FLEX User's Manual

COPYRIGHT © 1979 by
Technical Systems Consultants, Inc.
111 Providence Road
Chapel Hill, North Carolina 27514
A1l Rights Reserved

™ FLEX is a trademark of Technical Systems Consultants, Inc.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. It's
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,
for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

PREFACE

The purpose of this User's Guide 1is to provide the user of the FLEX
Operating System with the information required to make effective use of
the available system commands and utilities. This manual applies to
both full size floppy disk versions and mini-floppy disk versions. The
user should keep this manual close at hand while becoming familiar with
the system. It is organized to make it convenient as a quick reference
guide, as well as a thorough reference manual.

iii-

FLEX User's Manual
TABLE OF CONTENTS

Page
CHAPTER 1
I. Introduction 1.1
II. System Requirements 1.2
III. Getting the System Started 1.2
IV. Disks Files and Their Names 1.3
V. Entering Commands 1.5
VI. Command Descriptions 1.7
CHAPTER 2
I. UtiTity Command Set 2.1
APPEND A.1l
ASN A.2
BUILD B.1
CAT C.1
COPY C.2
DATE D.1
DELETE D.2
EXEC E.1
I 1.1
JUMP J.1
LINK L.1
LIST L.2
NEWDISK N.1
0 0.1
P P.1
PRINT P.2
PROT P.3
QCHECK Q.1
RENAME R.1
SAVE S.1
STARTUP S.2
TTYSET T.1
VERIFY V.1
VERSION V.2
XOuT X.1
CHAPTER 3
I. Disk Capacity 3.1
II. Write Protect 3.1
III. The 'RESET' Button 3.1
IvV. Notes on the P Command 3.1
V. Accessing Drives Not Containing a Disk 3.1
VI. System Error Numbers 3.2
VII. System Memory Map 3.3
VIII. FLEX Input/Output Subroutines 3.4
IX. Booting the FLEX Disk Operating System 3.6
X. Requirements for 'PRINT.SYS' driver 3.7
CHAPTER 4

I. Command Summary 4.1

FLEX USER'S MANUAL

I. INTRODUCTION

The FLEX™ Operating System is a very versatile and flexible operating
system. It provides the user with a powerful set of system commands to
control all disk operations directly from the wuser's terminal. The
systems programmer will be delighted with the wide variety of disk
access and file management routines available for personal use.
Overall, FLEX 1is one of the most powerful operating systems available
today.

The FLEX Operating System is comprised of three parts, the File
Management System (FMS), the Disk Operating System (DOS), and
the Utility Command Set (UCS). Part of the power of the overall system lies
in the fact that the system can be greatly expanded by simply adding
additional wutility commands. The user should expect to see many more
utilities available for FLEX in the future. Some of the other important
features include: fully dynamic file space allocation, the automatic
"removal" of defective sectors from the disk, automatic space
compression and expansion on all text files, complete user environment
control using the TTYSET utility command, and uniform disk wear due to
the high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programs
reside on the system disk and are only loaded into memory when needed.
This means that the set of commands can be easily extended at any time,
without the necessity of replacing the entire operating system. The
utilities provided with FLEX perform such tasks as the saving, Tloading,
copying, renaming, deleting, appending, and 1listing of disk files.
There is an extensive CATalog command for examining the disk's file
directory. Several environment control commands are also provided.
Overall, FLEX provides all of the necessary tools for the wuser's
interaction with the disk.

* FLEX is a registered trademark of Technical Systems
Consultants, Inc.
-1.1-

FLEX User's Manual

IT. SYSTEM REQUIREMENTS

FLEX requires random access memory from location 0000 through 1location
2FFF hex (12K). Memory 1is also required from A000 (40K) through BFFF
hex (48K), where the actual operating system resides. The system also
assumes at least 2 disk drives are connected to the controller and hat
they are configured as drives #0 and #1. You should consult the disk
drive instructions for this information. FLEX interfaces with the disk
controller through a set of driver vroutines and with the operator
console or terminal through a set of terminal I/0 routines.

ITI. GETTING THE SYSTEM STARTED

Each FLEX system diskette contains a binary Tloader for Tloading
the operating system into RAM. There needs to be some way of getting the
loader off of the disk so it can do its work. This can be done by
either hand entering a bootstrap loader or by executing a compatible
bootstrap loader which has been stored in ROM. For example, the SWTPc
versions of FLEX can be booted from the SWTBUG or DISKBUG monitor ROM
with a "D" command. The EXORCISOR version boots by jumping to location
$E800 just as 1is done to boot MDOS.

As a specific example, suppose the system we are using is a SWTPc system
which has SWTBUG installed and we wish to run FLEX. The first step is
to power on all equipment and make sure the SWTBUG prompt is present
($). Next insert the system diskette into drive 0 (the boot must be
performed with the disk in drive 0) and close the door on the drive.
Type "D" on the terminal. The disk motors should start, and after about
2 seconds, the following should be displayed on the terminal:

FLEX X.X
DATE (MM,DD,YY)?

+++

The name FLEX identifies the operating system and the X.X will be the
version number of the operating system. At this time the current date
should be entered, such as 10,03,79. The FLEX prompt is the three plus
signs (+++), and will always be present when the system is ready to
accept an operator command. The '+++' should become a familiar sight
and signifies that FLEX is ready to work for you!

-1.2-

FLEX User's Manual

IV. DISK FILES AND THEIR NAMES

All disk files are stored in the form of 'sectors' on the disk and in
this version, each sector contains 256 ‘'bytes' of information. Each
byte can contain one character of text or one byte of binary machine
information. A maximum of 340 user-accessible sectors will fit on a
single-sided mini disk or 1140 sectors on a single-sided full size
floppy. Double-sided disks would hold exactly twice that number of
sectors. The user, however, need not keep count, for the system does
this automatically. A file will always be at least one sector long and
can have as many as the maximum number of sectors on the disk. The user
should not be concerned with the actual placement of the files on the
disk since this 1is done by the operating system. File deletion is also
supported and all previously used sectors become immediately available
again after a file has been deleted.

A1l files on the disk have a name. Names such as the following are
typical:

PAYROLL

INVNTORY
TEST1234
APRIL-78
WKLY-PAY

Anytime a file is created, referenced, or deleted, its name must be
used. Names can be most anything but must begin with a letter (not
numbers or symbols) and be followed by at most 7 additional characters,

called 'name characters'. These 'name characters' can be any
combination of the Tletters 'A' through 'Z' or 'a' through 'z', any digit
'0' through '9', or one of the two special characters, the hyphen '-' or
the underscore ' ', (a left arrow on some terminals).

File names must also contain an 'extension'. The file extension further
defines the file and usually indicates the type of information contained
therein. Examples of extensions are: TXT for text type files, BIN for
machine readable binary encoded files, CMD for wutility command files,
and BAS for BASIC source programs. Extensions may contain up to 3 'name
characters' with the first character being a letter. Most of the FLEX
commands assume a default extension on the file name and the user need
not be concerned with the actual extension on the file. The user may at
anytime assign new extensions, overiding the default value, and treat
the extension as just part of the file name. Some examples of file
names with their extensions follow:

APPEND.CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period

".'". The period is the name 'field separator'. It tells FLEX to treat
the following characters as a new field in the name specification.

-1.3-

FLEX User's Manual

A file name can be further refined. The name and extension uniquely
define a file on a particular drive, but the same name may exist on
several drives simultaneously. To designate a particular drive a 'drive
number' 1is added to the file specification. It consists of a single
digit (0-3) and is separated from the name by the field separator '.'.
The drive number may appear either before the name or after it (after
the extension if it is given). If the drive 1is not specified, the
system will default to either the 'system' drive or the 'working' drive.
These terms will be described a Tittle Tlater.

Some examples of file specifications with drive numbers follow:

0.BASIC
MONDAY .2
1.TEST.BIN
LIST.CMD.1

In summary, a file specification may contain up to three fields
separated by the field separator. These fields are; 'drive', 'name',
and ‘'extension'. The rules for the file specification can be stated
quite concisely wusing the following notation:

[<drive>.]<name>[.<extension>]
or
<name>[.<extension>] [.<drive>]

The '<>' ‘enclose a field and do not actually appear in the
specification, and the '[]' surround optional items of the
specification. The following are all syntactically correct:

0.NAME.EXT
NAME.EXT.0
NAME. EXT
0.NAME
NAME. O
NAME

Note that the only required field is the actual 'name' itself and the
other values will usually default to predetermined values. Studying the
above examples will clarify the notation used. The same notation will
occur regularly throughout the manual.

-1.4-

FLEX User's Manual

V. ENTERING COMMANDS

When FLEX is displaying '+++', the system is ready to accept a command
line. A command Tline is wusually a name followed by certain parameters
depending on the command being executed. There is no 'RUN' command in
FLEX. The first file name on a command Tline is always loaded into memory
and execution 1is attempted. If no extension is given with the file
name, 'CMD' is the default. If an extension is specified, the one
entered is the one used. Some examples of commands and how they would
look on the terminal follow:

+H+TTYSET
+++TTYSET.CMD
+++L00KUP . BIN

The first two Tines are identical to FLEX since the first would default
to an extension of CMD. The third 1line would 1load the binary file
"LOOKUP.BIN' into memory and, assuming the file contained a transfer
address, the program would be executed. A transfer address tells the
program loader where to start the program executing after it has been
loaded. If you try to load and execute a program in the above manner and
no transfer address is present, the message, 'NO LINK' will be output to
the terminal, where 'link' refers to the transfer address. Some other
error messages which can occur are 'WHAT?' if an illegal file
specification has been typed as the first part of a command 1line, and
'NOT THERE' if the file typed does not exist on the disk.

During the typing of a command 1line, the system simply accepts all
characters until a 'RETURN' key is typed. Any time before typing the
RETURN key, the user may use one of two special characters to correct
any mistyped characters. One of these characters 1is the 'back space’
and allows deletion of the previously typed character. Typing two back
spaces will delete the previous two characters. The back space is
initially defined to be a 'control H' but may be redefined by the user
using the TTYSET utility command. The second special character is the
line ‘'delete' character. Typing this character will effectively delete
all of the characters which have been typed on the current 1line. A new
prompt will be output to the terminal, but instead of the usual '+++'
prompt, to show the action of the delete character, the prompt will be
'?22?2'. Any time the delete character is used, the new prompt will be
'?2?', and signifies that the Tast line typed did not get entered into
the computer. The delete character is initially a ‘'control X' but may
also be redefined wusing TTYSET.

-1.5-

FLEX User's Manual

As mentioned earlier, the first name on a command 1line is always
interpreted as a command. Following the command is an optional Tlist of
names and parameters, depending on the particular command being entered.
The fields of a command line must be separated by either a space or a
comma. The general format of a command Tline is:

<command>[,<list of names and parameters>]

A comma 1is shown, but a space may be used. FLEX also allows several
commands to be entered on one command line by use of the 'end of Tine'
character. This character is initially a colon (':'), but may be user
defined with the TTYSET wutility. By ending a command with the end of
line character, it 1is possible to follow it immediately with another
command. FLEX will execute all commands on the Tine before returning
with the '+++' prompt. An error in any of the command entries will
cause the system to terminate operation of that command line and return
with the prompt. Some examples of valid command Tlines follow:

+++CAT 1
+++CAT 1:ASN S=1
+++LIST LIBRARY:CAT 1:CAT O

As many commands may be typed in one command line as desired, but the
total number of characters typed must not exceed 128. Any excess
characters will be ignored by FLEX.

One last system feature to be described is the idea of 'system' and
'working' drives. As stated earlier, if a file specification does not
specifically designate a drive number, it will assume a default value.
This default value will either be the current 'system' drive assignment
or the current ‘'working' drive assignment. The system drive 1is the
default for all command names, or in other words, all file names which
are typed first on a command 1line. Any other file name on the command
line will default to the working drive. This version of FLEX also
supports automatic drive searching. When in the auto search mode if no
drive numbers are specified, the operating system will first search
drive 0 for the file. If the file is not found, drive 1 will be
searched and so on. When the system is initialized (booted up), all
drive defaults will be to drive 0. It is sometimes convenient to assign
drive 1 as the working drive in which case all file references, except
commands, will automatically look on drive 1. It is then convenient to
have a diskette in drive 0 with all the system utility commands on it
(the 'system drive'), and a disk with the files being worked on in drive
1 (the 'working drive'). If the system drive is 0 and the working drive
is 1, and the command Tine was:

+++LIST TEXTFILE
FLEX would go to drive 0 for the command LIST and to drive 1 for the

file TEXTFILE. The actual assignment of drives is performed by the ASN
utility. See its description for details.

-1.6-

FLEX User's Manual

VI. COMMAND DESCRIPTIONS

There are two types of commands in FLEX, memory resident (those which
actually are part of the operating system) and disk utility commands
(those commands which reside on the disk and are part of the UCS).
There are only two resident commands, GET and MON. They will be
described here while the UCS is described in the following
sections.

GET

The GET command is wused to load a binary file into memory. It is a
special purpose command and 1is not often used. It has the following
syntax:

GET[,<file name list>]
where <file name list> is: <file spec>[,<file spec>] etc.

Again the '[]' surround optional items. 'File spec' denotes a file name
as described earlier. The action of the GET command is to load the file
or files specified in the Tlist into memory for later use. If no
extension is provided in the file spec, BIN is assumed, in other words,
BIN 1is the default extension. Examples:

GET,TEST
GET,1.TEST,TEST2.0

where the first example will Tload the file named 'TEST.BIN' from the
assigned working drive, and the second example will Tload TEST.BIN from
drive 1 and TEST2.BIN from drive O.

MON

MON is used to exit FLEX and return to the hardware monitor system such
as SWTBUG. The syntax for this command is simply MON followed by the
'RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should jump to
location ADO3 hex.

-1.7-

FLEX User's Manual

UTILITY COMMAND SET

The following pages describe all of the wutility commands currently
included in the UCS. You should note that the page numbers denote the
first letter of the command name, as well as the number of the page for
a particular command. For example, 'B.1.2' is the 2nd page of the
description for the 1st wutility name starting with the letter 'B'.

COMMON ERROR MESSAGES

Several error messages are common to many of the FLEX utility commands.
These error messages and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a
particular command was not found on the disk specified. Usually the
wrong drive was specified (or defaulted), or a misspelling of the name
was made.

ILLEGAL FILE NAME. This can happen if the name or extension did
not start with a letter, or the name or extension field was too long
(limited to 8 and 3 respectively). This message may also mean that the
command being executed expected a file name to follow and one was
not provided.

FILE EXISTS. This message will be output if you try 'to create a
file with a name the same as one which currently exists on the same
disk. Two different files with the same name are not allowed to exist on
the same disk.

SYNTAX ERROR. This means that the command 1line just typed does not
follow the rules stated for the particular command used. Refer to the
individual command descriptions for syntax rules.

GENERAL SYSTEM FEATURES

Any time one of the utility commands is sending output to the terminal,
it may be temporarily halted by typing the ‘'escape' character (see
TTYSET for the definition of this character). Once the output is
stopped, the user has two choices: typing the 'escape' character again
or typing 'RETURN'. If the ‘'escape' character is typed again, the
output will resume. If the 'RETURN' is typed, control will return to
FLEX and the command will be terminated. All other characters are
ignored while output 1is stopped.

-2.1-

FLEX User's Manual

APPEND

The APPEND command 1is used to append or concatenate two or more files,
creating a new file as the result. Any type of file may be appended but
it only makes sense to append files of the same type in most cases. If
appending binary files which have transfer addresses associated with
them, the transfer address of the Tlast file of the Tlist will be the
effective transfer address of the resultant file. All of the original
files will be 1left intact.

DESCRIPTION
The general syntax for the APPEND command is as follows:
APPEND,<file spec>[,<file Tist>],<file spec>

where <file 1list> can be an optional 1list of the specifications. The
last name specified should not exist on the disk since this will be the
name of the resultant file. If the last file name given does exist on
the disk, the question "MAY THE EXISTING FILE BE DELETED?" will be
displayed. A Y vresponse will delete the current file and cause the
APPEND operation to be completed. A N vresponse will terminate the
APPEND operation. All other files specified must exist since they are
the ones to be appended together. If only 2 file names are given, the
first file will be copied to the second file. The extension default is
TXT unless a different extension is used on the FIRST FILE SPECIFIED, in
which case that extension becomes the default for the rest of the
command 1line. Some examples will show 1its wuse:

APPEND,CHAPTERI ,CHAPTERZ,CHAPTER3,B00OK
APPEND,FILE1,1.FILE2.BAK,GOODFILE

The first 1line would <create a file on the working drive called
'BOOK.TXT' which would contain the files 'CHAPTER1.TXT', CHAPTER2.TXT',
and 'CHAPTER3.TXT' in that order. The second example would append
'"FILE2.BAK' from drive 1 to FILEL.TXT from the working drive and put the
result in a file called 'GOODFILE.TXT' on the working drive. The file
GOODFILE defaults to the extension of TXT since it 1is the default
extension. Again, after the wuse of the APPEND command, all of the
original files will be intact, exactly as they were before the APPEND
operation.

-A.1.1-

FLEX User's Manual
ASN

The ASN command is wused for assigning the 'system' drive and the
working drive or to select automatic drive searching. The system
drive is used by FLEX as the default for command names or, in general,
the first -name on a command line. The working drive is used by FLEX as
the default on all other file specifications within a command 1line.
Upon initialization, FLEX assigns drive #0 as both the system and
working drive. An example will show how the system defaults to these
values:

APPEND,FILE1,FILE2,FILE3

If the system drive is assigned to be #0 and the working drive is
assigned to drive #1, the above example will perform the following
operation: get the APPEND command from drive #0 (the system drive), then
append FILE2 from drive #1 (the working drive) to FILE1 from drive #1
and put the result in FILE3 on drive #l. As can be seen, the system
drive was the default for APPEND where the working drive was the default
for all other file specs Tlisted.

Automatic drive searching causes FLEX to automatically scan the ready
drives for the file specified. Hardware Tlimitations prevent most
mini-floppy versions from searching for ‘"ready" drives. For this
reason, FLEX has been setup to ALWAYS assume drives 0 and 1 are ready.
Thus if a mini-floppy version of FLEX attempts to search' a drive which
does not have a disk inserted, it will hang up until a disk is inserted
and the door closed. Alternatively, the system reset could be hit and a
warm start executed (a jump to $AD03). The full size floppy version CAN
detect a ready condition and will not check drives which are out of the
ready state during automatic drive searching.

Automatic drive searching causes FLEX to first check drive #0 for the
file specified. If not there (or if not ready in the full size
versions), FLEX skips to drive #1. If the file is not found on drive #1
in the mini—floppy version, FLEX gives up and a file not found error
results. In the full size versions, FLEX continues to search on drives
#2 and #3 before reporting an error.

DESCRIPTION
The general syntax for the ASN command is as follows:
ASN[,W=<drive>] [,S=<drive>]

where <drive> is a single digit drive number or the letter A. If just
ASN is typed followed by a 'RETURN', no values will be changed, but the
system will output a message which tells the current assignments of
the system and working drives, for example:

+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0

-A.2.1-

FLEX User's Manual

Some examples of using the ASN command are:

ASN,W=1
ASN,S=1 ,W=0

where the first 1line would set the working drive to 1 and Tleave the
system drive assigned to its previous value. The second example sets
the system drive to 1 and the working drive to 0. Careful use of drive
assignments can allow the operator to avoid the use of drive numbers on
file specifications most of the time!

If auto drive searching is desired, then the letter A for automatic,
should be wused in place of the drive number.

Example:
ASN W=A
ASN S=A, W=1
ASN S=A, W=A

-A.2.2-

FLEX User's Manual
BUILD

The BUILD command 1is provided for those desiring to create small text
files quickly (such as STARTUP files, see STARTUP) or not wishing to use
the optionally available FLEX Text Editing System. The main purpose for
BUILD is to generate short text files for use by either the EX command
or the STARTUP facility provided in FLEX.

DESCRIPTION
The general syntax of the BUILD command is:

BUILD,<file spec>

where <file spec> is the name of the file you wish to be created. The
default extension for the spec is TXT and the drive defaults to the
working drive. If the output file already exists the question "MAY THE
EXISTING FILE BE DELETED?" will be displayed. A Y response will delete
the existing file and build a new file while a N response will terminate
the BUILD command.

After you are in the 'BUILD' mode, the terminal will respond with an
equals sign ('=') as the prompt character. This is similar to the Text
Editing System's prompt for text input. To enter your text, simply type
on the terminal the desired characters, keeping in mind that once the
'RETURN' is typed, the Tline is in the file and can not be changed. Any
time before the 'RETURN' is typed, the backspace character may be used
as well as the line delete character. If the delete character is used,
the prompt will be '???' instead of the equals sign to show that the
last line was deleted and not entered into the file. It should be noted
that only printable characters (not control characters) may be entered
into text files wusing the BUILD command.

To exit the BUILD mode, it is necessary to type a pound sign ('#')
immediately following the prompt, then type 'RETURN'. The file will be
finished and control returned back to FLEX where the three plus signs
should again be output to the terminal. This exiting is similar to that of
the Text Editing System.

-B.1.1-

FLEX User's Manual
CAT

The CATalog command 1is used to display the FLEX disk file names in the
directory on each disk. The user may display selected files on one or
multiple drives if desired.

DESCRIPTION
The general syntax of the CAT command is:

CAT[,<drive Tist>][,<match 1ist>]

where <drive 1list> can be one or more drive numbers seperated by commas,
and <match Tist> is a set of name and extension characters to be matched
against names 1in the directory. For example, if only file names which
started with the characters 'VE' were to be cataloged, then VE would be
in the match list. If only files whose extensions were 'TXT' were to be
cataloged, then .TXT should appear in the match 1list. A few specific
examples will help clarify the syntax:

+++CAT
+++CAT,1,A.T,DR
+++CAT,PR

+++CAT,0,1
+++CAT,0,1,.CMD, .SYS

The first example will catalog all file names on the working drive or on
all drives if auto drive searching is selected. The second example will
catalog only those files on drive 1 whose names begin with 'A' and whose
extensions begin with 'T', and also all files on drive 1 whose names
start with 'DR'. The next example will catalog all files on the working
drive (or on all drive if auto drive searching is selected) whose names
start with 'PR'. The next Tine causes all files on both drive 0 and
drive 1 to be cataloged. Finally, the Tlast example will catalog the
files on drive 0 and 1 whose extensions are CMD or SYS.

During, the catalog operation, before each drive's files are displayed, a
header message stating the drive number is output to the terminal. The
name of the diskette as entered during the NEWDISK operation will also
be displayed. The, actual directory entries are listed in the following
form:

NAME EXTENSION SIZE PROTECTION CODE

where size is the number of sectors that file occupies on the disk. If
more than one set of matching characters was specified on the command
line, each set of names will be grouped according to the characters they
match. For example, if all .TXT and .CMD files were cataloged, the TXT
types would be 1listed together, followed by the CMD types.

In summary, if the CAT command is not parameterized, then all files on

the assigned working drive will be displayed. If a working drive is not
assigned (auto drive searching mode) the CAT command will display files

-C.1.1-

FLEX User's Manual

on all on 1line drives. If it 1is parameterized by only a drive number,
then all files on that drive will be displayed. If the CAT command is
parameterized by only an extension, then only files with that extension
will be displayed. If only the name 1is used, then only files which
start with that name will be displayed. If the CAT command is
parameterized by only name and extension, then only files of that root
name and root extension (on the working drive) will be displayed. Learn
to use the CAT command and all of its features and your work with the
disk will become a little easier.

The current protection code options that can be displayed are as
follows:

D File is delete protected (delete or rename prohibited)
W File is write protected (delete, rename and write prohibited)
(bTank) No special protection

-C.1.2-

FLEX User's Manual
COoPY

The COPY command 1is wused for making copies of files on a disk.
Individual files may be copied, groups of name-similar files may be
copied, or entire disks may be copied. The COPY command also re-groups
the sectors of a file in case they were spread all over the old disk.
This regrouping can make file access times much faster. It should be
noted that before copying files to a new disk, the disk must be
formatted first. Refer to NEWDISK for instructions on this
procedure.

DESCRIPTION

The general syntax of the COPY command has three forms:

a. COPY,<file spec>,<file spec>
b. COPY,<file spec>,<drive>
c. COPY,<drive>,<drive>[,<match 1ist>]

where <match 1ist> is the same as that described in the CAT command and
all rules apply to matching names and extensions. When copying files,
if the destination disk already contains a file with the same name as
the one being copied, the file name and the message, "FILE EXISTS DELETE
ORIGINAL?" will be output to the terminal. Typing Y will cause the file
on the destination disk to be deleted and the file from the source disk
will be copied to the destination disk. Typing N will direct FLEX not
to copy the file in question.

The first type of COPY allows copying a single file into another. The
output file may be on a different drive but if on the same drive the
file names must be different. It is always necessary to specify the
extension of the input file but the output file's extension will default
to that of the input's if none is specified. An example of this form of
COPY is:

+++COPY,0.TEST.TXT,1.TEST25

This command line would cause the file TEST.TXT on drive 0 to be copied
into a file called TEST25.TXT on drive 1. Note how the second file's
extension defaulted to TXT, the extension of the input file.

The second type of COPY allows copying a file from one drive to another
drive with the file keeping its original name. An example of this
is:

+++COPY,0.LIST.CMD,1

Here the file named LIST.CMD on drive 0 would be copied to drive 1. It
is again necessary to specify the file's extension in the file
specification. This form of the command is more convenient than the
previous form if the file is to retain its original name after the
copying process.

-C.2.1-

FLEX User's Manual

The final form of COPY is the most versatile and the most powerful. It
is possible to copy all files from one drive to another, or to copy only
those files which match the match 1list characters given. Some examples
will clarify its use:

+++COPY,0,1
+++COPY, 1,0, .CMD, .SYS
+++COPY,0,1,A,B,CA.T

The first example will copy all files from drive 0 to drive 1 keeping
the same names in the process. The second example will copy only those
files on drive 1 whose extensions are CMD and SYS to drive 0. No other
files will be copied. The Tast example will copy the files from drive 0
whose names start with 'A' or 'B' regardless of extension, and those
files whose names start with the letters 'CA' and whose extensions start
with 'T'.,to the output drive which is drive 1. The last form of copy
is the most versatile because it will allow putting just the command
(CMD) files on a new disk, or just the SYS files, etc., with a single
command entry. During the COPY process, the name of the file which is
currently being copied will be output to the terminal, as well as the
drive to which it is being copied.

-C.2.2-

FLEX User's Manual
DATE

The DATE command is used to display or change an internal FLEX date
register. This date register may be used by 'future programs and FLEX
utilities.

DESCRIPTION

The general syntax of the DATE command is:

DATE[,<month,day,year>]

where 'month' is the numerical month, 'day' is the numerical day and
'vear' is the Tlast two digits of the year.

+++DATE 5,2,78 Sets the date register to May 2, 1978

Typing DATE followed by a carriage return will return the Tlast entered
date.

Example:
+++DATE
May 2, 1978

-D.1.1-

FLEX User's Manual
DELETE

The DELETE command is used to delete a file from the disk. Its name
will be removed from the directory and its sector space will be returned
to the free space on the disk.

DESCRIPTION
The general syntax of the DELETE command is:
DELETE,<file spec>[,<file list>]

where <file 1list> can be an optional list of file specifications. It is
necessary to include the extension on each file specified. As the
DELETE command is executing it will prompt you with:

DELETE "FILE NAME"?

The entire file specification will be displayed, including the drive
number. If you decide the file should be deleted, type 'Y'; otherwise,
any other response will cause that file to remain on the disk. If a 'Y'
was typed, the message 'ARE YOU SURE?' will be displayed on the
terminal. If you are absolutely sure you want the file deleted from the
disk, type another 'Y' and it will be gone. Any other character will
leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO WAY TO
GET IT BACK! Be absolutely sure you have the right file before
answering the prompt questions with Y's. Once the file is deleted, the
space it had occupied on the disk 1is returned back to the list of free
space for future use by other files. Few examples follow:

+++DELETE ,MATHPACK.BIN
+++DELETE, 1. TEST.TXT,0.AUGUST.TXT

The first example will DELETE the file named MATHPACK.BIN from the
working drive. If auto drive searching is selected, the file will be
deleted from the first drive it 1is found on. The second Tine will
DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive
0.

There are several restrictions on the DELETE command. First, a file
that is delete or write protected may not be deleted without first
removing the protection. Also a file which is currently in the print
queue (see the PRINT command) can not be deleted using the DELETE
command.

-D.2.1-

FLEX User's Manual
EXEC

The EXECute command 1is wused to process a text file as a Tlist of
commands, Jjust as if they had been typed from the keyboard. This is a
very powerful feature of FLEX for it allows very complex procedures to
be built up as a command file. When it is desirable to run this
procedure, it is only necessary to type EXEC followed by the name of the
command file. Essentially all EXEC does is to replace the FLEX keyboard
entry routine with a routine which reads a line from the command file
each time the keyboard routine would have been <called. The FLEX
utilities have no idea that the 1line of idinput is coming from a file
instead of the terminal.

DESCRIPTION
The general syntax of the EX command is:
EXEC,<file spec>

where <file spec> is the name of the command file. The default
extension is TXT. An example will give some ideas on how EX can be
used. One set of commands which might be performed quite often is the
set to make a new system diskette on drive 1 (see NEWDISK). Normally it
is necessary to use NEWDISK and then copy all .CMD. and all .SYS files to
the new disk. Finally the LINK must be performed. Rather than having
to type this set of commands each time it was desired to produce a new
system diskette, we could create a command file called MAKEDISK.TXT
which contained the necessary commands. The BUILD wutility should be
used to create this file. The creation of this file might go as
follows:

+++BUILD,MAKEDISK
=NEWDISK,1
=CoPY,0,1,.CMD, .0V, .LOW, .SYS
=LINK,1.D0OS
=#

+++

The first Tine of the example tells FLEX we wish to BUILD a file called
MAKEDISK (with the default extension of .TXT). Next, the three
necessary command Tlines are typed in just as they would be typed into
FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS
extensions from drive 0 to drive 1. Finally the LINK will be performed.
Now when we want to create a system disk we only need to type the
following:

+++EXEC,MAKEDISK
We are assuming here that MAKEDISK resides on the same disk which

contains the system commands. EXEC can also be used to execute the
STARTUP file (see STARTUP).

-E.1.1-

FLEX User's Manual

There are many applications for the EXEC command. The one shown is

certainly useful but experience and imagination will lead you to other
useful applications.

IMPORTANT NOTE: The EXEC utility is Tloaded into memory beginning at hex
location 7C00. Do not attempt to use EXEC if your system does not have
memory at this address.

-E.1.2-

FLEX User's Manual
I

The I command allows a wutility to obtain input characters from a disk
file rather than the terminal.

DESCRIPTION
The general syntax of the I command is:
I,<file spec>,<command>

where <file spec> is the name of the file containing the characters to
be used as input and <command> is the FLEX utility command that will be
executed and that will receive that input from <file spec>. The default
extension on <file spec> is .TXT.

For example, say that on a startup you always wanted the file DATA.DAT
deleted from the disk without having to answer the "ARE YOU SURE?"
questions. This could be done in the following manner:

+++BUILD ,YES
=YY
=#

The first Y will answer the "DELETE O.DATA.DAT?" question while the
second Y will answer the "ARE YOU SURE?" question.

+++BUILD ,STARTUP
=I,YES,DELETE,DATA.DAT
=#

Upon booting the disk, FLEX will execute the STARTUP file and perform
the following operation: delete the file DATA.DAT receiving all answers
to any questions from the input file YES.TXT vrather than from the
terminal.

See the description of the STARTUP command for more information on
STARTUP.

-1.1.1-

FLEX User's Manual
JUMP

The JUMP command is provided for convenience. It 1is used to start
execution of a program already stored in computer RAM memory.

DESCRIPTION
The general syntax of the JUMP command is:
JUMP,<hex address>

where <hex address> is a 1 to 4 digit hex number vrepresenting the
address where program execution should begin. The primary reason for
using JUMP is if there is a long program in memory already and you do
not wish to load it off of the disk again. Some time can be saved but
you must be sure the program really exists before JUMPing to it!

As an example, suppose we had a BASIC interpreter in memory and it had a

'warm start' address of 103 hex. To start its execution from FLEX we
type the following:

+++JUMP, 103

The BASIC interpreter would then be executed. Again, remember that you
must be absolutely sure the program you are JUMPing to is actually
present in memory.

-J.1.1-

FLEX User's Manual

LINK

The LINK command is used to tell the bootstrap loader where the DO0S.SYS
file resides on the disk. This is necessary each time a system disk is
created wusing NEWDISK. The NEWDISK wutility should be consulted for
complete details on the use of LINK.

DESCRIPTION
The general syntax of the LINK command is:
LINK,<file spec>

where <file spec> is wusually DOS. The default extension is SYS. Some
examples of the use of LINK follow:

+++LINK, DOS
+++LINK, 1.D0S

The first Tine will LINK DOS.SYS on the working drive, while the second

example will LINK DOS.SYS on drive 1. For more advanced details of the
LINK wutility, consult the "Advanced Programmers Guide".

-L.1.1-

FLEX User's Manual
LIST

The LIST command is used to LIST the contents of text or BASIC files on
the terminal. It 1is often desirable to examine a files without having
to wuse an editor or other such program. The LIST wutility allows
examining entire files, or selected lines of the file. Line numbers may
also be optionally printed with each Tine.

DESCRIPTION
The general syntax of the LIST command is:
LIST,<file spec>[,<line range>][,+(options)]

where the <file spec> designates the file to be LISTed (with a default
extension of TXT),and <line range> is the first and last Tline number of
the file which you wish to be displayed. All 1lines are output if no
range specification 1is given. The LIST command supports two additional
options. If a +N option is given, 1line numbers will be displayed with
the 1listed file. If a +P option 1is given, the output will be formatted
in pages and LIST will prompt for "TITLE" at which time a title for the
output may be entered. The TITLE may be up to 40 characters long. This
feature is wuseful for obtaining output on a printer for documentation
purposes (see P command). Each page will consist of the title, date,
page number, 54 Tines of output and a hex O0C formfeed character.
Entering a +NP will select both options. A few examples will clarify
the syntax used:

+++LIST,RECEIPTS
+++LIST,CHAPTER1,30-200,+NP
+++LIST,LETTER, 100

The first example will 1list the-file named 'RECEIPTS.TXT' without 1line
numbers. A1l Tines will be output unless the 'escape character' is used
as described in the Utility Command Set introduction. The second
example will LIST the 30th Tline through the 200th Tine of the file named
"CHAPTERL.TXT' on the terminal. The hyphen ('-') 1is vrequired as the
range number separator. Line numbering and page formatting will be
output because of the '+NP' option. The last example shows a special
feature of the range specification. If only one number is stated, it
will be interpretted as the first 1line to be displayed. AlIl Tlines
following that line will also be LISTed. The last example will LIST the
lines from 1line 100 to the end of the file. No 1line numbers will be
output since the 'N' was omitted.

-L.2.1-

FLEX User's Manual
NEWDISK

Newdisk 1is used to format a new diskette. Diskettes as purchased will
not work with FLEX until certain system information has been put on
them. The NEWDISK utility puts this information on the diskette, as well
as checking the diskette for defective sectors (bad spots on the surface
of the disk which may cause data errors).

DESCRIPTION
The general syntax of the NEWDISK command is:

NEWDISK,<drive>

where <drive> represents a single digit drive number and specifies the
drive to be formatted. After typing the command, the system will ask if
you are sure you want to NEWDISK, and if the disk to be initialized is a
scratch disk. Type 'Y' as the response to these questions if you are
sure the NEWDISK command should continue. Certain versions of NEWDISK
will also ask you if you have a double sided disk installed. If so,
type 'Y'. If you are using single sided diskettes, type 'N'. NEWDISK
then prompts for a volume name and number. This gives you the ability
to "name" the diskette for future vreference.

The NEWDISK process takes approximately five minutes to initialize a
disk, assuming there are no bad spots on it. Defective sectors will
make NEWDISK run even slower, depending on the number of bad sectors
found. As bad sectors are detected, a message will be output to the
terminal such as:

BAD SECTOR AT xxyy

where 'xx' is the disk track number (in hex) and 'yy' 1is the sector
number, also in hex. NEWDISK automatically removes bad sectors from the
list of available sectors, so even if a disk has several bad spots on
it, it 1is still wusable. When NEWDISK finishes, FLEX will vreport the
number of available sectors remaining on the disk. If no defective
sectors were detected, the total should be 340 or 1140 for single-sided
mini or full size disks respectively. A double-sided disk would yield
twice that number.

Sometimes during the NEWDISK process, a sector will be found defective
in an area on the disk which is required by the operating system. In
such a case, NEWDISK will report:

FATAL ERROR - FORMATTING ABORTED

and FLEX will vregain control. You should not immediately assume
the disk to be useless if this occurs, but instead, remove the disk from the
drive, re-insert it, and try NEWDISK again. If after several attempts
the formatting 1is still aborted, you should assume the disk s
unusabTe.

-N.1.1-

FLEX User's Manual
CREATING SYSTEM DISKETTES

A system disk is one from which the operating system can be Tloaded.
Normally the system disk will also contain the Utility Command Set
(UCS). The following procedure should be wused when preparing system
disks.

1. Initialize the diskette wusing NEWDISK as described above.
2. COPY all .CMD files desired to the new disk.

3.COPY all .SYS files to the new disk. It should be noted that
steps 2 and 3 can be done with one command;
'copy,0,1,.CMD, .0V, .LOW,.SYS', assuming you are copying from 0 to
1 and all command files and their overlays are desired. (the .0V
copies overlay files and .LOW copies the utility
'SAVE.LOW").

4.Last it is necessary to LINK the file DOS.SYS to the system using
the LINK command.

A very convenient way to get the above process performed without having
to type all of the commands each time 1is to create a command file and
use the EXEC command. Consult the EXEC documentation for details.

It is not necessary to make every disk a system diskette. It is also
possible to create 'working' diskettes, disks which do not have the
operating system on them, for use with text files or BASIC files.
Remember that a diskette can not be used for booting the system unless
the operating system is contained on it. To create a working disk,
simply run NEWDISK on a diskette. It will now have all of the required
information to enable FLEX to make use of it. This disk, however, does
not contain the disk operating system and is not capable of booting the
system.

-N.1.2-

FLEX User's Manual
0

The 0 (not zero) command can be used to route all displayed output from
a utility to an output file instead of the terminal. The function of O
is similar to P (the printer command) except that output is stored in a
file rather than being printed on the terminal or printer. Other SWTPC
and TSC software may support this utility. Check the supplied software
instructions for more details.

DESCRIPTION
The general syntax of the 0 command is:
0,<file spec>,<command>

where <command> can be any standard utility command line and <file spec>
is the name of the desired output file. The default extension on <file
spec> is .OUT. If 0 is used with multiple commands per Tline (using the
'end of line' character ':') it will only have affect on the command it
immediately precedes. Some examples will clarify its use.

+++0,CAT, CAT
writes a 1listing of the current disk directory into
a file called CAT.OUT

+++0,BAS ,ASMB,BASIC.TXT
writes the assembled source listing of the text
source file 'BASIC.TXT' into a file called 'BAS.OUT'
when wusing the assembler

-0.1.1-

FLEX User's Manual
P

P is the system print routine and will allow the output of any command
to be routed to the printer. This is very useful for getting printed
copies of the CATalog or wused with the LIST command will allow the
printing of FLEX text files. The P command simply switches an output
flag such that any output which would normally have gone-to the console
will go to a printer. In order to know how to talk to the printer (it
may be any type of printer), the P command reads a file from the disk
called "PRINT.SYS" which should contain the necessary driver routines
for the particular printer and configuration 1in use.

DESCRIPTION
The general syntax of the P command is:
P,<command>

where <command> can be any standard utility command 1line. If P is used
with multiple commands per line (using the 'end of 1line' character), it
will only have affect on the command it immediately preceeds. Some
examples will clarify its use:

+++P, CAT
+++P, LIST,MONDAY: CAT, 1

The first example would print a CATalog of the directory of the working
drive on the printer. The second example will print a LISTing of the
text file MONDAY.TXT and then display on the terminal a CATalog of drive
1 (this assumes the 'end of 1line' character is a ':'). Note how the P
did not cause the 'CAT,1' to go to the printer. Consult the 'Advanced
Programmer's Guide' for details concerning adaption of the P command to
various printers through the writing of new printer driver routines (the
PRINT.SYS file).

The P command tries to load a file named PRINT.SYS from the same disk
which P itself was retrieved. The PRINT.SYS file which is supplied with
the system diskette contains the necessary routines to operate a printer
connected through a parallel Centronics type interface on PORT 7 of a
SWTPc computer (PIA Tocated at $801C). If you wish to use a different
printer configuration, consult the 'Advanced Programmer's Guide' for
details on writing your own printer driver routines to replace the
PRINT.SYS file. The Centronics drivers, however, are compatible with
many parallel interfaced printers presently on the market.

-P.1.1-

FLEX User's Manual

PRINT

FLEX has the ability to output file stored data to a printer at the same
time that It 1is performing other tasks. This feature is especially
useful when it is necessary to print a Tong listing without tying up the
computer. This method of printing is called PRINTER SPOOLING. In order
for the printer spooling function to work in the SWTPc versions, a SWTPC
MP-T dinterrupt timer board must be installed in I/0 position #4 on the
computer's mother board. Some FLEX versions do not support this feature
due to hardware restraints.

DESCRIPTION

The general syntax of the PRINT command is as follows:
PRINT,<file spec>[,+<repeat #>]

where <file spec> is the name of the file to be printed. The default
extension on <file spec> is .OUT. <Repeat #> is the number of
additional copies of the file you wish to be printed.

For example, say that your disk had a very large number of files on it
and a printer catalog Tlisting was desired. A file containing the output
information should first be created by wusing the 0 commands such
as:

+++0, CAT.OUT,CAT.CMD or +++0,CAT, CAT
(see the description of the 0 command)

when printer output is desired the command
+++PRINT,CAT.OUT or +++PRINT, CAT

should be entered.

At this time the file CAT.OUT is stored in a buffer called a print queue
(waiting Tist). If another PRINT command is issued before the first is
finished, the second file will be 1in the next available location in the
print queue.

After the file name to be printed has been stored in the print queue,
control will return to the FLEX operating system. At this time you may
perform any disk operation you want, such as deleting files, copying
disks, etc. While you are wusing FLEX, PRINT will be outputting the
desired file to the printer. PRINT will automatically wait for the
printer to become ready (power up) even after the file has been entered
into the print queue.

After printing the first file, the second file in the queue will be

printed (if there is one), etc. The print queue may be examined or
modified at any time by using the QCHECK wutilty.

-P.2.1-

NOTE:

FLEX User's Manual

There are several things that the user should be aware of when

using the printer spooling:

1)

2)

3)

4)

Any file that is in the print queue may not be deleted,
renamed, or changed in any way until it has been printed

removed by the QCHECK print queue manager utility.

Disks which contain the files in the print queue should
not be removed while the files are still 1in the queue.

P command should not be used while files are waiting
the print queue.

paper or cassette tape 1load or any other operation

which requires that the computer accept data at precise

intervals should not be executed during a printer

spooling operation.

-P.2.2-

FLEX User's Manual
PROT

The PROT command is used to change a protection code associated with
each file. When a file is first saved, it has no protection associated
with it thereby allowing the user to write to, rename, or delete the
file. Delete or write protection can be added to a file by using the
PROT command.

DESCRIPTION
The general syntax of the PROT command is:
PROT,<file spec>[, (option Tist)]

where the <file spec> designates the file to be protected and (option
list) is any combination of the following options.

D A 'D'" will delete protect a file. A delete protected file cannot be
affected by wusing the DELETE or RENAME Commands, or by the delete
functions of SAVE, APPEND, etc.

W A 'W' will write protect a file. A write protected file cannot be
deleted, renamed or have any additional information written to it.
Therefore a write protected file 1is automatically delete protected
as well.

C A 'C" will Catalog protect a file. Any files with a C protection
code will function as before but will not be displayed when a
CAT command 1is issued.

X An 'X" will remove all protection options on a specific file.

Examples:
+++PROT CAT.CMD,XW Remove any previous protection on the CAT.CMD
Utility and write protect it.
+++PROT CAT.CMD,X Remove all protection from the CAT.CMD
utility.
+++PROT INFO.SYS,C Prohibit INFO.SYS from being displayed in a

catalog listing.

-P.3.1-

FLEX User's Manual

QCHECK

The QCHECK wutility can be used to examine the contents of the print
queue and to modify it contents. QCHECK has nq additional arguments
with it. Simply type QCHECK. QCHECK will stop any printing that is
taking place and then display the current contents of the print
queue as follows:

+++QCHECK
POS NAME TYPE RPT
1 TEST. OuT 2
2 CHPTR. OuT 0
3 CHPTR2. JIXT 0
COMMAND?

This output says that TEST.OUT is the next file to be printed (or that
it is in the process of being printed) and that 3 copies (1 plus a
repeat of 2) of this file will be printed. After these three copies
have been printed, CHPTR.OUT will be printed and then CHPTR2.TXT. The
COMMAND? prompt means QCHECK 1is waiting for one of the following
commands:

COMMAND FUNCTION
(carriage return) Re-start printing, return to the FLEX command mode.
Q A Q command will print the queue contents again.

R,#N,X An R command repeats the file at position #N X times.
If X is omitted the repeat count will be cleared.
Example: R,#3,5

D, #N A D command removes the file at queue position #N.
If N=1, the current print job will be terminated.
Example: D,#3

T A T command will terminate the current print job.
This will cause the job currently printing to quit
and printing of the next job to start. If the
current files RPT count was not zero, it will
print again until the repeat count is 0. To
completely terminate the current job use the
D,#1 command.

N, #N A N command will make the file at position #N the
next one to be printed after the current print job
is finished. Typing Q after this operation will
show the new queue order.

Example: N,#3

S An S command will cause printing to stop. After
the current job is finished, printing will halt
until a G command is issued.

-Q.1.1-

FLEX User's Manual
G A G command will re-start printing after an S
command has been used to stop it.
K A K command will kill the current print process.

A1l printing and queued jobs will be removed from
the queue. The files are not deleted from disk.

-Q.1.2-

FLEX User's Manual
RENAME

The RENAME command is used to give an existing file a new name in the
directory. It is useful for changing the actual name as well as changing
the extension type.

DESCRIPTION
The general syntax of the RENAME command is:
RENAME,<file spec 1>,<file spec 2>

where <file spec 1> is the name of the file you wish to RENAME and <file
spec 2> is the new name you are assigning to it. The default extension
for file spec 1 is TXT and the default drive is the working drive. If
no extension is given on <file spec 2>, it defaults to that of <file
spec 1>. No drive 1is requird on the second file name, and if one is
given it 1is ignored. Some examples follow:

+++RENAME, TEST1.BIN,TEST2
+++RENAME, 1.LETTER,REPLY
+++RENAME, 0. FIND.BIN, FIND.CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next example
RENAMEs the file LETTER.TXT on drive 1 to REPLYITXT. The Tast 1line
would cause the file FIND.BIN on drive 0 to be renamed FIND.CMD. This
is useful for making binary files created by an assembler into command
files (changing the extension from BIN to CMD). If you try to give a
file a name which already exists in the directory, the message:

FILE EXISTS

will be displayed on the terminal. Keep in mind that RENAME only
changes the file's name and in no way changes the actual file's
contents.

One Tlast note of interest. Since utility commands are Jjust 1like any
other file, it 1is possible to rename them also. If you would prefer
some of the command names to be shorter, or different all together,
simply use RENAME and assign them the names you desire.

-R.1.1-

FLEX User's Manual

SAVE

The SAVE command is used for saving a section of memory on the disk.
Its primary use is for saving programs which have been Tloaded into
memory from tape or by hand.

DESCRIPTION
The general syntax of the SAVE command is:
SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]

where <file spec> is the name to be assigned to the file. The default
extension is BIN and the default drive 1is the working drive. The
address fields define the beginning and ending addresses of the section
of memory to be written on the disk. The addresses should be expressed
as hex numbers. The optional <transfer address> would be included if
the program is to be loaded and executed by FLEX. This address tells
FLEX where execution should begin. Some examples will clarify the use
of SAVE:

+++SAVE,DATA, 100, 1FF
+++SAVE, 1.GAME, 0, 1680, 100

The first 1line would SAVE the memory locations 100 to 1FF hex on the
disk in a file called DATA.BIN. The file would be put on the working
drive and no transfer address would be assigned. The second example
would cause the contents of memory Tlocations O through 1680 to be SAVEd
on the disk in file GAME.BIN on drive 1. Since a transfer address of
100 was specified as a parameter, typing 'GAME.BIN' in response to the
FLEX prompt after saving would cause the file to be Tloaded back into
memory and execution started at location 100.

If an attempt is made to save a program under a file name that already
exists, the prompt "MAY THE EXISTING FILE BE DELETED?" will be
displayed. A Y response will replace the file with the new data to be
saved while a N response will terminate the save operation.

Sometimes it is desirable to save noncontiguous segments of memory. To
do this it would be necessary to first SAVE each segment as a separate
file and then use the APPEND command to combine them into one file. If
the final file is to have a transfer address, you should assign it to
one of the segments as it 1is being saved. After the APPEND operation,
the final file will retain that transfer address.

-S.1.1-

FLEX User's Manual
SAVE.LOW

There is another form of the SAVE command resident in the UCS. It is
called SAVE.LOW and Toads in a lower section of memory than the standard
SAVE command. Its wuse is for saving programs in the Utility Command
Space where SAVE.CMD is Tloaded. Those interested in creating their own

utility commands should consult the 'Advanced Programmer's Guide' for
further details.

-S.1.2-

FLEX User's Manual
STARTUP

STARTUP is not a utility command but is a feature of FLEX. It is often
desirable to have the operating system do some special action or actions
upon initialization of the system (during the bootstrap Toading
process). As an example, the wuser may always want to wuse BASIC
immediately following the boot process. STARTUP will allow for this
without the necessity of calling the BASIC interpreter each time.

DESCRIPTION

FLEX always checks the disk's directory immediately following the system
initialization for a file <called STARTUP.TXT. If none is found, the
three plus sign prompt is output and the system is ready to accept
user's commands. If a STARTUP file is present, it 1is read and
interpreted as a single command 1line and the appropriate actions are
performed. As an example, suppose we wanted FLEX to execute BASIC each
time the system was booted. First it is necessary to create the STARTUP
file:

+++BUILD,STARTUP
=BASIC
=#

+++

The above procedure wusing the BUILD command will create the desired
file. Note that the file consisted of one 1line (which 1is all FLEX reads
from the STARTUP file anyway). This 1line will tell FLEX to load and
execute BASIC. Now each time this disk is used to boot the operating
system, BASIC will also be 1loaded and run. Note that this example
assumes two things. First, the disk must contain DO0S.SYS and must have
been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASIC.CMD actually exists on the disk.

Another example of the use of STARTUP is to set system environment
paramters such as TTYSET parameters or the assigning of a system and
working drive. If the STARTUP command consisted of the following
line:

TTYSET,DP=16,WD=60:ASN,W=1 :ASN:CAT,0

each time the system was booted the following actions would occur.
First, TTYSET would set the 'depth' to 16 and the 'width' to 60. Next,
assuming the 'end of 1line' character is the ':', the ASN command would
assign the working drive to drive 1. Next ASN would display the
assigned system and working drives on the terminal. Finally, a CATalog
of the files on drive 0 would be displayed. For details of the actions
of the individual commands, refer to their descriptions elsewhere in

this manual.

As it stands, it 1looks as if the STARTUP feature is Tlimited to the
execution of a single command 1line. This is true but there is a way
around the restriction, the EX command. If a longer 1list of operations
is desired than will fit on one line, simply create a command file

-5.2.1-

FLEX User's Manual

containing all of the commands desired. Then create the STARTUP file
placing the single Tine:

EXEC,<file name>

where <file name> would be replaced by the name assigned to the command
file created. A Tlittle imagination and experience will show many uses
for the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS
command it is possible to lockout access to DOS. You can correct the
problem by hitting the RESET button and beginning execution at address
$AD03. The STARTUP file may then be deleted and if desired, modified.
Directing execution to ADO3, the DOS warm start address, bypasses the
DOS STARTUP function.

-5.2.2-

FLEX User's Manual
TTYSET

The TTYSET wutility command is provided so the user may control the
characteristics of the terminal. With this command, the action of the
terminal on input and the display format on output may be
controlled.

DESCRIPTION
The general syntax of the TTYSET command is:
TTYSET[,<parameter list>]

where <parameter 1list> is a 1list of 2 Tletter parameter names, each
followed by an equals sign ('='), and then by the value being assigned.
Each parameter should be separated by a comma or a space. If no
parameters are given, the values of all of the TTYSET parameters will be
displayed on the terminal.

The default number base for numerical values is the base most
appropriate to the parameter. In the descriptions that follow, 'hh' is
used for parameters whose default base is hex; 'dd' is used for those
whose default base is decimal. Values which should be expressed in hex
are displayed in the TTYSET parameter 1listing preceded by a '$§'. Some
examples follow:

+++TTYSET
+++TTYSET,DP=16,WD=63
+++TTYSET,BS=8,ES=3

The first example simply 1lists the current values of all TTYSET
parameters on the terminal. The next line sets the depth 'DP' to 16
lines and the terminal width, 'WD' to 63 columns. The last example sets
the backspace character to the value of hex 8, and the escape character
to hex 3.

The following fully describes all of the TTYSET parameters available to
the user. Their initial values are defined, as well ‘'as any special
characteristics they may possess.

BS=hh BackSpace character

This sets the 'backspace' charcter to the character having the ASCII hex
value of hh. This character is initially a 'control H' (hex 08), but
may be defined to any ASCII character. The action of the backspace
character is to delete the last character typed from the terminal. If
two backspace characters are typed, the last two characters will be
deleted, etc. Setting BS=0 will disable the backspace feature.

-T.1.1-

FLEX User's Manual

BE=hh Backspace Echo character

This defines the character to be sent to the terminal after a
'backspace' character is received. The character printed will have the
ASCII hex value of hh. This character is initially set to a null but
can be set to any ASCII character.

The BE command also has a very special use that will be of interest to
some terminal owners, such as SWTPC C(CT-64.

If a hex 08 is specified as the echo character, FLEX will output a space
(20) then another 08. This feature is very uesful for terminals which
decode a hex 08 as a cursor left but which do not erase characters as
the cursor is moved.

Example: Say that you mis-typed the word cat as shown below:
+++CAY

typing in one CTRL-H (hex 08) would position the cursor on top of the Y
and delete the Y from the DOS input buffer. FLEX would then send out a
space ($20) to erase the Y and another 08 (cursor left) to re-position
the cursor.

DL=hh DelLete character

This sets the 'delete current 1line' character to the hex value hh. This
character is 1initially a 'control X' (hex 18). The action of the delete
character is to ‘'erase' the current input Tine before it 1is accepted
into the computer for execution. Setting DL=0 will disable the 1line
delete feature.

EL=hh End of Line character

This character is the one used by FLEX to separate multiple commands on
one input Tine. It is initially set to a colon (':'), a hex value of
3A. Setting this character to 0 will disable the multiple command per
line capability of FLEX. The parameter 'EL=hh' will set the end of line
character to the character having the ASCII hex value of hh. This
character must be set to a printable character (control characters not
allowed).

DP=dd DePth count

This parameter specifies that a page consists of dd (decimal) physical
lines of output. A page may be considered to be the number of lines
between the fold if using fan folded paper on a hard copy terminal, or a
page may be defined to be the number of 1lines which can be displayed at
any one time on a CRl1 type terminal. Setting DP=0 will disable the
paging (this 1is the initial value). See EJ and PS below for more
details of depth.

-T.1.2-

FLEX User's Manual

WD=dd WiDth

The WD parameter specifies the (decimal) number of characters to be
displayed on a physical line at the terminal (the number of columns).
Lines of text longer than the value of width will be 'folded' at every
multiple of WD characters. For example, if WD is 50 and a line of 125
characters is to be displayed, the first 50 characters are displayed on
a physical 1line at the terminal, the next 50 characters are displayed on
the next physical Tine, and the last 25 characters are displayed on the
third physical Tline. If WD is set to 0, the width feature will be
disabled, and any number of characters will be permitted on a physical
Tine.

NL=dd NuLl count

This parameter sets the (decimal) number of non—printing (Null) ‘'pad'
characters to be sent to the terminal at the end of each 1line. These
pad characters are used so the terminal carriage has enough time to
return to the left margin before the next printable characters are sent.
The initial value is 4. Users using CRT type terminals may want to set
NL=0 since no pad characters are usually required on this type of
terminal.

TB=hh TaB character

The tab character is not used by FLEX but some of the utilities may
require one (such as the Text Editing System). This parameter will set
the tab character to the character having the ASCII hex value hh. This
character should be a printable character.

EJ=dd EJect count

This parameter is used to specify the (decimal) number of 'eject lines'
to be sent to the terminal at the bottom of each page. If Pause is
'on', the 'eject sequence' 1is sent to the terminal after the pause is
terminated. If the value dd is zero (which it is by default), no 'eject
lines' are issued. An eject line is simply a blank line (line feed)
sent to the terminal. This feature 1is especially useful for terminals
with fan fold paper to skip over the fold (see Depth). It may also be
useful for certain CRT terminals to be able to erase the previous screen
contents at the end of each page.

PS=Y or PS=N PauSe control

This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause
feature. If Pause is on and depth is set to some nonzero value, the
output display is automatically suspended at the end of each page. The
output may be vrestarted by typing the ‘'escape' character (see ES
description). If pause 1is disabled, there will be no end-of-page
pausing. This feature is useful for those using
high-speed CRT terminals

T.1.3-

FLEX User's Manual

to suspend output 1long enough to read the page of text.

ES=hh EScape character

The character whose ASCII hex value is hh is defined to be the 'escape
character'. Its initial value is $18, the ASCII ESC character. The
escape character is used to stop output from being displayed, and once
it is stopped, restart it again. It 1is also used to restart output
after Pause has stopped it. As an example, suppose you are LISTing a
long text file on the terminal and you wish to temporarily halt the
output. Typing the 'escape character' will do this (this feature is not
supported on computers using a Control Port for terminal
communications). At this time (output halted), typing another ‘'escape
character' will resume output, while typing a RETURN key will cause
control to return to FLEX and the three plus sign prompt will be output
to the terminal. It should be noted that Tline output stopping always
happens at the end of a Tine.

-T.1.4-

FLEX User's Manual
VERIFY

The VERIFY command is used to set the File Management System's write
verify mode. If VERIFY 1is on, every sector which is written to the disk
is read back from the disk for verification (to make sure there are no
errors in any sectors). With VERIFY off, no verification is
performed.

DESCRIPTION
The general syntax of the VERIFY command is:

VERIFY[,ON]
or
VERIFY[,OFF]

where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed
without any parameters, the current status of VERIFY will be displayed
on the terminal. Example:

+++VERIFY,ON
+++VERIFY

The first example sets the VERIFY mode to ON. The second Tline would
display the current status (ON or OFF) of the VERIFY mode. VERIFY
causes slower write times, but it is recommended that it be left on for
your protection.

-V.1.1-

FLEX User's Manual
VERSION

The VERSION wutility is used to display the-version number of a utility
command. If problems or updates ever occur in any of the utilities,
they may be replaced with updatedversions. The VERSION command will
allow you to determine which version of a particular utility you
have.

DESCRIPTION
The general syntax of the VERSION command is:

VERSION,<file spec>

where <file spec> 1is the name of the utility you wish to check. The
default extension is CMD and the drive defaults to the working drive.
As an example:

+++VERSION,0.CAT

would display the version number of the CAT command (from drive 0) on
the terminal.

In order for a version number to be valid, the utility must have been
written in a certain, defined manner. That is to say, the version
number should be the third byte of the utility (the first two would
normally be a branch instruction to bypass the version number). If the
utility was not written in this manner, the version number reported will
be meaningless. If you receive a version number from some command that
is greater than 20 or 30, that command was probably not written to
include a version number and the number you have received s
meaningless. All the utility commands provided by TSC have valid
version numbers.

-V.2.1-

FLEX User's Manual
XOuT

XOUT is a special form of the delete command which deletes all files
having the extension .OUT.

DESCRIPTION The general syntax of XOUT is:
XOUT[,<drive spec>]

where <drive spec> 1is the desired drive number. If no drive is
specified all, .0UT files on the working drive will be deleted and if
auto drive searching is enabled, all .0UT files on drives I and 2 will
be deleted. XOUT will not delete any files which are delete protected
or which are currently in the print queue.

Example:

+++XOUT
+++X0UT 1

-X.1.1-

FLEX User's Manual
GENERAL SYSTEM INFORMATION

I. DISK CAPACITY

Each sector of a FLEX disk contains 252 characters or bytes of user data
(4 bytes of each 256 byte sector are used by the system). Thus a
single-sided mini disk has 340 sectors or 85,680 characters or bytes of
user information. A single-sided full size disk has 1140 sectors or
287,280 bytes of user data. Double-sided disks would contain exactly
twice these amounts.

IT. WRITE PROTECT

Floppy disks can usually be physically write protected to prevent FLEX
from performing a write operation. Any attempt to write to such a disk
will cause an error message to be issued. It is good practice to write
protect disks which have important files on them. A mini disk can be
write protected by placing a piece of opaque tape over the small
rectangular cutout on the edge of the disk. Full size floppys are just
the opposite. In order to write protect a full size disk, you must
remove the tape from the cutout. In other words, the notch must be
exposed to write protect the disk. Some full size disks do not have
this cutout and therefore cannot be write protected.

ITI. THE 'RESET' BUTTON

The RESET button on the front panel of your computer should NEVER BE
PRESSED DURING A DISK OPERATION. There should never be a need to
'reset' the machine while in FLEX. If the machine is 'reset' and the
system is writing data on the disk, it is possible that the entire disk
will become damaged. Again, never press 'reset' while the disk is
operating! Refer to the ‘'escape' ~character in TTYSET for ways of
stopping FLEX.

IV. NOTES ON THE P COMMAND

The P command tries to Tload a printer driver file named PRINT.SYS from
the same disk which P itself was retrieved. For the requirements of
this file and on writing your own custom PRINT.SYS file, see the section
on such Tlater in this manual or consult the 'Advanced Programmer's
Guide'.

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE

If an attempt 1is made to access a minifloppy drive not containing a
diskette, the system will hang up attempting to read until a disk is
inserted and the door <closed. Alternatively, you <could reset the
machine and begin execution at the warm start location $AD03. This is
not a problem on full-size drives.

-3.1-

FLEX User's Manual

VI. SYSTEM ERROR NUMBERS

Any time that FLEX detects an error during an operation, an appropriate
error message will be displayed on the terminal. FLEX internally
translates a derived error number into a plain Tlanguage statement using
a look-up table called ERROR.SYS. If you have forgotten to copy this
.SYS file onto a disk that you are wusing, FLEX will vreport a
corresponding number as shown below:

DISK ERROR #xx

where 'xx' 1is a decimal error number. The table below is a Tist of
these numbers and what error they represent.

ERROR # MEANING

1 ILLEGAL FMA FUNCTION CODE ENCOUNTERED
2 THE REQUESTED FILE IS IN USE

3 THE FILE SPECIFIED ALREADY EXISTS

4 THE SPECIFIED FILE COULD NOT BE FOUND
5 SYSTEM DIRECTORY ERROR-REBOOT SYSTEM

6 THE SYSTEM DIRECTORY IS FULL

7 ALL AVAILABLE DISK SPACE HAS BEEN USED
8 READ PAST END OF FILE

9 DISK FILE READ ERROR

10 DISK FILE WRITE ERROR

11 THE FILE OR DISK IS WRITE PROTECTED

12 THE FILE IS PROTECTED-FILE NOT DELETED
13 ILLEGAL FILE CONTROL BLOCK SPECIFIED
14 ILLEGAL DISK ADDRESS ENCOUNTERED

15 AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
16 DRIVE NOT READY

17 THE FILE IS PROTECTED-ACCESS DENIED

18 SYSTEM FILE STATUS ERROR

19 FMS DATA INDEX RANGE ERROR
20 FMS INACTIVE-REBOOT SYSTEM
21 ILLEGAL FILE SPECIFICATION
22 SYSTEM FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW-DISK TOO SEGMENTED
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR-FILE DAMAGED
26 COMMAND SYNTAX ERROR-RE-TYPE COMMAND
27 THAT COMMAND IS NOT ALLOWED WHILE PRINTING
28 WRONG HARDWARE CONFIGURATION

For more details concerning the meanings of these error messages,
consult the 'Advanced Programmer's Guide'.

-3.2-

FLEX User's Manual

VII. SYSTEM MEMORY MAP

The following is a brief 1list of the RAM space required by the FLEX

Operating System. All address are in hex.

0000 - 7FFF User RAM
*Note: Some of this space is used by
NEWDISK, COPY and other utilities.

AOOO - BFFF Disk Operating System

AO4A - AO7F System stack

A100 - A6FF Utility command space

ADOO FLEX cold start entry address

ADO3 FLEX warm start entry address

For a more detailed memory map, consult the 'Advanced
Guide'.

-3.3-

Programmer's

FLEX User's Manual
VIII. FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES

In order for the FLEX I/0 functions to operate properly, all user
program character input/output subroutines should be vectored thru the
FLEX operating system rather than the computer's monitor. Below is a
list of FLEX's I/0 subroutines and a brief description of each. All
given addresses are in hexadecimal.

GETCHR at $AD15

This routine will 1look for one character from the control terminal (I/0
port #1) and store it in the A accumulator. Once called, the input
routine will ioop within itself wuntil a character has been input.
Anytime input is desired, the call JSR GETCHR or JSR $AD15 should be
used.

GETCHR automatically sets the 8th bit to 0 and does not check for
parity. A call to this subroutine affects the processor's registers as
follows:

ACC A loaded with the character input from the terminal
ACC B not affected
IXR not affected

PUTCHR at $AD18
This subroutine is used to output one character from the computer to the
control port (I/0O port #1 in the SWTPc system).

To use PUTCHR,. the character to be output should be placed in the A
accumulator in its ASCII form. For example, to output the Tletter 'A'
on the control terminal, the following program should be used:

LDA A #$41
JSR $AD18

The processor's registers are affected as follows:

ACC A changed internally
ACC B not affected
IXR not affected

PSTRNG at $AD1E

PSTRNG is a subroutine used to output a string of text on the control
terminal. When address $ADIE is called, a carriage return and line feed
will automatically be generated and data output will begin at the
location pointed to by the index register. Output will continue until a
hex 04 is seen. The same rules for using the ESCAPE and RETURN keys for
stopping output apply as described earlier.

-3.4-

FLEX User's Manual

The accumulator and register status after using PSTRNG are as follows:

ACC A Changed during the operation

ACC B UNCHANGED
IXR Contains the memory location of the last character read from the
string (usually the 04 unless stopped by the ESC key)

NOTE: The ability of wusing backspace and Tline delete characters is a
function of your user program and not of the FLEX I/O routines described

above.

For additional information consult the 'Advanced Programmer's Manual'.

-3.5-

FLEX User's Manual
IX. BOOTING THE FLEX DISK OPERATING SYSTEM

In order to read FLEX from the system disk upon powering up your system,
you must have a short program in RAM or ROM memory. This program is
called a ‘'bootstrap' Tloader.

If you are using a Smoke Signal Broadcasting disk system, there is a
bootstrap loader in ROM on the controller board. You need only execute
this bootstrap routine in order to get FLEX up and running. If you are
using the Southwest Technical Product's mini floppy system and the
SWTBUG monitor, there is a bootstrap stored in this RUM which you can
use. It is executed by simply typing a 'D'.

If the system does not boot properly, re-position the system disk in the
drive and re-execute the bootstrap loader.

For those using the SWTPc disk hardware (the MF-68 and its associated
controller board on port #6), but a monitor ROM other than SWTBUG, the
following bootstrap program must be entered in memory and executed.
Systems without proper ROM boots will have to have a bootstrap program
written. The following boot might be used as a guide for writing a
similar WD1771 type controller boot routine.

0100 86 80 18 START LDA A COMREG TURN MOTOR ON
0103 4F CLR A

0104 87 80 14 STA A DRVREG

0107 CE 00 00 LDX #$0000

010A 08 OVR INX

010B 09 DEX

010C 09 DEX

010D 26 FB BNE OVR

010F Cé6 OF LDA B #$0F RESTORE
0111 F7 80 18 STA B COMREG

0114 8D 2A BSR RETURN

0116 F6 80 18 LOOP1 LDA B COMREG

0119 C5 01 BIT B #$01

011B 26 F9 BNE LOOP1

011D 7F 80 1A CLR SECREG

0120 8D 1E BSR RETURN

0122 C6 8C LDA B #$8C READ WITH LOAD
0124 F7 80 18 STA B COMREG

0127 8D 17 BSR RETURN

0129 CE Al 00 LDX #$A100

012C C5 02 LOOP2 BIT B #$02 DRQ?
012E 27 06 BEQ LOOP3

0130 B6 80 1B LDA A DATREG

0133 A7 00 STA A 0,X

0135 08 INX

0136 F6 80 18 LOOP3 LDA B COMREG

0139 C5 01 BIT B #3501 BUSY?
013B 26 EF BNE LOOP2

013D 7E Al 00 JMP $A100

0140 8D 00 RETURN BSR RTN

0142 39 RTN RTS

-3.6-

FLEX User's Manual

X. REQUIREMENTS FOR THE 'PRINT.SYS' PRINTER DRIVER

FLEX, as supplied, includes a printer driverthat will work with most
parallel type printers using a Centronics interface. If desired, the
printer driver may be changed to accomodate other types of printers.
Included 1is the source 1listing for the supplied driver. Additional
information on the requirements for the PRINT.SVS driver can be found in
the Advanced Programmer's uide.

1) For use with "P" the driver must be in a file called PRINT.SYS.

2) Three separate routines must be supplied, a printer initialization
routine (PINIT at $ACCO), a check ready routine (PCHK at $ACD8),
and an output character routine (POUT at $ACE4).

3) When the POUT routine is called by FLEX, the character to be output
will be in the A accumulator. PINIT may destroy any registers.
POUT and PCHK may NOT alter any registers.

4) The routines MUST start at the addresses specified, but may be
continued anywhere in memory if there 1is not room where specified.
If placed elsewhere in memory, be certain they do not conflict
with any wutilities or programs which will use them.

5) A1l three routines must end with a return from subroutine
instruction (RTS).

1 *
2 * PRINT.SYS DRIVERS FOR GENERAL PARALLEL PRINTER

3 * CHANGE PIA ADDRESS IF NECESSARY

4 *

5

6 801C PIA EQU $801C PIA ADDRESS FOR PORT #7

7

8 *

9 * PRINTER INITIALIZATION (MUST BE AT $ACCO)

10 *

11 ACCO ORG $ACCO MUST RESIDE AT $ACCO

12 ACCO 86 3A PINIT LDA A #3$3A SELECT DATA DIRECTION REG.
13 ACC2 B7 80 1D STA°A PIA+1 BY WRITING O IN DDR CONTROL
14 ACC5 86 FF LDA A #$FF SELECT ALL OUTPUT LINES

15 ACC7 B7 80 1C STA°\A PIA PUT IN DATA DIRECTION REG.
16 ACCA 86 3E LDA A #$3E SET UP FOR TRANSITION CHECKS
17 ACCC B7 80 1D STA'A PIA+1 AND ENABLE OUTPUT REGISTER
18 ACCF 39 RTS

-3.7-

ACDO
ACD3
ACD6

ACD8
ACD8
ACDB
ACDD
ACEO
ACE2

ACE3

ACE4
ACE4
ACEb
ACE8
ACEB
ACEE
ACFO
ACF2
ACF4
ACF7

7D
73
39

* PRINTER READY ROUTINE
80 1C PREADY TST

AC E3

*

COM
RTS

PIA
PFLAG

FLEX User's Manual

RESET PIA READY INDICATION
SET THE PRINTER READY FLAG

* CHECK FOR PRINTER READY (MUST BE AT $ACD8)

*

AC E3 PCHK
80 1D
PCHKX

ORG
TST
BMI
TST
BMI
RTS

$ACD8
PFLAG
PCHKX
PIA+1
PREADY

* PRINTER READY FLAG

PFLAG

*

FCB

$FF

PRINT TEST AT $ACDS8

TEST FOR PRINTER READY

IF NEGATIVE, PRINTER READY
CHECK FOR TRANSITION

IF MINUS, PRINTER NOW READY

PRINTER READY FLAG

* PRINTER OUTPUT CHARACTER ROUTINE (MUST BE AT $ACE4)

*

F2 POUT
FC

AC E3

80 1C

36

02

3E

80 1D POUTB

ORG
BSR
BPL
CLR
STA
LDA
BSR
LDA
STA
RTS

END

= =

= =

$ACE4
PCHK
POUT
PFLAG
PM
#$36
POUTB
#$3E
PIA+1

-3.8-

MUST RESIDE AT ACE4

TEST FOR PRINTER READY

LOOP UNTIL PRINTER READY
SET PRINTER FLAG NOT READY
SET DATA IN OUTPUT REGISTER
SET DATA READY, HIGH TO LOW
STUFF BYTE INTO THE PIA
THEN SEARCH FOR TRANSITION
OF LOW LEVEL TO HIGH LEVEL

FLEX User's Manual

Sample Drivers for Serial Printer

The following 1listing is a sample set of drivers for a serial type
printer using an ACIA as its interface. This set of drivers is not
supplied on disk. In order to use these drivers, you must type in the
source and assemble it. If you have a serial printer, you will probably
want to replace the parallel PRINT.SYS file on the disk with one
containing these drivers.

1 *

2 * PRINT.SYS DRIVERS FOR GENERAL SERIAL PRINTER
3 * CHANGE ACIA EQUATE IF NECESSARY

4 *

5

6 801C ACIA EQU $801C ACIA ADDRESS FOR PORT #7
: N

9 * PRINTER INITIALIZATION (MUST BE AT $ACCO)

10 *

11 ACCO ORG $ACCO MUST RESIDE AT $ACCO
12 ACCO 86 13 PINIT LDA A #$13 RESET ACIA

13 ACC2 B7 80 1C STA A ACIA

14 ACC5 86 11 LDA A #$11 SET 8 BITS & 2 STOP
15 ACC7 B7 80 1C STA' A ACIA

16 ACCA 39 RTS RETURN

17

18 *

19 * CHECK FOR PRINTER READY (MUST BE AT $ACDS8)

20 *

21 ACD8 ORG $ACD8 PRINT TEST AT $ACDS8
22 ACD8 37 PCHK PSH B SAVE B ACC.

23 ACD9 F6 80 1C LDA B ACIA GET STATUS

24 ACDC 56 ROR B GET TDR BIT INTO

25 ACDD 56 ROR B SIGN POSITION

26 ACDE 56 ROR B

27 ACDF 33 PUL B RESTORE B ACC.

28 ACEO 39 RTS RETURN

29

30 *

31 * PRINTER OUTPUT CHARACTER ROUTINE (MUST BE AT $ACE4)
32 *

33 ACE4 ORG $ACE4 MUST RESIDE AT $ACE4
34 ACE4 37 POUT PSH B SAVE B ACC.

35 ACES F6 80 1C POUT?2 LDA B ACIA GET STATUS

36 ACE8 57 ASR B GET TDR BIT

37 ACE9 57 ASR B INTO CARRY

38 ACEA 24 F9 BCC POUT2 LOOP IF NOT READY
39 ACEC 33 PUL B RESTORE B ACC.

40 ACED B7 80 1D STA A ACIA+1 WRITE OUT THE CHAR.
41 ACFO 39 RTS RETURN

42

43 END

-3.9-

COMMAND SUMMARY

APPEND,<file spec>[,<file 1ist>],<file spec>
Default extension: .TXT
Description page: A.1l

ASN[,W=<drive>] [,S=<drive>]
Description page: A.2

BUILD,<file spec>
Default extension: .TXT
Description page: B.1

CAT[,<drive 1ist>][,<match list>]
Description page: C.1T

COPY,<file spec>,<file spec>

COPY,<file spec>,<drive>

COPY,<drive>,<drive>[,<match 1ist>]
Description page: C.2

DATE[,<mm,dd,yy>]
Description page: D.1

DELETE,<file spec>[,<file list>]
Description page: D.2

EXEC,<file spec>
Default extension: .TXT
Description page: E.I

GET,<file spec>[,<file Tist>]
Default extension: .BIN
Description page: 1.7

I,<file spec>,<command>
Default extension: .TXT
Description page: I.1

JUMP,<hex address>
Description page: J.1

LINK,<file spec>
Default extension: .SYS
Description page: L.1

LIST,<file spec>[,<line range>][,N]
Default extension: .TXT
Description page: L.2

MON
Description page: 1.7

-4.1-

FLEX User's Manual

FLEX User's Manual

NEWDISK,<drive>
Description page: N.I

0,<file spec>,<command>
Default extension: .OUT
Description page: 0.1

P,<command>
Description page: P.1

PRINT,<file spec>
Default extension: .OUT
Description page: P.2

PROT,<file spec>[, (options)J
Description page: P.3

QCHECK
Description page: Q.1

RENAME,<file spec 1>,<file spec 2>
Default extension: .TXT
Description page: R.1

SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]
Default extension: .BIN
Description page: S.]

SAVE. LOW
Description page: S.1.2

STARTUP
Description page: S.2

TTYSET[,<parameter list>]
Description page: T.1

VERIFY[,<ON or OFF>]
Description page: V.1

VERSION,<file spec>
Default extension: .CMD
Description page: V.2

XOUT[,<drive spec>]
Description page: X.1

-4.2-

FLEX User's Manual

Notes:

-4.3-

