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Abstract

The aim of this paper is to present three new proofs of the Japanese
Theorem and several applications.

1 Introduction

A cyclic quadrilateral (or inscribed quadrilateral) is a convex quadrilateral whose
vertices all lie on a single circle. Given a cyclic quadrilateral ABCD, denote by O
the circumcenter, R the circumradius, and by a, b, c, d, e, and f the lengths of the
segments AB,BC,CD,DA,AC and BD respectively. Recall Ptolemy’s Theorems
[4, pages 62 and 85] for a cyclic quadrilateral ABCD:

ef = ac+ bd (1)

and
e

f
=
ad+ bc

ab+ cd
. (2)

Another interesting relation for cyclic quadrilaterals is given by the Japanese
Theorem ([4]). This relates the radii of the incircles of the triangles BCD, CDA,
DAB and ABC, denoted by ra, rb, rc, and rd respectively, in the following way:

ra + rc = rb + rd. (3)

In [8], W. Reyes gave a proof of the Japanese Theorem using a result due
to the French geometer Victor Thébault. Reyes mentioned that a proof of this
theorem can be found in [3, Example 3.5(1), p. 43, 125-126]. In [9, p. 155], P. Yiu
found a simple proof of the Japanese Theorem. In [5], D. Mihalca, I. Chiţescu
and M. Chiriţă demonstrated (3) using the identity cosA+ cosB+ cosC = 1 + r

R ,
which is true in any triangle ABC, where r is the inradius of ABC, and in [7],
M. E. Panaitopol and L. Panaitopol show that

ra + rc = R(cosx+ cos y + cos z + cosu− 2) = rb + rd,

where m(
_

AB) = 2x, m(
_

BC) = 2y, m(
_

CD) = 2z and m(
_

AD) = 2u. In this paper,
we will give three new proofs.
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2 MAIN RESULTS

Lemma 1 If ABCD is a cyclic quadrilateral, then
e

f
=

(a+ b+ e)(c+ d+ e)

(b+ c+ f)(a+ d+ f)
.

Proof. From (2), we deduce the equality abe+ cde = adf + bcf . Adding the
same terms in both parts of this equality, we have

abe+cde+e2f+aef+def+bef+cef+ef2 = adf+bcf+ef2+aef+def+bef+cef+e2f.

But, from equation (1), we have e2f = e(ac + bd) = ace + bde and
ef2 = f(ac+ bd) = acf + bdf . Therefore, we obtain

abe+ cde+ ace+ bde+ aef + def + bef + cef + ef2

= adf + bcf + acf + bdf + aef + def + bef + cef + e2f ,

which means that e(b+ c+ f)(a+d+ f) = f(a+ b+ e)(c+d+ e), and the Lemma
follows. �

In the following we give a property of a cyclic quadrilateral which we use in
proving the Japanese Theorem.

Theorem 1 In any cyclic quadrilateral there is the following relation:

ra · rc · e = rb · rd · f (4)
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Figure 1

Proof. For triangles BCD and ABD, we write the equations [2, p. 11]

ra =
b+ c− f

2
tan

C

2
, rc =

a+ d− f
2

tan
A

2
.

But tan A
2 · tan C

2 = 1, because A+ C = π. Therefore, we obtain

4rarc = ab+ cd+ ac+ bd− f(a+ b+ c+ d) + f2,

so from (1), we deduce

4rarc = ab+ cd+ f(e+ f − a− b− c− d).

Multiplying by e, we obtain

4rarce = e(ab+ cd) + ef(e+ f − a− b− c− d). (5)
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Similarly, we deduce that

4rbrdf = f(ad+ bc) + ef(e+ f − a− b− c− d). (6)

Combining (2), (5) and (6) we obtain (4). �

G. Szöllősy, [6], proposed (7) below for a cyclic quadrilateral. We provide
two new proofs of this relation.

Theorem 2 In a cyclic quadrilateral, the identity

abe

a+ b+ e
+

cde

c+ d+ e
=

bcf

b+ c+ f
+

adf

a+ d+ f
, (7)

holds.

Proof I. Let m(
_

AB) = 2x, m(
_

BC) = 2y, m(
_

CD) = 2z and m(
_

AD) = 2t.
Then x + y + z + t = π. By definition, a = 2R sinx, b = 2R sin y, c = 2R sin z,
d = 2R sin t, e = 2R sin(x+ y) = 2R sin(z + t), f = 2R sin(x+ t) = 2R sin(y + z).
Equation (7) now follows from the trigonometric identity

sinα sinβ sin(α+ β)

sinα+ sinβ + sin(α+ β)
= 2 sin

α

2
sin

β

2
cos

α+ β

2

=

�
cos

α− β
2
− cos

α+ β

2

�
cos

α+ β

2
,

for any α, β ∈ R, with sinα+ sinβ + sin(α+ β) 6= 0. �

Proof II. From Lemma 1, we have

e

(a+ b+ e)(c+ d+ e)
=

f

(b+ c+ f)(a+ d+ f)
. (8)

From (2), abe+ cde = adf + bcf, we obtain

ab(c+ d+ e) + cd(a+ b+ e) = bc(a+ d+ f) + ad(b+ c+ f). (9)

Combining (8) and (9), we deduce

abe(c+ d+ e) + cde(a+ b+ e)

(a+ b+ e)(c+ d+ e)
=
bcf(a+ d+ f) + adf(b+ c+ f)

(b+ c+ f)(a+ d+ f)
.

Consequently, we obtain (7). �

Next, we present three new proofs of the Japanese Theorem.

Theorem 3 (The Japanese Theorem) Let ABCD be a convex quadrilateral
inscribed in a circle. Denote by ra, rb, rc, and rd the inradii of the triangles BCD,
CDA, DAB, and ABC respectively. Then ra + rc = rb + rd.
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Proof I. Recall [4, Section 298i, p. 190] that for any triangle ABC with
circumradius R and inradius r, we have the relation

r =
abc

2R(a+ b+ c)
.

In particular, for our four triangles we have

ra =
bcf

2R(b+ c+ f)
, rb =

cde

2R(c+ d+ e)
, rc =

adf

2R(a+ d+ f)
and rd =

abe

2R(a+ b+ e)
.

The theorem then follows immediately from (7). �

Proof II. Applying the equations for the inradii that we used in the first
proof to triangles BCD and ABD, we obtain

ra + rc = rarc ·
�

1

ra
+

1

rc

�
=
rarc
f
·
�
f

ra
+
f

rc

�
=
rarc
f
· 2R

abcd
· [abc+ abd+ acd+ bcd+ f(ad+ bc)]. (10)

Similarly, for triangles CDA and ABC, we deduce

rb + rd =
rbrd
e
· 2R

abcd
· [abc+ abd+ acd+ bcd+ e(ab+ cd)]. (11)

From Equation (2), e(ab+ cd) = f(ad+ bc). Plug this together with Equation (4)
into equations (10) and (11), and the theorem follows. �

Proof III. In the cyclic quadrilateral ABCD we let Ia; Ib; Ic, and Id denote
the incenters of triangles BCD; DAC; ABD, and ABC respectively (see Figure
2).

A

B
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O

IA

IB

IC

ID
M

Figure 2

A theorem attributed to Fuhrmann [4, Section 422, p. 255] says that the
quadrilateral IaIbIcId is a rectangle. See also [9, p. 154] for a neat proof. Let M
be a point so that IaIc ∩ IbId = {M}, so M is the midpoint of the diagonals IaIc
and IbId. The following theorem has been attributed to Apollonius [2, p. 6]: In
any triangle, the sum of the squares on any two sides is equal to twice the square
on half the third side together with twice the square on the median which bisects
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the third side. We apply Apollonius’s Theorem to the triangles IaOIc and IbOId,
where O is the circumcenter of the cyclic quadrilateral ABCD, and we obtain the
relations 4OM2 = 2(OI2

a+OI2
c )−IaI2

c and 4OM2 = 2(OI2
b +OI2

d)−IbI2
d , whence,

and because IaIc = IbId,

OI2
a +OI2

c = OI2
b +OI2

d . (12)

Euler’s formula for the distance d between the circumcentre (O) and incentre (I)
of a triangle is given by d2 = R2−2Rr, where R and r denote the circumradius and
inradius respectively [2, p. 29]. For a proof using complex numbers we mention
the book of T. Andreescu and D. Andrica [1]. In our case, the triangles ABC,
BCD, CDA, DAB have the same circumcircle. In these triangles we apply Euler’s
relation. Hence, (12) becomes R2 − 2Rra +R2 − 2Rrc = R2 − 2Rrb +R2 − 2Rrd,
and the theorem follows. �

3 APPLICATIONS

If for a triangle ABC the points A′, B′, and C ′ are the points of contact between
the sides BC,AC, and AB and the three excircles, respectively, then the segments
AA′, BB′, and CC ′ meet at one point, which is called the Nagel point. Denote by
O the circumcenter, I the incenter, N the Nagel point, R the circumradius, and r
the inradius of ABC. An important distance is ON and it is given by

ON = R− 2r. (13)

Equation (13) gives the geometric difference between the quantities involved in
Euler’s inequality R ≥ 2r. A proof using complex numbers is given in the book of
T. Andreescu and D. Andrica [1].

Application 1. Let ABCD be a convex quadrilateral inscribed in a circle
with the center O. Denote by Na, Nb, Nc, Nd the Nagel points of the triangles
BCD, CDA, DAB, and ABC, respectively. Then the relation ONa + ONc =
ONb +ONd holds.

Proof. From the Japanese Theorem, we have ra + rc = rb + rd. Therefore
we obtain R− 2ra +R− 2rc = R− 2rb +R− 2rd. The statement of the Theorem
now follows from (13). �

Our final application follows quickly from (3) and (4).

Application 2. In any cyclic quadrilateral there are the following
relations:

f
�

1

ra
+

1

rc

�
= e

�
1

rb
+

1

rd

�
and

e(r2
a + r2

c ) = f(r2
b + r2

d).
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