-W regressive model, as

shown in Figure 4.25.

Figure 4.25: H-W prediction model can not adapt to rapid changes in the trend of
the time-series.

This test revealed that H-W prediction model requires a time-series with a rel-

atively consistent trend and regular seasonality to sustain accurate predictions.

H-W prediction model determines the smoothing parameters of a time-series and

174

repeats them to estimate the values of future observations. Thus, H-W prediction

model can not adapt to rapid changes in the trend of the time-series. Therefore,

H-W prediction model can not be adopted as a reliable data accuracy assess-

ment method because of its inconsistency in predictions accuracy and because of

its limited ability to adapt with time-series that may exhibits some rapid trend

changes.

4.2.1.2.2 Performance

As expected from a statistical-based prediction model, Holt-Winters rendered the

prediction results in a brief interval in all the conducted tests. The most extended

processing interval was 0.3 Sec with the ideal dataset and 0.24 Sec with the real-

world dataset. The time needed for each of the sequential tests to render the

prediction results for both the ideal benchmark and the real-world datasets is

shown in Figure 4.26.

Figure 4.26: The time required by the Holt-Winters seasonal model to render the
prediction result of the 25 sequential tests.

4.2.1.2.3 Feasibility of Automation

Holt-Winters is a fully automated prediction analysis technique. Initially, no

calculations, configurations or tests on the dataset were required before fitting it

175

to the H-W prediction model. All the parameters expected by the H-W prediction

model, e.g. the seasonal periods, were extracted from the time-series and all are

constants where no regular changes are required. Therefore, technically, H-W

seasonal method could be fitted into fully automated systems or applications

easily.

4.2.1.3 ARMA, Non-Seasonal ARIMA and Seasonal ARIMA

This section presents the empirical results of testing ARMA, ARIMA and SARIMA

prediction models using both datasets described in Section 4.2.1.1. The struc-

ture and the designs of ARMA models’ as sensor nodes’ measurement accuracy

assessment mechanism are illustrated in Section 3.5.3. The configuration and

programming details of ARMA predictive models are facilitated in Appendix A,

Section A.4.2 and Section A.4.3.

ARMA, Non-Seasonal ARIMA and Seasonal ARIMA are statistical data analysis

methods which combine both Autoregressive (AR) and Moving Average (MA)

models and inherits their features. The ARMA model is limited to process station-

ary time-series, which do not exhibit a trend or seasonality. It also requires two

parameters to be pre-set: p and q, where p is the order of the autoregressive model

and q is the order of the moving average model. Time-series which exhibit non-

stationary properties can be transformed into stationary using differencing and,

if needed, seasonal differencing. ARIMA model has a built-in feature which can

process the differencing process of non-stationary data, while Seasonal ARIMA

model can process non-stationary seasonal time-series. Thus it introduced the

seasonal parameters (P,D,Q)m to the ARIMA model, where (P,D,Q) are orders of

the seasonal part of the SARIMA model andm is the number of observations in

a single seasonal period. Table 4.3 shows the different parameters of the ARMA

models and their requirements.

176

Table 4.3: ARMA models parameters and requirements.

Model Parameters Requirements

ARMA p Autoregressive order (AR) No trend

q Moving average order(MA) No seasonality

ARIMA p Autoregressive order (AR)

q Moving average order(MA) No seasonality

d Difference order

SARIMA p Autoregressive order (AR)

q Moving average order(MA)

d Difference order

P Seasonal autoregressive order /

Q Seasonal difference order

D Seasonal moving average order

m Time steps in a single seasonal period

Before using the ARMA models, it is required to test the stationary status of the

time-series (time-window) used for training the model, as illustrated in Figure 3.17.

It is possible to use Time Series Decomposition (TSD) in order to inspect the

time-series visually. However, this approach is not practical since a quantitative

indicator is required to evaluate the stationary status of the time-series to support

a fully automated system without human intervention. In general, stationarity15

(unit root) tests can be used to identify stationary time-series (Kirchgässner &

Wolters, 2007, p. 178), the stationarity status of the ideal and the real-world

datasets time-window were examined using the following stationarity tests:

• Augmented Dickey-Fuller (ADF) is a popular time-series stationarity test.

It can mainly detect level and trend stationarity, and it lacks the ability to

distinguish between non-stationary and near stationary (near unit root) time

series correctly. The null hypothesis of the ADF test is that the time-series

is not-stationary (has a unit root) the alternative hypothesis is that the time

series is stationary (Kočenda & Černỳ, 2015, p. 70-72).

15https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm

177

• Kwiatkowski-Phillips-Schmidt-Shin (KPSS) is the response to the weak-

ness of the ADF test. Near stationary time-series that incorrectly specified

by the ADF test as non-stationary can be correctly identified as stationary

with the KPSS test. However, the KPSS test is sensitive to the size of the test

sample. It becomes less likely to reject the null hypothesis of stationarity

with relatively large samples. The theoretical approach behind the KPSS

is entirely different from the Dickey-Fuller based stationary tests. The null

hypothesis of KPSS is that the time-series is stationary against the alternative

hypothesis that the time series is not-stationary (Kočenda & Černỳ, 2015, p.

73-75).

In this case study, both ADF and KPSS tests were adopted. The tested time-series

would be treated as a non-stationary if ADF, and KPSS tests provided conflicting

results. Practically, the training dataset was divided into two datasets, the variance

and the mean values of each sub-dataset were calculated and compared, as shown

in Figure 4.27.

Figure 4.27: Testing the stationarity of ARMA training datasets by dividing each
dataset and comparing the mean and the variance values of each sub-set. (left)
ideal dataset, (right) real-world dataset.

The mean and the variance values of the two halves of the ideal dataset did not

match with a significant deviation, which indicates that the dataset is not stationary.

The same results were obtained from the real-world dataset. These outcomes were

confirmed by the results of applying the ADF and the KPSS stationary tests on the

ideal training dataset, Figure 4.28 and the real-world dataset, Figure 4.29.

Applying the ADF and KPSS tests on the ideal dataset produced contradictory

178

Figure 4.28: The results of applying the ADF and KPSS stationarity tests on the
ideal dataset.

results, as shown in Figure 4.28, while applying the same tests on the real-world

dataset, showed that the data is not stationary in both tests. as shown in Fig-

ure 4.29.

Figure 4.29: The results of applying the ADF and KPSS stationarity tests on the
real-world dataset.

The first-order differencing function was applied to stabilise the datasets into

stationary status. Applying the ADF and KPSS tests on the new datasets showed

that both datasets were stationary.

The typical way to estimate the values of ARMA models parameters (p,d,q) is by

using the Autocorrelation Factor (ACF) and the Partial Autocorrelation Factor

(PACF)16 diagrams. The ACF and the PACF diagrams can be visually inspected

16Autocorrelation measures the linear relationship between lagged values of a time series.

179

to determine the required ARMA parameters based on the distribution and the

relationship among the lagged values presented by these diagrams (Hyndman &

Athanasopoulos, 2018, p. 47). The ACF and the PACF diagrams of the real-world

dataset are shown in Figure 4.30.

Figure 4.30: The ACF and PACF diagrams of the real-world (stationary) dataset.

The PACF diagram is showing two extreme lagged17 values (out of the light blue

area) which indicates that the order of the autoregressive parameter (p) equals

two. The ACF diagram is showing that the first two lags are entirely out of the

threshold ‘95%’ confidence area (the light blue area), which refers to the value of

the moving average parameter (q), in this case, equals two18.

In order to get a quantitative means to determine the values of the ARMA models

parameters, “the Grid Search, and AIC” method was utilised. This method is

essential for automating the ARMA models, since it does not require human

intervention to estimate the ARMA model parameters via the visual inspection

17A variable which its value depends on an earlier point in time.
18Using the ACF and PACF within the contest of this research is for demonstration only, Grid

Search, and AIC was used to determine the parameters of the ARMA models.

180

of the ACF and PACF diagrams. This method is based on testing ARMA models

using different combinations of parameters and apply the Akaike Information

Criteria (AIC) test on the outcome of each test. The combination of parameters

which delivers the lowest AIC, is the most suitable to optimise the prediction

accuracy of the ARMA model.

The disadvantage of the Grid Search and AIC method is that it becomes more time-

consuming process with testing higher order models or when used to determine

the parameters of a complicated ARMA model such as the SARIMA model. The

results of applying the Grid Search and AIC method on the ideal dataset and the

real-world dataset, using the ARMA model, are shown in Figure 4.31.

Figure 4.31: The values of ARMA parameters of the ideal dataset (a) and the
real-world dataset(b) determined using the Grid Search and AIC method.

Figure 4.31 indicates that the best parameters combination to optimise the ARMA

model of the ideal dataset is (2,1), and (2,2) is the best parameters combination

to optimise the ARMA model of the real-world dataset. The results of applying

the Grid Search and AIC method on the ARIMA model using the ideal and the

real-world datasets are shown in Figure 4.32.

The results of applying the Grid Search and AIC method on the ideal dataset and

the real-world dataset, suing SARIMA model, are shown in Figure 4.33.

The residual of the ARMA, ARIMA and SARIMA models with the lowest AIC

181

Figure 4.32: The values of ARIMA parameters for the ideal dataset (a) and the
real-world dataset(b) determined using the Grid Search and AIC method.

Figure 4.33: The values of SARIMA parameters for the ideal dataset (a) and the
real-world dataset(b) determined using the Grid Search and AIC method.

were checked to make sure that they are normally distributed around zero and

stationary. For example, the residual ACF and PACF of the ARMA (2,2) model of

the real-world dataset reside almost entirely under the threshold value of the 95%

confidence, as shown in Figure 4.34.

The residuals of the ARMA (2,2) models with the estimated parameters using the

Grid Search and AIC method for the real-world dataset is shown in Figure 4.35.

The residuals of the optimised ARMA models did not show any notable autocor-

relation, no trend or seasonality, which means it is acceptable to fit these models

using the estimated parameters.

182

Figure 4.34: The residua ACF and PACF diagrams of the ARMA (2,2) model
applied to the real-world dataset.

Figure 4.35: The residuals of the ARMA (2,2) models applied to the real-world
dataset.

The result of fitting the ARMA (2,1) model with the testing part of the ideal dataset

is shown in Figure 4.36.

While the results of fitting the ARMA (2,2) model with the testing part of the

183

Figure 4.36: The result of fitting the ARMA (2,1) model with the testing part of
ideal dataset.

real-world dataset is shown in Figure 4.37.

Figure 4.37: The results of fitting the ARMA (2,2) model with the testing part of
the real-world dataset.

184

Both results are showing a relatively similar prediction pattern. The results are

relatively accurate at the earliest steps of predictions, which rapidly decrease until

they reach the grey area of the 95% confidence, where the predictions become

significantly unreliable.

Since the duty-cycle of the sensor nodes, in both datasets, is very short (10 minutes)

comparing with the prediction interval of the ARMA models. It is possible to

select only the first predicted value and use it in the training set to predict the

next observation, which is known as The Rolling One-step Forecasts (Hyndman

& Athanasopoulos, 2018, p. 84).

The results of adopting the one-step forecasts approach with ARMA, ARIMA,

and SARIMA models were significantly similar. Figure 4.38 shows the result of

applying the one-step forecast approach to the ARMA model using the real-world

dataset.

Figure 4.38: The one-step forecast approach applied to the ARMA models using
the real-world dataset.

185

An overview of the full dataset, SARIMA prediction graph (green) and SARIMA

one-step prediction approach using the real-world dataset are shown in Fig-

ure 4.39.

Figure 4.39: An overview of the full dataset, SARIMA prediction graph (green)
and SARIMA one-step prediction approach using the real-world dataset.

ARMA, ARIMA and SARIMA prediction models were evaluated based on their

predictions accuracy, performance and the feasibility of automation, as follows:

4.2.1.3.1 Accuracy

ARMA models share the same mathematical foundation combining autoregressive

and moving average models into one comprehensive model. It is expected to get

no significant variations in accuracy among the prediction results of the ARMA

models (ARMA, ARIMA and SARIMA). Eight different tests were conducted on

the ARMA models to ensure that the prediction accuracy and performance of these

models are consistent. ARMA models’ accuracy was measured by determining the

Root Mean Square Error (RMSE) between the predicted and the actual observations

of the test dataset. The one-step forecasting method was evaluated for each of the

186

ARMA models using the ideal and the real-world datasets. The results are listed

in Table 4.4.

Table 4.4: The RMSE of the ARMA prediction models for the ideal and the
real-world datasets.

Dataset Model RMSE

Ideal (Local Network) ARMA 0.1823

ARIMA 0.1772

SARIMA 0.1364

Real-world (Large-scale Network) ARMA 0.2497

ARIMA 0.2528

SARIMA 0.3229

In general, the values of the RMSE were relatively low. The values of RMSE of the

ideal dataset were systematically lower than the RMSE of the real-world dataset,

which is mainly related to the high quality of data of the ideal dataset which

enhances the accuracy of predictions of the ARMA models.

The RMSE of the ARMA’s models indicated that these models rendered relatively

accurate predictions, but only when applied using the one-step-forward predic-

tions approach (rolling forecasting). The tests showed that any extended range of

ARMA, ARIMA and SARIMA forward predictions were always combined with

high uncertainty margins. Therefore, the predictions of ARMA models’ were

only suitable for a relatively short interval accuracy assessment of sensor nodes

measurements.

4.2.1.3.2 Performance

The performance of ARMA models was measured based on the time required to

optimise (to determine the best combination of parameters) the models and the

time required by the models to render the prediction results. The time required to

optimise the ARMA and ARIMA models is relatively similar, between 3 to 7 Sec,

as shown in Figure 4.40 (a) and (b). In contrast, the SARIMA model optimisation

time is significantly higher, between 110 to 125 Sec, as shown in Figure 4.40 (c).

187

Figure 4.40: The time required to optimise the ARMA (a), ARIMA (b) and SARIMA
(c) models for both the ideal and real-world datasets.

The optimisation time of the SARIMA model was significantly higher than other

ARMA models. However, the performance of SARIMA was slightly better. The

time required for the SARIMA model to render predictions was shorter (0.32 Sec)

compared to the time required by ARMA (1.4 Sec) and ARIMA (1.3 Sec) models,

as shown in Figure 4.41.

4.2.1.3.3 Feasibility of Automation

SARIMA model has less data preparation requirements comparing to the ARMA

and ARIMA models. A sequence of stationarity tests and differencing processes

are typically required to be applied to the training dataset before fitting it to the

ARMA model. In contrast, SARIMA model can process non-stationary datasets

directly, which makes it more likely to be utilised in a fully automated environment

comparing to the other ARMA model.

188

Figure 4.41: The time required by ARMA (a), ARIMA (b) and SARIMA (c) models
to render predictions results.

4.2.1.4 Gaussian Process Regression

Since ARMA prediction models rendered relatively accurate predictions, but only

when applied using the one-step-forward predictions approach (rolling forecast-

ing) and any extended range of ARMA models predictions always combined with

high uncertainty margins. Therefore, the predictions of ARMA models’ were

only suitable for a relatively short interval accuracy assessment. As an alterna-

tive to ARMA models, Gaussian Process Regression (GPR) prediction model was

empirically tested in this section. This section outlines the technical details and

results of applying the Gaussian Process Regression (GPR) model to the datasets

defined in Section 4.2.1.1. The structure details and the design of the GPR model

are illustrated in Section 3.5.4.

GPR is a supervised machine learning method utilises Gaussian Processes (GP)

in its prediction model. The approach of using GPR as a prediction analysis

189

model relies on gaussian processes for machine learning approach advanced by

Rasmussen and Williams (Williams & Rasmussen, 2006). The GPR model was

developed based on the “GaussianProcessRegressor” Python package provided by

Scikit-learn (Pedregosa et al., 2011). The configuration and programming details of

using “GaussianProcessRegressor” Python package provided by Scikit-learn (Pe-

dregosa et al., 2011) are illustrated in Appendix A, Section A.4.4. The structure of

the “GaussianProcessRegressor” model is shown in Figure 4.42.

Figure 4.42: The structure and parameters of Gaussian Process Regressor package
provided by Scikit-learn (Pedregosa et al., 2011).

Where:

• Kernel defines the covariance function of the GPR model. The kernel pa-

rameter is set to none by default, which means that the radial-basis function

(RBF) kernel will be used. Many off shelf kernels are available which can be

adopted directly. Furthermore, it is also possible to develop custom-built

kernels.

The "Standard Flexible"19 kernel was adopted in this case-study and eval-

uated through many empirical tests. The standard flexible kernel is an

off-shelf GPR kernel that combines the "Constant Basic" Kernel (the White

kernel) with the "Radial-Basis Function" (RBF) kernel.The purpose of using

the Constant kernel is to scale the magnitude of the main kernel (the RBF

kernel) since it adjusts the mean value of the GPR and it resembles the noise

level of observations. The Radial-basis function (RBF) kernel is a non-linear

kernel, most suitable for controlling the smoothness of periodic signals with

19https://scikit-learn.org/stable/modules/gaussian_process.html#gaussian-process

190

noise. RBF kernel ratifies the signal noise level using the additional Constant

kernel component and also by adjusting the alpha parameter.

• alpha is the noise parameter as a positive definite array. Its default value

is (1e-10). It defines the noise value associated with the observations of the

training dataset and limits any numerical issue during the fitting process,

where a higher value of alpha is corresponding to a higher level of noise in

observations.

• optimiser is the kernel parameters optimiser. Its default value is “fmin_l_bfgs_b”

which refers to the internal (built-in) optimiser, and it is also possible to call

an external optimiser. If the optimiser parameter is set to “none” the param-

eters of the kernel will have fixed values, and no optimisation processes will

take place.

• n_restarts_optimizer is the number of iterations to optimise the GPR kernel.

Its default value is 0 which implies that one run will take place based on the

initial kernel parameters, practically, “n_restarts_optimizer” should be set

between 10 and 20 to optimise the kernel.

• normalize_y is the normalisation status indicator of the training dataset. It

can be set to true if the mean value is not zero and the variance is not equal

to one (Avila & Hauck, 2017, p. 71).

The GPR model was evaluated initially using a basic kernel configuration. The

internal optimiser was disabled, and alpha the noise parameter was set to zero.

The basic GPR model was evaluated using 3 hours time-window from both ideal

and the real-world datasets. The result of fitting the basic GPR model using the

ideal dataset is shown in Figure 4.43.

The continues red line after the last observation (the last red dot) is the value of

the prediction with the highest probability known as the mean. At the same time,

191

Figure 4.43: The result of fitting the ideal dataset to the basic GPR model.

the green margins are the ranges of confidence of the other possible values, which

is known as the variance.

The confidence margins between the observations in Figure 4.43 are relatively

low, about 0.125oC, however, these confidence margins get extremely large in

the prediction interval, and it gets more significant with time. The blue dots are

the actual future observations (19 and 20) which were not included in the fitted

dataset. Both are within the confidence margins, which is a good indicator, but,

still, the mean of the predicted values is significantly diverting from the actual

observations.

The result of fitting the corresponding time-window of the real-world observations

to the same GPR model is shown in Figure 4.44.

The confidence margins of the real-world dataset got relatively low, which is

expected because of the inaccuracy associated with real-world observations com-

paring with the ideal dataset which was collected from a high-quality and fully

controlled sensor node network. The mean value in the prediction interval is

192

Figure 4.44: The result of fitting the real-world dataset to the basic GPR model.

highly diverted away from the actual observations. As illustrated in Figure 4.44,

the real observations (blue dots) are outside the confidence margins, which in-

dicates that GPR model with the basic configuration may produce inaccurate

predictions and out of the acceptable confidence margins.

The GPR tests were reconstructed using the same kernel, but with the internal

optimiser of the GPR model set to activate, the number of iterations was set to 20,

and the noise parameter alpha was activated by setting it to 5. Since the optimiser

parameter was activated, the GPR model will learn (adjusts its kernels parameters)

from the training dataset. To achieve that, the dimensions of the dataset had to be

transformed from a single dimension time-series into a two dimensions array of

dependent and independent variables, as shown in Figure 3.20. Since the confi-

dence intervals of the GPR model tend to be lower with time, the rolling one-step

forecasts approach was adopted to select only the first predicted value and use it

in the training set to predict the next observation (Hyndman & Athanasopoulos,

2018, p. 84). The result of fitting the ideal datasets to the new GPR model is shown

193

in Figure 4.45.

Figure 4.45: The result of fitting the ideal datasets to the GPR model with the
optimiser iterations set to 20 and alpha to 5.

Repeating the same test produced roughly the same outcome with some differ-

ences. These differences are expected since the optimisation process of the GPR

model randomly selects the GPR model parameters in each iteration within the

allowed range of values (Pedregosa et al., 2011)20.

The outcome of fitting the real-world dataset to the same GPR model used with

the ideal dataset is shown in Figure 4.46.

20https://scikit-learn.org/stable/modules/gaussian_process.html

194

Figure 4.46: The result of fitting the real-world datasets to the GPR model with the
optimiser iterations set to 20 and alpha to 5.

The GPR model was evaluated based on the accuracy of its prediction results,

performance and the feasibility of automation, as follows:

4.2.1.4.1 Accuracy

The predictions accuracy of the GPR model was evaluated using the Root Mean

Square Error (RMSE) between the predicted and the actual observations for the

ideal and real-world datasets. Based on a the results of 25 sequential tests, the

accuracy of predictions of the GPR model showed consistent results at RMSE =

0.245 for the ideal dataset and 0.475 for the real-world dataset. The significant

difference between the of the RMSE of the GPR prediction model when applied

to the ideal dataset 0.245 comparing to the real-world dataset 0.475 is justified

because of the RMSE measure sensitivity to outliers in the dataset. The value of

RMSE measurements may significantly affected by vertical outliers (observations’

value attribute outliers) in the evaluated dataset (Jeyaraman et al., 2019; Khotimah

195

et al., 2019; Pachepsky & Rawls, 2004, p. 397). To overcome the measurement

limitation of RMSE when applied to datasets with outliers, the prediction accuracy

of the GPR model was evaluated again using the Coefficient of Determination.

The coefficient of determination measures the amount of variation between two

parameters (Singh, 2003, p. 585). The value of the coefficient of determination

varies between 0 no correlation to 1 fully identical parameters (Keller, 2015, p.

135). Considering a predictive (regression) model, the coefficient of determination

R2 equals the square of the correlation between the predicted and the actual

observations which can be calculated as shown in Equation 4.3 (Hyndman &

Athanasopoulos, 2018)21.

R2 =

∑
(ŷt − ȳ)

2∑
(yt − ȳ)2 (4.3)

Where y is a sensor node time-series, yt is an observation at time t, ŷt is the

predicted observation at time t and ȳ is the mean value on n observations of

y (Hyndman & Athanasopoulos, 2018; Davis, 1995, p. 85-86).

The results of applying the coefficient of determination measure to the outcome of

the GPR predictive model for both the ideal and real-world datasets are 0.970 and

0.946 respectively, which shows that the GPR model could render significantly

accurate estimations of observations value attribute for both the ideal and the

real-world datasets. However, the GPR predictive model rendered relatively accu-

rate predictions, but only when applied using the one-step-forward predictions

approach (rolling forecasting). The tests showed that any extended range of GPR

forward predictions were always combined with high uncertainty margins. There-

fore, the predictions of GPR model were only suitable for a relatively short interval

accuracy assessment of sensor nodes measurements.

4.2.1.4.2 Performance
21https://otexts.com/fpp2/least-squares.html

196

The performance of the GPR model was evaluated based on the time required to

optimise the model and the time needed for the model to render the prediction

results. The performance tests were based on 25 sequential tests for the GPR model

using both the ideal and the real-world datasets. GPR model showed a relatively

stable performance of an average of 5.5 +/- 1.5 Sec for the selected time-window

for both the ideal and real-world datasets, as shown in Figure 4.47.

Figure 4.47: The time required by the GPR models to render prediction results of
25 sequential test for the ideal (Blue) and the real-world (Orange) datasets.

4.2.1.4.3 Feasibility of Automation

The data preparation requirements of the GPR prediction model were less com-

pared to the ARMA or H-W models. However, the GPR model itself requires

many configuration parameters to be set, some of which are difficult to be selected

or optimised automatically. For example, the kernel of the GPR model has a noise

parameter which must be estimated separately from the main noise parameter

(alpha). Moreover, testing the validity of GPR models based on testing the residual

stationary status may add more complexity to the automation process of the model

which requires adding stationarity tests and differencing steps to its development

process.

197

4.2.1.5 Long Short-Term Memory Networks

ARMAs and GPR predictive models rendered relatively accurate predictions, but

only when applied using the one-step-forward predictions approach. The tests

showed that any extended range of ARMAs or GPR forward predictions were

always combined with high uncertainty margins. Therefore, the predictions of

these models were only suitable for a relatively short interval accuracy assessment

of sensor nodes measurements. Therefore, in this section, LSTM was tested as a

prediction analysis mechanism for accuracy assessment for sensor nodes measure-

ment as an alternative to ARMA and GPR models. LSTM is the extension to the

deep learning-based Recurrent Neural Networks (RNN) utilised in this research

as a prediction model. The design of the LSTM model is illustrated in Section 3.5.5.

This section is to outline the technical details and results of applying the LSTM

model on the datasets defined in Section 4.2.1.1. The first step before training

the LSTM model is to prepare the dataset to be compatible with the data format

requirements of the LSTM input layer. The data preparation process involves the

following steps:

• Resampling, is a necessary process to reconstruct the dataset into a time-

series in which observations are precisely spaced in time. The re-sampling

process equalises the time spaces between observations without changing

their values and compensates missing values by using the mean value of

observations before and after the missing ones.

• Scaling is the process of changing the value of time-series observations

to become within a given range, in this case between 1 and -1. Scaling

is a recommended process when using neural networks or deep learning

models to eliminate the effect of extreme values and to optimise the model

performance (Raschka & Mirjalili, 2017, p. 42-54). Scaling was achieved

198

using the “MinMaxScaler” function developed by Scikit-learn (Pedregosa

et al., 2011)22.

• Creating a regressor array (independent variables) and the target array

(dependent variable) for training and validating the LSTM model. The same

approach in Figure 3.21 was used where the independent variable array

consists of 7 observations for each row. The final shape of the training and

validating datasets is a 3D array of [samples, time steps, features], where the

number of features is set to one (Temperature).

The next step is to create the LSTM model by using a constructor to define the

model parameters and calling the fit function to train the model using the training

dataset. Keras23 functional API was used to construct the LSTM model. Keras is a

deep learning framework with an industrial scale of features that covers a wide

range of machine learning workflow aspects from data management to solution

deployment. The main steps to build the LSTM model are:

• Defining LSTM model input layer by setting its shape to (7, 1) and the type

of the variable to float32.

Input_layer= Input(shape= (7,1),dtype= ”float32”)

• Defining the LSTM layer by calling the LSTM library from Keras recurrent

package and defines its main parameters.

lstm_layer=LSTM(64, inputshape=(7,1),returnseq= False)(input_layer)

The first parameter (64) is the Units indicator which defines the number of

the LSTM cells (dimensions) that will be initialized.
22https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
23https://keras.io/

199

• Adding the dropout layer and defining its rate. Dropout is a common and

very effective regularisation technique that can reduce over-fitting in neural

networks. It works by randomly setting to zero some of the layer output

features during the training phase of the model in order to introduce some

arbitrary noise to the learning process. The dropout rate parameter controls

the dropping ratio, and it can be set between 0.2 to 0.5 (Chollet, 2017, p. 109).

dropout_layer=Dropout(0.2)(lstm_layer)

• Adding the output layer based on the "Dense Layer", which is a neural

network layer that connects every neuron in the previous layer to every

neuron in the next layer. Since it establishes every possible connection

between layers, it called the dense layer (Moolayil et al., 2019, p. 29). The

activation parameter is to select the mathematical equation that defines the

layer output, in this case, a linear function, which determines the output by

multiplying the input by the weights for each neuron.

output_layer=Dense(1,activation= ′ linear ′)(dropout_layer)

• Training the model by fitting the training datasets into the model object

defined by the following:

ts_model.fit(x=X_train,y=y_train,batch_size=16,epochs=20,

verbose=1,callbacks=[save_best],validation_data

=(X_val,y_val),shuffle=True)

The "Batch" is a training sample from the training dataset defined by the

"batch_size" parameter. The LSTM network updates its weight after process-

ing each batch. An "epoch" is a complete cycle of processing the training

dataset (all batches) and successfully updating the weight parameters of the

200

model. The epoch parameter determines the iteration number of processing

all available batched. With each epoch, the selection of batches initialises

randomly, which optimises the model weight parameters and enhance the

accuracy of its predictions.

The output of the LSTM model fitted with the ideal dataset is shown in Figure 4.48.

Figure 4.48: The output of the LSTM model fitted with the ideal dataset.

The output of the LSTM model fitted with the real-world dataset is shown in

Figure 4.49.

The configuration and programming details of using Keras Python package to

construct the LSTM prediction model are illustrated in Appendix A, Section A.4.5.

The LSTM model was evaluated based on the accuracy of its predictions, perfor-

mance and the feasibility of automation, as follows:

4.2.1.5.1 Accuracy

The accuracy of the LSTM model was evaluated using the Coefficient of Determi-

nation and the Root Mean Square Error (RMSE) measures between the predicted

201

Figure 4.49: The output of the LSTM model fitted with the real-world dataset.

and the actual observations. A set of 25 sequential tests were conducted on the

ideal and real-world datasets. The accuracy of the LSTM prediction model based

on the coefficient of determination measure was consistent around 0.969 for the

ideal dataset and 0.889 for the real-world dataset. And the results of applying the

RMSE were 0.183 for the ideal dataset and 0.408 for the real-world dataset.

4.2.1.5.2 Performance

The performance of the LSTM models was measured based on the time required

to train the model and the time needed for the model to render the prediction

results. The performance evaluation was based on 25 sequential tests for the LSTM

model using both the ideal and the real-world datasets. LSTM model showed a

steady performance of rendering the results of an average of 20.2 +/- 0.4 Sec for

the selected time-window for both the ideal and real-world datasets, as shown in

Figure 4.50.

4.2.1.5.3 Feasibility of Automation

202

Figure 4.50: The time required by the LSTM model to render prediction results of
25 sequential test for the ideal(Orange) and the real-world(Blue) datasets.

Using the LSTM prediction model involves many data preparation steps, which are

relatively generic comparing to the GPR model. LSTM model introduces a random

noise factor to the dataset and trains its cells to deal with such kind of observations

based on a built-in multi iteration training process. In general, LSTM model is

more suitable to work in an automated environment, especially considering that it

requires fewer adjustment steps and fewer optimisations processes comparing to

the GPR model since must of these processes are built-in the LSTM model.

4.2.1.6 Utilising LSTM for Anomaly Detection

This section aims to find a a valid predictive analysis model to be utilised as an

accuracy assessment mechanism for sensor nodes measurements in large-scale

CPS. As discussed earlier, since predictive analysis models rely on autoregression,

these models can be utilised only to detect accuracy issues that occur for a rela-

tively short intervals only (point outliers). Holt-Winters’ seasonal was investigated

first as a prediction model. However, it could not adopt with rapid changes in

time-series, and it was sensitive to short-term alterations in the value attribute of

observations in the training dataset. Therefore, the accuracy of the Holt-Winters’

203

prediction model was iterating unpredictably and thus rendering unreliable results.

ARMA’s and GPR were investigated as alternatives to Holt-Winters’. ARMA’s

and GPR predictive models were able to render relatively accurate predictions,

but only when applied using the one-step-forward predictions approach (rolling

forecasting). Any extended range of forwarding predictions was associated with a

high level of uncertainty margins. Thus, ARMA’s and GPR models’ predictions

were only suitable for short interval accuracy assessment. LSTM was investi-

gated to overcome the limitations of ARMA’s and GPR predictive models. LSTM

model rendered accurate predictions with extended forward range compering

with ARMA’s and GPR models. The LSTM benefits from long time-series in its

“learning” process. It utilises an advance mechanism to deal with noise with mini-

mal configuration requirements. LSTM model is more suitable for working in an

automated environment, especially considering that it requires fewer adjustment

steps and fewer optimisations processes compared to the ARMA’s or GPR models,

since most of these processes are built-in the LSTM model.

Therefore, LSTM was selected as the most suitable predictive-based anomaly de-

tection model to evaluate the accuracy of sensor nodes measurement in large-scale

CPSs. LSTM model can be used to detect irregularity in observation’s values based

on comparing the predicted values with the actual observations, as detailed in

Section 3.5, and as shown in Figure 3.14.

The first step is to determine the Deviation Threshold, which defines the allowed

tolerance between the predicted and the actual observation. Thus measurements

that exceed the deviation threshold are considered as observations with potential

data accuracy issues, as shown in Figure 3.14. The deviation threshold is the

acceptable level of variation in sensor nodes observations’ value, which may occur

for many reasons not necessarily related to a measurement error or hardware

failure. Defining the deviation threshold value depends mainly on the type of

application. For example, in critical applications, the deviation threshold could be

204

fixed to up to 5% or 10% of observation value. In this research, the ideal dataset

was used to determine the deviation threshold by calculating the maximum differ-

ence between the mean value of observations collected from all local sensor nodes

for the same time-window of the tested real-world dataset. All sensor nodes of

the local sensors network are high-quality devices which streamed consistent and

anomaly free time-series for the same time-window of the real-world dataset. The

value differences among concurrent observations collected from these sensors can

be used as a reference of the acceptable range of tolerance for this type of sensors,

as shown in Equation 4.4.

|Deviation threshold|=max


ȳS1 − ȳS2

ȳS2 − ȳS3

ȳS1 − ȳS3

(4.4)

Where ȳS1, ȳS2 and ȳS3 are the mean value of the time-series of the three out-

door local sensor nodes S1, S2 and S3 respectively for the selected time window.

Equation 4.4 was applied to detected anomalies as shown in Equation 4.5.

If |Actual − Predicted| > Deviation threshold then : ′Anomaly ′

Else : ′Pass ′;
(4.5)

Applying equation 4.4 on the ideal dataset revealed that the deviation threshold

for the selected time-window is 0.34 Co. The LSTM prediction model combined

with equation 4.5 and using 0.34 Co as the estimated deviation threshold were

utilised successfully to detect anomalies associated with accuracy data quality

issues in the real-world dataset, as shown in Figure 4.51.

These detected anomalies can be seen on the real-world dataset as highlighted in

Figure 4.52.

205

Figure 4.51: The LSTM prediction model using 0.34 Co as the deviation threshold
was utilised successfully to detect value attribute anomalies in the real-world
dataset.

Figure 4.52: The accuracy data quality issues (anomalies) detected by the LSTM
prediction model when applied on the real-world dataset.

206

The full implementation code and other programming details are illustrated in

Appendix A, Section A.4.5.

4.2.2 Anomaly Analysis Models

Predictive analysis models are most suitable for detecting irregular sensor nodes

measurement events that appear for a short interval (short outliers). The pattern

of time-series with long outliers will be distorted to a certain extent reflecting

the wrong measurement as the standard pattern which leads to higher prediction

errors and limits the ability of the predictive analysis modes (autoregression) to

detect the irregular data accuracy events correctly (Berk, 2015, p. 25-27). There-

fore, Anomaly analysis models were investigated as data accuracy assessment

mechanisms for sensor nodes measurements with long outliers or systematic mea-

surement errors. Anomaly analysis models rely on the spatial correlation among

neighbouring sensor nodes at the same point in time to assess the accuracy of their

observations based on the concept of spatial continuity.

As detailed in Section 3.6, outliers in contextual time-series are observations with

value attributes that differ significantly from the value attribute of nearby, spatially

correlated observations which is known as the spatial continuity and justified by

Tobler’s law of geography (Tobler, 1970). However, the spatial continuity concept

is not necessarily applicable to the real-world observations collected from large-

scale, sensor node networks. For example, temperature observations collected

from the sensor node network distributed around London are not necessarily

spatially correlated due to a phenomenon known as the Urban Heat Islands (UHI)

which violates their spatial continuity as shown in Figure 3.24. To tackle this

issue, spatial partitioning (clustering) techniques were adopted. In general, spatial

clustering is the process of grouping (labelling) objects based on similarity mea-

sures of their relative distance or density (Wang et al., 2017, p. 157-160). Spatial

207

clustering utilises spatial data partitioning models to facilitate correlation between

data points by breaking up the space of interest into more representative regions

for local data points. This section outlines the empirical details and outcomes

of testing distance-based spatial clustering (K-Means) and density-based spatial

clustering (DBSCAN) as spatial data partitioning techniques for anomaly analysis

(outliers detection) in large-scale CPSs.

4.2.2.1 Dataset Modes and Details

The purpose of this section is to examine distance-based spatial clustering (K-

Means) and density-based spatial clustering (DBSCAN) as spatial data partitioning

techniques for outliers detection, especially long-outliers detection. Both tech-

niques were used to break up the space of interest into more representative regions

for local data points (sensor nodes). The aim is to create local groups of spatially

correlated sensor nodes, then compare their observations at the same point in

time to identify observations that significantly different from their neighbours

as potential outliers. This approach of outlier detection does not require prior

knowledge of the temporal sequence of sensor nodes observations. It compares

the current or most recent observations from different nearby sensor nodes. Thus,

both K-Means and DBSCAN models were tested using the Snapshot Data Model,

shown in Figure 3.9, where only the most recent set of observations arrived from

all available sensor nodes is considered and fitted to the models.

The number of sensor nodes and their geographical coordinates are the parameters

that may change the outcome of the spatial partitioning (clustering) algorithms.

The geographic distribution of all available temperature sensor nodes used in this

case study based on their coordinates attributes over a real-scale map is shown in

Figure 4.53.

208

Figure 4.53: The geographic distribution of all available temperature sensor nodes
over a real-scale map (London 04/2020).

4.2.2.2 Distance-Based Spatial Clustering (K-Means)

K-means clustering algorithm was applied using the "cluster.KMeans" Python

package provided by Scikit-learn24 (Pedregosa et al., 2011), the algorithm’s main

parameters are shown in Figure 4.54. The full version of the code and program-

ming aspects of the K-means test are detailed in Appendix A, Section A.4.6.

Figure 4.54: K-means main parameters by scikit-learn (Pedregosa et al., 2011).

Where "K-means++" is the augmented version of K-means with an optimised
24https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

209

seeding technique, enhanced speed and accuracy (Arthur & Vassilvitskii, 2006),

and "n_clusters" is the number of clusters Kwhich must be provided as an input

parameter to K-means model.

The optimum number of clusters k was determined using the Silhouette analysis

method, which evaluates the accuracy of the clustering model and can be used to

estimate the optimum number of clusters K for K-means as detailed in Section 3.6.1.

Silhouette analysis was conducted and recorded against the number of clusters

K for a range of tests from K= 2 to K= the number of sensors− 1. The result of

the Silhouette analysis on K-means is shown in Figure 4.55, which indicates that

the highest silhouette score was achieved at k= 115.

Figure 4.55: Silhouette analysis to determine K-means k, the highest score was
reached at K=115.

The outcome of applying K-means while setting K=115 is visually illustration by

Voronoi tessellations’ approach to present spatially partitioned clusters plotted

over the landscape of London, as shown in Figure 4.56. K-means was able to

identify a centroid point for each cluster, where each coloured shapes is a cluster,

and the blue dots are their centroids.

Applying k-means model for multiple times to the same dataset revealed that

210

Figure 4.56: The outcome of applying K-means (K=115) represented by Voronoi
tessellation approach plotted over the landscape of London, the blue dots are the
centroids of the clusters.

K-means re-allocates the positions of the centroid points and creates a different set

of clusters with different distribution after each test, as shown in Figure 4.57.

This behaviour of K-means model is justified by how its clustering algorithm

works. It starts with an initial estimation of the location of K number of centroid

points selected randomly from the dataset, where K is the pre-defined number of

clusters. From this stage, K-means starts a routine of two steps:

1. Data points assignment, assigning data points to their nearest centroid point

based on the squared Euclidean distance.

2. Centroids update, by recalculating and reassigning the centroids according

to the mean value of the Euclidean distance of all data points assigned to

that centroid’s cluster.

K-means keeps iterating between these two steps until no significant changes in

211

Figure 4.57: K-means model renders different outcomes after applying it many
times on the same dataset.

centroid points location occur anymore, or a maximum number of tries is reached.

K-means randomly select the centroid points whenever it initialises. Thus, it

partitions the dataset differently each time, which shows that any calculations

associated with the k-means cluster’s such as the centroid threshold values must

be recalculated again for all clusters after each time K-means applied.

The major drawback of using K-means as spatial data partitioning technique for

outlier detection is that K-means partitions the dataset evenly without considering

the minimum number of sensor nodes or the maximum relative distance allowed

between sensor nodes in the same cluster. Thus, K-means may create a cluster of

one sensor node or may include relatively distant sensor nodes in the same cluster

which in both cases violate the spatial continuity constraints and may compromise

the accuracy and validity of the outlier detection results.

Although K-means was utilised successfully in many large-scale CPSs geo-spatial

partitioning applications, such as for optimising the operation of district energy

212

systems (Fazlollahi et al., 2014), enhancing the lifetime of wireless sensor net-

works (Kumar & Chaturvedi, 2014), optimising real-time traffic networks (Yang

et al., 2020), street networks analysis (Goss et al., 2014) and even for bicycle sharing

system analysis (Ma et al., 2019). In all these applications, K-means was used as

a geospatial partitioning technique to assign data points to the nearest centroid

based on the relative “Euclidean distance”. Thus, it does not consider the spherical

shape of the earth and the actual distance between data points on the sphere which

is known as the “Haversine distance” (Sinnott, 1984).

The performance of K-means partitioning model was evaluated using all available

data points (360 sensor nodes). K-means was applied to the same dataset while

using different values of K, as shown in Figure 4.58.

Figure 4.58: The time (Sec) required by K-means to render the clustering results
applied to the same dataset while testing a range of K (1 to 360).

K-means model rendered its clustering results within 0.5 Sec in all cases, except

when k reached 309, which is an unrealistic number of clusters in comparison

with the total number of available data points (sensor nodes). K-means algo-

rithm started to show a "Convergence Warning" at K= 309 while calculating the

Silhouette analysis score, which was not possible after that point, as shown in

213

Figure 4.55.

4.2.2.3 Density-Based Spatial Clustering (DBSCAN)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a

clustering algorithm that identifies clusters based on the density of data points

within a specified radius. Unlike K-means, DBSCAN does not require the number

of clusters as an input parameter. Alternatively, MinPoints and Eps are required

whereMinPoints is the minimum number of data points within the radius Eps

(Epsilon). DBSCAN clustering algorithm was applied using the “cluster.DBSCAN”

Python package provided by Scikit-learn (Pedregosa et al., 2011), the algorithm’s

main parameters are shown in Figure 4.59. The test design details are illustrated

in Section 3.6.2. The full code and programming aspects of the test are detailed in

Appendix A, Section A.4.6.

Figure 4.59: DBSCAN algorithm’s main parameters applied using "clus-
ter.DBSCAN" Python package provided by Scikit-learn (Pedregosa et al., 2011).

The main challenge of applying DBSCAN is how to determine the optimum value

of Epsilon (Eps). TheMinPoints (min_samples) parameter was assigned to (2)

to reflect the minimum number of sensor nodes required to establish a deviation

comparison for outlier detection. The Silhouette analysis method was adopted to

determine the optimum value of Eps based on the best clustering performance.

The result of applying the Silhouette analysis to DBSCAN is shown in Figure 4.60,

where the highest silhouette score was obtained at Eps = 1.66 Km.

The Haversine formula was adopted in the DBSCAN model to calculate the

great-circle distance between data-points (sensor nodes) using their longitudes

and latitudes attributes, as shown in Figure 4.59, where Epswas divided by the

radius of the sphere (Earth) to become compatible with the used metric (Haver-

214

Figure 4.60: DBSCAN highest Silhouette score was obtained at Eps = 1.66 Km.

sine) (Ebrahimi et al., 2017).

DBSCAN clustering results are shown in Figure 4.61. Unlike K-means, DBSCAN

clustering results were consistent, rendering fixed clusters after being applied for

multi-times using the same dataset.

The results of DBSCAN clustering algorithm showed that temperature sensor

nodes are not evenly distributed over the area of interest (London). DBSCAN

categorised the region of interest into a “high-density” area and “low-density”

area according to the available number of sensor node within the radius Eps, as

shown in Figure 4.61. DBSCAN model spatially partitioned the data-points (sensor

nodes) into 50 clusters, as shown in Figure 4.62.

DBSCAN model indicated that sensor nodes located in a low-density area might

not fit in any cluster, as shown in Figure 4.61 (the red arrows which were added

manually). Each sensor node in the low-density area may form a cluster by itself

or with a distant sensor node(s), which in both cases violates the concept of spatial

continuity and compromises the accuracy of the outlier detection model. Most of

the distant sensor nodes were eliminated by DBSCAN, and considered as noise.

Thus, the number of DBSCAN clusters is significantly lower compared with K-

215

Figure 4.61: DBSCAN clustering result, the blue lines are highlighting high-density
regions (S > 3) of sensor nodes distribution, the red arrows (added manually) are
showing examples of sensor node(s) in low-density areas.

Figure 4.62: DBSCAN spatially partitioned the available data-points (sensor nodes)
into 50 clusters at Eps= 1.66.

means, which partitioned the region of interest into K number of clusters without

considering the density of distribution of sensor nodes. Just like K-means, the

performance of the DBSCAN model was evaluated using all available data points

(360 sensor nodes). DBSCAN was able to render the clustering results in less than

0.5 Second, in all tests, as shown in Figure 4.63.

216

Figure 4.63: The time (Sec) required by DBSCAN to render the clustering results
applied to the same dataset while testing a range of Eps (0.2 - 4 Km 40 step).

4.2.2.4 Utilising DBSCAN for Outliers Detection

Anomaly analysis models were investigated as accuracy assessment models via

detecting outliers, especially long-outliers, or systematic errors in sensor nodes

measurements. Anomaly analysis models rely on the spatial correlation among

neighbouring sensor nodes to assess the accuracy of observations based on the

concept of spatial continuity. Applying anomaly analysis directly to the dataset

of real-world ambient temperature sensor nodes was not possible because of the

effect of the phenomena of the Urban Heat Islands, which causes unexpected

changes in the value attribute among sensor nodes and violates their spatial

continuity. Therefore, spatial partitioning techniques were used to divide the

region of interest into smaller and more representative domains for sensor nodes

using clustering algorithms.

The evaluation of K-means as spatial data partitioning technique revealed that

it partitions the region of interest without considering the minimum number of

sensor nodes or the maximum relative distance allowed between sensor nodes in

the same cluster. Thus, K-means may create a cluster of one sensor node or may

include relatively distant sensor nodes in the same cluster which in both cases

217

violate the spatial continuity constraints and may compromise the accuracy and

validity of the outlier detection results.

Alternatively, DBSCAN identifies clusters based on the density of data points

within a specified radius. Unlike K-means, DBSCAN clustering results were

consistent, rendering fixed clusters after being applied multiple times on the same

dataset. It categorised the region of interest into “high-density” areas and “low-

density” areas according to the number of sensor node within the radius Eps.

DBSCAN model showed that sensor nodes located in a low-density area might

not fit in any cluster and considered most of the distant sensor nodes as noise and

eliminated them. Therefore, in this case study, DBSCAN was selected as the most

suitable spatial portioning model for accuracy outliers detection in sensor nodes’

measurements in large-scale CPSs.

Technically, DBSCAN labels (defines) each of its clusters with a numeric value

starting from 0 up to the total number of clusters. Thus, each sensor node would

receive a new attribute that defines its cluster. The result of applying DBSCAN on

the real-world dataset is shown in Figure 4.61, and the number of sensor nodes in

each cluster is shown in Figure 4.64.

Figure 4.64: DBSCAN clusters labels and the number of sensor nodes in each
cluster.

The first row in Figure 4.64 with cluster label (-1) indicates that 43 sensor nodes

were not fitted in any cluster and denoted by DBSCAN as noise and eliminated

218

from the rest of the clusters25. Using cluster-5 as a case study, it consists of 47

sensor nodes, as shown in Figure 4.64, and the spatial distribution of these sensors

is shown in Figure 4.61. Since these sensors belong to the same cluster, it is

safe to assume that these sensors’ value attributes are correlated. Therefore, it is

possible to compare these sensor nodes observations and specify observations

with value attributes that exceed the deviation threshold as outliers. The first step

is to determine the cluster’s threshold value at a particular point in time t, in this

case, the most recent set of observations represented by the last duty-cycle in the

real-world dataset. Selecting the most recent duty-cycle of the real-world dataset

which starts at ‘2020-03-15 23:49:59’ and ends by ‘2020-03-15 23:59:59’ revealed

that only eight sensor nodes of the 47 had streamed observations during that

duty-cycle, as shown in Figure 4.65.

Figure 4.65: The eight of the 47 sensor nodes in cluster-5 that streamed observations
between ’2020-03-15 23:49:59’ and ’2020-03-15 23:59:59’ of the real-world dataset.

The next step is to calculate the cluster threshold (correlation threshold) by de-

termining which is the most common value of observations within the clusters’

sensor nodes (the eight sensor nodes) using a proximity function. The proximity

function rounds the value attribute of all observations in the cluster to the first

digit and group (aggregate) these attributes to define the most common observa-

tion value. Applying the proximity function showed that the threshold value of

clusters-5 was 6Co at that particular duty-cycle, as shown in Figure 4.66.

The next step is to calculate the Correlation Error, which is the absolute difference
25https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

219

Figure 4.66: Outlier detection in sensor nodes observations using anomaly analysis
and spatial partitioning techniques.

between sensor nodes observations’ values and the cluster-threshold value. Fi-

nally, to compare the correlation error with the deviation threshold determined

in Section 4.2.1.6, observations with a correlation error that is larger than the

deviation threshold are categorised as outliers, as shown in Figure 4.66.

4.2.3 Timestamp Analysis (Temporal Consistency)

In order to detect timeliness, completeness and temporal-consistency data quality

issues in sensor nodes’ data stream, time-series periodicity analysis was utilised

to estimate the duty-cycle and the threshold-interval of each sensor node in the

system. Sensor nodes’ duty-cycles were estimated since there was no practical

way to determine the exact duty-cycle separately from the offset coefficient error e

associated with each observation and caused by many effects that delay observa-

tions deliver to their destinations. The duty-cycles and the threshold-intervals of

each sensor node were used as the periodicity indicators to determine whether

an observation is missing or delayed using an assessment rule engine. The rule

engine was developed using SQL and embedded at the second layer of the data

quality management system, the MySQL database, as shown in Figure 3.8, to

check the temporal consistency of observations when they arrive at the database

instantly.

This section is to describe the technical details and results of applying the periodic-

ity analysis approach proposed in Section 3.7 to evaluate the temporal consistency

220

of sensor nodes observations using both the ideal and the real-world datasets

described in Section 4.2.1.1, as follows:

• Estimating the duty-cycle for each sensor node by calculating the shortest

interval among all sequential observations in the time-series of the asso-

ciated sensor. Technically, this was implemented using a data structure

that combines the timestamp of the previous observations with the data

row of the new observation for each record, as shown in Figure 4.67 us-

ing a database trigger embedded in the observations collection tables, as

illustrated in Appendix A, Section A.3.1.

Figure 4.67: The data stream as a two-dimensional array of Ct, Ct−1 observations
to calculate the interval between every two sequential observations.

The shortest interval calculated by:

tdc =min(Ct(MessageDate_n) −Ct−1(MessageDate)) was considered as

the duty-cycle of the related sensor node (tdc) at the server-side associated

with the offset coefficient error e and tdc > 0.

• Aggregating and ranking all intervals according to their recurrence for each

sensor node. The interval with the highest recurrence score is the Threshold

Interval tThs for the associated sensor node and used as a reference to define

the temporal consistency status of all observations streamed from that sensor,

as shown in Figure 4.68.

• The duty-cycle (tdc) and the threshold-interval tThs of each sensor node were

221

Figure 4.68: Aggregating observations intervals to determine the Threshold Inter-
val tThs for each sensor node.

incorporated by the rule engine to check the temporal consistency of their

observations. The rule engine calculates the (tdc) and tThs for each sensor

node and checks their observations upon their arrival to the database for

temporal consistency constraints based on a pre-set policies. The rule engine

consists of a sequence of logical expressions which combined with (tdc) and

tThs determine if a particular observation is delayed, missed or temporally fit

for the purpose of use. The policies of the rule engine are listed in Section 3.7,

while Figure 4.69 provides some insights on the logic behind the rule engine.

The full code is listed in Appendix A, Section A.3.2.

Figure 4.69: An example of the logical expressions (policies) used inside the rule
engine.

The results of applying the temporal timestamp analysis approach using the

periodicity analysis and the SQL rule engine on the ideal dataset are shown in

Figure 4.70, and on the real-world data set are shown in Figure 4.71.

222

Figure 4.70: The result of applying the timestamp analysis approach for temporal
consistency assessment on the ideal dataset.

Figure 4.71: The result of applying the timestamp analysis approach for temporal
consistency assessment on the real-world dataset.

The timestamp analysis and time-series periodicity analysis methods were nearly

100% accurate in identifying timeliness, completeness and consistency data quality

issues in sensor nodes data stream for both the ideal and the real-world datasets.

Due to the limited number of the policies applied to check the temporal consis-

tency of the sensor nodes observations, the rule engine rendered its assessment

results instantly at the arrival of the observation to the database. The timestamp

analysis was implemented using a rule engine to provide a level of automation

to the process since rule engines can adapt with data stream changes, and can be

configured by adding or revoking policies according to applications’ requirements.

4.3 Offline-Mode Data Quality Assessment

The data quality assessment unit is the core component of the data quality manage-

ment system proposed in this research. The data quality assessment unit consists

of the:

Online unit covered in Section 4.2 which describes the components of the data

223

quality management system responsible for detecting data quality issues associ-

ated with errors in sensor nodes’ measurements using predictive analysis, outlier

analysis techniques and timestamp analysis for temporal consistency in real-time.

Offline unit describes the components of the data quality management system

responsible for detecting sensor nodes’ hardware failures associated with long

segmental outliers which last for a relatively long time and change the pattern of

time-series using time-series clustering and timestamp analysis for spatial consis-

tency. This section presents the results of the empirical assessment of the offline

components of the data quality assessment unit. The full structure of the offline

data quality assessment unit is shown in Figure 3.11. All of the time-series algo-

rithms and techniques used within the context of this case study are shown in

Figure 4.72.

Figure 4.72: The algorithms and techniques adopted and evaluated within the
context of the offline unit (module) of the data quality assessment.

4.3.1 Time-Series Clustering Models

As detailed in section 3.8, sensor nodes’ hardware failure detection model is

designed to detect long segmental outliers in sensor nodes’ time-series as indicator

of sensor nodes hardware failure. Long segmental outliers associated with sensor

nodes’ failures are categorised according to their faulty behaviour into continuous,

abrupt and incipient faults (Sailhan et al., 2010). Sensor nodes’ observations

collected from the real-world, large-scale sensor node network were utilised to test

224

the ability of time-series clustering techniques to detect continuous (halting), and

abrupt (emerging) long-outliers. Thus these types of long-outliers were detected

in some time-series of the large-scale datasets. The ideal dataset collected from the

local sensor node network was used to test the ability of the time-series clustering

techniques to detect incipient faults with consistent offset long-outliers, as follows:

4.3.1.1 Datasets

The effectiveness of the proposed time-series clustering methods introduced in

Section 3.8 is empirically evaluated using the time-series collected from both the

ideal and the real-world sensor node networks, as follows:

4.3.1.1.1 The Ideal Dataset

The local dataset, described in Section 4.1.2.1, consists of four time-series collected

from real-world, high-quality sensor nodes deployed at the University of East

London. One of the sensor nodes was deployed indoors and the other three

outdoors. This dataset was used to test the ability of the time-series clustering

techniques to detect incipient faults with consistent offset long-outlier. Thus the

indoor sensor node, in this case, represented a sensor with incipient fault. Since all

the local sensor nodes were deployed in a relatively small geographical area, their

time-series show significant similarity in the shape of their trend. However, they

show some differences in the value attribute, especially with the indoor sensor

which streamed a time-series with a consistent offset of 10-15 Co from the other

outdoors sensors, as shown in Figure 3.23. Furthermore, since this dataset is a

well-known, high-quality dataset that has no missing values or outliers, it was

used to test the time series clustering techniques before applying them to the

real-world dataset.

4.3.1.1.2 The Real-World Dataset

The large-scale dataset consists of more than 200 time-series collected from real-

225

world sensors distributed around London. This dataset will be utilised to test

the ability of time-series clustering techniques to detect continuous (halting), and

abrupt (emerging) long-outliers. Thus these types of long-outliers were detected

in some time-series of the large-scale datasets. The details of the real-world dataset

are illustrated in Section 4.1.2.2. The accuracy and performance of the time-series

clustering methods examined in this research were evaluated based on their ability

to identify time-series with long-segmental outliers and the time required to render

the clustering results. The sliding window data model described in Section 3.4.3

was applied to the real-world dataset using two different lengths of time-windows:

The first: is a seven days’ time window. The second is a two-days’ time window

to evaluate the accuracy and performance of time-series clustering techniques in

comparison with the seven days’ time window.

4.3.1.2 Dynamic Time Warping (DTW) and K-Shape

Dynamic Time Warping (DTW) and K-Shape time series clustering techniques

were implemented using the Python package tslearn.clustering provided by Scikit-

learn (Pedregosa et al., 2011). The main technical steps required to fit all available

time-series from all sensor nodes as a three-dimensional data array to the DTW

and K-Shape models are illustrated in the process flowchart diagrams shown in

Figure 4.73. The programming aspects of both tests are detailed in Appendix A,

Section A.4.7.

The outcome of applying the Dynamic Time Warping (DTW) and K-Shape time

series clustering techniques to the ideal dataset is shown in Figure 4.74.

Both DTW and K-Shape techniques were successfully able to identify the time-

series of the indoors sensor node (incipient faults pattern) from other time-series

of the outdoors sensor nodes. This result is significant because both DTW and

K-Shape are shape-based time series clustering techniques and all time-series used

226

Figure 4.73: The process diagram of the technical steps implemented to fit all
available time-series as a 3D array into the Dynamic Time Warping (DTW) and
K-Shape time-series clustering models.

227

Figure 4.74: DTW and K-Shape were able to successfully differentiate the indoors
time series (incipient faults pattern) from other outdoors time-series.

in this test have a significantly similar pattern, as shown in Figure 3.23. The red

graph line in Figure 4.74 is the centroid time-series of the cluster, while the blue

graph lines are the other time-series in the cluster.

The time-series used in the second test were collected from the large-scale, 274

sensor node network. The dataset of this test is much larger than the dataset of the

local sensor node network. Both DTW and K-Shape rendered nearly identical clus-

tering results when applied to the seven days’ time-series, as shown in Figure 4.75

and in Figure 4.76.

Both DTW and K-Shape were able to separate the time-series with long continuous

(halting) and and abrupt (emerging) segmental outliers from the other time-series

that exhibit typical variation in the trend and seasonality when applied to the

seven days’ time window. The y-axes in Figure 4.75 and Figure 4.76 do not reflect

the actual value attribute of observations since all time-series were normalised

before being fitted to the time-series clustering models.

Applying DTW and K-Shape to the two-day dataset showed that DTW is more

228

Figure 4.75: DTW successfully separated time-series with the long segmental
outliers from other (typical) time-series when applied to 7-days window real-
world dataset.

Figure 4.76: K-Shape successfully separated time-series with the long segmental
outliers from other (typical) time-series when applied to 7-days window real-world
dataset.

229

sensitive to the length of the time-window of the clustered time-series compared

to K-Shape. The ability of DTW to differentiate the faulty from other (typical)

time-series was more significantly affected comparing to K-Shape, as shown in

Figure 4.77 and Figure 4.78.

Figure 4.77: DTW is not able to differentiate time-series with long segmental
outliers from other typical time-series after it was applied to a shorter two days’
time-window of real-world time-series.

Figures 4.77 and 4.78 illustrate that K-Shape is more able to maintain its clustering

accuracy when applied to a relatively shorter time-series comparing to DTW. In

general, both shape-based time-series clustering techniques require relatively long

time-series to enhance their clustering results, especially the DTW. Both techniques

were able to differentiate time-series that showed the patterns of the continuous

and abrupt sensor node long-segmental outliers with 100% accurate detection

ratio when applied to seven days, or longer time-series, as shown in Figure 4.75

and Figure 4.76.

230

Figure 4.78: K-Shape is less able to differentiate time-series with long segmental
outliers from other typical time-series after it was applied to a shorter, two days’
time-window, of real-world time-series.

4.3.1.3 Characteristics-Based Time-Series Clustering

The characteristics (features)-based time-series clustering technique was inves-

tigated as an alternative to DTW and K-Shape. The aim was to fined a higher

performance time series clustering technique that can achieve accurate clustering

results even when applied to a relatively short time-series. Using the dataset col-

lected from the local sensor node network as a test benchmark, the features-based

time-series clustering technique is implemented using the Python tsfresh26 pack-

age provided by (Christ et al., 2018) which successfully separated the time-series

(incipient faults pattern) of the indoors sensor node from the rest of time-series, as

shown in Figure 4.79.

The colours of the graph lines in Figure 4.79 were set automatically to indicate

that different coloured time-series belong to different clusters. The features-based

26To download: https://tsfresh.readthedocs.io/en/latest/

231

Figure 4.79: The feature-based time-series clustering method was able to differen-
tiate the indoors, incipient faults time series from the other time-series of the ideal
dataset.

time-series clustering model relies on using arbitrary clustering algorithms such as

K-means to cluster the set of features extracted from the examined time-series. The

selected features may vary from application to another based on the characteristics

of the time-series chosen to be used as clustering reference. The Tsfresh package

supports more than 200 different features to be extracted from time-series. In

this case study, the "absolute sum of changes" was the main parameter used and

fitted to the k-means clustering model, to detect continuous (stuck at) faults of

sensors time-series that show no or minimal variation in their observations value

attributes.

The technical aspects required to fit all available time-series to the features-based

time-series clustering models are illustrated in the UML flowchart diagrams shown

in Figure 4.80. The programming aspects of this case-study are detailed in Ap-

pendix A, Section A.4.8.

232

Figure 4.80: The process diagram of the technical steps implemented to fit all
available time-series to the features-based time-series clustering model.

The outcome of applying the feature-based time-series clustering technique to the

time-series of the large-scale sensor node network is shown in Figure 4.81 and in

Figure 4.82. The colours of the graph lines were automatically set to indicate to

which cluster each time-series belong.

The feature-based time-series clustering technique successfully categorised time-

series with long segmental outliers even when it was applied to a relatively short

time-series (two days’ time window), as shown in Figure 4.82.

233

Figure 4.81: The feature-based time-series clustering technique successfully differ-
entiated time-series with long segmental outliers when applied to the real-world
(seven days’ time window). The Graph lines with the same colour belong to the
same cluster.

Figure 4.82: The feature-based time-series clustering technique successfully differ-
entiated time-series with long segmental outliers even when applied to relatively
short two days’ time-series window of the real-world dataset. The Graph lines
with the same colour belong to the same cluster.

234

Since all the used time-series clustering techniques were applied to the same

dataset, it was possible to evaluate each of these methods’ performance based on

the time spent to render the clustering results. DTW required a significant amount

of time to render the results at 360 Seconds compared to the feature-based and

K-shape time series clustering techniques at around 30 Seconds when applied to

seven day’s time-window. It is essential to highlight that these results may vary

according to the number and the type of the extracted features and the selected

clustering algorithm. Although, DTW demanded more time than K-Shape to

render the clustering results. It seems that the K-Shape Python package was able

to manage the processing resources of the CPU cores more efficiently comparing

to DTW, as shown in Figure 4.83.

Figure 4.83: The performance of the CPU four cores and the time required to
perform the same task by DTW comparing to K-Shape, each graph line represents
the performance of a single CPU core.

4.3.2 Timestamp Analysis Model (Spatial Attributes Consistency)

Spatial and temporal analysis mechanisms were investigated to identify mis-

matches in sensor nodes’ spatial contextual attributes. This approach can also

be utilised to identify networks blackouts or gateway modules failures. The as-

sumption behind this approach is that it is possible to identify sensor nodes which

are connected to the same gateway module based on the spatial and temporal

attributes associated with their observations. If a sensor node shows a significant

deviation in its geographical location comparing to other sensor nodes connected

235

to the same gateway than the coordinates of that sensor node are potentially

inaccurate. Moreover, if all sensor nodes connected to the same gateway stop

streaming data simultaneously, that indicates a gateway or network failure, as

detailed in Section 3.9. The spatial consistency timestamp analysis model was

developed using SQL as a built-in component inside the database. The timestamp

analysis model was applied to the ideal dataset collected from the high-quality

sensor nodes network of the University of East London, and to the large-scale

dataset collected from the real-world sensor node networks distributed around

London. Both datasets have the same data structure. A time-window from the

ideal dataset presenting observation from all available (four) sensor nodes is

shown in Figure 4.84.

Figure 4.84: A time-window from the ideal dataset presenting observation from
all available (four) sensor nodes.

The timestamp analysis model is based on the assumption that sensor nodes are

highly likely to be connected to the same gateway module if their observations

regularly exhibit correlated database timestamps, as shown in Figure 4.84 (the

Green frames) and they retain the same gateway duty-cycle or their GCD as shown

in Figure 4.84 (the Red frames).

Sensor nodes duty-cycles Sdc were calculated using the shortest interval of yst −

yst−1 for each sensor using an aggregation function, where Sdc=min(yst−yst−1),

236

as shown in Figure 4.84, (the Blue frame).

The gateways duty-cycles were estimated as the greatest common divider (GCD)

of all database intervals ydt − ydt−1 for each sensor node, where Gdc = x(ydt −

ydt−1) and Sdc> 0, as shown in Figure 4.84. Applying ydt−ydt−1 rendered multi-

values of Gdc for each sensor node reflecting any missing or delayed observations,

as shown in Figure 4.85.

Figure 4.85: Applying ydt − ydt−1 rendered multiple values of Gdc and its multi-
plications for each sensor node.

Therefore, Gdc intervals (the gateway duty-cycles) of each sensor node were aggre-

gated and ranked based on their frequency of occurrence. The gateway module

may skip some observations regularly due to misconfiguration problems which

create conflicts between the duty-cycles of the sensor nodes and the gateway

module and causes observations inconsistency in the time-series. This type of

observations inconsistency is a special case of consistency data quality issues

because it occurs regularly in the time series, unlike the common missing obser-

vations problem, which usually has no specific occurrence pattern. This type of

observation inconsistency cannot skip more than two observations sequentially.

For this reason, the Greatest Common Division (GSD) factor was applied only to

the top three ranked gateway duty-cycles of each sensor node to determine the

actual duty-cycle of the gateway and its multiplications, as shown in Figure 4.86.

This approach successfully determined that all the sensor nodes in the local net-

work are connected to the same gateway module since all exhibited the same

237

Figure 4.86: Gdc intervals were approximated, aggregated and aggregated again
according to their greatest common divisor to determine the duty-cycle of gateway
modules for each sensor nodes.

gateway duty-cycle and they all continuously shares the same observations times-

tamp at their occurrence in the database.

Applying the same approach to the real-wold dataset indicated that none of the

sensor nodes is connected to the same gateway module and indicated that all

sensor nodes have the same gateway duty-cycle of one minute.

This approach of timestamp analysis mainly relies on the accuracy of observations’

timestamps at their occurrence in the database. Therefore, the duty-cycle of the

data acquisition unit was reduced from 9 minutes to 0.5 minutes while the dupli-

cation detection function was activated in the receiving table. Thus, this method

ensured that gateways duty-cycles would be captured within |0.5| minute accuracy

confidence. This approach was applied to both the local (iMonnit) and the real-

world (Thingful) sensor node networks, as shown in the sample of observations

from the ideal network in Figure 4.85, the "RowCount" column for some records is

up to 8 duplication’s within a 14 minutes intervals (Gdc) between ydt − ydt−1 of

observations. In contrast, the (Gdc) intervals of the real-world sensor nodes were

echoing the duty-cycle of the data acquisition unit whenever it triggers the data

collection procedure, as shown in Figure 4.87.

238

Figure 4.87: Gdc, the gateway duty-cycles (if any) of the real-world sensor nodes
were replicating the duty-cycle of the data acquisition unit.

The gateway duty-cycle, (Gdc), of all sensor nodes were equal to the duty cycle

of the data collection duty-cycle, that indicates that these sensor nodes are con-

sistently responding to the data acquisition request without any gateway delay.

Therefore, it is highly likely that these sensor nodes are not connected to any

gateway module, and they are operating as standalone stations which stream

observations directly to the network.

This conclusion can be supported by the fact that gateway modules can only

connect sensor nodes via analogue wire or wireless means within a limited range,

up to 200 meters. Since all of the real-world temperature sensor nodes used in this

case-study were relatively distinct from each other, it is technically not possible to

connect these sensors to gateway modules. Alternatively, they function as individ-

ual stations that stream observations directly to the networks of data provides.

Taking into account the geographical distribution of all sensor nodes used in this

case study, as shown in Figure 4.1, it seems that some of these sensors are not

significantly distant from each other. To verify whether these sensor nodes are

distant from each other or not, it is required to measure the shortest distance

among all sensors and use that distance as a reference to compare it to the typical

range of the gateway modules.

239

Calculating the shortest distance among all sensor nodes must be implemented for

each sensor node network according to its owner and separately from the other

networks. Thus, each sensors node network is mostly an independent body of

infrastructure that is owned and managed by a different provider. Nearby sensor

nodes from different providers do not stream data through each other network

modules, at the analogue networking level at least. Therefore, the distance sepa-

rating sensor nodes must be calculated only among sensors which belong to the

same provider.

A list of sensor nodes providers of all sensors used in this case-study, for the

selected time-window, is shown in Table 4.5.

Table 4.5: A list of sensor nodes providers of all sensors used in this case-study.

Provider No. of sensor nodes Total No. of Observations
Met Office 84 104007
Open Weather Map 116 530875
Open AQ 6 12877

Using the Met office sensor node network as a case study, the geographical distri-

butions of the Met office sensor nodes is shown in Figure 4.88.

As shown in Figure 4.88, the distance among most of the Met office sensor nodes

are extremely high comparing to the typical range of gateway modules. To measure

the shortest distance between any two sensors in the network, the two sensor

nodes of Kensington were chosen since both sensors seem (visually) to be deployed

very close to each other, as shown in Figure 4.89.

240

Figure 4.88: The geographical distribution of the Met office sensor nodes, high-
lighting the two sensor nodes of Kensington.

Figure 4.89: The two sensor nodes of Kensington as a reference to measure the
shortest distance between any two sensors in the Met Office sensor node network
used in this case-study.

Using the "GPS-distance between coordinates calculator" provided by (GPS-

Coordinates, 2020) to determine the distance between the two sensors of Kensing-

ton based on their geographical coordinates (51.5015, -0.1962 and 51.502, -0.1998),

revealed that these sensors are separated by 255 meters (0.26 KM), as shown in

241

Figure 4.90.

Figure 4.90: Using the GPS-distance between coordinates calculator (GPS-
Coordinates, 2020), revealed that Kensington sensors are separated by 255 meters
(0.26 KM).

The result from Figure 4.90 indicates that the distance separating these real-world

sensor nodes is relatively high compared to the maximum range of the gateway

modules in general. This result confirms the outcome from the timestamp analysis

model, which indicated that the none of the real-world sensor nodes used in the

time-window used in this case study is connected to a common local gateway,

if any. Alternatively, it is highly likely that these sensor nodes are operating as

standalone stations which stream observations directly to the provider network.

The timestamp analysis method was able to link sensor nodes to their local gate-

ways successfully for detecting spatial mismatches in the contextual attributes

of sensor nodes observations, but within a limited range where using gateway-

modules is possible. Thus, if a sensor node shows a significant deviation in its

geographical location compared to the location of the other sensor nodes con-

nected to the same gateway module than the coordinates of that sensor node are

potentially inaccurate. However, this approach is not valid in large-scale CPS

applications which rely on standalone sensor nodes (stations) distributed over vast

geographic area where no gateway modules can be used to connect these sensors

242

using an analogue medium. Therefore, these sensors stream their observations to

the network directly.

4.4 Discussion and Summary

This chapter demonstrates the empirical findings and results from testing and

evaluating the different models and components of the data quality manage-

ment system, which were described in Chapter-3. This chapter fulfils the third

and fourth objectives of the research by constructing a proof of concept, data

quality management system and evaluating its validity and performance using

a real-world, large-scale sensor node network as a case study. The data quality

management system consists of three layers based on the functionality of each

component, as follows:

4.4.1 The Data Acquisition Unit (Layers 1 and 2)

The Data Acquisition Unit (DAU) was developed to collect data streams from

real-world sensor node networks in real-time. The collected data were used

to empirically validate the different components of the proposed data quality

management system. The real-world data were also used as a source to empirically

identify the most common data quality issues in large-scale CPSs. The conceptual

structure of the data acquisition unit is shown in Figure 3.8 Layer-1 and Layer-2,

and its main processes are shown in Figure 3.10.

Inspecting the real-world dataset collected from over 200 temperature sensors

revealed inaccuracy, inconsistency and mismatches in the temporal and spatial

contextual attributes of these sensor nodes’ observations which confirmed the

literature review’s outcomes and further validated the purpose of the proposed

data quality management system.

243

Since there were no practical means to ensure that the collected observations from

the real-world, large-scale network are noise free or complete, a benchmark high-

quality, sensor node network was deployed at the University of East London. Both

networks are real-world environmental monitoring sensor node networks which

collect ambient temperature observations. The topology of the local sensor node

network was explicitly chosen to match the main structure of the large-scale sensor

node network, as shown in Figure 4.4. The aim was to involve the same type of

modules and processes in the local network to experience the same type of latency

and possibly the same data quality issues that may occur in the large-scale network.

The local sensor node network streamed a long, noise-free and consistent sequence

of observations utilised for training the system models and testing (calibrating)

their accuracy before adopting them using real-world observations.

4.4.2 The Data Quality Assessment Unit

The data quality assessment unit is designed to detect data quality issues associ-

ated with errors in sensor nodes measurements, sensor nodes hardware failures,

and mismatches in the spatial and temporal contextual attributes of sensor nodes

observations to ensure these observations fitness for use in large-scale CPS appli-

cations. It utilises many data analysis techniques which categorised according to

their operational mode into:

4.4.2.1 Online-Mode

The online-mode describes the functionality mode of the data quality management

systems’ components’ responsible for detecting measurement errors in sensor

nodes observations and render the data quality assessment results in real-time. In

this context, the real-time notion indicates that the data quality assessment of a

set of observations will be completed before receiving the next set of observations

244

from the same sensor nodes for all sensors in the network.

This unit is designed to detect errors in sensor nodes measurements associated

with the primary data quality dimensions of accuracy, timeliness, completeness

and consistency in large-scale CPS applications, as follows:

1. Accuracy: the accuracy of sensor nodes observations was evaluated based on

their temporal correlation using predictive analysis models for short outliers

detection, and based on sensor nodes’ spatial correlation using anomaly

analysis for long outliers detection, as follows:

(a) Predictive Analysis Models: utilise autoregressive prediction tech-

niques to use previous observations to predict future ones and compare

the value of the actual (current) observations to the predicted ones to

evaluate their accuracy:

• Holt-Winters seasonal could not adopt with rapid changes in the

trend of sensor nodes’ time-series. Furthermore, Holt-Winters is

sensitive to short-term alterations in the value attribute of obser-

vations. Consequently, the accuracy of its predictions was iterat-

ing unpredictably. Thus Holt-Winters rendered unreliable predic-

tions. Therefore, ARMA’s models were investigated as alternative,

more advanced predictive analysis techniques, as detailed in Sec-

tion 4.2.1.2.

• ARMA’s and GPR predictive models rendered relatively accurate

and sustainable predictions, but only when applied using the one-

step-forward predictions approach (rolling forecasting). Any ex-

tended range of forward predictions was associated with higher

uncertainty margins. Thus, ARMA’s and GPR models’ predictions

were only suitable for short interval accuracy evaluation, as detailed

in Sections 4.2.1.3 and Section 4.2.1.4.

245

• LSTM predictive model rendered accurate predictions with ex-

tended forward range compering with ARMA’s and GPR models.

LSTM predictive model benefits from long time-series in its learn-

ing process; therefore, it showed a higher ability to process rapid

changes in time-series. LSTM utilises an advance mechanism to

deal with noise with minimal configuration requirements. Further-

more, in general, the LSTM model is more suitable for an automated

environment, especially considering that it requires fewer adjust-

ment measures and fewer optimisations processes than the ARMA’s

or GPR models since most of the processes are integrated in the

LSTM model, as detailed in Section 4.2.1.5.

Table 4.6 summarises the prediction analysis models’ evaluation

results based on their prediction accuracy, performance, and feasi-

bility of automation applied to the ideal and real-world datasets.

Table 4.6: The evaluation results of the prediction analysis models applied to the
ideal and real-world datasets.

Predictive
Analysis
Models

Dataset Accuracy Performance (Sec) Feasibility
of

Automation
Average (RMSE)/

Coefficient of Determination
Rolling

Forecasting
Rendering

interval
Optimisation

interval

H-W Ideal 4.8699 / - 0.1960 - HighReal 1.5930 / - 0.2432

ARMA Ideal 0.1823 / -

X

0.8496 3.5246

Medium

Real 0.2497 / - 1.3526 3.5695

ARIMA Ideal 0.1772 / - 0.8681 7.0104
Real 0.2528 / - 1.3043 5.8651

SARIMA Ideal 0.1364 / - 0.2147 117.6147
Real 0.3229 / - 0.2998 114.1660

GPR Ideal 0.245 / 0.970
X

5.9594 - LowReal 0.475 / 0.946 5.02

LSTM Ideal 0.183 / 0.969 20.289 - HighReal 0.408 / 0.889 9.9459

The limitation of the temporal correlation-based predictive analy-

sis models is that they only detect sensors’ measurement accuracy

errors that occur for a short interval (point outliers). Thus, long-

outliers change the time-series pattern to reflect the wrong measure-

246

ment as the standard time-series pattern, reducing the predictive

analysis modes’ ability to detect data accuracy issues. Therefore,

spatial correlation-based anomaly analysis was investigated as a

mechanism to detect accuracy errors that occur for a relatively long

time (long-outliers).

(b) Anomaly Analysis Models are based on comparing observations’ value

attributes of nearby, spatially correlated, sensor nodes at a particular

point in time. Applying anomaly analysis directly to the real-world

temperature sensor node network was not possible because of the effect

of the phenomena of Urban Heat Islands’ in London. Urban heat islands

cause sudden changes in observations’ value attribute among temper-

ature sensor nodes and violates their spatial continuity, as detailed in

Section 3.6. Therefore, space partitioning techniques were utilised to

divide the region of interest into smaller and more representative local

areas using clustering algorithms, as follows:

• K-means was applied to partition the real-world network’s sensor

nodes into smaller and more representative distance-based groups

of sensors (clusters) according to their spatial attributes. The Sil-

houette analysis method, which evaluates the clustering model’s

accuracy, was used to estimate the optimum number of clusters

k for K-means. Applying the K-means model for multiple times

to the same dataset revealed that K-means re-allocate the position

of the centroid points’ and created a fresh set of clusters with dif-

ferent distribution after each test. The major drawback of using

K-means as spatial data partitioning technique for outlier detection

is that K-means partitions the region of interest without considering

the minimum number of sensor nodes or the maximum relative

distance allowed between sensor nodes in the same cluster. Thus,

247

K-means may create a cluster of one sensor node or may include

relatively distant sensor nodes in the same cluster which in both

cases violate the spatial continuity constraints and may compro-

mise the accuracy and validity of the outlier detection results, as

detailed in Section 4.2.2.2.

• DBSCAN was investigated as an alternative to K-means. It identi-

fies clusters based on the density of sensor nodes spatial distribution

within a specified radius. The Silhouette analysis method was used

to determine the optimum value of the DBSCAN radius Eps based

on the best clustering performance. Unlike K-means, DBSCAN clus-

tering results were consistent, rendering fixed clusters after being

applied multiple times using the same dataset. The DBSCAN clus-

tering algorithm results showed that temperature sensor nodes are

not evenly distributed over the area of interest (London), as shown

in Figure 4.61. DBSCAN categorised the region of interest into

“high-density” areas and “low-density” areas according to the avail-

able number of sensor node within the radius Eps. DBSCAN model

showed that sensor nodes located in the low-density area might not

fit in any cluster and considered most of the distant sensor nodes as

noise and eliminated them. In contrast, it identified geographical

areas with high-density of sensor nodes, which are highly likely to

be spatially correlated, and the accuracy of their observations can

be verified using anomaly detection techniques. Applying anomaly

analysis via direct comparison of sensor nodes’ observations values

within DBSCAN clusters with a deviation threshold as a reference,

successfully identified anomalies, as detailed in Section 4.2.2.3.

2. Timeliness, Completeness and Temporal - Consistency were evaluated

using timestamp analysis which was nearly 100% accurate detecting and

248

identifying timeliness, completeness and consistency data quality issues

in sensor nodes’ data stream of both the ideal and the real-world datasets.

This approach was implemented using a rule engine that determines the

duty-cycle and the threshold interval for each sensor node to evaluate their

temporal consistency. The rule engine was developed as an embedded

component in the data quality management systems’ database to ensure effi-

ciency and minimal latency. The rule engine rendered its assessment results

at the observation’s arrival to the database instantly. The timestamp analysis

was implemented using a rule engine to provide a level of automation to

the process. Thus rule engines can adapt with data stream changes, and it

can be configured by adding or revoking policies according to applications

requirements, as detailed in Section 4.2.3.

4.4.2.2 Offline-Mode

The offline-mode describes the data quality management systems’ components

designed to perform much less routine data quality checks than the online compo-

nents. These components would be triggered once every six hours or once a day.

The offline components analysis all sensor nodes’ time-series simultaneously using

time-series clustering and timestamp analysis techniques. Time-series clustering

was investigated as long-segmental outliers detection technique to identify sensor

nodes hardware failures. Furthermore, timestamp analysis was investigated to

detect mismatches in sensor nodes’ spatial contextual attributes, as follows:

1. Sensor Nodes Failure Detection based on detecting long outliers in sen-

sor nodes’ data stream, where the occurrence of long-outliers in sensor

nodes time-series indicates sensors malfunction (under standard conditions).

Furthermore, detecting simultaneous long-segmental outliers in the data

stream of multiple (nearby) sensor nodes indicates technical issues that have

249

a mass impact on the sensor node network, such as a power failure or a

network breakdown. Time-series clustering techniques were applied as

long-segmental outliers detection mechanisms, as follows:

(a) Dynamic Time Warping (DTW) and K-Shape were applied to detect

long segmental outliers in sensor nodes’ data stream as an indication

of sensor nodes hardware failure. Both techniques successfully identi-

fied sensor nodes’ time-series with typical variations in the trend and

seasonality from other time-series that showed continuous (stuck at),

emerging and incipient faults behaviour up to 100% detection accuracy

when applied to seven days time-series window. Applying DTW and

K-Shape to the two-day interval dataset showed that DTW is more

sensitive to the length of the time-window of the clustered time-series

compared to K-Shape. The ability of DTW to differentiate the faulty

from other (typical) time-series was more significantly affected com-

pared to K-Shape, as detailed in Section 4.3.1.2. Thus, K-Shape was

more able to maintain its clustering accuracy when applied to relatively

shorter time-series than DTW. Both of the shape-based time-series clus-

tering techniques required relatively long time-series to enhance the

accuracy of their clustering results, especially the DTW. Therefore, the

characteristics-based time-series clustering was investigated to find a

more efficient way to detect long-segmental outliers even when applied

to shorter time-series windows.

(b) Characteristics-Based Time-Series Clustering (feature-based) relies on

using arbitrary clustering algorithms such as K-means to cluster a set

of features extracted from the examined sensor nodes data stream. The

selected set of features may vary from application to another based on

the time-series’ characteristics chosen to be used as clustering reference.

The feature-based time-series clustering technique identified the real-

250

world time-series with long segmental outliers successfully, even when

it was applied to a relatively short interval of two days’ time window.

Since all the used time-series clustering techniques were applied to

the same real-world dataset, it was possible to evaluate each of these

methods’ performance based on the time spent to render the clustering

results. The feature-based time-series clustering technique rendered

the clustering results in a short time interval, then K-shape and DTW.

It is essential to highlight that these results may vary according to the

examined time-series, the number and the type of the extracted features

and the selected clustering algorithm, as detailed in Section 4.3.1.3.

2. Timestamp Analysis Model (Spatial Attributes Consistency): spatial and

temporal analysis mechanisms were investigated to identify mismatches in

sensor nodes’ spatial contextual attributes. This approach can also be utilised

to identify networks blackouts or gateway modules failures. The assumption

behind this approach is that it is possible to identify sensor nodes which are

connected to the same gateway module based on the spatial and temporal

attributes associated with their observations. If a sensor node shows a

significant deviation in its geographical location comparing to other sensor

nodes connected to the same gateway than the coordinates of that sensor

node are potentially inaccurate. Moreover, if all sensor nodes connected

to the same gateway stop streaming data simultaneously, that indicates

a gateway or network failure, as detailed in Section 3.9. The timestamp

analysis model is based on the assumption that sensor nodes are highly likely

to be connected to the same gateway module if their observations regularly

exhibit correlated database timestamps and retain a similar gateway duty-

cycle or any of its GCD. This approach successfully determined that all the

local network’s sensor nodes are connected to the same gateway module.

Applying the same approach to the real-world dataset indicated that none

251

of the real-world sensor nodes utilised in this case study is connected to a

common gateway module device. This conclusion is supported by the fact

that gateway modules can only connect sensor nodes via analogue wire or

wireless means within a limited range. Since all the real-world temperature

sensor nodes in this case-study were relatively distinct from each other, it is

technically infeasible to connect these sensors to common gateway modules.

Alternatively, they function as standalone stations that stream observations

directly to the networks of the data provides, as detailed in Section 4.3.2.

The timestamp analysis method was able to link sensor nodes to their local

gateways successfully for detecting spatial mismatches in the contextual

attributes of sensor nodes observations, but within a limited range where

using gateway modules is possible. Therefore, this approach is not valid in

large-scale CPS applications which rely on standalone sensor nodes (stations)

distributed over vast geographic area where no gateway modules can be

used to connect these sensors using an analogue medium.

The next chapter revisits the research questions and illustrates the extent to which

these questions were satisfied. It provides more insights into the key components

of the data quality management systems.

252

Chapter 5

Conclusions and Future Work

“..erroneous assumption is that quality is an

intangible and therefore not measurable. In fact,

quality is precisely measurable by the oldest and

most respected of measurements—cold hard cash."

— (Crosby, 1979, p. 15)

This chapter revisits the research questions and illustrates the extent to which

these questions were satisfied. It provides more insights into the key components

of the data quality management systems. Finally, it outlines the conclusions of the

research and future work.

253

5.1 Revisiting the Research Questions and Objectives

In this section, the research questions and objectives from Chapter-1 are discussed

to explain the extent to which these questions were satisfied, as follows:

5.1.1 Review Question-1:

Is it feasible to develop a proof-of-concept data quality management system for large-scale

CPSs that can; (1) detects sensor nodes measurements errors associated with the four main

data quality dimensions of accuracy, timeliness, completeness, and consistency, (2) detects

hardware failures in sensor nodes and sensors’ communication networks and (3) ensures

the quality of both spatial and temporal contextual attributes of sensor nodes observations?

To address this question the following objectives were set:

1. Objective 1: To investigate data quality challenges in large-scale cyber-physical

systems based on the literature and based on empirical data analysis of obser-

vations collected from a real-world, large-scale sensor node network.

This objective is fulfilled by conducting a systematic literature review (SLR) to

specify unaddressed data quality management challenges in large-scale CPSs

based on the literature, as detailed in Chapter-2. The result of SLR revealed data

quality challenges concerning sensor nodes’ measurement errors detection, sensor

nodes’ failures detection and how to ensure the quality of observations’ spatial and

temporal contextual attributes in large-scale CPSs. Furthermore, inspecting the

real-world dataset collected from the large-scale temperature sensor node network

distributed around London revealed inaccuracy, inconsistency and mismatches in

the temporal and spatial contextual attributes of these sensor nodes’ observations

which confirmed the SLR’s outcomes and provided further evidence to support

the research questions, as detailed in Section 4.1.2.2.

254

2. Objective 2: To investigate data mining techniques that may support the

research aim, such as predictive and anomaly analysis techniques, time-series

and timestamp analysis techniques.

This objective is fulfilled by viewing the literature systematically, as in chapter-

2, and narratively as in chapter-3 to specify what data mining techniques were

adopted to address data quality management challenges in large-scale CPSs. The

result revealed that the most popular data mining techniques used for addressing

data quality management challenges in large-scale CPSs are mainly based on

anomaly analysis and predictive analysis techniques. These techniques were ap-

plied to address various data quality issues associated with the main data quality

dimensions of accuracy, timeliness, completeness ad consistency, as shown in Fig-

ure 2.8. However, it further revealed knowledge gaps that this research is bridging,

e.g., all of the proposed prediction analysis models were based on an assumption

that data accuracy issues occur for a short interval of time (point outliers). The

reviewed primary studies did not provide a solution to address data accuracy

issues associated with long outliers. Furthermore, the literature revealed that

studies that investigated anomaly analysis as a solution to evaluate the accuracy

of sensor nodes measurements by comparing their observations with different

sensor nodes or to a pre-calculated threshold value were based on the assumption

that these sensor nodes are spatially correlated. However, this assumption is not

necessarily always valid in large-scale CPSs. The spatial continuity among sensor

nodes in large-scale CPS applications might be compromised because of the vast

distance separating these devices or other factors that disrupt the spatial continuity

constraints, as detailed in Section 2.2.5.1 and Section 3.6. Therefore, predictive

and anomaly analysis techniques were further investigated in this research as

possible data accuracy assessment mechanisms for detecting short (point) and long

outliers besides other data mining techniques such as time-series clustering and

timestamp analysis to cover other aspects of data quality assessment performed

255

by the proposed data quality management system within the context of large-scale

CPSs.

3. Objective 3: To construct, test and evaluate all the required models, com-

ponents and tools of the proof-of-concept data quality management system to

address the research aim. The data quality management system is expected

to detect errors in sensors measurements, sensor nodes hardware failures, and

mismatches in sensor nodes’ spatial and temporal contextual attributes.

This objective is fulfilled by constructing, testing and evaluating the different com-

ponents and models of the proposed proof-of-concept data quality management

system. Each of the components or models serves a distinct purpose to ensure

data fitness for use, as follows:

1. Accuracy: the accuracy of sensor nodes observations was evaluated based

on their temporal correlation using predictive analysis models for short-

interval outliers detection, and based on sensor nodes’ spatial correlation

using anomaly analysis for long outliers detection, as follows:

(a) Predictive Analysis Models: utilises autoregressive prediction tech-

niques to use previous observations to predict future ones and compare

the value of the actual (current) observations to the predicted ones to

evaluate their accuracy. The empirical tests showed that predictive anal-

ysis models that benefit from long time-series in its learning process,

such as LSTM, showed higher ability to adopt with rapid changes in

time-series, achieving a higher prediction accuracy. The key limitation

of the predictive analysis approach as data accuracy assessment models

is that these models can only detect sensors’ measurement accuracy

errors that occur for a short interval (point outliers). Thus, long-outliers

change the time-series’ pattern to reflect the wrong measurement as the

standard time-series pattern, reducing the predictive analysis modes’

256

ability to detect data accuracy issues. Therefore, anomaly analysis was

investigated as a mechanism to detect outliers that occur for a relatively

long time (long-outliers).

(b) Anomaly Analysis Models: are based on comparing observations’

value attributes of nearby, spatially correlated, sensor nodes at a partic-

ular point in time. Applying anomaly analysis directly to the real-world

temperature sensor node network was not possible due to the effect of

the phenomena of Urban Heat Islands’ in London. Urban heat islands

cause sudden changes in observations’ value attribute among temper-

ature sensor nodes and violates their spatial continuity, as detailed in

Section 3.6. Therefore, space partitioning techniques were utilised to

divide the region of interest into smaller and more representative lo-

cal areas using clustering algorithms. The empirical tests showed that

density-based spatial partitioning techniques, such as DBSCAN, are the

most suitable for identifying geographical areas where sensor nodes

are highly likely to be spatially correlated, and the accuracy of their

observations can be verified using anomaly detection techniques.

2. Timeliness, Completeness and Temporal - Mismatches: were detected us-

ing timestamp analysis techniques which were nearly 100% accurate detect-

ing timeliness, completeness and consistency data quality issues in sensor

nodes’ data stream of both the ideal and the real-world datasets. This ap-

proach was implemented using a rule engine that determines the duty-cycle

and the threshold interval for each sensor node to evaluate their temporal

consistency. The rule engine was developed as an embedded component

in the data quality management systems’ database to ensure efficiency and

minimal latency. The timestamp analysis was implemented using a rule

engine to provide a level of automation to the process. Thus rule engines

can adapt with data stream changes, and it can be configured by adding

257

or revoking policies according to applications requirements, as detailed in

Section 4.2.3.

3. Sensor Nodes Failure Detection: based on detecting long outliers in sensor

nodes’ data stream, where the occurrence of long-outliers in sensor nodes

time-series indicates sensors malfunction (under standard conditions). Fur-

thermore, detecting simultaneous long-segmental outliers in the data stream

of multiple sensor nodes indicates technical issues that have a mass impact

on the sensor node network, such as a power failure or a network breakdown.

Time-series clustering (TSC) techniques were applied as long-segmental out-

liers detection mechanisms. The empirical tests showed that time-series

clustering technique can be utilised successfully for ensuring observations

fitness for use by evaluating the status of their streaming sensor nodes. Fur-

thermore, the empirical tests showed that shape based time-series clustering

techniques, such as DTW and K-shape require relatively long time-series to

enhance the accuracy of their clustering results. In contrast, feature-based

time-series clustering, such as the characteristics-based time-series cluster-

ing technique, was able to identify time-series with long segmental outliers

successfully even when it was applied to a relatively short interval of time-

series window and was able to render these results in a short time interval

compering to DTW and K-shape.

4. Timestamp Analysis Model (Spatial Attributes Consistency): spatial and

temporal analysis mechanisms were investigated to identify mismatches

in sensor nodes’ spatial contextual attributes. The assumption behind this

approach is that it is possible to identify sensor nodes which are connected

to the same gateway module based on the spatial and temporal attributes

associated with their observations. If a sensor node shows a significant devi-

ation in its geographical location comparing to other sensor nodes connected

258

to the same gateway than the coordinates of that sensor node are potentially

inaccurate. Moreover, if all sensor nodes connected to the same gateway stop

streaming data simultaneously, that indicates a gateway or network failure,

as detailed in Section 3.9. The timestamp analysis model is based on the

assumption that sensor nodes are highly likely to be connected to the same

gateway module if their observations regularly exhibit correlated database

timestamps and retain a similar gateway duty-cycle or any of its GCD. This

approach successfully determined that all the local network’s sensor nodes

are connected to the same gateway module. Applying the same approach

to the real-world dataset indicated that none of the real-world sensor nodes

utilised in this case study is connected to a common gateway module device.

This conclusion is supported by the fact that gateway modules can only

connect sensor nodes via analogue wire or wireless means within a limited

range. Since all the real-world temperature sensor nodes in this case-study

were relatively distinct from each other, it is technically infeasible to connect

these sensors to common gateway modules. Alternatively, they function

as standalone stations that stream observations directly to the networks

of the data provides, as detailed in Section 4.3.2. The timestamp analysis

method was able to link sensor nodes to their local gateways successfully

for detecting spatial mismatches in the contextual attributes of sensor nodes

observations, but within a limited range where using gateway modules is

possible. Therefore, this approach is not valid in large-scale CPS applica-

tions which rely on standalone sensor nodes (stations) distributed over vast

geographic area where no gateway modules can be used to connect these

sensors using an analogue medium.

259

5.1.2 Review Question-2:

Is it possible to empirically evaluate the effectiveness of the proposed data quality manage-

ment system using a real-world, large-scale sensor node network as a case-study?

To address this question the following objective was set:

Objective 4: To evaluate the effectiveness and performance of the proposed

data quality management system utilising a real-world large-scale sensor node

network as a case-study.

This objective is fulfilled by utilising a large-scale environmental sensor node

network consists of over 200 temperature sensor nodes distributed around London

and managed by different providers as a real-world case-study. Observations from

the large-scale environmental sensor node network were collected in real-time

forming continuous time-series for each sensor node in the network as detailed in

section-4.1.1.1. The collected time-series were used for testing and evaluating the

accuracy and performance of all the data quality assessment models adopted in the

proposed data quality management system. For example, observations collected

from the real-world, large-scale sensor node network were used to test the ability

of the time-series clustering techniques to detect continuous (halting), and abrupt

(emerging) long-outliers. Thus these types of long-outliers were detected in some

time-series of the large-scale datasets, as detailed in section-4.3.1.

5.1.3 Review Question-3:

How to address bias concerns related to the evaluation process of the data quality manage-

ment system, which emerges due to the presence of data quality issues in the testing or

evaluating real-world dataset?

To address this question the following objective was set:

260

Objective 5: To validate the functionality and performance of the proposed

data quality management system using a real-world, high-quality benchmark

sensor node network. The benchmark sensor network must comprise high-

quality sensors that stream consistent and error-free observations forming long

time series of the same parameters collected from the large-scale sensor net-

work.

To fulfil this objective a high-quality temperature sensor node network was de-

ployed at the University of East London / Dockland campus. The local network

purpose is to provide benchmark observations to validate the quality of the data

collected from the large-scale network. It consists of four high-quality wireless

temperature sensors, three of which were deployed outdoors, and the fourth was

deployed indoors. The distance between the outdoor sensor nodes is relatively

small (70 meters). One of the sensor nodes was installed indoors and the other

three outdoor. The observations collected from the local sensor node network were

utilised to empirically test and verify all of the developed data quality assessment

models of the data quality management system. For example, the local network

dataset was used to test the ability of the time-series clustering techniques to detect

incipient faults with consistent offset long-outlier. Thus the indoor sensor node, in

this case, represented a sensor with incipient fault. The indoor sensor streamed

a time-series that is identical in its pattern with other three-time-series from the

outdoor sensors but with a consistent offset of 10-15 Co, as shown in Figure 3.23.

The topology of the local sensor node network was explicitly chosen to match the

main structure of the large-scale sensor node network, as shown in Figure 4.4. The

aim was to involve the same type of modules and processes in the local network

to experience the same type of latency and possibly the same data quality issues

that may occur in the large-scale network.

261

5.2 Contribution to Knowledge

The main contributions of this research are:

1. This research delivered a novel, proof of concept, data quality management

system which is capable of evaluating sensor nodes’ measurements based on

the four dominant data quality dimensions, it detects sensor nodes’ hardware

failures and ensures the quality of observations’ spatial and temporal con-

textual attributes in large-scale CPSs. Such a system can be utilised as a data

quality assessment mechanism with compatible industrial or smart-cities

scale CPS or IoT applications.

2. This research is an empirical study that utilises a real-world large-scale en-

vironment monitoring sensor node network consists of over 200 ambient

temperature sensors distributed around London to support its outcomes and

conclusions and further validate the robustness of the proposed data quality

management system. Furthermore, it brings together advance predictive

analysis, spatial partitioning, time-series clustering and timestamp analy-

sis techniques which were successfully utilised to support the aim of this

research. Therefore, this research can be used as an academic reference for

future research conducted to address emerging data quality management

challenges in the context of large-scale CPS applications.

3. This research is one of the very few studies that deliver an empirical data

quality assessment solution based on advanced data science and machine-

learning models while systematically addressing the bias concerns related

to the evaluation process of the used models, which emerges because of the

presence of data quality issues in the testing or evaluating real-world dataset.

Thus in this research, a high-quality sensor node network was deployed

at the University of East London and utilised to produce long, consistent,

262

high-quality data streams of benchmark observations to train and adjust the

different data quality assessment models and to evaluate the performance

and accuracy of these models before using them in real-world scenarios.

4. This research is an initiative empirical study that practically addresses data

quality challenges associated with the contextual spatial and temporal at-

tributes of sensor nodes observations in large-scale CPSs. It is one of the very

few studies that provides and empirically validates a systematic approach

for detecting inconsistency in temporal attributes and mismatches in the

spatial attributes of sensor nodes’ observations in the context of large-scale

CPSs.

5. This research provides more insights and empirically exploits many of the

large-scale CPSs features, e.g. this research has shown empirically that

sensor nodes which are located near to each other (high-density areas) are

highly likely to be spatially correlated. In contrast, distant sensor nodes (low-

density area) might not fit in any spatial cluster or may form a cluster with

other distant sensor nodes which violate their spatial continuity and thus

verifying the accuracy of their observations using spatial correlation-based

anomaly detection techniques may not render a reliable assessment result.

5.3 Conclusions

Data quality management is a set of procedures and activities that aim to fulfil data

quality requirements by continuously monitoring, measuring, and ensuring data

fitness for use. This research aims to develop a comprehensive proof-of-concept

data quality management system for large-scale CPSs and empirically evaluate

its validity. The data quality management system is designed to evaluate sensor

nodes observations fitness for use via (1) detecting sensor nodes measurements

263

errors associated with accuracy, timeliness completeness and consistency, (2) de-

tecting sensor nodes hardware failures and (3) detecting mismatches in the spatial

conceptual attributes of sensor nodes’ observations in large-scale CPSs.

Sensor nodes measurement errors detection:

For accuracy assessment, the empirical tests showed that predictive analysis

based data quality assessment models are effective in detecting point (short)

outliers. Predictive models that benefit from long time-series in their learning

process, such as LSTM, are more able to render relatively accurate predictions

with extended forward range comparing with other traditional statistical

predictive models, such as the ARMA. The empirical tests also showed that

anomaly analysis combined with spatial partitioning can be successfully

utilised for detecting accuracy issues associated with both short and long-

outlier in large-scale CPSs but only when applied to geographical areas with

high-density of sensor nodes clusters.

Timestamp analysis techniques combined with a rule engine were utilised

successfully and empirically proven in this research as an effective mean

for detecting sensor nodes measurement errors associated with timeliness,

completeness and consistency with a nearly 100% accuracy based on deter-

mining the duty-cycle and the threshold interval for each sensor node to

evaluate its observations temporal consistency.

Sensor nodes hardware failure detection:

Time-series clustering is empirically proven in this research as an effec-

tive long-segmental outliers detection mechanism and utilised for detect-

ing sensor nodes hardware failures successfully using shape-based and

characteristics-based time series clustering techniques. Time-series cluster-

ing techniques successfully identified sensor nodes’ time-series with typical

variations in the trend and seasonality from other time-series that showed

264

continuous (stuck at) and incipient faults behaviour (long- segmental out-

liers) with up to 100% detection accuracy. The empirical tests also showed

that the characteristics-based time-series clustering technique could main-

tain its detection accuracy even when it applied to a relatively short interval

of time-series window comparing with the other shape-based (DTW and

K-shape) time-series clustering techniques.

Observations spatial conceptual attributes mismatches detection:

Timestamp analysis techniques were utilised to identify mismatches in sen-

sor nodes’ spatial contextual attributes successfully, but only when applied

to sensor nodes that rely on gateway module devices to stream their obser-

vations. The empirical tests in this research showed that timestamp analysis

for detecting spatial mismatches in the contextual attributes of sensor nodes

observations is not a valid approach in large-scale CPS applications that rely

on standalone sensor nodes (stations) distributed over vast geographic area

where no gateway modules can connect these sensors using an analogue

medium.

The functionality and performance of the data quality management models were

evaluated using observations collected from a real-world large-scale network

comprises over 200 temperature sensor nodes distributed around London as a

case-study and further validated using observations collected from a high-quality

benchmark sensor node network to eliminate any bias concerns related to the

evaluation process of the data quality management system, which emerges because

of the presence of data quality issues in the testing or evaluating real-world dataset.

265

5.4 Future Work

As a short term plan, it is possible to investigate time-series injection techniques

to enhance the accuracy of the time-series clustering techniques. The hypothesis

behind the time-series injection approach is that: it is possible to inject time series

with different combinations of outliers into the time-series stream of the system to

enable the time-series clustering models to be more sensitive to identify similar

outliers on their occurrence.

As a long term plan, this work can be extended to investigate data quality manage-

ment of CPSs with higher frequency. Such system needs more advanced technical

and parallel computing solutions to process sensor nodes observations and render

the required data quality assessment results in real-time.

266

References

Abid, A., Kachouri, A., Ben Fradj Guiloufi, A., Mahfoudhi, A., Nasri, N., & Abid, M.
(2015). Centralized knn anomaly detector for wsn. In 2015 IEEE 12th International
Multi-Conference on Systems, Signals Devices (SSD15), (pp. 1–4).

Abid, A., Kachouri, A., & Mahfoudhi, A. (2017). Outlier detection for wireless
sensor networks using density-based clustering approach. IET Wireless Sensor
Systems, 7(4), 83–90.

Addabbo, T., Fort, A., Mugnaini, M., Panzardi, E., Pozzebon, A., & Vignoli, V.
(2019). A city-scale iot architecture for monumental structures monitoring.
Measurement, 131, 349–357.

Adhikari, M., Kar, S., Banerjee, S., & Biswas, U. (2015). Big Data Analysis for
Cyber-Physical Systems. undefined.
URL https://www.semanticscholar.org/paper/Big-Data-
Analysis-for-Cyber-Physical-Systems-Adhikari-Kar/
2fbe376b34c56ef8a3aa12797fd111c1aa58ae4b

Aggarwal, C. C. (2013). Managing and Mining Sensor Data | Charu C. Aggarwal |
Springer. Springer US.

Aggarwal, C. C. (2015). Data mining: the textbook. Springer.

Aggarwal, C. C. (2016). An Introduction to Outlier Analysis. In Outlier Analysis,
(pp. 1–34). Cham, Switzerland: Springer.

Aggarwal, C. C. (2017). Time series and multidimensional streaming outlier
detection. In Outlier Analysis, (pp. 273–310). Springer.

Aggarwal, C. C., & Reddy, C. K. (2014). Data clustering. Algorithms and applications.
Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra.

Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2009). Empirical analysis for
investigating the effect of object-oriented metrics on fault proneness: a replicated
case study. Softw. Process, 14(1), 39–62.

Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series
clustering – a decade review. Information Systems, 53, 16–38.
URL https://www.sciencedirect.com/science/article/pii/
S0306437915000733

267

https://www.semanticscholar.org/paper/Big-Data-Analysis-for-Cyber-Physical-Systems-Adhikari-Kar/2fbe376b34c56ef8a3aa12797fd111c1aa58ae4b
https://www.semanticscholar.org/paper/Big-Data-Analysis-for-Cyber-Physical-Systems-Adhikari-Kar/2fbe376b34c56ef8a3aa12797fd111c1aa58ae4b
https://www.semanticscholar.org/paper/Big-Data-Analysis-for-Cyber-Physical-Systems-Adhikari-Kar/2fbe376b34c56ef8a3aa12797fd111c1aa58ae4b
https://www.sciencedirect.com/science/article/pii/S0306437915000733
https://www.sciencedirect.com/science/article/pii/S0306437915000733

Ahmed, A., Pasha, M. A., Ahmad, Z., Masud, S., & Sikora, A. (2017). Energy
efficient sensor network routing (eesnr) protocol for large distributed envi-
ronmental monitoring applications. In 2017 9th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), vol. 2, (pp. 740–745).

Al-Milli, N., & Almobaideen, W. (2019). Hybrid neural network to impute missing
data for iot applications. In 2019 IEEE Jordan International Joint Conference on
Electrical Engineering and Information Technology (JEEIT), (pp. 121–125).

Alhmiedat, T. (2015). Wireless Sensor Networks toward Cyber-Physical Systems.
undefined.
URL https://www.semanticscholar.org/paper/Wireless-
Sensor-Networks-toward-Cyber-Physical-Alhmiedat/
554e16aae0da4f0cf1db403b75d7405d5f77a816

Amjad, M., Sharif, M., Afzal, M. K., & Kim, S. W. (2016). Tinyos-new trends,
comparative views, and supported sensing applications: A review. IEEE Sensors
Journal, 16(9), 2865–2889.

Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J.
(2016). Statistics for Business & Economics. Boston, MA, USA: Cengage Learning.

Andrés, G. R. C. (2016). Cleanwifi: The wireless network for air quality monitoring,
community internet access and environmental education in smart cities. In 2016
ITU Kaleidoscope: ICTs for a Sustainable World (ITU WT), (pp. 1–6).

Antoo, A., & Mohammed, A. R. (2014). Eem-leach: Energy efficient multi-hop leach
routing protocol for clustered wsns. In 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT), (pp.
812–818).

Appice, A., Ciampi, A., Fumarola, F., & Malerba, D. (2014). Sensor networks and
data streams: Basics. In Data Mining Techniques in Sensor Networks, (pp. 1–8).
Springer.

Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding.
Tech. rep., Stanford.

Ashibani, Y., & Mahmoud, Q. H. (2017). Cyber physical systems security: Analysis,
challenges and solutions. Computers and Security, 68, 81–97.
URL https://www.sciencedirect.com/science/article/pii/
S0167404817300809

Auger, A., Exposito, E., & Lochin, E. (2016). iqas: An integration platform for qoi
assessment as a service for smart cities. In 2016 IEEE 3rd World Forum on Internet
of Things (WF-IoT), (pp. 88–93).

Auger, A., Exposito, E., & Lochin, E. (2017). Sensor observation streams within
cloud-based iot platforms: Challenges and directions. In 2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), (pp. 177–184).

268

https://www.semanticscholar.org/paper/Wireless-Sensor-Networks-toward-Cyber-Physical-Alhmiedat/554e16aae0da4f0cf1db403b75d7405d5f77a816
https://www.semanticscholar.org/paper/Wireless-Sensor-Networks-toward-Cyber-Physical-Alhmiedat/554e16aae0da4f0cf1db403b75d7405d5f77a816
https://www.semanticscholar.org/paper/Wireless-Sensor-Networks-toward-Cyber-Physical-Alhmiedat/554e16aae0da4f0cf1db403b75d7405d5f77a816
https://www.sciencedirect.com/science/article/pii/S0167404817300809
https://www.sciencedirect.com/science/article/pii/S0167404817300809

Auger, A., Exposito, E., & Lochin, E. (2017). Survey on Quality of Observation
within Sensor Web systems. IET Wireless Sens. Syst., 7(6), 163–177.

Avila, J., & Hauck, T. (2017). scikit-learn Cookbook: Over 80 recipes for machine learning
in Python with scikit-learn. Packt Publishing Ltd.

Ayadi, A., Ghorbel, O., Obeid, A. M., & Abid, M. (2017). Outlier detection ap-
proaches for wireless sensor networks: A survey. Comput. Networks, 129, 319–333.

Badidi, E., Neyadi, N. E., Al Saeedi, M., Al Kaabi, F., & Maheswaran, M. (2018).
Building a Data Pipeline for the Management and Processing of Urban Data Streams.
Springer, Cham.

Bahl, B. (2015). Inconsistency quality concerns for spatial database. In 2015 2nd
International Conference on Computing for Sustainable Global Development (INDIA-
Com), (pp. 1328–1334).

Bairagi, V., & Munot, M. V. (2019). Research methodology: A practical and scientific
approach. CRC Press.

Ballou, D., Wang, R., Pazer, H., & Kumar. Tayi, G. (1998). Modeling Information
Manufacturing Systems to Determine Information Product Quality. Manage.
Sci., 44(4), 462–484.
URL https://www.jstor.org/stable/2634609

Ballou, D. P., & Pazer, H. L. (1985). Modeling Data and Process Quality in Multi-
Input, Multi-Output Information Systems. Manage. Sci..
URL https://pubsonline.informs.org/doi/pdf/10.1287/mnsc.31.2.150

Barcelona Ciutat Digital, B. C. D. (2021). Barcelona ciutat digital.
URL https://ajuntament.barcelona.cat/digital/ca

Barnaghi, P., Bermudez-Edo, M., & Tönjes, R. (2015). Challenges for Quality of
Data in Smart Cities. Data and Information Quality, 6(2-3), 1–4.

Basili, V. R. (1993). The experimental paradigm in software engineering. In
Experimental Software Engineering Issues: Critical Assessment and Future Directions,
(pp. 1–12). Springer.

Batini, C., & Scannapieco, M. (2016). Data Quality Dimensions, (pp. 21–51). Cham:
Springer International Publishing.
URL https://doi.org/10.1007/978-3-319-24106-7_2

Benyuan Liu, & Towsley, D. (2004). A study of the coverage of large-scale sensor
networks. In 2004 IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (IEEE Cat. No.04EX975), (pp. 475–483).

Berk, K. (2015). Time series analysis, (pp. 25–52). Wiesbaden: Springer Fachmedien
Wiesbaden.
URL https://doi.org/10.1007/978-3-658-08669-5_3

269

https://www.jstor.org/stable/2634609
https://pubsonline.informs.org/doi/pdf/10.1287/mnsc.31.2.150
https://ajuntament.barcelona.cat/digital/ca
https://doi.org/10.1007/978-3-319-24106-7_2
https://doi.org/10.1007/978-3-658-08669-5_3

Berti-Équille, L. (2007). Measuring and Modelling Data Quality for Quality-
Awareness in Data Mining. In Quality Measures in Data Mining, (pp. 101–126).
Springer, Berlin, Heidelberg.

Bhajantri, L. B., & Pundalik, R. (2017). Data processing in semantic sensor web: A
survey. In 2017 3rd International Conference on Applied and Theoretical Computing
and Communication Technology (iCATccT), (pp. 166–170).

Bhargavi, R. (2016). Complex event processing framework for big data applications.
In Data Science and Big Data Computing, (pp. 41–56). Springer.

Bhattacharyya, D. K., & Kalita, J. K. (2013). Network anomaly detection: A machine
learning perspective. Crc Press.

Bhuiyan, M. Z. A., Wu, J., Wang, G., Chen, Z., Chen, J., & Wang, T. (2017). Quality-
guaranteed event-sensitive data collection and monitoring in vibration sensor
networks. IEEE Transactions on Industrial Informatics, 13(2), 572–583.

Bibri, S. E. (2018). Introduction: The Rise of Sustainability, ICT, and Urbanization and
the Materialization of Smart Sustainable Cities. Springer, Cham.

Bisadi, M., Akrami, A., Teimourzadeh, S., Aminifar, F., Kargahi, M., & Shahideh-
pour, M. (2018). IoT-Enabled Humans in the Loop for Energy Management
Systems: Promoting Building Occupants’ Participation in Optimizing Energy
Consumption. IEEE Electrif. Mag., 6(2), 64–72.

Black, K. (2019). Business statistics: for contemporary decision making. John Wiley &
Sons.

Blaxter, L. (2010). How to research. McGraw-Hill Education (UK).

Blessing, L. T. M., & Chakrabarti, A. (2009). DRM, a Design Research Methodology.
London, England, UK: Springer-Verlag.

Bonafini, F., Carvalho, D. F., Depari, A., Ferrari, P., Flammini, A., Pasetti, M.,
Rinaldi, S., & Sisinni, E. (2019). Evaluating indoor and outdoor localization
services for lorawan in smart city applications. In 2019 II Workshop on Metrology
for Industry 4.0 and IoT (MetroInd4. 0&IoT), (pp. 300–305). IEEE.

Bordel, B., Alcarria, R., Robles, T., & Martín, D. (2017). Cyber-physical systems: Ex-
tending pervasive sensing from control theory to the internet of things. Pervasive
and mobile computing, 40, 156–184.

Bose, S., Mukherjee, N., & Mistry, S. (2016). Environment monitoring in smart
cities using virtual sensors. In 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud), (pp. 399–404). IEEE.

Bouveyron, C., Celeux, G., Murphy, T. B., & Raftery, A. E. (2019). Model-based clus-
tering and classification for data science: with applications in R, vol. 50. Cambridge
University Press.

270

Box, G. (1979). Robustness in the strategy of scientific model building. In R. L.
LAUNER, & G. N. WILKINSON (Eds.) Robustness in Statistics, (pp. 201 – 236).
Academic Press.
URL http://www.sciencedirect.com/science/article/pii/
B9780124381506500182

Brimicombe, A. (2009). GIS, environmental modeling and engineering. CRC Press.

Brincat, A. A., Pacifici, F., Martinaglia, S., & Mazzola, F. (2019). The internet of
things for intelligent transportation systems in real smart cities scenarios. In
2019 IEEE 5th World Forum on Internet of Things (WF-IoT), (pp. 128–132). IEEE.

Brownlee, J. (2017a). How to Decompose Time Series Data into Trend and Season-
ality. [Online; accessed 4. Jan. 2021].
URL https://machinelearningmastery.com/decompose-time-series-data-
trend-seasonality

Brownlee, J. (2017b). Long Short-term Memory Networks with Python: Develop Se-
quence Prediction Models with Deep Learning. Machine Learning Mastery.

Brunton, S. L., & Kutz, J. N. (2019). Data-driven science and engineering: Machine
learning, dynamical systems, and control. Cambridge University Press.

Burns, A., & Wellings, A. J. (2001). Real-TIme Systems and Programming Languages.
3rd. Pearson Education.

Bühmann, A., Härder, T., & Merker, C. (2006). A Middleware-Based Approach
to Database Caching. In Advances in Databases and Information Systems, (pp.
184–199). Springer, Berlin, Heidelberg.

Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality
Assessment in the Big Data Era. Data Sci. J., 14(0).

Carvalho, S., & White, H. (1997). Combining the quantitative and qualitative approaches
to poverty measurement and analysis: the practice and the potential. The World Bank.

Cassandras, C. G. (2016). Smart cities as cyber-physical social systems. Engineering,
2(2), 156–158.
URL https://www.sciencedirect.com/science/article/pii/
S2095809916309420

Chandler, T. J. (1965). The climate of London. Hutchinson.

Chauhan, S., Patel, P., Delicato, F. C., & Chaudhary, S. (2016). A development
framework for programming cyber-physical systems. In 2016 IEEE/ACM 2nd
International Workshop on Software Engineering for Smart Cyber-Physical Systems
(SEsCPS), (pp. 47–53).

Chen, L., Ho, Y., Hsieh, H., Huang, S., Lee, H., & Mahajan, S. (2018). Adf: An
anomaly detection framework for large-scale pm2.5 sensing systems. IEEE
Internet of Things Journal, 5(2), 559–570.

271

http://www.sciencedirect.com/science/article/pii/B9780124381506500182
http://www.sciencedirect.com/science/article/pii/B9780124381506500182
https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality
https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality
https://www.sciencedirect.com/science/article/pii/S2095809916309420
https://www.sciencedirect.com/science/article/pii/S2095809916309420

Chen, M., Yang, J., Hu, L., Hossain, M. S., & Muhammad, G. (2018). Urban
Healthcare Big Data System Based on Crowdsourced and Cloud-Based Air
Quality Indicators. IEEE Commun. Mag., 56(11), 14–20.

Chidean, M. I., Morgado, E., Sanromán-Junquera, M., Ramiro-Bargueño, J., Ramos,
J., & Caamaño, A. J. (2016). Energy efficiency and quality of data reconstruction
through data-coupled clustering for self-organized large-scale wsns. IEEE
Sensors Journal, 16(12), 5010–5020.

Chollet, F. (2017). Deep Learning with Python. Manning Publications Company.
URL https://books.google.co.uk/books?id=Yo3CAQAACAAJ&dq=
Deep+Learning+with+Python,+Manning&hl=en&sa=X&ved=
2ahUKEwjygemt36ntAhUUesAKHXplBE8Q6AEwAHoECAIQAg

Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time series feature
extraction on basis of scalable hypothesis tests (tsfresh–a python package).
Neurocomputing, 307, 72–77.

Chu, W. W. (2014). Data mining and knowledge discovery for big data. Studies in
Big Data, 1, 153–192.

Cisco (2020). What is a smart city?
URL https://www.cisco.com/c/en/us/solutions/industries/smart-
connected-communities/what-is-a-smart-city.html

Creamer, E. G. (2017). An introduction to fully integrated mixed methods research. Sage
Publications.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications.

Crosby, P. B. (1979). Quality is free: The art of making quality certain, vol. 94. McGraw-
hill New York.

Davis, H. C. (1995). Demographic projection techniques for regions and smaller areas: a
primer. UBC Press.

De, S., Zhou, Y., Larizgoitia Abad, I., & Moessner, K. (2017). Cyber–physical–social
frameworks for urban big data systems: A survey. Applied Sciences, 7(10).
URL https://www.mdpi.com/2076-3417/7/10/1017

de Aquino, G. R. C., de Farias, C. M., & Pirmez, L. (2019). Hygieia: data qual-
ity assessment for smart sensor network. New York, NY, USA: Association for
Computing Machinery.

Dean, J. (2014). Big data, data mining, and machine learning: value creation for business
leaders and practitioners. John Wiley & Sons.

Denzin, N. K., & Lincoln, Y. S. (2017). The SAGE Handbook of Qualitative Research.
London, England, UK: SAGE Publications.
URL https://us.sagepub.com/en-us/nam/the-sage-handbook-of-
qualitative-research/book242504

272

https://books.google.co.uk/books?id=Yo3CAQAACAAJ&dq=Deep+Learning+with+Python,+Manning&hl=en&sa=X&ved=2ahUKEwjygemt36ntAhUUesAKHXplBE8Q6AEwAHoECAIQAg
https://books.google.co.uk/books?id=Yo3CAQAACAAJ&dq=Deep+Learning+with+Python,+Manning&hl=en&sa=X&ved=2ahUKEwjygemt36ntAhUUesAKHXplBE8Q6AEwAHoECAIQAg
https://books.google.co.uk/books?id=Yo3CAQAACAAJ&dq=Deep+Learning+with+Python,+Manning&hl=en&sa=X&ved=2ahUKEwjygemt36ntAhUUesAKHXplBE8Q6AEwAHoECAIQAg
https://www.cisco.com/c/en/us/solutions/industries/smart-connected-communities/what-is-a-smart-city.html
https://www.cisco.com/c/en/us/solutions/industries/smart-connected-communities/what-is-a-smart-city.html
https://www.mdpi.com/2076-3417/7/10/1017
https://us.sagepub.com/en-us/nam/the-sage-handbook-of-qualitative-research/book242504
https://us.sagepub.com/en-us/nam/the-sage-handbook-of-qualitative-research/book242504

Dong, J., Paul, R., & Zhang, L.-J. (2009). High assurance services computing. Springer.

Dong, W., Chen, C., Liu, X., & Bu, J. (2010). Providing os support for wireless
sensor networks: Challenges and approaches. IEEE communications surveys &
tutorials, 12(4), 519–530.

Drăgoicea, M., Léonard, M., Ciolofan, S. N., & Militaru, G. (2019). Managing
data, information, and technology in cyber physical systems: Public safety as a
service and its systems. IEEE Access, 7, 92672–92692.

Du, P., Yang, Q., He, Q., & Kwak, K. S. (2016). Energy-aware quality of information
maximisation for wireless sensor networks. IET communications, 10(17), 2281–
2289.

Du, P., Yang, Q., Shen, Z., & Kwak, K. S. (2016). Quality of information maxi-
mization in lifetime-constrained wireless sensor networks. IEEE Sensors Journal,
16(19), 7278–7286.

Ebrahimi, M., ShafieiBavani, E., Wong, R., & Chen, F. (2017). Exploring Celebrities
on Inferring User Geolocation in Twitter. undefined.
URL https://www.semanticscholar.org/paper/Exploring-Celebrities-
on-Inferring-User-Geolocation-Ebrahimi-ShafieiBavani/
de8b54f9f9db568da8ced3575e393e03ff1975cb

Efron, S. E., & Ravid, R. (2018). Writing the literature review: A Practical Guide.
Guilford Publications.

Ehrlinger, L., & Wöß, W. (2018). Automated schema quality measurement in
large-scale information systems. In International Workshop on Data Quality and
Trust in Big Data, (pp. 16–31). Springer.

Environmental Research Group, I. C. L. (2021). London Air Quality Network
Guide. [Online; accessed 6. May 2021].
URL https://www.londonair.org.uk/londonair/guide/monitoring.aspx

European Commission, E. (2021). Smart cities.
URL https://ec.europa.eu/info/eu-regional-and-urban-development/
topics/cities-and-urban-development/city-initiatives/smart-
cities_en

Fabozzi, F. J., Focardi, S. M., Rachev, S. T., & Arshanapalli, B. G. (2014). The basics
of financial econometrics: Tools, concepts, and asset management applications. John
Wiley & Sons.

Fang, X. (2018). Improving data quality for low-cost environmental sensors. Ph.D.
thesis, University of York.
URL http://etheses.whiterose.ac.uk/21259

Farooqi, M. M., Ali Khattak, H., & Imran, M. (2018). Data quality techniques
in the internet of things: Random forest regression. In 2018 14th International
Conference on Emerging Technologies (ICET), (pp. 1–4).

273

https://www.semanticscholar.org/paper/Exploring-Celebrities-on-Inferring-User-Geolocation-Ebrahimi-ShafieiBavani/de8b54f9f9db568da8ced3575e393e03ff1975cb
https://www.semanticscholar.org/paper/Exploring-Celebrities-on-Inferring-User-Geolocation-Ebrahimi-ShafieiBavani/de8b54f9f9db568da8ced3575e393e03ff1975cb
https://www.semanticscholar.org/paper/Exploring-Celebrities-on-Inferring-User-Geolocation-Ebrahimi-ShafieiBavani/de8b54f9f9db568da8ced3575e393e03ff1975cb
https://www.londonair.org.uk/londonair/guide/monitoring.aspx
https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
http://etheses.whiterose.ac.uk/21259

Fazlollahi, S., Girardin, L., & Maréchal, F. (2014). Clustering urban areas for
optimizing the design and the operation of district energy systems. In Computer
Aided Chemical Engineering, vol. 33, (pp. 1291–1296). Elsevier.

Fink, G., Edgar, T., Rice, T., MacDonald, D., & Crawford, C. (2017). Security and
privacy in cyber-physical systems. Cyber-Physical Systems, (pp. 129–141).
URL https://www.sciencedirect.com/science/article/pii/
B9780128038017000092

Fitriawan, H., Susanto, M., Arifin, A. S., Mausa, D., & Trisanto, A. (2017). Zig-
bee based wireless sensor networks and performance analysis in various en-
vironments. In 2017 15th International Conference on Quality in Research (QiR) :
International Symposium on Electrical and Computer Engineering, (pp. 272–275).

Foehr, M., Vollmar, J., Calà, A., Leitão, P., Karnouskos, S., & Colombo, A. W. (2017).
Engineering of next generation cyber-physical automation system architectures.
Multi-Disciplinary Engineering for Cyber-Physical Production Systems, (pp. 185–
206).
URL https://link.springer.com/chapter/10.1007/978-3-319-56345-9_8

Forster, A. (2016). Introduction to Wireless Sensor Networks. John Wiley and Sons.

Fürber, C., & Hepp, M. (2010). Using semantic web resources for data quality
management. In P. Cimiano, & H. S. Pinto (Eds.) Knowledge Engineering and
Management by the Masses, (pp. 211–225). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Geisler, S., Quix, C., Weber, S., & Jarke, M. (2016). Ontology-Based Data Quality
Management for Data Streams. J. Data and Information Quality, 7(4), 1–34.

Ghorbel, O., Jmal, M. W., Abid, M., & Snoussi, H. (2015). Distributed and ef-
ficient one-class outliers detection classifier in wireless sensors networks. In
International Conference on Wired/Wireless Internet Communication, (pp. 259–273).
Springer.

Ghosh, N., Maity, K., Paul, R., & Maity, S. (2019). Outlier detection in sensor
data using machine learning techniques for iot framework and wireless sensor
networks: A brief study. In 2019 International Conference on Applied Machine
Learning (ICAML), (pp. 187–190).

Giacobbe, M., Di Pietro, R., Longo Minnolo, A., & Puliafito, A. (2018). Evaluating
information quality in delivering iot-as-a-service. In 2018 IEEE International
Conference on Smart Computing (SMARTCOMP), (pp. 405–410).

Giffinger, R., & Pichler-Milanović, N. (2007). Smart cities: Ranking of European
medium-sized cities. Centre of Regional Science, Vienna University of Technology.

Gill, H. (2008a). A continuing vision: Cyber-physical systems. In Fourth annual
Carnegie Mellon conference on the electricity industry.
URL https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-

274

https://www.sciencedirect.com/science/article/pii/B9780128038017000092
https://www.sciencedirect.com/science/article/pii/B9780128038017000092
https://link.springer.com/chapter/10.1007/978-3-319-56345-9_8
https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf
https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf
https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf

CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%
20-%20A%20Progress%20Report.pdf

Gill, H. (2008b). From vision to reality: cyber-physical systems. In HCSS
national workshop on new research directions for high confidence transportation CPS:
automotive, aviation, and rail, (pp. 18–20). Austin USA.
URL https://labs.ece.uw.edu/nsl/aar-cps/Gill_HCSS_Transportation_Cyber-
Physical_Systems_2008.pdf

Glowalla, P., & Sunyaev, A. (2014). Process-driven data quality management: A
critical review on the application of process modeling languages. J. Data and
Information Quality, 5(1-2), 1–30.

Goldberg, M., & Zhang, Z. (2018). A cyber-physical system framework towards
smart city and urban computing to aid people with disabilities. In 2018 27th
Wireless and Optical Communication Conference (WOCC), (pp. 1–5). IEEE.

Goss, Q., Akbaş, M. İ., Jaimes, L. G., & Sanchez-Arias, R. (2014). Street Net-
work Generation with Adjustable Complexity Using k-Means Clustering. 2019
SoutheastCon, (pp. 1–6).

GPS-Coordinates (2020). Distance Calculator | Distance Between Coordinates |

Distance Between Cities. [Online; accessed 12. Dec. 2020].
URL https://gps-coordinates.org/distance-between-coordinates.php

Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature
reviews for peer-reviewed journals: secrets of the trade. Journal of chiropractic
medicine, 5(3), 101–117.

Greer, C. (2014). NIST Cyber-Physical Systems Public Working Group Kickoff
Webinar. [Online; accessed 1. May 2021].
URL https://www.nist.gov/system/files/documents/el/CPS-PWG-Kickoff-
Webinar-Presentation-FINAL.PDF

Greer, C., Burns, M., Wollman, D., & Griffor, E. (2019). Cyber-physical systems
and internet of things.
URL https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.1900-202.pdf

Grega, W., & Kornecki, A. J. (2015). Real-time cyber-physical systems transatlantic
engineering curricula framework. In 2015 Federated Conference on Computer
Science and Information Systems (FedCSIS), (pp. 755–762). IEEE.

Guéhéneuc, Y.-G., & Khomh, F. (2019). Empirical Software Engineering. In
Handbook of Software Engineering, (pp. 285–320). Cham, Switzerland: Springer.

Guillet, F., & Hamilton, H. J. (2007). Quality measures in data mining, vol. 43.
Springer.

Gumzej, R. (2018). Engineering Safe and Secure Cyber-Physical Systems the Specification
PEARL Approach. Springer International Publishing Springer.

275

https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf
https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf
https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf
https://research.ece.cmu.edu/electriconf/2008/PDFs/Gill%20-CMU%20Electrical%20Power%202008%20-%20%20Cyber-Physical%20Systems%20-%20A%20Progress%20Report.pdf
https://labs.ece.uw.edu/nsl/aar-cps/Gill_HCSS_Transportation_Cyber-Physical_Systems_2008.pdf
https://labs.ece.uw.edu/nsl/aar-cps/Gill_HCSS_Transportation_Cyber-Physical_Systems_2008.pdf
https://gps-coordinates.org/distance-between-coordinates.php
https://www.nist.gov/system/files/documents/el/CPS-PWG-Kickoff-Webinar-Presentation-FINAL.PDF
https://www.nist.gov/system/files/documents/el/CPS-PWG-Kickoff-Webinar-Presentation-FINAL.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf

Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts,
applications, and challenges in cyber-physical systems. KSII Transactions on
Internet & Information Systems, 8(12).
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.717.3807&rep=rep1&type=pdf

Guo, A., Liu, X., & Sun, T. (2018). Research on Key Problems of Data Quality in Large
Industrial Data Environment. New York, NY, USA: Association for Computing
Machinery.

Guo, D., Peuquet, D. J., & Gahegan, M. (2003). ICEAGE: Interactive Clustering
and Exploration of Large and High-Dimensional Geodata. GeoInformatica, 7(3),
229–253.

Hakiri, A., & Gokhale, A. (2014). Work-in-Progress: Towards Real-Time Smart
City Communications using Software Defined Wireless Mesh Networking. 2018
IEEE Real-Time Systems Symposium (RTSS), (pp. 177–180).

Hanrong Lu, Xin Chen, Xuhui Lan, & Feng Zheng (2016). Duplicate data detection
using gnn. In 2016 IEEE International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA), (pp. 167–170).

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering
algorithm. Journal of the royal statistical society. series c (applied statistics), 28(1),
100–108.

Haseeb, M., Hussain, H. I., Ślusarczyk, B., & Jermsittiparsert, K. (2019). Industry
4.0: A solution towards technology challenges of sustainable business perfor-
mance. Social Sciences, 8, 154.
URL https://www.mdpi.com/2076-0760/8/5/154/htm

Herrera-Quintero, L. F., Vega-Alfonso, J. C., Banse, K. B. A., & Zambrano, E. C.
(2018). Smart its sensor for the transportation planning based on iot approaches
using serverless and microservices architecture. IEEE Intelligent Transportation
Systems Magazine, 10(2), 17–27.

Horn, P. (2001). Autonomic Computing: IBM’s Perspective on the State of
Information Technology. [Online; accessed 17. Nov. 2020].
URL https://homeostasis.scs.carleton.ca/~soma/biosec/readings/
autonomic_computing.pdf

Hu, F. (2014). Cyber-physical systems : integrated computing and engineering design.
Crc Press.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice.
OTexts.

Islam, S. M., & Watanapalachaikul, S. (2012). Empirical finance: modelling and
analysis of emerging financial and stock markets. Springer Science & Business
Media.

276

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.717.3807&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.717.3807&rep=rep1&type=pdf
https://www.mdpi.com/2076-0760/8/5/154/htm
https://homeostasis.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
https://homeostasis.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf

ISO 5725-1, I. (1994). 5725-1: 1994, accuracy (trueness and precision) of measure-
ment methods and results-part 1: General principles and definitions. Interna-
tional Organization for Standardization, Geneva.

ISO 8402, I. (1994). Iso 8402: Quality management and quality assurance —
vocabulary.
URL https://www.iso.org/standard/20115.html

Jahromi, A. A., & Kundur, D. (2020). Fundamentals of Cyber-Physical Systems. In
Cyber-Physical Systems in the Built Environment, (pp. 1–13). Springer, Cham.

Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., Mujumdar,
S., Afzal, S., Sharma Mittal, R., & Munigala, V. (2020). Overview and Importance
of Data Quality for Machine Learning Tasks. New York, NY, USA: Association for
Computing Machinery.

Januzaj, E., Januzaj, V., & Mandl, P. (2019). An Application of Distributed Data
Mining to Identify Data Quality Problems. New York, NY, USA: Association for
Computing Machinery.

Jayswal, M., & Shukla, M. (2016). Consolidated study analysis of different cluster-
ing techniques for data streams. In 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), (pp. 3541–3547).

Jeyaraman, B. P., Olsen, L. R., & Wambugu, M. (2019). Practical Machine Learning
with R: Define, build, and evaluate machine learning models for real-world applications.
Packt Publishing.
URL https://www.packtpub.com/product/practical-machine-learning-
with-r/9781838550134

Jonker, J., & Pennink, B. W. (2010). The essence of methodology. In The Essence of
Research Methodology, (pp. 21–41). Springer.

Jugulum, R. (2014). Competing with High Quality Data: Concepts, Tools, and Techniques
for Building a Successful Approach to Data Quality. Wiley.
URL https://www.wiley.com/en-gb/exportProduct/pdf/9781118416495

Juran, J. M., Gryna, F. M., et al. (1988). Juran’s quality control handbook, vol. 4.
McGraw-Hill New York.

Kale, S., Tamakuwala, H., Vijayakumar, V., Yang, L., & Kshatriya, B. S. R. (2019).
Big Data in Healthcare: Challenges and Promise. Springer, Singapore.

Karkouch, A., Al Moatassime, H., Mousannif, H., & Noel, T. (2015). Data qual-
ity enhancement in internet of things environment. In 2015 IEEE/ACS 12th
International Conference of Computer Systems and Applications (AICCSA), (pp. 1–8).

Karkouch, A., Mousannif, H., Moatassime, H. A., & Noel, T. (2016). A model-
driven architecture-based data quality management framework for the internet
of things. In 2016 2nd International Conference on Cloud Computing Technologies
and Applications (CloudTech), (pp. 252–259).

277

https://www.iso.org/standard/20115.html
https://www.packtpub.com/product/practical-machine-learning-with-r/9781838550134
https://www.packtpub.com/product/practical-machine-learning-with-r/9781838550134
https://www.wiley.com/en-gb/exportProduct/pdf/9781118416495

Karmakar, G. C., Das, R., & Kamruzzaman, J. (2020). Iot sensor numerical data
trust model using temporal correlation. IEEE Internet of Things Journal, 7(4),
2573–2581.

Keller, G. (2015). Statistics for Management and Economics, Abbreviated. Cengage
Learning.

Kenett, R. S., & Shmueli, G. (2016). Information Quality: The Potential of Data and
Analytics to Generate Knowledge. Wiley.
URL https://www.wiley.com/en-gb/exportProduct/pdf/9781118890653

Khotimah, K., Sadik, K., & Rizki, A. (2019). Study of robust regression modeling
using mm-estimator and least median squares. In ICSA 2019: Proceedings of the
1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019,
Bogor, Indonesia, (p. 100). European Alliance for Innovation.

Kim, E. (2017). Smart city service platform associated with smart home. In 2017
International Conference on Information Networking (ICOIN), (pp. 608–610). IEEE.

Kim, J., Abdelzaher, T., Sha, L., Bar-Noy, A., Hobbs, R., & Dron, W. (2016). On max-
imizing quality of information for the internet of things: A real-time scheduling
perspective (invited paper). In 2016 IEEE 22nd International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), (pp. 202–211).

Kim, S., Castillo, R. P. D., Caballero, I., Lee, J., Lee, C., Lee, D., Lee, S., & Mate,
A. (2019). Extending data quality management for smart connected product
operations. IEEE Access, 7, 144663–144678.

Kirchgässner, G., & Wolters, J. (2007). Introduction to modern time series analysis.
Springer Science & Business Media.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic
literature reviews in software engineering. EBSE Technical Report EBSE-2007-01 /
Keele University - UK.

Kitchenham, B. A., Budgen, D., & Brereton, P. (2015). Evidence-based software
engineering and systematic reviews, vol. 4. CRC press.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,
Emam, K. E., & Rosenberg, J. (2002). Preliminary guidelines for empirical
research in software engineering. IEEE Trans. Software Eng., 28(8), 721–734.

Kočenda, E., & Černỳ, A. (2015). Elements of time series econometrics: An applied
approach. Charles University in Prague, Karolinum Press.

Kocijan, J. (2016). Modelling and control of dynamic systems using Gaussian process
models. Springer.

Kounev, S., Kephart, J. O., Milenkoski, A., Zhu, X., & Ag, S. I. P. (2018). Self-Aware
Computing Systems. Cham Springer International Publishing Springer.

278

https://www.wiley.com/en-gb/exportProduct/pdf/9781118890653

Krishna, M. B. (2018). Group-based incentive and penalizing schemes for proactive
participatory data sensing in iot networks. In 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT), (pp. 796–801).

Kuhn, T. S. (1962). The structure of scientific revolutions: University of chicago
press. Original edition.

Kumar, A. (2016). Learning predictive analytics with Python. Packt Publishing Ltd.

Kumar, P., & Chaturvedi, A. (2014). Life time enhancement of wireless sensor net-
work using fuzzy c-means clustering algorithm. In 2014 International Conference
on Electronics and Communication Systems (ICECS), (pp. 1–5).

Labouseur, A. G., & Matheus, C. C. (2017). An Introduction to Dynamic Data
Quality Challenges. J. Data and Information Quality, 8(2), 1–3.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar,
P., Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., & Van den Hof, P. (2017).
Systems & control for the future of humanity, research agenda: Current and
future roles, impact and grand challenges. Annual Reviews in Control, 43, 1–64.
URL https://www.sciencedirect.com/science/article/pii/
S1367578817300573

Langer, A. M. (2007). Analysis and design of information systems. Springer Science &
Business Media.

Larburu, N., Bults, R., van Sinderen, M., & Hermens, H. (2015). Quality-of-Data
Management for Telemedicine Systems. Procedia Comput. Sci., 63, 451–458.

Larburu, N., Bults, R. G. A., Widya, I., & Hermens, H. J. (2014). Quality of
data computational models and telemedicine treatment effects. In 2014 IEEE
16th International Conference on e-Health Networking, Applications and Services
(Healthcom), (pp. 364–369).

Laso, P. M., Brosset, D., & Puentes, J. (2017). Analysis of quality measurements
to categorize anomalies in sensor systems. In 2017 Computing Conference, (pp.
1330–1338). IEEE.

LAURA, A. (2016). How Smart City Barcelona Brought the Internet of Things to
Life. [Online; accessed 6. May 2021].
URL https://datasmart.ash.harvard.edu/news/article/how-smart-city-
barcelona-brought-the-internet-of-things-to-life-789

Lawson, A. B., & Denison, D. G. (2002). Spatial cluster modelling. CRC press.

Lawson, V. J., & Ramaswamy, L. (2016). Tau-five: a multi-tiered architecture for
data quality and energy-sustainability in sensor networks. In 2016 International
Conference on Distributed Computing in Sensor Systems (DCOSS), (pp. 169–176).
IEEE.

279

https://www.sciencedirect.com/science/article/pii/S1367578817300573
https://www.sciencedirect.com/science/article/pii/S1367578817300573
https://datasmart.ash.harvard.edu/news/article/how-smart-city-barcelona-brought-the-internet-of-things-to-life-789
https://datasmart.ash.harvard.edu/news/article/how-smart-city-barcelona-brought-the-internet-of-things-to-life-789

Lee, C.-F., Lee, J. C., & Lee, A. C. (2013). Statistics for Business and Financial
Economics. New York, NY, USA: Springer-Verlag.

Lee, E. A. (2006). Cyber-physical systems-are computing foundations adequate.
In Position paper for NSF workshop on cyber-physical systems: research motivation,
techniques and roadmap, vol. 2, (pp. 1–9). Citeseer.
URL https://cps-vo.org/node/179

Lee, R., Jang, R., Park, M., Jeon, G., Kim, J., & Lee, S. (2020). Making iot data ready
for smart city applications. In 2020 IEEE International Conference on Big Data and
Smart Computing (BigComp), (pp. 605–608).

Lemahieu, W., Broucke, S. v., & Baesens, B. (2018). Principles of Database
Management. Cambridge University Press.
URL https://www.cambridge.org/gb/academic/subjects/computer-
science/knowledge-management-databases-and-data-mining/principles-
database-management-practical-guide-storing-managing-and-analyzing-
big-and-small-data?format=HB&isbn=9781107186125

Li, D., Yan, L., Liu, Y., Yin, Q., Guo, S., & Zheng, H. (2019). Data quality improve-
ment method based on data correlation for power internet of things. In 2019
12th International Symposium on Computational Intelligence and Design (ISCID),
vol. 2, (pp. 259–263).

Li, W., Sha, K., & Zeadally, S. (2016). Routing in wireless sensor networks for
cyber-physical systems. In Cyber-Physical system design with sensor networking
technologies, (pp. 149–176). IET Digital Library.

Liao, W., Kuai, S., & Chang, C. (2019). Energy harvesting path planning strategy
on the quality of information for wireless sensor networks. In 2019 IEEE In-
ternational Conference of Intelligent Applied Systems on Engineering (ICIASE), (pp.
82–85).

Lin, C., Han, G., Du, J., Xu, T., Shu, L., & Lv, Z. (2020). Spatio-temporal congestion-
aware path planning towards intelligent transportation systems in software-
defined smart city iot. IEEE Internet of Things Journal.

Lind, D. A., Marchal, W. G., & Wathen, S. A. (2018). Basic Statistics for Business and
Economics. New York, NY, USA: McGraw-Hill Education.
URL https://books.google.co.uk/books?id=QhyduQEACAAJ&dq=
Basic+statistics+for+business+and+economics.+9th+Edition&hl=
en&sa=X&ved=2ahUKEwjm5Yv5wJLtAhXdTBUIHXRKBNoQ6AEwAHoECAAQAg

Liu, C. H., Fan, J., Branch, J. W., & Leung, K. K. (2014). Toward qoi and energy-
efficiency in internet-of-things sensory environments. IEEE Transactions on
Emerging Topics in Computing, 2(4), 473–487.

Liu, H., Wang, X., Lei, S., Zhang, X., Liu, W., & Qin, M. (2019). A rule based data
quality assessment architecture and application for electrical data. New York, NY,
USA: Association for Computing Machinery.

280

https://cps-vo.org/node/179
https://www.cambridge.org/gb/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125
https://www.cambridge.org/gb/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125
https://www.cambridge.org/gb/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125
https://www.cambridge.org/gb/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125
https://books.google.co.uk/books?id=QhyduQEACAAJ&dq=Basic+statistics+for+business+and+economics.+9th+Edition&hl=en&sa=X&ved=2ahUKEwjm5Yv5wJLtAhXdTBUIHXRKBNoQ6AEwAHoECAAQAg
https://books.google.co.uk/books?id=QhyduQEACAAJ&dq=Basic+statistics+for+business+and+economics.+9th+Edition&hl=en&sa=X&ved=2ahUKEwjm5Yv5wJLtAhXdTBUIHXRKBNoQ6AEwAHoECAAQAg
https://books.google.co.uk/books?id=QhyduQEACAAJ&dq=Basic+statistics+for+business+and+economics.+9th+Edition&hl=en&sa=X&ved=2ahUKEwjm5Yv5wJLtAhXdTBUIHXRKBNoQ6AEwAHoECAAQAg

Liu, L., Chen, W., Solanas, A., & He, A. (2017). Knowledge, attitude, and prac-
tice about internet of things for healthcare. In 2017 International Smart Cities
Conference (ISC2), (pp. 1–4). IEEE.

Liu, X., Yu, X. L., & Fei, T. (2012). Research on Building Data Acquisition Methods
in Smart City. 2020 International Conference on Intelligent Transportation, Big Data
& Smart City (ICITBS), (pp. 144–147).

Liu, Y., Weng, X., Wan, J., Yue, X., Song, H., & Vasilakos, A. V. (2017). Exploring
data validity in transportation systems for smart cities. IEEE Communications
Magazine, 55(5), 26–33.

Lohstroh, M., Derler, P., & Sirjani, M. (2018). Principles of Modeling - Essays Dedicated
to Edward A. Lee on the Occasion of His 60th Birthday | Marten Lohstroh | Springer.
Springer International Publishing.

Loshin, D. (2011). The Practitioner’s Guide to Data Quality Improvement. Morgan
Kaufmann.

Luo, T., Huang, J., Kanhere, S. S., Zhang, J., & Das, S. K. (2019). Improving IoT
Data Quality in Mobile Crowd Sensing: A Cross Validation Approach. IEEE IoT
J., 6(3), 5651–5664.
URL https://ieeexplore.ieee.org/document/8666717

Ma, X., Cao, R., & Jin, Y. (2019). Spatiotemporal Clustering Analysis of Bicycle
Sharing System with Data Mining Approach. Information, 10(5), 163.

Mahanti, R. (2019). Data Quality: Dimensions, Measurement, Strategy, Management,
and Governance. Quality Press.

Mahmood, I., & Zubairi, J. A. (2019). Efficient waste transportation and recy-
cling: Enabling technologies for smart cities using the internet of things. IEEE
Electrification Magazine, 7(3), 33–43.

Malhotra, R. (2015). Empirical research in software engineering: concepts, analysis, and
applications. CRC Press.

Martin, O. (2018). Bayesian Analysis with Python: Introduction to statistical modeling
and probabilistic programming using PyMC3 and ArviZ. Packt Publishing Ltd.

Maydanchik, A. (2007). Data quality assessment. Technics publications.

McKinney, W. (2017). Python for Data Analysis, 2nd Edition. Sebastopol, CA, USA:
O’Reilly Media, Inc.
URL https://www.oreilly.com/library/view/python-for-data/
9781491957653

MetOffice (2019). National meteorological library and archive fact sheet 14 -
microclimates.
URL https://www.metoffice.gov.uk/binaries/content/assets/
metofficegovuk/pdf/research/library-and-archive/library/
publications/factsheets/factsheet_14-microclimates.pdf

281

https://ieeexplore.ieee.org/document/8666717
https://www.oreilly.com/library/view/python-for-data/9781491957653
https://www.oreilly.com/library/view/python-for-data/9781491957653
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/factsheets/factsheet_14-microclimates.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/factsheets/factsheet_14-microclimates.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/factsheets/factsheet_14-microclimates.pdf

Micic, N., Neagu, D., Campean, F., & Zadeh, E. H. (2017). Towards a data quality
framework for heterogeneous data. In 2017 IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), (pp. 155–162).

Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a definition of the internet of
things (iot). IEEE Internet Initiative, 1(1), 1–86.

Minoli, D., Sohraby, K., & Occhiogrosso, B. (2017). IoT Considerations, Require-
ments, and Architectures for Smart Buildings—Energy Optimization and Next-
Generation Building Management Systems. IEEE IoT J., 4(1), 269–283.

Mois, G., Sanislav, T., & Folea, S. C. (2016). A cyber-physical system for environ-
mental monitoring. IEEE Transactions on Instrumentation and Measurement, 65(6),
1463–1471.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series
analysis and forecasting. John Wiley & Sons.

Moolayil, J., Moolayil, J., & John, S. (2019). Learn Keras for Deep Neural Networks.
Springer.

Möller, D. P. F. (2016). Systems and Software Engineering. In Guide to Computing
Fundamentals in Cyber-Physical Systems: Concepts, Design Methods, and Applica-
tions, (pp. 235–305). Springer, Cham.

Mosley, M., International, D., Brackett, M., & Earley, S. (2009). The DAMA Guide to
the Data Management Body of Knowledge. Technics Publications, LLC.
URL https://books.google.co.uk/books?id=_0uMtAEACAAJ

Müller, A. C., Guido, S., et al. (2016). Introduction to machine learning with Python: a
guide for data scientists. " O’Reilly Media, Inc.".

Münch, J., Armbrust, O., Kowalczyk, M., & Soto, M. (2012). Empirical studies. In
Software Process Definition and Management, (pp. 177–186). Springer.

Mylavarapu, G., Thomas, J. P., & Viswanathan, K. A. (2019). An automated big
data accuracy assessment tool. In 2019 IEEE 4th International Conference on Big
Data Analytics (ICBDA), (pp. 193–197).

Naik, D. R., Das, L. B., & Bindiya, T. (2018). Wireless sensor networks with
zigbee and wifi for environment monitoring, traffic management and vehicle
monitoring in smart cities. In 2018 IEEE 3rd International Conference on Computing,
Communication and Security (ICCCS), (pp. 46–50). IEEE.

Nesa, N., Ghosh, T., & Banerjee, I. (2018). Outlier detection in sensed data using
statistical learning models for iot. In 2018 IEEE Wireless Communications and
Networking Conference (WCNC), (pp. 1–6).

282

https://books.google.co.uk/books?id=_0uMtAEACAAJ

Nguyen, T. H., Nunavath, V., & Prinz, A. (2014). Big data metadata management in
smart grids. In Big data and internet of things: A Roadmap for Smart Environments,
(pp. 189–214). Springer.

Okafor, N. U., Alghorani, Y., & Delaney, D. T. (2020). Improving Data Quality
of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data
Fusion and Machine Learning Approach. ICT Express, 6(3), 220–228.

Otunba, R., Lin, J., & Senin, P. (2014). Mbpd: Motif-based period detection. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, (pp. 793–804).
Springer.

Pachepsky, Y., & Rawls, W. J. (2004). Development of pedotransfer functions in soil
hydrology, vol. 30. Elsevier.

Pan, M., Wang, J., Errapotu, S. M., Zhang, X., Ding, J., & Han, Z. (2019). Big Data
Privacy Preservation for Cyber-Physical Systems. Springer.

Pandas (2020). Merge, join, concatenate and compare — pandas 1.2.0 documenta-
tion. [Online; accessed 8. Jan. 2021].
URL https://pandas.pydata.org/pandas-docs/stable/user_guide/
merging.html

Paparrizos, J., & Gravano, L. (2016). k-Shape: Efficient and Accurate Clustering of
Time Series. SIGMOD Rec., 45(1), 69–76.

Patel, A. R., Azadi, S., Babaee, M. H., Mollaei, N., Patel, K. L., & Mehta, D. R.
(2018). Significance of robotics in manufacturing, energy, goods and transport
sector in internet of things (iot) paradigm. In 2018 Fourth International Conference
on Computing Communication Control and Automation (ICCUBEA), (pp. 1–4).

Pattanavijit, N., Vateekul, P., & Sarinnapakorn, K. (2015). A linear-clustering algo-
rithm for controlling quality of large scale water-level data in thailand. In 2015
12th International Joint Conference on Computer Science and Software Engineering
(JCSSE), (pp. 269–274).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Peng, B., Shang, F., Wang, Y., Chen, G., Zhou, Z., & He, L. (2019). Research on data
quality detection technology based on ubiquitous state grid internet of things
platform. In 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC),
(pp. 1018–1023).

Perez-Castillo, R., Carretero, A. G., Rodriguez, M., Caballero, I., Piattini, M., Mate,
A., Kim, S., & Lee, D. (2018). Data quality best practices in iot environments. In
2018 11th International Conference on the Quality of Information and Communications
Technology (QUATIC), (pp. 272–275).

283

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Pernici, B., & Scannapieco, M. (2003). Data Quality in Web Information Systems, (pp.
48–68). Berlin, Heidelberg: Springer Berlin Heidelberg.
URL https://doi.org/10.1007/978-3-540-39733-5_3

Pełech-Pilichowski, T. (2018). On adaptive prediction of nonstationary and incon-
sistent large time series data. In 2018 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), (pp.
1260–1265).

Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Commun.
ACM, 45(4), 211–218.

Platzer, A. (2019). Logical Foundations Of Cyber-Physical Systems.. Springer.

Prathiba, B., Sankar, K. J., & Sumalatha, V. (2016). Enhancing the data quality
in wireless sensor networks — a review. In 2016 International Conference on
Automatic Control and Dynamic Optimization Techniques (ICACDOT), (pp. 448–
454).

Puiu, D., Barnaghi, P., Tönjes, R., Kümper, D., Ali, M. I., Mileo, A., Xavier Parreira,
J., Fischer, M., Kolozali, S., Farajidavar, N., Gao, F., Iggena, T., Pham, T., Nechifor,
C., Puschmann, D., & Fernandes, J. (2016). Citypulse: Large scale data analytics
framework for smart cities. IEEE Access, 4, 1086–1108.

R., G., R., B., & P., K. (2020). Faulty-data detection and data quality measure in
cyber–physical systems through Weibull distribution. Comput. Commun., 150,
262–268.

Rager, S. T., Ciftcioglu, E. N., Ramanathan, R., La Porta, T. F., & Govindan, R.
(2018). Scalability and satisfiability of quality-of-information in wireless net-
works. IEEE/ACM Transactions on Networking, 26(1), 398–411.

Raschka, S., & Mirjalili, V. (2017). Python machine learning. Packt Publishing Ltd.

Rathore, M. M., Ahmad, A., Paul, A., & Jeon, G. (2015). Efficient graph-oriented
smart transportation using internet of things generated big data. In 2015 11th
International Conference on Signal-Image Technology Internet-Based Systems (SITIS),
(pp. 512–519).

Ratner, B. (2017). Statistical and Machine-Learning Data Mining, Third Edition: Tech-
niques for Better Predictive Modeling and Analysis of Big Data, Third Edition. Chap-
man & Hall/CRC: Chapman & Hall/CRC.

Rawat, D. B., Rodrigues, J. J. P. C., & Stojmenovic, I. (2015). Cyber-Physical Systems:
From Theory to Practice. USA: CRC Press, Inc.

Rhee, S. (2019). Cyber-physical systems/internet of things for smart cities.
URL https://www.nist.gov/programs-projects/cyber-physical-
systemsinternet-things-smart-cities

284

https://doi.org/10.1007/978-3-540-39733-5_3
https://www.nist.gov/programs-projects/cyber-physical-systemsinternet-things-smart-cities
https://www.nist.gov/programs-projects/cyber-physical-systemsinternet-things-smart-cities

Robbins, D. E., & Tanik, M. M. (2013). Cyber-Physical Ecosystems: App-Centric
Software Ecosystems in Cyber-Physical Environments. In Applied Cyber-Physical
Systems, (pp. 141–147). Springer, New York, NY.

Rula, A., Maurino, A., & Batini, C. (2016). Data Quality Issues in Linked Open Data,
(pp. 87–112). Cham: Springer International Publishing.
URL https://doi.org/10.1007/978-3-319-24106-7_4

Sailhan, F., Delot, T., Pathak, A., Puech, A., & Roy, M. (2010). Dependable sensor
networks. In Atelier sur la GEstion des Donn? es dans les Syst? mes d’Information
Pervasifs (GEDSIP) au sein de la conf? rence INFormatique des ORganisations et Syst?
mes d? Information et de D? cision (INFORSID), (pp. 1–15).
URL https://hal.archives-ouvertes.fr/hal-01125818/

Salvador, S., & Chan, P. (2007). Toward accurate dynamic time warping in linear
time and space. Intell. Data Anal., 11(5), 561–580.

Sanislav, T., & Miclea, L. (2012). Cyber-Physical Systems - Concept, Challenges
and Research Areas. Journal of Control Engineering and Applied Informatics, 14(2),
28–33.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.472.8858&rep=rep1&type=pdf

Sanislav, T., Mois, G., Folea, S., Miclea, L., Gambardella, G., & Prinetto, P. (2014).
A cloud-based cyber-physical system for environmental monitoring. In 2014 3rd
Mediterranean Conference on Embedded Computing (MECO), (pp. 6–9).

Santos, J., Wauters, T., Volckaert, B., & De Turck, F. (2017). Resource provisioning
for iot application services in smart cities. In 2017 13th International Conference
on Network and Service Management (CNSM), (pp. 1–9). IEEE.

Sathe, S., Papaioannou, T. G., Jeung, H., & Aberer, K. (2013). A survey of model-
based sensor data acquisition and management. In Managing and mining sensor
data, (pp. 9–50). Springer.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2015). Systems Analysis and Design in
a Changing World. Boston, MA, USA: Cengage Learning.

Scannapieco, M., Missier, P., & Batini, C. (2005). Data quality at a glance. Datenbank-
Spektrum, 14(January), 6–14.

Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F., & Grafberger, A.
(2018). Automating large-scale data quality verification. Proc. VLDB Endow.,
11(12), 1781–1794.
URL https://doi.org/10.14778/3229863.3229867

Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical model-
ing with python. In 9th Python in Science Conference.

Seaman, C. B. (2008). Qualitative Methods. In Guide to Advanced Empirical Software
Engineering, (pp. 35–62). London, England, UK: Springer.

285

https://doi.org/10.1007/978-3-319-24106-7_4
https://hal.archives-ouvertes.fr/hal-01125818/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.8858&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.8858&rep=rep1&type=pdf
https://doi.org/10.14778/3229863.3229867

Sebastian-Coleman, L. (2013). Measuring Data Quality for Ongoing Improvement.
Morgan Kaufmann.

Sha, K., & Shi, W. (2008). Consistency-driven data quality management of net-
worked sensor systems. J. Parallel Distrib. Comput., 68(9), 1207–1221.

Sha, K., & Zeadally, S. (2015). Data Quality Challenges in Cyber-Physical Systems.
J. Data and Information Quality, 6(2-3), 1–4.

Shewhart, W. A., & Deming, W. E. (1986). Statistical method from the viewpoint of
quality control. Courier Corporation.

Shih, C.-S., Chou, J.-J., Reijers, N., & Kuo, T.-W. (2016). Designing CPS/IoT
applications for smart buildings and cities. IET Cyber-Phys. Syst.: Theor. Appl.,
1(1), 3–12.

Shrivastava, S., Patel, D., Bhamidipaty, A., Gifford, W. M., Siegel, S. A., Gana-
pavarapu, V. S., & Kalagnanam, J. R. (2019). Dqa: Scalable, automated and
interactive data quality advisor. In 2019 IEEE International Conference on Big Data
(Big Data), (pp. 2913–2922).

Shukla, S., Balachandran K, & Sumitha V S (2016). A framework for smart trans-
portation using big data. In 2016 International Conference on ICT in Business
Industry Government (ICTBIG), (pp. 1–3).

Siddesh, G. M., Deka, G. C., Srinivasa, K. G., & Patnaik, L. M. (2015). Cyber-physical
systems: a computational perspective. CRC Press.

Singh, D. (2003). Practical Statistics 2 Vols. Set. Atlantic Publishers & Dist.

Sinnott, R. (1984). Virtues of the Haversine. undefined.
URL https://www.semanticscholar.org/paper/Virtues-of-the-Haversine-
Sinnott/d1761591716859275573d4d315c973f2dbc26eae

Smalheiser, N. (2017). Data Literacy. Cambridge, MA, USA: Academic Press.
URL https://www.elsevier.com/books/data-literacy/smalheiser/978-0-
12-811306-6

Smarsly, K., Theiler, M., & Dragos, K. (2017). Ifc-based modeling of cyber-physical
systems in civil engineering. In Proceedings of the 24th International Workshop on
Intelligent Computing in Engineering (EG-ICE). Nottingham, UK, vol. 7.

Smartsantander (2021). Santander facility.
URL https://www.smartsantander.eu/index.php/testbeds/item/132-
santander-summary

Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless Sensor Networks: Technology,
Protocols, and Applications. Wiley.
URL https://www.wiley.com/en-gb/exportProduct/pdf/9780470112755

286

https://www.semanticscholar.org/paper/Virtues-of-the-Haversine-Sinnott/d1761591716859275573d4d315c973f2dbc26eae
https://www.semanticscholar.org/paper/Virtues-of-the-Haversine-Sinnott/d1761591716859275573d4d315c973f2dbc26eae
https://www.elsevier.com/books/data-literacy/smalheiser/978-0-12-811306-6
https://www.elsevier.com/books/data-literacy/smalheiser/978-0-12-811306-6
https://www.smartsantander.eu/index.php/testbeds/item/132-santander-summary
https://www.smartsantander.eu/index.php/testbeds/item/132-santander-summary
https://www.wiley.com/en-gb/exportProduct/pdf/9780470112755

Song, Z., Sun, Y., Wan, J., & Liang, P. (2017). Data quality management for service-
oriented manufacturing cyber-physical systems. Comput. Electr. Eng., 64, 34–44.

Sta, H. B. (2019). Strategy for evaluation the data in the context of smart cities:
Case study of transport system. In 2019 IEEE International Smart Cities Conference
(ISC2), (pp. 611–618).

Staron, M. (2020). Action Research in Software Engineering. Cham, Switzerland:
Springer International Publishing.

SURI, N. M. R., Murty, M. N., & Athithan, G. (2019). Outlier detection: techniques
and applications. Springer.

Suri, N. R., Athithan, G., et al. (2019). Research issues in outlier detection. In
Outlier Detection: Techniques and Applications, (pp. 29–51). Springer.

Swamynathan, M. (2017). Mastering Machine Learning with Python in Six Steps. New
York, NY, USA: Apress.

Swamynathan, M. (2019). Mastering machine learning with python in six steps: A
practical implementation guide to predictive data analytics using python. Apress.

Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. J.
Manuf. Syst., 48, 157–169.

Tilley, S., & Rosenblatt, H. J. (2016). Systems analysis and design. Nelson Education.

Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit
region. Economic geography, 46(sup1), 234–240.
URL https://web.archive.org/web/20190308014451/http://
pdfs.semanticscholar.org/eaa5/eefedd4fa34b7de7448c0c8e0822e9fdf956.pdf

Togneri, R., Camponogara, G., Soininen, J., & Kamienski, C. (2019). Foundations
of data quality assurance for iot-based smart applications. In 2019 IEEE Latin-
American Conference on Communications (LATINCOM), (pp. 1–6).

Tomescu, D., Heiman, A., & Badescu, A. (2019). An automatic remote monitoring
system for large networks. In 2019 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), (pp. 71–73).

Törngren, M., Asplund, F., Bensalem, S., McDermid, J., Passerone, R., Pfeifer, H.,
Sangiovanni-Vincentelli, A., & Schätz, B. (2017). Characterization, analysis, and
recommendations for exploiting the opportunities of cyber-physical systems.
Cyber-Physical Systems Foundations, Principles and Applications, (pp. 3–14).
URL https://www.sciencedirect.com/science/article/pii/
B9780128038017000018

Vacca, J. R. (2015). Handbook of sensor networking: advanced technologies and applica-
tions. CRC Press.

287

https://web.archive.org/web/20190308014451/http://pdfs.semanticscholar.org/eaa5/eefedd4fa34b7de7448c0c8e0822e9fdf956.pdf
https://web.archive.org/web/20190308014451/http://pdfs.semanticscholar.org/eaa5/eefedd4fa34b7de7448c0c8e0822e9fdf956.pdf
https://www.sciencedirect.com/science/article/pii/B9780128038017000018
https://www.sciencedirect.com/science/article/pii/B9780128038017000018

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 – A Glimpse. Procedia
Manuf., 20, 233–238.

Včelák, J., Vodička, A., Maška, M., & Mrňa, J. (2017). Smart building monitoring
from structure to indoor environment. In 2017 Smart City Symposium Prague
(SCSP), (pp. 1–5). IEEE.

Walia, J., Walia, A., Lund, C., & Arefi, A. (2019). The characteristics of smart energy
information management systems for built environments. In 2019 IEEE 10th
International Workshop on Applied Measurements for Power Systems (AMPS), (pp.
1–6).

Wand, Y., & Wang, R. Y. (1996). Anchoring data quality dimensions in ontological
foundations. Commun. ACM, 39(11), 86–95.

Wang, J., Cao, Z., Mao, X., Li, X.-Y., & Liu, Y. (2015). Towards energy efficient duty-
cycled networks: analysis, implications and improvement. IEEE Transactions on
Computers, 65(1), 270–280.

Wang, J., Wu, Y., Hsu, H.-H., & Cheng, Z. (2017). Spatial big data analytics
for cellular communication systems. In Big Data Analytics for Sensor-Network
Collected Intelligence, (pp. 153–166). Elsevier.

Wang, Q., & Bu, S. (2020). Deep learning enhanced situation awareness for
high renewable-penetrated power systems with multiple data corruptions. IET
Renewable Power Gener., 14(7), 1134–1142.

Wang, R. Y., Kon, H. B., & Madnick, S. E. (1993). Data quality requirements
analysis and modeling. In Proceedings of IEEE 9th International Conference on Data
Engineering, (pp. 670–677). IEEE.

Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality Means
to Data Consumers. Journal of Management Information Systems, 12(4), 5–33.

Wang, X., Smith, K., & Hyndman, R. (2006). Characteristic-Based Clustering for
Time Series Data. Data Min. Knowl. Disc., 13(3), 335–364.

Wang, X., Wang, X., & Wilkes, M. (2021). Unsupervised fraud detection in environ-
mental time series data. In New Developments in Unsupervised Outlier Detection,
(pp. 257–277). Springer.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning,
vol. 2. MIT press Cambridge, MA.
URL http://www.gaussianprocess.org/gpml

Williams, D., & Tang, H. (2020). Data Quality Management for Industry 4.0: A
Survey - ProQuest. [Online; accessed 13. Sep. 2020].
URL https://search.proquest.com/docview/2386939130?pq-origsite=
gscholar&fromopenview=true

288

http://www.gaussianprocess.org/gpml
https://search.proquest.com/docview/2386939130?pq-origsite=gscholar&fromopenview=true
https://search.proquest.com/docview/2386939130?pq-origsite=gscholar&fromopenview=true

Wing, J. (2008). Cyber-physical systems. From Computing Research News, 20.
URL http://lazowska.cs.washington.edu/initiatives/WingCRN.pdf

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2012). Introduction. In Experimentation in Software Engineering, (pp. 3–8). Berlin,
Germany: Springer.

Wu, F.-J., Luo, T., & Tan, H. P. (2016). Case studies of wsn-cps applications.
Cyber-Physical System Design with Sensor Networking Technologies, 2, 269.

Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Zhou, H. (2014). Rechargeable
sensor networks with magnetic resonant coupling. In Rechargeable Sensor Net-
works: Technology, Theory, and Application: Introducing Energy Harvesting to Sensor
Networks, (pp. 31–68). Citeseer.

Xinrui, Y., Lei, W., & Ruiyi, L. (2019). Data quality evaluation of chinese wind
profile radar network in 2018. In 2019 International Conference on Meteorology
Observations (ICMO), (pp. 1–4).

Yang, J., Han, Y., Wang, Y., Jiang, B., Lv, Z., & Song, H. (2020). Optimization of real-
time traffic network assignment based on IoT data using DBN and clustering
model in smart city. Future Gener. Comput. Syst., 108, 976–986.

Yin, R. K. (2017). Case study research and applications: Design and methods. Sage
publications.

Zanni, A. (2015). Cyber-physical systems and smart cities.
URL https://developer.ibm.com/articles/ba-cyber-physical-systems-
and-smart-cities-iot

Zelkowitz, M. V., & Wallace, D. R. (1998). Experimental models for validating
technology. Computer, 31(5), 23–31.

Zemicheal, T., & Dietterich, T. G. (2019). Anomaly detection in the presence of missing
values for weather data quality control. New York, NY, USA: Association for
Computing Machinery.

Zhang, L. (2015). Multi-view, multi-domain, and multi-paradigm approaches for
specification and modeling of big data driven cyber-physical systems.
URL https://api.semanticscholar.org/CorpusID:63432037

Zhang, Q., Duan, R., Wang, J., & Cui, Y. (2019). Smart building environment
monitoring based on gaussian process. In 2019 International Conference on Control,
Automation and Information Sciences (ICCAIS), (pp. 1–6). IEEE.

Zhang, Y., Duan, W., & Wang, F. (2011). Architecture and real-time characteristics
analysis of the cyber-physical system. In 2011 IEEE 3rd International Conference
on Communication Software and Networks, (pp. 317–320).

289

http://lazowska.cs.washington.edu/initiatives/WingCRN.pdf
https://developer.ibm.com/articles/ba-cyber-physical-systems-and-smart-cities-iot
https://developer.ibm.com/articles/ba-cyber-physical-systems-and-smart-cities-iot
https://api.semanticscholar.org/CorpusID:63432037

Zhiping, Z., Nannan, S., & Xuebo, Z. (2014). A novel authentication protocol for
mobile nodes in multi-base-station wireless sensor network. In ICINS 2014 -
2014 International Conference on Information and Network Security, (pp. 52–59).

Zhou, H., Yu, K., Lee, M., & Han, C. (2018). The application of last observation
carried forward method for missing data estimation in the context of industrial
wireless sensor networks. In 2018 IEEE Asia-Pacific Conference on Antennas and
Propagation (APCAP), (pp. 1–2).

Zhuang, Y., & Chen, L. (2006). In-network outlier cleaning for data collection in
sensor networks. In CleanDB.

290

Appendices

291

Appendix A

Technical and Implementation Details

A.1 Sensor Nodes Anatomy and Data Quality

Sensor nodes network is a group of few to thousands of sensor nodes connected

to an external server and each other via wired or wireless medium (Forster 2016).

Applications such as environment monitoring typically involve numerous sensor

nodes deployed in a vast geographical area to form a large-scale sensor nodes

network (Benyuan Liu & Towsley 2004). Although sensor nodes’ anatomy is not

the focus of this research, it is crucial to understand how sensor nodes work to

identify a significant source of data quality issues in large-scale CPSs. The anatomy

of sensor nodes network will be explored very briefly in this section to understand

some of the technical characteristics of sensor nodes and the impact of its design

on its quality of service and performance in sensor networks and its different

applications.

292

A.1.1 Hardware Components

This section explores some of the sensor nodes concepts and components. Al-

though there is a wide variety in the sensor nodes types, sizes, and functionalities,

some common characteristics and components are briefly explored in this section.

Figure A.1 shows the main components of a typical sensor node which consist of:

Figure A.1: The main components of a typical wireless sensor node (Vacca 2015 p.
2-1).

Micro-controller: is a small computer unit, with memory, processor and a general-

purpose input/output ports. The Micro-controller is responsible for all of the

computational processes on-board and also responsible for coordinating with

external sensor nodes.

Sensing Unit (sensor): responsible for interacting with the environment and in-

terpreting a physical reading into a signal that the system (the environmental

monitoring system in this case) can read and understand.

Radio transceiver: is responsible for receiving and sending data. It encompasses

a micro-controller responsible for controlling data packages, buffering, validating

and implementing communication protocols. The radio transceiver is one of the

most power-consuming components in the sensor node (Forster 2016).

Battery: the sensor node energy source. It can be a battery such as AAA or AA or

other types of rechargeable batteries.

293

Reducing power consumption to prolong the battery life of sensor nodes is cru-

cial to extend the sensor network lifetime mainly because sensor nodes usually

deployed in hard-to-reach environments, and maintaining these devices might

not be feasible (Xie et al. 2014). Sensor nodes power consumption relies on the

amount of the provided electrical current. Assuming that the power supply volt-

age is constant, the sensor node has a sleeping mode that significantly reduces

power consumption by decreasing or completely stopping some of its hardware

components, known as the Duty-Cycle (Wang et al. 2015). The duty-cycle method

increases sensor node energy efficiency via a binary counter to wake up the sensor

node at specific time instants (Addabbo et al. 2019). Some sensor nodes rely on

oscillators for tracking the time. Oscillators count the ticks after the sensor node re-

boot. Therefore, sensor nodes have no real global time (Forster 2016), causing one

of the most common errors that affect the quality of data, especially in real-time

systems (Liu et al. 2017).

A.1.2 Operating System

Sensor nodes’ operating system is a programming code responsible for orchestrat-

ing and managing sensor nodes’ hardware components such as microprocessor,

memory, input-output devices and applications, as shown in Figure A.2 (Forster

2016).

Typically, sensor nodes are small-sized with limited battery power capacity, limited

computing power and limited communication capability. Sensor node operat-

ing systems must efficiently manage all the available resources to bridge the gap

between the limitation in resources and the required applications’ complexity (Am-

jad et al. 2016), (Dong et al. 2010). TinyOS, Contiki and LiteOS are examples of

sensor nodes operating systems responsible for resource management and per-

form the sensor node’s required tasks (Amjad et al. 2016). For example, to reduce

294

Figure A.2: A representation of sensor-nodes components interaction
chain (Forster 2016).

power consumption in wireless sensor nodes, a light-weight adaptive duty-cycling

(LAD) protocol was proposed and tested on a large-scale sensor network. The test

results showed a significant reduction in energy consumption, while the practical

implementation proved the proposed solution’s effectiveness (Wang et al. 2015).

295

A.2 The Technical Details of the Local Sensor Node

Network

296

297

298

299

Figure A.3: The full network topology of the sensor node networks utilised in this
research.

300

A.3 Technical Details of The Data Acquisition Unit

The data acquisition software is the core component of the data acquisition unit.

It was developed using Java and comprised six components (classes), as shown

in the class diagram Figure 4.11. Each one of these classes has a specific role and

combined these classes describe how the data acquisition software operates. The

Java code scripts of the main classes of the data acquisition unit are as follows:

Listing A.1: The Java code scripts of the main classes of the data acquisition unit

are as follows:�
package RESTfulToSQL;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import org.json.JSONException;

public class Startup {

public static void main(String[] args) throws JSONException {

System.out.println("Starting up ^_^");

while (true) { timer.delay();

try { Connection Myconn;

Myconn = DriverManager.getConnection("jdbc:mysql://161.76.xxx.xxx:3306/thingdb?" +

"verifyServerCertificate=false&useSSL=true", "user name", "p.w");

System.out.println

("Trying to fetch data from Thingful.Ltd data pipes -_- --> " + Myconn.isValid(0));

Statement st = Myconn.createStatement();

ResultSet rs = st.executeQuery

("SELECT Dp_id,Dp_table,Dp_API_token,Dp_sample_size,"

+ "Dp_details FROM th_datapipes where Dp_type = ’thingful’");

rs.beforeFirst();

while (rs.next()) { dataManager.collect(rs.getString("Dp_API_token"),

rs.getString("Dp_table"), rs.getInt("Dp_sample_size"), "thingful");}

} catch (SQLException e) { e.printStackTrace();}

try { Connection Myconn;

Myconn = DriverManager.getConnection("jdbc:mysql://161.76.xxx.xxx:3306/thingdb?" +

"verifyServerCertificate=false&useSSL=true", "user name", "p.w");

System.out.println

("Trying to fetch data from imonnit.Ltd REST API -_- --> " + Myconn.isValid(0));

301

Statement st = Myconn.createStatement();

ResultSet rs = st.executeQuery

("SELECT Dp_id,Dp_table,Dp_API_token,Dp_sample_size,"

+ "Dp_details FROM th_datapipes where Dp_type = ’imonnit’");

rs.beforeFirst();

while (rs.next()) { dataManager.collect(rs.getString("Dp_API_token"),

rs.getString("Dp_table"), rs.getInt("Dp_sample_size"), "imonnit");}

} catch (SQLException e) {e.printStackTrace();}

}

}

}� ��
package RESTfulToSQL;

import org.apache.http.HttpResponse;

import org.json.JSONArray;

import org.json.JSONException;

public class dataManager {

public static void collect(String token, String tableName, int sampleSize,String AuthorType)

throws JSONException {

HttpResponse response = null;

if (AuthorType == "thingful") {response = thingfulAuthorization.Authorize(token,sampleSize);}

else if(AuthorType == "imonnit") {response = imonnitAuthorization.Authorize(token,sampleSize);}

System.out.println("The Servers response: " + response.getStatusLine());

if (response.getStatusLine().getStatusCode() == 200) {

JSONArray JA = DataStream.ToArray(response,AuthorType);

if (JA.length() > 0) {

System.out.print("The number of the collocted readings is : " + JA.length());

System.out.println(" -->> Sending the data to the database...");

String DbStatus = toDatabase.mysql(JA,tableName);

System.out.println(DbStatus);

System.out.println("\n");

}

else {System.out.println("No data have been collected !");}

}

else {System.out.println("Authentication Problem - Data Collection is not possible");

}

}}� �
�
package RESTfulToSQL;

import org.apache.http.HttpResponse;

302

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.impl.client.HttpClientBuilder;

import java.io.IOException;

class thingfulAuthorization {String httpGet;

public static HttpResponse Authorize(String token, int sampleSize) {

System.out.println("Connecting the Datapipe");

// the Http-client, that will send the request to Thingful

HttpClient httpclient = HttpClientBuilder.create().build();

HttpGet httpGet = new HttpGet(token + "?limit=" + sampleSize); // My data-pipe details

// The httpGET request

httpGet.addHeader("Thingful-Authorization", "Bearer a5550912-00be-4a25-xxxxxxxx");

// The token from Thingful.

// To add the authorisation header to the request.

HttpResponse response = null;

try {response = httpclient.execute(httpGet);

} catch (IOException e) {e.printStackTrace();}

return response;

}

}� �
�
package RESTfulToSQL;

import org.apache.http.HttpResponse;

import org.apache.http.ParseException;

import org.apache.http.util.EntityUtils;

import org.json.JSONArray;

import org.json.JSONException;

import java.io.IOException;

public class DataStream {

public static JSONArray ToArray(HttpResponse response, String AuthorType)

throws JSONException {

String stringResponse, st = null;

JSONArray ja = null;

try {stringResponse = EntityUtils.toString(response.getEntity(), "UTF-8");

if (AuthorType == "imonnit") {st = stringResponse.replace

("{\"Method\":\"AccountRecentDataMessages\",\"Result\":", "");

st = st.replace("}]}", "}]");

} else if (AuthorType == "thingful") {

st = stringResponse.replace("data: ", "").replace("]\n" + "\n" + "[", ",");

}

ja = new JSONArray(st);

} catch (ParseException | IOException e) {e.printStackTrace();} // The response as String,

303

which you could be converted to a JSONObject.

return (ja);

}

}� �
�
package RESTfulToSQL;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.util.Date;

import org.json.JSONArray;

import org.json.JSONException;

import org.json.JSONObject;

public class toDatabase {

public static String mysql(JSONArray jA, String tableName) throws JSONException {

int n = 0;

try { Connection Myconn = DriverManager.getConnection(

"jdbc:mysql://161.76.xxx.xxx:3306/thingdb?" +

"verifyServerCertificate=false&useSSL=true", "user name", "p.w");

System.out.println("The connection to the database is valid: " + Myconn.isValid(0));

Myconn.setAutoCommit(true);

n = jA.length();

for (int i = 0; i < n; i++) // To GET INDIVIDUAL JSON OBJECT FROM JSON ARRAY

{JSONObject jo = jA.getJSONObject(i);

PreparedStatement pstmt = Myconn.prepareStatement("insert into " + tableName +

" (date, json) values (?,?)");

pstmt.setString(1, new Date().toString());

pstmt.setString(2, String.valueOf(jo));

pstmt.execute();}

System.out.println

("An insert statement has been executed, not verified ..0_0");

Myconn.close();

System.out.println("Closing the connection... connection to the database is valid: "

+ Myconn.isValid(0));

} catch (SQLException e) {e.printStackTrace();}

return "It’s a good idea to check your Database ^_* ";

}

}� �

304

The deployment environment diagram of the data acquisition software is illus-

trated in Figure A.4.

Figure A.4: The deployment diagram of the data acquisition software.

305

Listing A.2: The deployment code of the Java based data acquisitions unit over

Linux.�
\\ Source: “https://unix.stackexchange.com/questions/143706/how-to-run-java-service-as-a-non-root-

user-on-centos“-6

\\ More details: "http://www.jcgonzalez.com/linux-java-service-wrapper-example"

sudo vi /etc/init.d/thingful

#!/bin/sh

SERVICE_NAME=thingful

PATH_TO_JAR=/home/.../thingful/Thingful.jar

PID_PATH_NAME=/tmp/Thingful-pid

case $1 in start)

echo "Starting $SERVICE_NAME ..."

if [! -f $PID_PATH_NAME]; then

nohup java -jar $PATH_TO_JAR /tmp 2>> /dev/null >> /dev/null &

echo $! > $PID_PATH_NAME

echo "$SERVICE_NAME started ..."

else

echo "$SERVICE_NAME is already running ..." fi ;; stop)

if [-f $PID_PATH_NAME]; then

PID=$(cat $PID_PATH_NAME);

echo "$SERVICE_NAME stoping ..."

kill $PID;

echo "$SERVICE_NAME stopped ..."

rm $PID_PATH_NAME

else

echo "$SERVICE_NAME is not running ..." fi ;; restart)

if [-f $PID_PATH_NAME]; then

PID=$(cat $PID_PATH_NAME);

echo "$SERVICE_NAME stopping ...";

kill $PID;

echo "$SERVICE_NAME stopped ...";

rm $PID_PATH_NAME

echo "$SERVICE_NAME starting ..."

nohup java -jar $PATH_TO_JAR /tmp 2>> /dev/null >> /dev/null &

echo $! > $PID_PATH_NAME

echo "$SERVICE_NAME started ..."

else

echo "$SERVICE_NAME is not running ..." fi ;; esac� �
The corresponding tables of the local database at the University of East London

receive sensor nodes observations from the data acquisition unit as JSON objects.

306

The JSON parsing and the observations duplication prevention mechanisms are

built-in inside these tables as triggers, as detailed in Section 4.1.3.3.

A.3.1 JSON Parsing and Duplication Prevention Trigger

Listing A.3: Following is an example of the JSON parsing and the duplication

prevention trigger built-in as SQL script in the database JSON corresponding

tables, using the "th_Air_quality_json" table as a case study.�
CREATE DEFINER=‘user name‘@‘%‘ TRIGGER ‘th_Air_quality_json_AFTER_INSERT‘

AFTER INSERT ON ‘th_Air_quality_json‘

FOR EACH ROW BEGIN insert into th_Air_quality

values (

new.ID,

STR_TO_DATE(concat(substr(SUBSTR(new.Date, 5),1,16),

substr(SUBSTR(new.Date, 5),21,4)),’%M %d %H:%i:%s %Y’),

SUBSTR(JSON_UNQUOTE(JSON_EXTRACT(new.JSON, ’$."id"’)), 33, 8),

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$.latitude’)) ,

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$.longitude’)) ,

REPLACE(REPLACE(JSON_UNQUOTE(JSON_EXTRACT(new.json,’$.updatedAt’)),’T’,’ ’),’Z’,’’) ,

CASE WHEN JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$.temperature’)) =’null’ THEN

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$."airTemperature,WeatherTemperature,AmbientTemperature

"’))

WHEN JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$.temperature’)) =’’ THEN

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$."airTemperature,WeatherTemperature,AmbientTemperature

"’))

ELSE COALESCE(JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$.temperature’)),’null’)

END ,

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$."license.name"’)) ,

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$."provider.uri"’)) ,

JSON_UNQUOTE(JSON_EXTRACT(new.json, ’$."provider.name"’)) ,

0 ,

STR_TO_DATE(concat(substr(SUBSTR(new.Date, 5),1,16),

substr(SUBSTR(new.Date, 5),21,4)),’%M %d %H:%i:%s %Y’))

ON DUPLICATE KEY UPDATE RowCount=RowCount+1,

ServerLastUpdate = STR_TO_DATE(concat(substr(SUBSTR(new.Date,5),1,16),

substr(SUBSTR(new.Date, 5),21,4)),’%M %d %H:%i:%s %Y’) ;

END� �
307

A.3.2 The Periodicity Analysis Rule Engine.

Listing A.4: The full SQL code and logic behind the periodicity analysis rule

engine.�
CREATE

ALGORITHM = UNDEFINED

DEFINER = ‘user name‘@‘%‘

SQL SECURITY DEFINER

VIEW ‘HW_Dataset_Thingful_03‘ AS

SELECT

‘HW_Dataset_Thingful‘.‘SensorID‘ AS ‘SensorID‘,

‘HW_Dataset_Thingful‘.‘Latitude‘ AS ‘Latitude‘,

‘HW_Dataset_Thingful‘.‘Longitude‘ AS ‘Longitude‘,

‘HW_Dataset_Thingful‘.‘ServerDate‘ AS ‘MessageDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘ AS ‘ServerLastUpdate‘,

(TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) AS ‘Interval‘,

‘HW_Dataset_Thingful_th‘.‘Interval_threshold‘ AS ‘I_threshold‘,

(CASE

WHEN

((((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) > 0)

AND (((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) <= 1))

THEN

’Good’

WHEN

((((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) > 1)

AND (((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) <= 2))

THEN

308

’Timeliness’

WHEN

((((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) >= 2)

AND (((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) < 3))

THEN

’Missing observation’

WHEN

(((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) >= 3)

THEN

’Long outlier’

WHEN

(((TIMESTAMPDIFF(SECOND,

‘HW_Dataset_Thingful‘.‘ServerDate‘,

‘HW_Dataset_Thingful‘.‘ServerLastUpdate‘) / 60) / ‘HW_Dataset_Thingful_th‘.‘

Interval_threshold‘) = 0)

THEN

’Duplicated observation’

END) AS ‘Consistency_status‘

FROM

(‘HW_Dataset_Thingful‘

JOIN ‘HW_Dataset_Thingful_th‘)� �

309

A.4 Configuration and programming details

A.4.1 Holt-Winters predictive model

Listing A.5: The configuration and programming details of Holt-Winters predictive

model using Holt-Winters Python package provided by Statsmodels.org (Seabold

& Perktold 2010).�
import os

import time

from math import sqrt

import matplotlib.pyplot as plt

import pandas as pd

import statsmodels.api as sm

from sklearn.metrics import mean_squared_error

from statsmodels.tsa.holtwinters import ExponentialSmoothing as HoltWinters

os.chdir(’DataBase’)

The ideal dataset

df1 = pd.read_csv(’HW-Dataset-Monnit.csv’, skiprows=0)[[’Date’, ’Value’]]

df1[’Date’] = pd.to_datetime(df1[’Date’], format=’%d/%m/%Y %I:%M %p’)

df1.columns = [’R_Date’, ’Mo_Temp’]

df1.set_index(’R_Date’, inplace=True)

df1.sort_index(inplace=True, ascending=True)

df1 = df1.resample(’10T’).mean().ffill()

print(df1.head(5))

The real-world dataset

df2 = pd.read_csv(’HW-Dataset-Thingful.csv’, skiprows=0)[[’ServerDate’, ’AmbientTemperature’]]

df2[’ServerDate’] = pd.to_datetime(df2[’ServerDate’], format=’%Y-%m-%d %H:%M:%S’)

df2.columns = [’R_Date’, ’Th_Temp’]

df2.set_index(’R_Date’, inplace=True)

df2.sort_index(inplace=True, ascending=True)

df2 = df2.resample(’10T’).mean().ffill()

print(df2.head(5))

hw = pd.concat([df1, df2], axis=1).reindex(df1.index)

hw = hw.dropna(how=’any’, axis=0)

res = sm.tsa.seasonal_decompose(hw.Mo_Temp.interpolate(), freq=144, model=’additive’) #

Multiplicative additive

fig, axs = plt.subplots(4, 1, figsize=(24, 12), sharey=False)

axs[0].plot(hw.Mo_Temp)

310

axs[0].set_title(’Temperature readings over time (Sensor ID = 493372 / Monnit)’)

axs[0].set_ylabel(’Temperature C’)

res.trend.plot(ax=axs[1])

axs[1].set_title(’Trend’)

axs[1].set_ylabel(’Temperature C’)

res.seasonal.plot(ax=axs[2])

axs[2].set_title(’Seasonality’)

axs[2].set_ylabel(’Temperature C’)

res.resid.plot(ax=axs[3])

axs[3].set_title(’Residuals’)

axs[3].set_ylabel(’Temperature C’)

plt.show()

res = sm.tsa.seasonal_decompose(hw.Th_Temp.interpolate(), freq=144, model=’additive’) #

Multiplicative additive

fig, axs = plt.subplots(4, 1, figsize=(24, 12), sharey=False)

axs[0].plot(hw.Th_Temp, c=’r’)

axs[0].set_title(’Temperature readings over time (Sensor ID = jcw5m701 / Thingful)’)

axs[0].set_ylabel(’Temperature C’)

res.trend.plot(ax=axs[1], c=’r’)

axs[1].set_title(’Trend’)

axs[1].set_ylabel(’Temperature C’)

res.seasonal.plot(ax=axs[2], c=’r’)

axs[2].set_title(’Seasonality’)

axs[2].set_ylabel(’Temperature C’)

res.resid.plot(ax=axs[3], c=’r’)

axs[3].set_title(’Residuals’)

axs[3].set_ylabel(’Temperature C’)

plt.show()

t_pred = 36

t_loop = 25

rms_list = []

for i in range(t_loop):

t_start = 470 + i

train0, test0 = hw.iloc[:t_start, 0], hw.iloc[t_start:t_start + t_pred + 1, 0] # +1 because it

represent a real

tm = time.process_time()

model = HoltWinters(train0, seasonal_periods=144, trend=’add’, seasonal=’add’).fit()

pred0 = model.predict(start=test0.index[0], end=test0.index[t_pred])

elapsed_time_m = time.process_time() - tm

rmsmo = round(sqrt(mean_squared_error(test0, pred0)), 4)

if t_start + t_pred + 1 > 560:

plt.plot(train0.index, train0, label=’Train/ Monnit’)

311

plt.plot(test0.index, test0, label=’Test/ step =’ + str(t_start + t_pred + 1))

plt.plot(pred0.index, pred0, label=’Holt-Winters/ RMS =’ + str(rmsmo))

plt.legend(loc=’best’)

sometimes it is required to stop the plots to get the last two plots

plt.show()

train1, test1 = hw.iloc[:t_start, 1], hw.iloc[t_start:t_start + t_pred + 1, 1]

th = time.process_time()

model = HoltWinters(train1, seasonal_periods=144, trend=’add’, seasonal=’add’).fit()

pred1 = model.predict(start=test1.index[0], end=test1.index[t_pred])

elapsed_time_th = time.process_time() - th

rmsth = round(sqrt(mean_squared_error(test1, pred1)), 4)

plt.plot(train1.index, train1, label=’Train/ Thingful’)

plt.plot(test1.index, test1, label=’Test/ step =’ + str(t_start + t_pred + 1))

plt.plot(pred1.index, pred1, label=’Holt-Winters/ RMS =’ + str(rmsth))

plt.legend(loc=’best’)

sometimes it is required to stop the plots to get the last two plots

if t_start + t_pred + 1 > 515:

plt.show()

https://stackoverflow.com/questions/10715965/add-one-row-to-pandas-dataframe

rms_list.append((t_start + t_pred + 1, rmsmo, elapsed_time_m, rmsth, elapsed_time_th))

pdf = pd.DataFrame(rms_list, columns=[’Steps’, ’Monnit_rms’, ’Monnit_t’, ’Thingful_rms’, ’Thingful_t

’])

pdf.set_index(’Steps’, inplace=True)

print(pdf)

rmsdf = pdf[[’Monnit_rms’, ’Thingful_rms’]]

plt.figure()

rmsdf.plot()

plt.show()

tdf = pdf[[’Monnit_t’, ’Thingful_t’]]

plt.figure()

tdf.plot()

plt.show()� �

312

A.4.2 ARMA and ARIMA predictive models

Listing A.6: The configuration and programming details of ARMA, ARIMA pre-

dictive models using ARMA and ARIMA Python packages provided by Statsmod-

els.org (Seabold & Perktold 2010).�
import math

import os

import time

from math import sqrt

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import statsmodels.api as sm

from pmdarima.arima.utils import ndiffs

from scipy import stats

from sklearn.metrics import mean_squared_error

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.arima_model import ARIMA

from statsmodels.tsa.arima_model import ARMA

os.chdir(’DataBase’)

df = pd.read_csv(’HW-Dataset-Monnit.csv’, skiprows=0)[[’Date’, ’Value’]]

df[’Date’] = pd.to_datetime(df[’Date’], format=’%d/%m/%Y %I:%M %p’) # monnit

df = pd.read_csv(’HW-Dataset-Thingful.csv’, skiprows=0)[[’ServerDate’, ’AmbientTemperature’]]

df[’ServerDate’] = pd.to_datetime(df[’ServerDate’], format=’%Y-%m-%d %H:%M:%S’) # thingful

df.columns = [’R_Date’, ’Temp’]

df.set_index(’R_Date’, inplace=True)

df.sort_index(inplace=True, ascending=True)

df = df.resample(’10T’).mean().ffill()

ts22 = df.resample(’10T’).mean().ffill()

ts = df[’2020-03-03 00:00:00’:’2020-03-09 00:00:00’]

print(’Shape of the DataFrame:’, ts.shape)

no_of_observations = ts.shape[0]

train_ts, test_ts = np.split(ts, [int(.8 * len(ts))])

print(’The size of the training dataset :’ + str(len(train_ts)))

print(’The size of the testing dataset :’ + str(len(test_ts)))

################# ### Function to plot signal, ACF and PACF

def plotds(xt, nlag=50, fig_size=(12, 10)):

if not isinstance(xt, pd.Series):

layout = (2, 2)

ax_xt = plt.subplot2grid(layout, (0, 0), colspan=2)

ax_acf = plt.subplot2grid(layout, (1, 0))

313

ax_pacf = plt.subplot2grid(layout, (1, 1))

xt.plot(ax=ax_xt)

ax_xt.set_title(’Time-Series Autocorrelation(ACF) and Partial Autocorrelation Diagrams(PACF)

’)

plot_acf(xt, lags=nlag, ax=ax_acf)

plot_pacf(xt, lags=nlag, ax=ax_pacf, method=’ywm’)

https://www.statsmodels.org/0.8.0/generated/statsmodels.graphics.tsaplots.plot_pacf.html

plt.figure(figsize=fig_size)

plt.tight_layout()

plt.show()

Function to plot Time series decomposition

def plottsd(xt, rfreg):

res = sm.tsa.seasonal_decompose(xt, period=rfreg, model=’additive’) # Multiplicative additive

fig, axs = plt.subplots(4, 1, figsize=(24, 12), sharey=False)

axs[0].plot(xt)

axs[0].set_title(’Time Series Decomposition’)

res.trend.plot(ax=axs[1])

axs[1].set_title(’Trend’)

res.seasonal.plot(ax=axs[2])

axs[2].set_title(’Sequence’)

res.resid.plot(ax=axs[3])

axs[3].set_title(’Residuals’)

plt.show()

Function of ADF test

def adft(xt, ttxt):

print(’======The ADF (Augmented Dickey-Fuller) Test ======’)

print(ttxt)

print(’<<<The null hypothesis: the time series is non-stationary>>>’)

ndiffs(xt, test=’adf’)

if ndiffs(xt, test=’adf’) > 0:

print(’Failed to reject the null hypothesis, the data is Non-Stationary’)

else:

print(’Reject the Null hypothesis, the data is Stationary’)

print(’The suggested order of Differencing is: ’ + str(ndiffs(xt, test=’adf’)))

print(’===’)

define KPSS

def kpss_test(timeseries, ttxt):

print(

’======The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test =====’)

print(ttxt)

print(’<<<The null hypothesis: the time series is stationary>>>’)

if ndiffs(timeseries, test=’kpss’) > 0:

314

print(’Reject the Null hypothesis, the data is Non-Stationary’)

else:

print(’Failed to reject the null hypothesis, the data is Stationary’)

print(’The suggested order of Differencing is: ’ + str(ndiffs(timeseries, test=’kpss’)))

print(’===’)

define KPSS

def pp_test(timeseries, ttxt):

print(

’==============================The Phillips-Perron (PP) Test

==’)

print(ttxt)

print(’<<<The null hypothesis: the time series is stationary>>>’)

if ndiffs(timeseries, test=’pp’) > 0:

print(’Reject the Null hypothesis, the data is Non-Stationary’)

else:

print(’Failed to reject the null hypothesis, the data is Stationary’)

print(’The suggested order of Differencing is: ’ + str(ndiffs(timeseries, test=’kpss’)))

print(’===’)

plot

plotds(train_ts, nlag=50)

plottsd(train_ts, 144)

############## Evaluate mean and variance at mid values to test stationary status

R = math.trunc(no_of_observations / 2)

mean1, mean2 = train_ts.iloc[:R].mean(), train_ts.iloc[R:].mean()

var1, var2 = train_ts.iloc[:R].var(), train_ts.iloc[R:].var()

print(’mean1=%f, mean2=%f’ % (mean1, mean2))

print(’variance1=%f, variance2=%f’ % (var1, var2))

######################## Augmented Dickey-Fuller(ADF) Test

adft(train_ts[’Temp’], ’Checking the time series’)

kpss_test(train_ts[’Temp’], ’Checking the time series’)

pp_test(train_ts[’Temp’], ’Checking the time series’)

If Contradictory results of ADF and KPSS unit root tests

https://stats.stackexchange.com/questions/30569/what-is-the-difference-between-a-stationary-test-

and-a-unit-root

-test/235916#235916

How to get the order virtually https://www.youtube.com/watch?v=ZE_WGBe0_VU

QQ plot and probability plot

sm.qqplot(train_ts[’Temp’], line=’s’)

plt.show()

plt.boxplot(train_ts.Temp)

plt.show()

plt.hist(train_ts.Temp)

plt.show()

---Differencing 1

315

F_order_diff = train_ts.diff(1).dropna()

fig, ax = plt.subplots(2, sharex=True)

fig.set_size_inches(12, 10)

train_ts[’Temp’].plot(ax=ax[0], color=’b’)

ax[0].set_title(’Observations before differencing’)

F_order_diff.plot(ax=ax[1], color=’r’)

ax[1].set_title(’First-order differences ’)

plt.show()

plot the new thing

plot signal

plotds(F_order_diff, nlag=50)

adft(F_order_diff.Temp, ’Checking the First-order differences’)

kpss_test(F_order_diff.Temp, ’Checking the First-order differences’)

pp_test(F_order_diff.Temp, ’Checking the First-order differences’)

plt.hist(F_order_diff.Temp)

plt.show()

##Optimize ARMA parameters

tm = time.process_time()

aicVal = []

for ar in range(0, 3):

for ma in range(0, 3):

try:

arma_obj = ARMA(F_order_diff[’Temp’], order=(ar, ma))

arma_obj_fit = arma_obj.fit(disp=False)

aicVal.append([ar, ma, arma_obj_fit.aic])

labels = [’p’, ’q’, ’aic’]

rdf = pd.DataFrame.from_records(aicVal, columns=labels)

except ValueError:

pass

ARMA_t_elapsed_time_m = round(time.process_time() - tm, 4)

if AIC is negative

https://stats.stackexchange.com/questions/486/negative-values-for-aicc-corrected-akaike-

information-criterion/720

get the row of minimum value ’The minimizing the Akaike information criterion (AIC) : ’ +

aic = rdf.loc[rdf[’aic’].idxmin()] #

print(’Parameters with the lowest Akaike information criterion (AIC) : ’)

print(aic)

p_AR = int(aic[0])

q_MA = int(aic[1])

########## https://www.statsmodels.org/stable/examples/notebooks/generated/tsa_arma_0.html

tm = time.process_time()

arma_mod = sm.tsa.ARMA(train_ts, (p_AR, q_MA)).fit(disp=False)

ARMA_p_elapsed_time_m = round(time.process_time() - tm, 4)

print(arma_mod.summary())

316

print(arma_mod.aic, arma_mod.bic, arma_mod.hqic)

Normalatity test

print(sm.stats.durbin_watson(arma_mod.resid.values))

fig = plt.figure(figsize=(12, 8))

ax = fig.add_subplot(111)

ax = arma_mod.resid.plot(ax=ax);

plt.show()

resid = arma_mod.resid

print(’Normality test : ’ + str(stats.normaltest(resid)))

QQ plot and probability plot

fig = plt.figure(figsize=(12, 8))

ax = fig.add_subplot(111)

fig = sm.qqplot(resid, line=’q’, ax=ax, fit=True)

plt.show()

fig = plt.figure(figsize=(12, 8))

ax1 = fig.add_subplot(211)

fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=40, ax=ax1)

ax2 = fig.add_subplot(212)

fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)

plt.show()

predict_sunspots = arma_mod.predict(’2020-03-07 00:00:00’, ’2020-03-09 00:00:00’, dynamic=True)

print(predict_sunspots)

fig, ax = plt.subplots(figsize=(12, 8))

ax = ts.loc[’2020-03-03 00:00:00’:’2020-03-09 00:00:00’].plot(ax=ax)

fig = arma_mod.plot_predict(’2020-03-07 00:00:00’, ’2020-03-09 00:00:00’, dynamic=True, ax=ax, plot_

insample=False)

plt.show()

size = int(no_of_observations * 0.66)

print(size)

train, test = ts.iloc[:size, 0], ts.iloc[size:, 0]

train, test = X[0:size], X[size:len(X)]

history = [x for x in train]

predictions = list()

T_all = list()

for t in range(len(test)):

print(’x’)

model = ARMA(history, order=(p_AR, q_MA))

model_fit = model.fit(disp=False)

output = model_fit.forecast()

print(output)

yhat = output[0]

predictions.append(yhat)

317

obs = test[t]

history.append(obs)

T_all.append([float(str(yhat).lstrip(’[’).rstrip(’]’)), obs])

labels = [’predicted’, ’Observations’]

rdf2 = pd.DataFrame.from_records(T_all, columns=labels)

error = mean_squared_error(test, predictions)

ARMA_rmsth = round(sqrt(mean_squared_error(test, predictions)), 4)

plot

rdf2[[’predicted’, ’Observations’]].plot(figsize=(12, 8))

plt.title(’Temperature - Forecasting Model \n (ARMA - Prediction vs Observations)’,

fontsize=12, loc=’center’)

plt.xlabel(’Date - Time / each step = 10 min’)

plt.ylabel(’Temperature’)

plt.legend(loc=’best’)

plt.show()

##########ARIMA###########

tm = time.process_time()

aicVal = []

for d in range(1, 5):

for ari in range(0, 3):

for maj in range(0, 3):

try:

arima_obj = ARIMA(train_ts[’Temp’], order=(ari, d, maj))

arima_obj_fit = arima_obj.fit(disp=False)

aicVal.append([ari, d, maj, arima_obj_fit.aic])

labels = [’p’, ’d’, ’q’, ’aic’]

rdf = pd.DataFrame.from_records(aicVal, columns=labels)

except ValueError:

pass

ARIMA_t_elapsed_time_m = round(time.process_time() - tm, 4)

get the row of minimum value ’The minimizing the Akaike information criterion (AIC) : ’ +

aic = rdf.loc[rdf[’aic’].idxmin()] #

print(’Parameters with the lowest Akaike information criterion (AIC) : ’)

print(aic)

p_AR = int(aic[0])

d_DF = int(aic[1])

q_MA = int(aic[2])

ARIMA model

tm = time.process_time()

arima_mod = sm.tsa.ARMA(train_ts, (p_AR, d_DF, q_MA)).fit(disp=False)

ARIMA_p_elapsed_time_m = round(time.process_time() - tm, 4)

predict_sunspots = arima_mod.predict(’2020-03-07 00:00:00’, ’2020-03-09 00:00:00’, dynamic=True)

print(predict_sunspots)

fig, ax = plt.subplots(figsize=(12, 8))

318

ax = ts.loc[’2020-03-03 00:00:00’:’2020-03-09 00:00:00’].plot(ax=ax)

fig = arima_mod.plot_predict(’2020-03-07 00:00:00’, ’2020-03-09 00:00:00’, dynamic=True, ax=ax, plot

_insample=False)

plt.show()

size = int(no_of_observations * 0.66)

train, test = ts.iloc[:size, 0], ts.iloc[size:, 0]

history = [x for x in train]

predictions = list()

T_all = list()

for t in range(len(test)):

print(’x’)

model = ARIMA(history, order=(p_AR, d_DF, q_MA))

model_fit = model.fit(disp=False)

output = model_fit.forecast()

print(output)

yhat = output[0]

predictions.append(yhat)

obs = test[t]

history.append(obs)

T_all.append([float(str(yhat).lstrip(’[’).rstrip(’]’)), obs])

labels = [’predicted’, ’Observations’]

rdf2 = pd.DataFrame.from_records(T_all, columns=labels)

error = mean_squared_error(test, predictions)

ARIMA_rmsth = round(sqrt(mean_squared_error(test, predictions)), 4)

plot

rdf2[[’predicted’, ’Observations’]].plot(figsize=(12, 8))

plt.title(’Temperature - Forecasting Model \n (ARIMA - Prediction vs Observations)’,

fontsize=12, loc=’center’)

plt.xlabel(’Date - Time / each step = 10 min’)

plt.ylabel(’Temperature’)

plt.legend(loc=’best’)

plt.show()

print(’Time required to optimize ARMA model :’ + str(ARMA_t_elapsed_time_m))

print(’Time required to fit ARMA model :’ + str(ARMA_p_elapsed_time_m))

print(’ARMA Root Mean Square Error is :’ + str(format(ARMA_rmsth)))

print(’Time required to optimize ARIMA model :’ + str(ARIMA_t_elapsed_time_m))

print(’Time required to fit ARIMA model :’ + str(ARIMA_p_elapsed_time_m))

print(’ARIMA Root Mean Square Error is :’ + str(format(ARIMA_rmsth)))� �

319

A.4.3 SARIMA predictive model

Listing A.7: The configuration and programming details of SARIMA predictive

models using SARIMAX Python packages provided by Statsmodels.org (Seabold

& Perktold 2010).�
Import libraries

import itertools

import os

import time

import warnings

from math import sqrt

import matplotlib.pyplot as plt

import pandas as pd

import statsmodels.api as sm

from sklearn.metrics import mean_squared_error

Defaults

os.chdir(’DataBase’)

df = pd.read_csv(’HW-Dataset-Monnit.csv’, skiprows=0)[[’Date’, ’Value’]]

df[’Date’] = pd.to_datetime(df[’Date’], format=’%d/%m/%Y %I:%M %p’) # monnit

#df = pd.read_csv(’HW-Dataset-Thingful.csv’, skiprows=0)[[’ServerDate’, ’AmbientTemperature’]]

#df[’ServerDate’] = pd.to_datetime(df[’ServerDate’], format=’%Y-%m-%d %H:%M:%S’) # thingful

df.columns = [’R_Date’, ’Temp’]

df.set_index(’R_Date’, inplace=True)

df.sort_index(inplace=True, ascending=True)

df = df.resample(’10T’).mean().ffill()

ts = df[’2020-03-03 00:00:00’:’2020-03-07 00:00:00’]

plt.rcParams[’figure.figsize’] = (20.0, 10.0)

plt.rcParams.update({’font.size’: 12})

#plt.style.use(’ggplot’)

Define the d and q parameters to take any value between 0 and 1

q = d = range(0, 2)

Define the p parameters to take any value between 0 and 3

p = range(0, 4)

Generate all different combinations of p, q and q triplets

pdq = list(itertools.product(p, d, q))

Generate all different combinations of seasonal p, q and q triplets

seasonal_pdq = [(x[0], x[1], x[2], 4) for x in list(itertools.product(p, d, q))]

print(’Examples of parameter combinations for Seasonal ARIMA...’)

print(’SARIMA: {} x {}’.format(pdq[1], seasonal_pdq[1]))

print(’SARIMA: {} x {}’.format(pdq[1], seasonal_pdq[2]))

320

print(’SARIMA: {} x {}’.format(pdq[2], seasonal_pdq[3]))

print(’SARIMA: {} x {}’.format(pdq[2], seasonal_pdq[4]))

train_data = ts[:’2020-03-07 00:00:00’]

test_data = ts[’2020-03-06 00:00:00’:’2020-03-07 00:00:00’]

warnings.filterwarnings("ignore") # specify to ignore warning messages

AIC = []

SARIMAX_model = []

tm = time.process_time()

for param in pdq:

for param_seasonal in seasonal_pdq:

try:

mod = sm.tsa.statespace.SARIMAX(train_data,

order=param,

seasonal_order=param_seasonal,

enforce_stationarity=False,

enforce_invertibility=False)

results = mod.fit(disp=False) # to stop getting a lot of details

print(’SARIMAX{}x{} - AIC:{}’.format(param, param_seasonal, results.aic), end=’\r’)

AIC.append(results.aic)

SARIMAX_model.append([param, param_seasonal])

except:

continue

SARIMA_t_elapsed_time_m = round(time.process_time() - tm, 4)

print(’The smallest AIC is {} for model SARIMA{}x{}’.format(min(AIC), SARIMAX_model[AIC.index(min(

AIC))][0],

SARIMAX_model[AIC.index(min(AIC))][1]))

To fit the actual model using parameters set of with the lowest AIC

tm = time.process_time()

mod = sm.tsa.statespace.SARIMAX(train_data,

order=SARIMAX_model[AIC.index(min(AIC))][0],

seasonal_order=SARIMAX_model[AIC.index(min(AIC))][1],

enforce_stationarity=False,

enforce_invertibility=False)

results = mod.fit(disp=False)

SARIMA_p_elapsed_time_m = round(time.process_time() - tm, 4)

results.plot_diagnostics(figsize=(10, 7)) # model performance

plt.show()

pred0 = results.get_prediction(start=’2020-03-06 00:00:00’, dynamic=False)

pred0_ci = pred0.conf_int()

pred1 = results.get_prediction(start=’2020-03-06 00:00:00’, dynamic=True)

pred1_ci = pred1.conf_int()

ax = ts.plot(figsize=(12, 10))

pred0.predicted_mean.plot(ax=ax, label=’1-step-ahead Forecast (get_predictions, dynamic=False)’)

321

pred1.predicted_mean.plot(ax=ax, label=’Dynamic Forecast (get_predictions, dynamic=True)’)

plt.ylabel(’Temperature’)

plt.xlabel(’Date’)

plt.legend()

plt.show()

SARIMA_rmsth = round(sqrt(mean_squared_error(test_data, pred0.predicted_mean)), 4)

print(’Time required to optimize SARIMA model :’ + str(SARIMA_t_elapsed_time_m))

print(’Time required to fit SARIMA model :’ + str(SARIMA_p_elapsed_time_m))

print(’SARIMA Root Mean Square Error is :’ + str(format(SARIMA_rmsth)))

ARMA, ARIMA, SARIMA performance and RMS

ARMA_R = pd.read_csv(’ARMA_R.csv’)

print(ARMA_R)

A_Fit = ARMA_R[[’Th_ARMA_Fit’, ’Mo_ARMA_Fit’]]

AI_Fit = ARMA_R[[’Th_ARIMA_Fit’, ’Mo_ARIMA_Fit’]]

SAI_Fit = ARMA_R[[’Th_SARIMA_Fit’, ’Mo_SARIMA_Fit’]]

A_Opt = ARMA_R[[’Th_ARMA_Opt’, ’Mo_ARMA_Opt’]]

AI_Opt = ARMA_R[[’Th_ARIMA_Opt’, ’Mo_ARIMA_Opt’]]

SAI_Opt = ARMA_R[[’Th_SARIMA_Opt’, ’Mo_SARIMA_Opt’]]

fig = plt.figure(figsize=(12, 8))

A_Fit.plot()

AI_Fit.plot()

SAI_Fit.plot()

A_Opt.plot()

AI_Opt.plot()

SAI_Opt.plot()

plt.show()� �

A.4.4 GPR predictive model

Listing A.8: The configuration and programming details of using “GaussianPro-

cessRegressor” Python package in the GPR prediction model, Scikit-learn (Pe-

dregosa et al. 2011).�
import os

import time

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.gaussian_process.kernels import ConstantKernel as CK

from sklearn.gaussian_process.kernels import RBF

322

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from pmdarima.arima.utils import ndiffs

set current working directory

os.chdir(’DataBase’)

rms_list = []

def load_data(df):

https://www.geeksforgeeks.org/python-working-with-date-and-time-using-pandas/

months = []

obs_sums = []

counts = []

Convert date into minutes

D = df[’R_Date’].dt.day

h = df[’R_Date’].dt.hour

m = df[’R_Date’].dt.minute

h_float = D * 24 * 60 + h * 60 + m

obs_v = df.Temp

for date_t, obs_t in zip(h_float, obs_v):

if not months or date_t != months[-1]:

months.append(date_t)

obs_sums.append(obs_t)

counts.append(1)

else:

aggregate and produce average

obs_sums[-1] += obs_t

counts[-1] += 1

months = np.asarray(months).reshape(-1, 1)

avg_obs = np.asarray(obs_sums) / counts

return months, avg_obs

def toList(ts, n_steps):

To convert a time series to a 2 dimensional list of n_steps in each row and one depended

column

x = []

y = []

for i in range(n_steps, ts.shape[0]):

x.append(list(ts.iloc[i - n_steps:i - 1]))

y.append(ts.iloc[i])

x, y = np.array(x), np.array(y)

return x, y

df_a = pd.read_csv(’HW-Dataset-Monnit.csv’, skiprows=0)[[’Date’, ’Value’]]

323

df_a[’Date’] = pd.to_datetime(df_a[’Date’], format=’%d/%m/%Y %I:%M %p’) # monnit

#df_a = pd.read_csv(’HW-Dataset-Thingful.csv’, skiprows=0)[[’ServerDate’, ’AmbientTemperature’]]

#df_a[’ServerDate’] = pd.to_datetime(df_a[’ServerDate’], format=’%Y-%m-%d %H:%M:%S’) # thingful

df_a.columns = [’R_Date’, ’Temp’]

ts_s = df_a.loc[2:20]

ts_p = df_a.loc[0:22]

ts_t = df_a.loc[2:434]

#ts_t = df_a.loc[2:434]

load data

X, y = load_data(ts_s)

X1, y1 = load_data(ts_p)

Read the dataset into a pandas.DataFrame

print(’Shape of the data frame:’, df_a.shape)

mix_k = kernel = CK(1.0, (1e-4, 1e4)) * RBF(10, (1e-4, 1e4))

gp = GaussianProcessRegressor(kernel=mix_k, alpha=0, normalize_y=True)

gp.fit(X, y)

print("\nLearned kernel: %s" % gp.kernel_)

print("Log-marginal-likelihood: %.3f"

% gp.log_marginal_likelihood(gp.kernel_.theta))

X_ = np.linspace(X.min(), X.max() + 30, 1000)[:, np.newaxis]

y_pred, y_std = gp.predict(X_, return_std=True)

plt.plot(X_, y_pred, c=’r’)

plt.fill_between(X_[:, 0], y_pred - y_std, y_pred + y_std, alpha=0.5, color=’g’)

plt.xlim(X_.min(), X_.max())

plt.scatter(X1, y1, c=’b’)

plt.scatter(X, y, c=’r’)

plt.xlabel("Time (Minute)")

plt.ylabel(r"Temperature C")

plt.title(r"Gaussian Process Regression")

plt.tight_layout()

plt.show()

indep_data, dep_data = toList(ts_t[’Temp’], 2)

print(’Shape of the dataset:’, indep_data.shape, dep_data.shape)

Divide the dataset into training and testing using a fancy way

train_set = np.random.choice([True, False], len(dep_data), p=[.8, .2])

gpr

gpr = GaussianProcessRegressor()

t_loop = 25

for i in range(t_loop):

324

tm = time.process_time()

r2 =0

gpr = GaussianProcessRegressor(alpha=5,

n_restarts_optimizer=20,

kernel=mix_k)

gpr.fit(indep_data[train_set], dep_data[train_set]) #

~~ to indicate the false (20%) ratio

test_preds = gpr.predict(indep_data[~train_set]) # indep_data[~train_set]

elapsed_time_m = time.process_time() - tm

#r2 = r2_score(test_preds, dep_data[~train_set]) ~~Coefficient of determination

r2 = mean_squared_error(test_preds, dep_data[~train_set], squared=False)

rsid= test_preds - dep_data[~train_set]

rms_list.append((elapsed_time_m, r2, ndiffs(rsid, test=’adf’)))

print(elapsed_time_m,r2)

pd.DataFrame(rms_list,columns=[’Time_Mo’, ’RMS_Mo’, ’Stationary_Mo’]).to_csv("GPR.csv")

print(rms_list)

f, ax = plt.subplots(figsize=(10, 7), nrows=3)

f.tight_layout()

ax[0].plot(range(len(test_preds)), test_preds, label=’Predicted Values’)

ax[0].plot(range(len(test_preds)), dep_data[~train_set], label=’Actual Values’)

ax[0].set_title("Predicted vs Actuals")

ax[0].legend(loc=’best’)

ax[1].plot(range(len(test_preds)), test_preds - dep_data[~train_set])

ax[1].set_title("Plotted Residuals")

ax[2].hist(test_preds - dep_data[~train_set])

ax[2].set_title("Histogram of Residuals")

plt.show()

#r2 = r2_score(test_preds, dep_data[~train_set]) Coefficient of determination

r2 = mean_squared_error(test_preds, dep_data[~train_set], squared=False)

print(’R-squared on validation set of the original Temperature:’, r2)

GPR_R = pd.read_csv(’GPR-th.csv’,header = 0,encoding = ’unicode_escape’)

A_Fit = GPR_R[[’Time_Mo’, ’Time_Th’]]

fig = plt.figure(figsize=(12, 8))

A_Fit.plot()

plt.show()

r_Fit = GPR_R[[’RMS_Mo’, ’RMS_Th’]]

fig = plt.figure(figsize=(12, 8))

r_Fit.plot()

plt.show()� �

325

A.4.5 LSTM predictive model

Listing A.9: The configuration and programming details of using Keras Python

package to construct the LSTM prediction model (Pedregosa et al. 2011).�
import os

import time

import numpy as np

import pandas as pd

import seaborn as sns

from keras.callbacks import ModelCheckpoint

from keras.layers import Dense, Input, Dropout

from keras.layers.recurrent import LSTM

from keras.models import Model

from keras.models import load_model

from matplotlib import pyplot as plt

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import MinMaxScaler

def toList(ts, n_steps):

To convert a time series to a 2 dimensional list of n_steps in each row and one depended

column

x = []

y = []

for i in range(n_steps, ts.shape[0]):

x.append(list(ts.iloc[i - n_steps:i - 1]))

y.append(ts.iloc[i])

x, y = np.array(x), np.array(y)

return x, y

set current working directory

os.chdir(’DataBase’)

#df = pd.read_csv(’HW-Dataset-Monnit.csv’, skiprows=0)[[’Date’, ’Value’]]

#df[’Date’] = pd.to_datetime(df[’Date’], format=’%d/%m/%Y %I:%M %p’) # monnit

df = pd.read_csv(’HW-Dataset-Thingful.csv’, skiprows=0)[[’ServerDate’, ’AmbientTemperature’]]

df[’ServerDate’] = pd.to_datetime(df[’ServerDate’], format=’%Y-%m-%d %H:%M:%S’) # thingful

df.columns = [’R_Date’, ’Temp’]

df.set_index(’R_Date’, inplace=True)

df.sort_index(inplace=True, ascending=True)

df = df.resample(’10T’).mean().ffill()

print(’Shape of the data frame:’, df.shape)

326

Box plot

plt.figure()

g = sns.boxplot(df[’Temp’])

g.set_title(’Box plot of Temperature - Sensor’)

plt.figure()

sns.lineplot(x=’Year’, y=’Fatalities’, data=df[’PRES’], hue=’Twin_Cities’)

g = sns.lineplot(data=df[’Temp’])

g.set_title(’Time series of Temperature - Sensor’)

g.set_xlabel(’Index’)

g.set_ylabel(’Temperature readings in C’)

plt.show()

mixmax to scale the dataset

variable within [0,1].

scaler = MinMaxScaler(feature_range=(0, 1))

df[’scaled_Temp’] = scaler.fit_transform(np.array(df[’Temp’]).reshape(-1, 1))

print(df.head())

Splitting the dataset into train and validation.

df_train = df[:’2020-03-12 00:00:00’]

df_val = df[’2020-03-12 00:01:00’:]

print(’Shape of train:’, df_train.shape)

print(’Shape of test:’, df_val.shape)

Reset and rebuild the index of the validation set

df_val.reset_index(drop=True, inplace=True)

Plot the scaled training dataset

plt.figure()

g = sns.lineplot(data=df_train[’scaled_Temp’], color=’b’)

g.set_title(’Time series of scaled temperature in train set’)

g.set_xlabel(’Index’)

g.set_ylabel(’Scaled temperature readings’)

plt.figure()

g = sns.lineplot(data=df_val[’scaled_Temp’], color=’r’)

g.set_title(’Time series of scaled temperature in validation set’)

g.set_xlabel(’Index’)

g.set_ylabel(’Scaled temperature readings’)

plt.show()

X_train, y_train = toList(df_train[’scaled_Temp’], 8)

print(’Shape of train arrays:’, X_train.shape, y_train.shape)

X_val, y_val = toList(df_val[’scaled_Temp’], 8)

print(’Shape of validation arrays:’, X_val.shape, y_val.shape)

The input to RNN layers must be of shape (number of samples, number of timesteps, number of

features per timestep).

327

The number of features per timestep is one (Temperature).

X_train, X_val = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)), X_val.reshape(

(X_val.shape[0], X_val.shape[1], 1))

print(’Shape of 3D arrays:’, X_train.shape, X_val.shape)

Defining the model parameters using the Keras Functional API.

Define input layer which has shape (None, 7) and of type float32. None indicates the number of

instances

input_layer = Input(shape=(7, 1), dtype=’float32’)

lstm_layer = LSTM(64, input_shape=(7, 1), return_sequences=False)(input_layer)

dropout_layer = Dropout(0.2)(lstm_layer)

The output layer gives prediction for the next day.

output_layer = Dense(1, activation=’linear’)(dropout_layer)

The model object

ts_model = Model(inputs=input_layer, outputs=output_layer)

ts_model.compile(loss=’mse’, optimizer=’adam’)

ts_model.summary()

save_weights_at = os.path.join(’keras_models’, ’LSTM-Temp.hdf5’)

#print(save_weights_at)

save_best = ModelCheckpoint(save_weights_at, monitor=’val_loss’, verbose=0,

save_best_only=True, save_weights_only=False, mode=’min’,

period=1)

t_loop = 25

print(df_val[’Temp’].iloc[8:])

rms_list = []

for i in range(t_loop):

tm = time.process_time()

ts_model.fit(x=X_train, y=y_train, batch_size=16, epochs=20, verbose=1, callbacks=[save_best],

validation_data=(X_val, y_val), shuffle=True)

best_model = load_model(os.path.join(’keras_models’, ’LSTM-Temp.hdf5’))

preds = best_model.predict(X_val)

pred_Temp = scaler.inverse_transform(preds)

pred_Temp = np.squeeze(pred_Temp)

elapsed_time_m = round(time.process_time() - tm, 4)

R-squared is also calculated for the predictions on the original variable.

###r2 = r2_score(df_val[’Temp’].iloc[8:], pred_Temp)

#r2 = mean_squared_error(df_val[’Temp’].iloc[8:], pred_Temp, squared=False)

#print(r2)

#rms_list.append((elapsed_time_m, r2))

To plot the first 50 actual and predicted values of temperature.

#pd.DataFrame(rms_list,columns=[’Time_Mo’, ’RMS_Mo’]).to_csv("LSTM_r.csv")

plt.figure(figsize=(5.5, 5.5))

plt.plot(range(48), df_val[’Temp’].iloc[8:56], linestyle=’-’, marker=’*’, color=’r’)

#pd.DataFrame(range(48), df_val[’Temp’].iloc[8:56]).to_csv("LSTM_Out.csv")

plt.plot(range(48), pred_Temp[:48], linestyle=’-’, marker=’.’, color=’b’)

328

#pd.DataFrame(range(48), pred_Temp[:48]).to_csv("LSTM_predicted.csv")

plt.legend([’Actual’, ’Predicted’], loc=2)

plt.title(’Actual vs Predicted Temperature’)

plt.ylabel(’Temperature’)

plt.xlabel(’Index’)

plt.show()

Define anomalies

LSTM_list = []

LSTM_list = list(zip(range(48), df_val[’Temp’].iloc[8:56], pred_Temp[:48]))

LSTM_DF= pd.DataFrame(LSTM_list, columns=[’Observation_Seq’,’Actual’,’Predicted’])

rmse=mean_squared_error(df_val[’Temp’].iloc[8:56], pred_Temp[:48], squared=False)

print(’RMSE on validation set of the original Temperature:’, rmse)

r2 = r2_score(df_val[’Temp’].iloc[8:56], pred_Temp[:48])

print(’R-squared on validation set of the original Temperature:’, r2)

LSTM_DF.to_csv("LSTM_r.csv")

LSTM_DF[’Prediction_Error’] = abs(LSTM_DF[’Predicted’]-LSTM_DF[’Actual’])

LSTM_DF[’Status’] = np.where(LSTM_DF[’Prediction_Error’]> 0.34, ’Anomaly’, ’Pass’)

print(LSTM_DF)

plt.savefig(’B07887_05_11.png’, format=’png’, dpi=300)

ARMA_R = pd.read_csv(’LSTM_th.csv’, header=0, encoding=’unicode_escape’)

#print(ARMA_R)

A_Fit = ARMA_R[[’Th_rms’, ’Mo_rms’]]

AI_Fit = ARMA_R[[’Th_time’, ’Mo_time’]]

fig = plt.figure(figsize=(12, 8))

A_Fit.plot()

AI_Fit.plot()

plt.show()� �

A.4.6 K-means and DBSCAN Partitioning Models

Listing A.10: The configuration and programming details of using the “clus-

ter.KMeans” and the “cluster.DBSCAN” Python packages to construct the spatial

partitioning models (Pedregosa et al. 2011).�
import os

import time

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import scipy.spatial as spatial

from PIL import Image

329

from geopy.distance import great_circle

from shapely.geometry import MultiPoint

from sklearn import metrics

from sklearn.cluster import DBSCAN

from sklearn.cluster import KMeans

def get_map(x, y, z, size, filename):

import urllib.request

static_map = "https://harrywood.dev.openstreetmap.org/staticmaplite/staticmap.php?center

={0},{1}&zoom={2}&size={3}x{3}&maptype=mapnik".format(

y, x, z, size)

static_map = "https://www.mapquestapi.com/staticmap/v4/getmap?key=KK14fV0hLMfNuNiHPp9m86

uAAKqKpJev&" \

"size=1000,800&type=map&imagetype=jpg&" \

"zoom=10&scalebar=false&traffic=false&" \

"bestfit=51.3662,-0.4058,51.6892,0.2431" \

"&xis=https://s.aolcdn.com/os/mapquest/yogi/icons/poi-active.png,1,c,0,0&ellipse=

fill:0x70ff0000|color:0xff0000|width:2|40.00,-105.25,40.04,-105.30"

static_map_filename, headers = urllib.request.urlretrieve(static_map, filename)

return static_map_filename

def geomap(data, zoom=10, point_size=18, point_color=’r’, point_alpha=1):

corrections to match geo with static map

z = zoom

picsize = 1200

wx = 1.0 * 360 * (picsize / 256) / (2 ** z)

wy = 0.76 * 360 * (picsize / 256) / (2 ** z)

center of London

y = 51.5277

x = -0.0764

x_min, x_max = x - wx / 2, x + wx / 2

y_min, y_max = y - wy / 2, y + wy / 2

static_map_filename = os.path.join(’’, ’nyc_staticmap_{}_{}.png’.format(z, picsize))

if os.path.isfile(static_map_filename) == False:

get_map(x, y, z, picsize, static_map_filename)

img = Image.open(static_map_filename)

add the static map

plt.imshow(img, zorder=0, extent=[-0.4008, 0.2481, 51.3662, 51.6892], interpolation=’none’,

aspect=’auto’)

add the scatter plot of events

plt.plot(

data[’Longitude’],

data[’Latitude’],

’.’,

markerfacecolor=point_color,

330

markeredgecolor=’b’,

markersize=point_size,

alpha=point_alpha)

limit the plot to the given box

plt.xlim(-0.4008, 0.2481)

plt.ylim(51.3662, 51.6892)

def voronoi_polygons_2d(vor, radius=None):

if vor.points.shape[1] != 2:

raise ValueError("Requires 2D input")

new_regions = []

new_vertices = vor.vertices.tolist()

center = vor.points.mean(axis=0)

if radius is None:

radius = vor.points.ptp().max() * 2

Construct a map containing all ridges for a given point

all_ridges = {}

for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):

all_ridges.setdefault(p1, []).append((p2, v1, v2))

all_ridges.setdefault(p2, []).append((p1, v1, v2))

Reconstruct infinite regions

for p1, region in enumerate(vor.point_region):

vertices = vor.regions[region]

if all([v >= 0 for v in vertices]):

finite region

new_regions.append(vertices)

continue

reconstruct a non-finite region

ridges = all_ridges[p1]

new_region = [v for v in vertices if v >= 0]

for p2, v1, v2 in ridges:

if v2 < 0:

v1, v2 = v2, v1

if v1 >= 0:

finite ridge: already in the region

continue

Compute the missing endpoint of an infinite ridge

t = vor.points[p2] - vor.points[p1] # tangent

t /= np.linalg.norm(t)

n = np.array([-t[1], t[0]]) # normal

midpoint = vor.points[[p1, p2]].mean(axis=0)

331

direction = np.sign(np.dot(midpoint - center, n)) * n

far_point = vor.vertices[v2] + direction * radius

new_region.append(len(new_vertices))

new_vertices.append(far_point.tolist())

sort region counterclockwise

vs = np.asarray([new_vertices[v] for v in new_region])

c = vs.mean(axis=0)

angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0])

new_region = np.array(new_region)[np.argsort(angles)]

finish

new_regions.append(new_region.tolist())

return new_regions, np.asarray(new_vertices)

def get_centermost_point(cluster):

centroid = (MultiPoint(cluster).centroid.x, MultiPoint(cluster).centroid.y)

centermost_point = min(cluster, key=lambda point: great_circle(point, centroid).m)

return tuple(centermost_point)

Load data

os.chdir(’DataBase’)

df = pd.read_csv(’th_temp_sensors.csv’, encoding=’utf-8’)

data = df[[’Longitude’, ’Latitude’]]

Plotting sensor-nodes over the Map

fig = plt.figure()

fig.set_size_inches(20, 20)

geomap is responsible for downloading the map

geomap(df)

plt.title(’Sensor-nodes distribution’)

plt.show()

Determining the best K for K-means

scores = []

k_list = []

DB_list = []

range_K = np.arange(2, 20) # change to 359 ~~ Change back to 359

silhouette_score = -1

K_best = 0

K_model = None

K_clusters = None

for i in range_K:

Train the model

tm = time.process_time()

kmeans = KMeans(init=’k-means++’, n_clusters=i, n_init=10)

kmeans.fit(df[[’Longitude’, ’Latitude’]])

score = metrics.silhouette_score(df[[’Longitude’, ’Latitude’]], kmeans.labels_,

metric=’euclidean’, sample_size=len(df[[’Longitude’, ’Latitude

’]]))

332

K_means_elapsed_time_m = round(time.process_time() - tm, 4)

k_list.append((K_means_elapsed_time_m))

print("Number of clusters =", i)

print("Silhouette score =", score)

scores.append(score)

if score > silhouette_score:

silhouette_score = score

K_best = i

K_model = kmeans

K_clusters = K_model.cluster_centers_

Plot scores

plt.figure()

plt.bar(range_K, scores, width=0.6, color=’b’, align=’center’)

print("The best Silhouette score is : ", silhouette_score, " k = ", K_best)

plt.title(’K-means Silhouette score vs No. of clusters, k=’ + str(K_best))

plt.show()

print(’K-mean++ is Done ! Ok *_^’)

compute Voronoi tesselation

vor = spatial.Voronoi(K_clusters)

compute regions

regions, vertices = voronoi_polygons_2d(vor)

prepare figure

fig = plt.figure()

fig.set_size_inches(20, 20)

geomap

geomap(df[[’Longitude’, ’Latitude’]], 13, 2, ’k’, 0.1)

centroids

plt.plot(K_clusters[:, 0], K_clusters[:, 1], ’bo’, markersize=10)

colorize and plot the boundaries

for region in regions:

polygon = vertices[region]

plt.fill(*zip(*polygon), alpha=0.4)

plt.show()

DBSCAN

Define epsilon as 6371.0088 kilometers, converted to radians for use by Haversine

kms_per_radian = 6371.0088

The maximum distance between two samples for them to be considered as in the same neighborhood.

epsilon = 1.8 / kms_per_radian # Initial value

Find the best epsilon

eps_grid = np.linspace(0.2, 4, num=40)

s_scores = []

e_best = eps_grid[0]

silhouette_score_max = -1

DB_model_best = None

333

DB_labels_best = None

for eps in eps_grid:

Train DBSCAN clustering model

tm = time.process_time()

DBS_model = DBSCAN(eps=eps / kms_per_radian, min_samples=2, algorithm=’ball_tree’, metric=’

haversine’).fit(

np.radians(df[[’Longitude’, ’Latitude’]]))

Extract labels

DBS_labels = DBS_model.labels_

Extract performance metric

s_score = round(metrics.silhouette_score(data, DBS_labels), 6)

DB_elapsed_time_m = round(time.process_time() - tm, 4)

DB_list.append((DB_elapsed_time_m))

s_scores.append(s_score)

print("Epsilon:", eps, " --> silhouette score:", s_score)

if s_score > silhouette_score_max:

silhouette_score_max = s_score

eps_best = eps

DB_model_best = DBS_model

DB_labels_best = DBS_labels

#print(DB_labels_best)

df[’cluster_label’] = DB_labels_best

df.to_csv(’th_temp_sensors_labels.csv’)

db_labels = sorted(set(DB_labels_best))

fig = plt.figure()

fig.set_size_inches(20, 20)

empty = pd.DataFrame(columns=[’Longitude’, ’Latitude’])

geomap(empty, 13, 2, ’k’, 0.1)

convex hulls for every cluster

for k in db_labels:

xy = data[DB_model_best.labels_ == k]

plt.plot(xy[’Longitude’], xy[’Latitude’], ’kD’ if k < 0 else ’o’, markersize=10)

if k >= 0:

xy = data[DB_model_best.labels_ == k][[’Longitude’, ’Latitude’]].reset_index(drop=True)

try:

hull = spatial.ConvexHull(xy.values)

for simplex in hull.simplices:

plt.plot(xy.iloc[simplex][’Longitude’], xy.iloc[simplex][’Latitude’], ’b-’, lw=5)

except:

pass

plt.show()

Plot silhouette scores vs epsilon

plt.figure()

334

plt.bar(eps_grid, s_scores, width=0.06, color=’b’, align=’center’)

plt.title(’Silhouette score vs epsilon, Best epsilon = ’ + str(eps_best))

plt.show()

Best params

print("\nBest epsilon =", eps_best)

Associated model and labels for best epsilon

Check for unassigned datapoints in the labels

offset = 0

if -1 in DB_labels_best:

offset = 1

Number of clusters in the data

num_clusters = len(set(DB_labels_best)) - offset

print("\nEstimated number of clusters =", num_clusters)

Time plot plot

plt.plot(k_list)

plt.show()

plt.plot(DB_list)

plt.show()� �

A.4.7 DTW and K-Shape Models

Listing A.11: The programming aspects of using both DTW and K-Shape models

based on the Python package tslearn.clustering provided by Scikit-learn (Pedregosa

et al. 2011).�
import os

import time

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from pandas import read_csv

from tslearn.clustering import KShape, TimeSeriesScalerMeanVariance

from tslearn.clustering import TimeSeriesKMeans

from tslearn.utils import to_time_series_dataset

dtw_list = []

KS_list = []

TSC_range = np.arange(1, 21)

os.chdir(’DataBase’)

this is the only line to be changed for a different dataset

##

df = read_csv(’SensorHistory.csv’, header=0, squeeze=True)[[’Date’, ’SensorID’, ’Value’]]

335

df = read_csv(’th_temp_weather_sensors_2d.csv’, header=0, squeeze=True)[[’UpdatedAt’, ’id’, ’

Temperature’]]

##

labeling the columns

df.columns = [’Date’, ’SensorID’, ’Value’]

Fixing the date column to the correct datetime format

##

df[’Date’] = pd.to_datetime(df[’Date’], format=’%d/%m/%Y %I:%M %p’) # for the indoor sensors

df[’Date’] = pd.to_datetime(df[’Date’],

format=’%Y-%m-%d %H:%M:%S’) # //stackoverflow.com/questions/1759455/how

-can-i-account-for-period-am-pm-with-datetime-strptime

##

sort the data properly

df.sort_values(by=[’SensorID’, ’Date’], inplace=True, ascending=False)

df[’Date’] = pd.to_datetime(df[’Date’], unit=’s’)

df = df.set_index([’Date’])

res = df.groupby(’SensorID’).resample(’10min’).mean().reset_index(

’Date’).ffill() # //stackoverflow.com/questions/51705583/pandas-resample-timeseries-data-to-15-

mins-and-45-mins-using-multi-index-or-co

res[’SensorID’] = res.index.astype(str)

df = res[[’Date’, ’SensorID’, ’Value’]]

df.reset_index(drop=True, inplace=True)

df = df.set_index([’Date’])

#print(df)

print(’Data processing --> pivot’)

chech why df is their https://stackoverflow.com/questions/42134486/typeerror-pivot-table-got-

multiple-values-for-keyword-argument-values

pivot_df = pd.pivot_table(df, index=["Date"], columns=["SensorID"], values=["Value"], aggfunc=np.

mean).ffill(

axis=1).bfill(axis=1)

#pivot_df.to_csv(’PythonExport_3.csv’, sep=’,’)

Drop the null value

pivot_df = pivot_df.dropna(how=’any’,

axis=0) # //stackoverflow.com/questions/44548721/remove-row-with-null-

value-from-pandas-data-frame/44548976

stacked_df = pivot_df.stack()

#print(stacked_df)

print(’Data processing --> To time series’)

source: https://stackoverflow.com/questions/55662705/how-to-transfer-a-data-frame-column-into-the-

format-that-tslearn-needs

Sensor_data = stacked_df.groupby(’SensorID’).agg(list)[’Value’] # .to_numpy()

X_train = to_time_series_dataset(Sensor_data)

print(np.argwhere(np.isnan(X_train)))

print(X_train.shape)

Y_train = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_train)

336

Y_train = TimeSeriesScalerMeanVariance().fit_transform(X_train)

##

ks = TimeSeriesKMeans(n_clusters=2, metric="dtw", random_state=0)

print(’Fitting DTW Model.... it usually takes a while’)

for i in TSC_range:

tm = time.process_time()

y_pred = ks.fit_predict(Y_train)

DTW_elapsed_time_m = round(time.process_time() - tm, 4)

dtw_list.append((DTW_elapsed_time_m))

pd.DataFrame(dtw_list).to_csv("TSC_DTW.csv")

#dfs = pd.DataFrame(y_pred)

#dfs.to_csv(’DTW_X.csv’, sep=’,’)

##

print(km.cluster_centers_)

print(km.init)

sz = Y_train.shape[1]

Euclidean k-means

###

ks = KShape(n_clusters=2, verbose=False, random_state=0)

print(’Fitting the Model.... it usually takes a while’)

y_pred = ks.fit_predict(Y_train)

###

print(y_pred[1])

print(’Plotting.... it usually takes a while also!!’)

plt.figure(figsize=(24, 20))

for yi in range(2):

plt.subplot(2, 1, 1 + yi)

for xx in Y_train[y_pred == yi]:

plt.plot(xx.ravel(), "b-", alpha=.4)

plt.plot(ks.cluster_centers_[yi].ravel(), "r-")

plt.xlim(0, sz)

plt.ylim(-4, 4)

plt.title("Cluster %d" % (yi + 1))

plt.tight_layout()

print(’It should show something very soon...’)

plt.show()

##

ks = KShape(n_clusters=2, verbose=False, random_state=0)

for i in TSC_range:

print(’Fitting KS Model.... it usually takes a while’)

tm = time.process_time()

y_pred = ks.fit_predict(Y_train)

KS_elapsed_time_m = round(time.process_time() - tm, 4)

KS_list.append((KS_elapsed_time_m))

pd.DataFrame(KS_list).to_csv("TSC_KS.csv")

337

###

print(y_pred[1])

print(’Plotting.... it usually takes a while also!!’)

plt.figure(figsize=(24, 20))

for yi in range(2):

plt.subplot(2, 1, 1 + yi)

for xx in Y_train[y_pred == yi]:

plt.plot(xx.ravel(), "b-", alpha=.4)

plt.plot(ks.cluster_centers_[yi].ravel(), "r-")

plt.xlim(0, sz)

plt.ylim(-4, 4)

plt.title("Cluster %d" % (yi + 1))

plt.tight_layout()

print(’It should show something very soon...’)

plt.show()� �

A.4.8 Characteristics (features)-based Model

Listing A.12: The programming aspects of using the Python tsfresh package pro-

vided by (Christ et al. 2018).�
import os

import time

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from pandas import read_csv

from sklearn.cluster import KMeans

from tsfresh.feature_extraction import extract_features

from tsfresh.feature_extraction.settings import EfficientFCParameters

FB_list = []

TSC_range = np.arange(1, 2)

os.chdir(’C:\\Users\\DellPC\\PycharmProjects\\PhDProject\\DataBase’)

df = read_csv(’th_temp_weather_sensors_2d.csv’, header=0, index_col=’R_date’, squeeze=True)

df = df.sort_index()

df.rename(columns={’Temperature’: ’Value’,’id’:’SensorID’}, inplace=True)

settings_time = EfficientFCParameters() # ComprehensiveFCParameters()# EfficientFCParameters()#

MinimalFCParameters() #ComprehensiveFCParameters()# # TimeBasedFCParameters()#

MinimalFCParameters() #EfficientFCParameters() #

for i in TSC_range:

338

X_tsfresh = extract_features(df, column_id="SensorID", column_value=’Value’, # column_kind=’

kind’

default_fc_parameters=settings_time

) # .settings.from_columns(’Value__absolute_sum_of_changes’,

columns_to_ignore=None)

X_tsfresh.drop(columns, inplace=True, axis=1)

X_tsfresh.to_csv(’PythonExport_testt.csv’, sep=’,’)

kmeans = KMeans(n_clusters=2)

X_training = X_tsfresh[

[’Value__absolute_sum_of_changes’

,’Value__maximum’, ’Value__mean’, ’Value__median’, ’Value__minimum’, ’Value__standard_

deviation’,

’Value__variance’

]]

df.Gene1 = df.Gene1 + 1

X_training[’Value__absolute_sum_of_changes’] = X_training[’Value__absolute_sum_of_changes’].

astype(’float64’)

X_training[’Value__absolute_sum_of_changes’] = X_training[’Value__absolute_sum_of_changes’] / (

X_training[’Value__absolute_sum_of_changes’] + 1)

print (X_training)

print(’Fitting F-B Model.... it usually takes a while’)

tm = time.process_time()

y = kmeans.fit_predict(X_training)

FB_elapsed_time_m = round(time.process_time() - tm, 4)

FB_list.append((FB_elapsed_time_m))

pd.DataFrame(FB_list).to_csv("TSC_FB.csv")

X_tsfresh[’Cluster’] = y

X_tsfresh.to_csv(’PythonExport_X_tsfresh.csv’, sep=’,’)

df_indoor = X_tsfresh[X_tsfresh[’Cluster’] < 1]

df_outdoor = X_tsfresh[X_tsfresh[’Cluster’] >= 1]

fig, ax = plt.subplots(figsize=(10, 7), nrows=2, ncols=2)

plt.suptitle("The main extracted features from the time-series of one indoor and three "

"outdoor temperature sensors", y=-1)

#ideal dataset only

fig.tight_layout()

ax[0, 0].scatter(df_indoor.iloc[:, 2], df_indoor.iloc[:, 2], label=’Cluster 1’, marker="*", s=80)

ax[0, 0].scatter(df_outdoor.iloc[:, 2], df_outdoor.iloc[:, 2], label=’Cluster 2’, marker="*", s

=80)

ax[0, 0].set_title("Mean value")

ax[0, 0].legend(loc=’best’)

ax[0, 1].scatter(df_indoor.iloc[:, 3], df_indoor.iloc[:, 3], label=’Cluster 1’, marker=">", s=80)

339

ax[0, 1].scatter(df_outdoor.iloc[:, 3], df_outdoor.iloc[:, 3], label=’Cluster 2’, marker="<", s

=80)

ax[0, 1].set_title("Median")

ax[0, 1].legend(loc=’best’)

ax[1, 0].scatter(df_indoor.iloc[:, 5], df_indoor.iloc[:, 5], label=’Cluster 1’, marker=">", s=80)

ax[1, 0].scatter(df_outdoor.iloc[:, 5], df_outdoor.iloc[:, 5], label=’Cluster 2’, marker=">", s

=80)

ax[1, 0].set_title("Standard Deviation")

ax[1, 0].legend(loc=’best’)

ax[1, 1].scatter(df_indoor.iloc[:, 1], df_indoor.iloc[:, 7], label=’Cluster 1’, marker=".", s=80)

ax[1, 1].scatter(df_outdoor.iloc[:, 1], df_outdoor.iloc[:, 7], label=’Cluster 2’, marker=".", s

=80)

ax[1, 1].set_title("Variance")

ax[1, 1].legend(loc=’best’)

plt.show()

i = 0

fig, axs = plt.subplots(len(X_tsfresh) // 4 + 1, 4, figsize=(14, 98), subplot_kw=dict(projection=’

polar’))

fig.tight_layout()

fig.suptitle(’Sensors time series polar plots’, y=1, fontsize=10)

for index, row in X_tsfresh.iterrows():

if row[’Cluster’] == 1:

C = ’r’

else:

C = ’b’

SData = df[df.SensorID == index]

axs[i // 4, i % 4].plot(SData[’R_id’], SData[’Value’], c=C)

i += 1

plt.show()

i = 0

fig, axs = plt.subplots(len(X_tsfresh) // 4 + 1, 4, figsize=(14, 98))

fig.tight_layout()

fig.suptitle(’Sensors time series plots’, y=1, fontsize=10)

for index, row in X_tsfresh.iterrows():

if row[’Cluster’] == 1:

C = ’r’

else:

C = ’b’

SData = df[df.SensorID == index]

axs[i // 4, i % 4].plot(SData[’Value’], c=C)

i += 1

340

plt.show()

i = 0

fig, axs = plt.subplots(len(X_tsfresh) // 4 + 1, 4, figsize=(14, 98))

fig.tight_layout()

fig.suptitle(’Sensors time series Boxplots’, y=1, fontsize=10)

for index, row in X_tsfresh.iterrows():

SData = df[df.SensorID == index]

axs[i // 4, i % 4].boxplot(SData[’Value’])

i += 1

plt.show()

To plot everything in one place

for index, row in X_tsfresh.iterrows():

if row[’Cluster’] == 1:

C = ’r’

else:

C = ’b’

PData = df[df.SensorID == index]

PData.reset_index(inplace=True)

plt.plot(PData.index, PData[’Value’], c=C)

plt.show()

TSC_L = pd.read_csv(’TSC_list_2.csv’)

A_Fit = TSC_L[[’DTW’, ’Feature-based’]]

B_Fit = TSC_L[[’K-Shape’, ’Feature-based’]]

fig = plt.figure(figsize=(12, 8))

A_Fit.plot()

B_Fit.plot()

plt.show()

TSC_L = pd.read_csv(’TSC_list_7.csv’)

A_Fit = TSC_L[[’DTW’, ’Feature-based’]]

B_Fit = TSC_L[[’K-Shape’, ’Feature-based’]]

fig = plt.figure(figsize=(12, 8))

A_Fit.plot()

B_Fit.plot()

plt.show()� �

341

Appendix B

Research Integrity and Technology RI

Completion Certificate

342

CERTIFICATE of ACHIEVEMENT
This is to certify that

AHMED ALWAN
has completed the course

Research Integrity Modules

24 February 2018
End of course quiz - Engineering and Technology Grade: 95.00 %

University of East London

Powered by TCPDF (www.tcpdf.org)

344

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Author's declaration
	Introduction
	Cyber-Physical Systems
	Smart Cities as Large-Scale CPSs
	Research Motivation
	The Research Aim
	The Research Questions and Objectives
	Novelty of Research
	Research Boundaries
	Research Structure

	Literature Review
	Data Quality Concepts and Terminology
	Accuracy
	Time-Related Accuracy (Timeliness)
	Completeness (Completability)
	Consistency

	Data Quality Challenges in Large-Scale CPSs, a Systematic Literature Review
	Review Motivation / Introduction
	Review Process and Methodology
	Review Conduct and Primary Studies Selection
	RQ1: Data Quality Challenges in Large-Scale CPSs.
	RQ2: Data Mining and Data Quality Management in Large-Scale CPSs.
	RQ3: Unaddressed Data Quality Management Challenges in Large-Scale CPSs and The Research Gap.

	The Research Questions
	Summary

	System Design (Methodology)
	Overview of Research Paradigms
	Empirical Research Methods
	Quantitative
	Qualitative
	Mixed-Method (Triangulation)

	Empirical Research Strategy
	Experimental
	Case Study
	Choosing the Research Methodology

	System Design and Development Phases
	System Analysis and Design
	Data Acquisition Unit
	Data Quality Assessment Unit
	Selecting Data Analysing Methods
	Time-Series Decomposition

	Online Mode - Predictive Analysis Models
	Simple Forecasting Methods
	Holt-Winters Seasonal
	ARMA, ARIMA and Seasonal ARIMA Models
	Gaussian Process Regression
	Long Short-Term Memory Networks

	Online Mode – Anomaly Analysis Models
	Distance-Based Spatial Clustering (K-means)
	Density-Based Spatial Clustering (DBSCAN)

	Online Mode - Timestamp Analysis (Temporal Consistency)
	Offline Mode - Time-series Clustering
	Dynamic Time Warping
	K-Shape
	Characteristic-Based Time-Series Clustering

	Offline Mode – Timestamp Analysis (Spatial Attributes Consistency)
	Summary

	Implementation and Results
	Data Acquisition and Data Process
	Sensor Node Networks
	Datasets
	Software Framework

	Online-Mode Data Quality Assessment
	Predictive Analysis Models
	Anomaly Analysis Models
	Timestamp Analysis (Temporal Consistency)

	Offline-Mode Data Quality Assessment
	Time-Series Clustering Models
	Timestamp Analysis Model (Spatial Attributes Consistency)

	Discussion and Summary
	The Data Acquisition Unit (Layers 1 and 2)
	The Data Quality Assessment Unit

	Conclusions and Future Work
	Revisiting the Research Questions and Objectives
	Review Question-1:
	Review Question-2:
	Review Question-3:

	Contribution to Knowledge
	Conclusions
	Future Work

	References
	Appendices
	Technical and Implementation Details
	Sensor Nodes Anatomy and Data Quality
	Hardware Components
	Operating System

	The Technical Details of the Local Sensor Node Network
	Technical Details of The Data Acquisition Unit
	JSON Parsing and Duplication Prevention Trigger
	The Periodicity Analysis Rule Engine.

	Configuration and programming details
	Holt-Winters predictive model
	ARMA and ARIMA predictive models
	SARIMA predictive model
	GPR predictive model
	LSTM predictive model
	K-means and DBSCAN Partitioning Models
	DTW and K-Shape Models
	 Characteristics (features)-based Model

	Research Integrity and Technology RI Completion Certificate

