# About the Japanese theorem 

# Nicuşor Minculete, Cătălin Barbu and Gheorghe Szöllősy 

Dedicated to the memory of the great professor, Laurenţiu Panaitopol


#### Abstract

The aim of this paper is to present three new proofs of the Japanese Theorem and several applications.


## 1 Introduction

A cyclic quadrilateral (or inscribed quadrilateral) is a convex quadrilateral whose vertices all lie on a single circle. Given a cyclic quadrilateral $A B C D$, denote by $O$ the circumcenter, $R$ the circumradius, and by $a, b, c, d, e$, and $f$ the lengths of the segments $A B, B C, C D, D A, A C$ and $B D$ respectively. Recall Ptolemy's Theorems [4, pages 62 and 85] for a cyclic quadrilateral $A B C D$ :

$$
\begin{equation*}
e f=a c+b d \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e}{f}=\frac{a d+b c}{a b+c d} \tag{2}
\end{equation*}
$$

Another interesting relation for cyclic quadrilaterals is given by the Japanese Theorem ([4]). This relates the radii of the incircles of the triangles $B C D, C D A$, $D A B$ and $A B C$, denoted by $r_{a}, r_{b}, r_{c}$, and $r_{d}$ respectively, in the following way:

$$
\begin{equation*}
r_{a}+r_{c}=r_{b}+r_{d} \tag{3}
\end{equation*}
$$

In [8], W. Reyes gave a proof of the Japanese Theorem using a result due to the French geometer Victor Thébault. Reyes mentioned that a proof of this theorem can be found in [3, Example 3.5(1), p. 43, 125-126]. In [9, p. 155], P. Yiu found a simple proof of the Japanese Theorem. In [5], D. Mihalca, I. Chiţescu and M. Chiriţă demonstrated (3) using the identity $\cos A+\cos B+\cos C=1+\frac{r}{R}$, which is true in any triangle $A B C$, where $r$ is the inradius of $A B C$, and in [7], M. E. Panaitopol and L. Panaitopol show that

$$
r_{a}+r_{c}=R(\cos x+\cos y+\cos z+\cos u-2)=r_{b}+r_{d}
$$

where $m(\overparen{A B})=2 x, m(\overparen{B C})=2 y, m(\overparen{C D})=2 z$ and $m(\overparen{A D})=2 u$. In this paper, we will give three new proofs.

## 2 MAIN RESULTS

Lemma 1 If $A B C D$ is a cyclic quadrilateral, then $\frac{e}{f}=\frac{(a+b+e)(c+d+e)}{(b+c+f)(a+d+f)}$.
Proof. From (2), we deduce the equality $a b e+c d e=a d f+b c f$. Adding the same terms in both parts of this equality, we have
$a b e+c d e+e^{2} f+a e f+d e f+b e f+c e f+e f^{2}=a d f+b c f+e f^{2}+a e f+d e f+b e f+c e f+e^{2} f$.
But, from equation (1), we have $e^{2} f=e(a c+b d)=a c e+b d e$ and $e f^{2}=f(a c+b d)=a c f+b d f$. Therefore, we obtain

$$
\begin{aligned}
a b e+c d e+a c e+b d e & +a e f+d e f+b e f+c e f+e f^{2} \\
& =a d f+b c f+a c f+b d f+a e f+d e f+b e f+c e f+e^{2} f
\end{aligned}
$$

which means that $e(b+c+f)(a+d+f)=f(a+b+e)(c+d+e)$, and the Lemma follows.

In the following we give a property of a cyclic quadrilateral which we use in proving the Japanese Theorem.

Theorem 1 In any cyclic quadrilateral there is the following relation:

$$
\begin{equation*}
r_{a} \cdot r_{c} \cdot e=r_{b} \cdot r_{d} \cdot f \tag{4}
\end{equation*}
$$



Figure 1
Proof. For triangles $B C D$ and $A B D$, we write the equations [2, p. 11]

$$
r_{a}=\frac{b+c-f}{2} \tan \frac{C}{2}, r_{c}=\frac{a+d-f}{2} \tan \frac{A}{2} .
$$

But $\tan \frac{A}{2} \cdot \tan \frac{C}{2}=1$, because $A+C=\pi$. Therefore, we obtain

$$
4 r_{a} r_{c}=a b+c d+a c+b d-f(a+b+c+d)+f^{2}
$$

so from (1), we deduce

$$
4 r_{a} r_{c}=a b+c d+f(e+f-a-b-c-d)
$$

Multiplying by $e$, we obtain

$$
\begin{equation*}
4 r_{a} r_{c} e=e(a b+c d)+e f(e+f-a-b-c-d) \tag{5}
\end{equation*}
$$

Similarly, we deduce that

$$
\begin{equation*}
4 r_{b} r_{d} f=f(a d+b c)+e f(e+f-a-b-c-d) \tag{6}
\end{equation*}
$$

Combining (2), (5) and (6) we obtain (4).
G. Szöllősy, [6], proposed (7) below for a cyclic quadrilateral. We provide two new proofs of this relation.

Theorem 2 In a cyclic quadrilateral, the identity

$$
\begin{equation*}
\frac{a b e}{a+b+e}+\frac{c d e}{c+d+e}=\frac{b c f}{b+c+f}+\frac{a d f}{a+d+f} \tag{7}
\end{equation*}
$$

holds.
Proof I. Let $m(\overparen{A B})=2 x, m(\overparen{B C})=2 y, m(\widehat{C D})=2 z$ and $m(\widehat{A D})=2 t$. Then $x+y+z+t=\pi$. By definition, $a=2 R \sin x, b=2 R \sin y, c=2 R \sin z$, $d=2 R \sin t, e=2 R \sin (x+y)=2 R \sin (z+t), f=2 R \sin (x+t)=2 R \sin (y+z)$. Equation (7) now follows from the trigonometric identity

$$
\begin{aligned}
\frac{\sin \alpha \sin \beta \sin (\alpha+\beta)}{\sin \alpha+\sin \beta+\sin (\alpha+\beta)} & =2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\alpha+\beta}{2} \\
& =\left(\cos \frac{\alpha-\beta}{2}-\cos \frac{\alpha+\beta}{2}\right) \cos \frac{\alpha+\beta}{2}
\end{aligned}
$$

for any $\alpha, \beta \in \mathbb{R}$, with $\sin \alpha+\sin \beta+\sin (\alpha+\beta) \neq 0$.
Proof II. From Lemma 1, we have

$$
\begin{equation*}
\frac{e}{(a+b+e)(c+d+e)}=\frac{f}{(b+c+f)(a+d+f)} \tag{8}
\end{equation*}
$$

From (2), $a b e+c d e=a d f+b c f$, we obtain

$$
\begin{equation*}
a b(c+d+e)+c d(a+b+e)=b c(a+d+f)+a d(b+c+f) \tag{9}
\end{equation*}
$$

Combining (8) and (9), we deduce

$$
\frac{a b e(c+d+e)+c d e(a+b+e)}{(a+b+e)(c+d+e)}=\frac{b c f(a+d+f)+a d f(b+c+f)}{(b+c+f)(a+d+f)}
$$

Consequently, we obtain (7).
Next, we present three new proofs of the Japanese Theorem.
Theorem 3 (The Japanese Theorem) Let $A B C D$ be a convex quadrilateral inscribed in a circle. Denote by $r_{a}, r_{b}, r_{c}$, and $r_{d}$ the inradii of the triangles $B C D$, $C D A, D A B$, and $A B C$ respectively. Then $r_{a}+r_{c}=r_{b}+r_{d}$.

Proof I. Recall [4, Section 298i, p. 190] that for any triangle $A B C$ with circumradius $R$ and inradius $r$, we have the relation

$$
r=\frac{a b c}{2 R(a+b+c)}
$$

In particular, for our four triangles we have

$$
r_{a}=\frac{b c f}{2 R(b+c+f)}, r_{b}=\frac{c d e}{2 R(c+d+e)}, r_{c}=\frac{a d f}{2 R(a+d+f)} \text { and } r_{d}=\frac{a b e}{2 R(a+b+e)} .
$$

The theorem then follows immediately from (7).
Proof II. Applying the equations for the inradii that we used in the first proof to triangles $B C D$ and $A B D$, we obtain

$$
\begin{align*}
r_{a}+r_{c} & =r_{a} r_{c} \cdot\left(\frac{1}{r_{a}}+\frac{1}{r_{c}}\right)=\frac{r_{a} r_{c}}{f} \cdot\left(\frac{f}{r_{a}}+\frac{f}{r_{c}}\right) \\
& =\frac{r_{a} r_{c}}{f} \cdot \frac{2 R}{a b c d} \cdot[a b c+a b d+a c d+b c d+f(a d+b c)] \tag{10}
\end{align*}
$$

Similarly, for triangles $C D A$ and $A B C$, we deduce

$$
\begin{equation*}
r_{b}+r_{d}=\frac{r_{b} r_{d}}{e} \cdot \frac{2 R}{a b c d} \cdot[a b c+a b d+a c d+b c d+e(a b+c d)] \tag{11}
\end{equation*}
$$

From Equation (2), $e(a b+c d)=f(a d+b c)$. Plug this together with Equation (4) into equations (10) and (11), and the theorem follows.

Proof III. In the cyclic quadrilateral $A B C D$ we let $I_{a} ; I_{b} ; I_{c}$, and $I_{d}$ denote the incenters of triangles $B C D ; D A C ; A B D$, and $A B C$ respectively (see Figure $2)$.


Figure 2
A theorem attributed to Fuhrmann [4, Section 422, p. 255] says that the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is a rectangle. See also [9, p. 154] for a neat proof. Let $M$ be a point so that $I_{a} I_{c} \cap I_{b} I_{d}=\{M\}$, so $M$ is the midpoint of the diagonals $I_{a} I_{c}$ and $I_{b} I_{d}$. The following theorem has been attributed to Apollonius [2, p. 6]: In any triangle, the sum of the squares on any two sides is equal to twice the square on half the third side together with twice the square on the median which bisects

## 192/ ABOUT THE JAPANESE THEOREM

the third side. We apply Apollonius's Theorem to the triangles $I_{a} O I_{c}$ and $I_{b} O I_{d}$, where $O$ is the circumcenter of the cyclic quadrilateral $A B C D$, and we obtain the relations $4 O M^{2}=2\left(O I_{a}^{2}+O I_{c}^{2}\right)-I_{a} I_{c}^{2}$ and $4 O M^{2}=2\left(O I_{b}^{2}+O I_{d}^{2}\right)-I_{b} I_{d}^{2}$, whence, and because $I_{a} I_{c}=I_{b} I_{d}$,

$$
\begin{equation*}
O I_{a}^{2}+O I_{c}^{2}=O I_{b}^{2}+O I_{d}^{2} \tag{12}
\end{equation*}
$$

Euler's formula for the distance $d$ between the circumcentre $(O)$ and incentre $(I)$ of a triangle is given by $d^{2}=R^{2}-2 R r$, where $R$ and $r$ denote the circumradius and inradius respectively [2, p. 29]. For a proof using complex numbers we mention the book of T. Andreescu and D. Andrica [1]. In our case, the triangles $A B C$, $B C D, C D A, D A B$ have the same circumcircle. In these triangles we apply Euler's relation. Hence, (12) becomes $R^{2}-2 R r_{a}+R^{2}-2 R r_{c}=R^{2}-2 R r_{b}+R^{2}-2 R r_{d}$, and the theorem follows.

## 3 APPLICATIONS

If for a triangle $A B C$ the points $A^{\prime}, B^{\prime}$, and $C^{\prime}$ are the points of contact between the sides $B C, A C$, and $A B$ and the three excircles, respectively, then the segments $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ meet at one point, which is called the Nagel point. Denote by $O$ the circumcenter, $I$ the incenter, $N$ the Nagel point, $R$ the circumradius, and $r$ the inradius of $A B C$. An important distance is $O N$ and it is given by

$$
\begin{equation*}
O N=R-2 r . \tag{13}
\end{equation*}
$$

Equation (13) gives the geometric difference between the quantities involved in Euler's inequality $R \geq 2 r$. A proof using complex numbers is given in the book of T. Andreescu and D. Andrica [1].

Application 1. Let $A B C D$ be a convex quadrilateral inscribed in a circle with the center $O$. Denote by $N_{a}, N_{b}, N_{c}, N_{d}$ the Nagel points of the triangles $B C D, C D A, D A B$, and $A B C$, respectively. Then the relation $O N_{a}+O N_{c}=$ $O N_{b}+O N_{d}$ holds.

Proof. From the Japanese Theorem, we have $r_{a}+r_{c}=r_{b}+r_{d}$. Therefore we obtain $R-2 r_{a}+R-2 r_{c}=R-2 r_{b}+R-2 r_{d}$. The statement of the Theorem now follows from (13).

Our final application follows quickly from (3) and (4).
Application 2. In any cyclic quadrilateral there are the following relations:

$$
f\left(\frac{1}{r_{a}}+\frac{1}{r_{c}}\right)=e\left(\frac{1}{r_{b}}+\frac{1}{r_{d}}\right)
$$

and

$$
e\left(r_{a}^{2}+r_{c}^{2}\right)=f\left(r_{b}^{2}+r_{d}^{2}\right)
$$

Acknowledgements. We would like to thank the anonymous reviewer for providing valuable comments to improve the manuscript.

## References

[1] T. Andreescu and D. Andrica, Complex Numbers from A to .. Z, Birkhauser, Boston-Basel-Berlin, 2006.
[2] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, The Mathematical Association of America, New Mathematical Library, 1967.
[3] H. Fukagawa and D. Pedoe, Japanese Temple Geometry, Charles Babbage Research Centre, Manitoba, Canada, 1989.
[4] R. A. Johnson, Advanced Euclidean Geometry, Dover Publications, New York, 1960.
[5] D. Mihalca,I. Chiţescu and M. Chiriţă, Geometria patrulaterului, Editura Teora, Bucureşti, 1998 (in Romanian).
[6] O. T. Pop, N. Minculete and M. Bencze, An introduction to quadrilateral geometry (preprint).
[7] M. E. Panaitopol and L. Panaitopol, Probleme de geometrie rezolvate trigonometric, Editura GIL, Zalău, 1994 (in Romanian).
[8] W. Reyes, An Application of Thébault's Theorem, Forum Geometricorum, 2 (2002) 183-185.
[9] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, Florida, 1998.
http://math.fau.edu/yiu/euclideangeometrynotes.pdf

Nicuşor Minculete
Dimitrie Cantemir University of Brasov
Str. Bisericii Romane, nr. 107
Brasov, Romania
minculeten@yahoo.com

Cătălin Barbu
Vasile Alecsandri National College
Str. Vasile Alecsandri, 37
Bacău, Romania
kafka_mate@yahoo.com

Gheorghe Szöllősy
Str. Avram Iancu 28E, 435500
Sighetu Marmaţiei
Maramureş, Romania
gyuri66@yahoo.com

